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Dynamic link prediction has become a trending research subject because of its wide applications in web,
sociology, transportation, and bioinformatics. Currently, the prevailing approach for dynamic link prediction
is based on graph neural networks, in which graph representation learning is the key to perform dynamic link
prediction tasks. However, there are still great challenges because the structure of graphs evolves over time. A
common approach is to represent a dynamic graph as a collection of discrete snapshots, in which information
over a period is aggregated through summation or averaging. This way results in some fine-grained time-
related information loss, which further leads to a certain degree of performance degradation. We conjecture
that such fine-grained information is vital because it implies specific behavior patterns of nodes and edges in
a snapshot. To verify this conjecture, we propose a novel fine-grained behavior-aware network (BehaviorNet)
for dynamic network link prediction. Specifically, BehaviorNet adapts a transformer-based graph convolution
network to capture the latent structural representations of nodes by adding edge behaviors as an additional
attribute of edges. GRU is applied to learn the temporal features of given snapshots of a dynamic network by
utilizing node behaviors as auxiliary information. Extensive experiments are conducted on several real-world
dynamic graph datasets, and the results show significant performance gains for BehaviorNet over several
state-of-the-art (SOTA) discrete dynamic link prediction baselines. Ablation study validates the effectiveness
of modeling fine-grained edge and node behaviors.

CCS Concepts: » Information systems — Social networks; « Computing methodologies — Neural
networks.

Additional Key Words and Phrases: Link prediction, Dynamic networks, Graph Neural Networks, Dynamic
Representation Learning

1 INTRODUCTION

Dynamic network is a natural and powerful tool to delineate complex systems such as social
networks[59], finance[13], bioinformatics[27], and knowledge graphs[6, 53]. Dynamic link pre-
diction is a typical task in dynamic network analysis that is intended to forecast future links of a
certain network based on its historical information[65].

For a given dynamic network, there are two approaches to represent the dynamics: continuous
and discrete[43]. Discrete approaches model the dynamic network as a chronological sequence
of snapshots that are generated by aggregating temporal information at different time intervals.
On the other hand, continuous approaches do not use temporal aggregations but they model the
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dynamic network as an interaction flow. Fig. 1 shows some examples of discrete networks and
continuous networks and their transformations. Although continuous networks contain richer
information and methods based on continuous networks could achieve better performance, most
research focuses on discrete networks because continuous interaction information is costly or
impossible to obtain in real-world applications. Actually, continuous networks are special cases of
discrete networks if the time interval is close to the infinitesimal. In this paper, we focus on discrete
dynamic network link prediction and we try to impose the advantages of continuous networks
that retain richer information to discrete networks by using fine-grained temporal information.

The key challenge for dynamic link prediction is how to represent nodes as low-dimensional
vectors that capture their structural and temporal information, which is called dynamic representa-
tion learning. Discrete dynamic representation learning approaches follow the same paradigm, i.e.,
constructing a structural encoder (e.g., GCN[61], GAT[51]) followed by a temporal encoder (e.g.,
RNNT[41], Attention[50]). This paradigm is often criticized by continuous representation learning
methods because the loss of temporal information would lead to performance degradation [28, 43].
Causes of such temporal information loss can be classified into two types:

(1) Real-world restrictions make it impossible to observe specific temporal information at the
time of observation (from the top layer to middle layer in Fig. 1). For example, some news
websites only give the release date of news, and when multiple news released on the same
day are observed, the order of these news is lost. This kind of temporal information loss
cannot be avoided and makes continuous representation learning methods not available.

(2) The aggregation operation in forming snapshots results in a loss of temporal information
(from the middle layer to bottom layer in Fig. 1). The aggregation operation is necessary as
the observed fine-grained information is very sparse and thus it is difficult to be directly
captured. This type of temporal information loss can be avoided, but unfortunately existing
methods ignore it.

We argue that fine-grained temporal information is valuable and should be effectively used in an
appropriate manner because this fine-grained information can reflect certain patterns of node and
edge behaviors.

Therefore, the following question needs to be answered: is it possible to extend the existing discrete
dynamic network representation learning architecture to make it capable of dealing with such node
behaviors and edge behaviors to improve dynamic link prediction performance?

To answer this question, we propose a novel fine-grained behavior-aware network called Behav-
iorNet. Different from existing approaches, when aggregating interactions within a time interval
to form a snapshot, BehaviorNet cuts the interval into a fixed number of equal fine-grained time
intervals. Edge behavior vectors and node behavior vectors are generated from these fine-grained
intervals as auxiliary attributes of the aggregated snapshot. Edge behaviors are more responsive
to the interaction patterns on the local structure of the dynamic network, while node behaviors
are more responsive to the patterns of the nodes themselves in the temporal order. BehaviorNet
is designed with a transformer-based graph convolution network as a structural encoder where
edge behaviors are processed as edge attributes, followed by a GRU-based temporal encoder where
node behaviors are processed as auxiliary information to handle these two different types of
behaviors. Extensive experiments have been conducted on six standard dynamic datasets and
the results show that BehaviorNet shows significantly better performance than SOTA methods.
Furthermore, we demonstrate the benefits of using fine-grained information through ablation study.
Main contributions are summarized as follows:

(1) We demonstrate that under the conditions where continuous timing information is unavail-
able or costly to obtain, the loss of fine-grained temporal information brought by the coarse
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Fig. 1. Example of continuous network and discrete networks, and transformations between them

aggregation forming snapshots, which is common in existing discrete dynamic graph net-
works, leads to degradation of model performance. To address this issue, we introduce node
behaviors and edge behaviors to express fine-grained temporal information from different
perspectives.

(2) We propose a novel fine-grained behavior-aware neural network named BehaviorNet for
dynamic network link prediction. Compared with existing discrete dynamic graph networks,
BehaviorNet can preserve fine-grained information through node behaviors and edge behav-
iors to enhance structural and temporal information.

(3) We evaluate BehaviorNet and some SOTA methods using six standard dynamic datasets:
HYPERTEXT, ENRON, EMAIL-DNC, FB-MESSAGES, UCI and SOC. The results show that
the superior performance for BehaviorNet over SOTA methods in dynamic link prediction
tasks.

(4) We discuss parameter sensitivity of BehaviorNet and give some suggestions for using Behav-
iorNet in practice and future research.

The remainder of this paper is organized as follows. Section 2 discusses related works. Section 3
presents related preliminaries. Section 4 gives a detailed interpretation of BehaviorNet. Section 5
are the experimental results, as well as detailed analysis and discussion. Section 6 is the conclusion.

2 RELATED WORK

Existing link prediction methods can be roughly divided into two categories[2]: one is classical
similarity-based methods and the other is feature learning based methods.

2.1 Similarity-based methods

Similarity-based methods assume that the more similar two nodes are, the more likely it is that a
link exists between them. The key of these methods is the choice of a similarity measure function.
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The similarity measure function can be subdivided into global similarity measure functions, local
similarity measure functions and quasi-local similarity measure functions[52].

Global similarity measure functions use the topological information of the entire network to
measure the similarity of nodes, such as Katz Index, SimRank, Random Walk, etc. Because the
global similarity measure functions have to deal with the entire network, they cannot be computed
in parallel and the time complexity of these methods is quadratically related to the size of the
network, so these methods are not suitable for large-scale networks.

Local similarity measure functions use the the local topological information to measure the
similarity of nodes, such as Commmon Neighbors, Jaccard Index, adamic-adar, etc. Compared
with global similarity measure functions, local similarity have worse performance but its low
computational cost allows it to be used in large-scale networks.

Quasi-local similarity measure functions trade off the global similarity measure functions and
local similarity measure functions to obtain better link prediction performance and maintain low
computational cost, such as Local Random Walk, FriendLink, etc.

Overall, similarity-based methods adopt heuristic algorithms, they are usually very efficient and
easy to implement, but the assumption that similar nodes are more likely to be linked does not
hold in many scenarios, and these methods do not take the time-varying features into account very
adequately.

2.2 Feature learning based methods

As we mentioned in Section 1, the key of feature learning based dynamic network link prediction
is representation learning on networks. In this section, we review representation learning on static
networks and dynamic networks.

2.2.1 Representation learning on static network. Matrix factorization based approaches[26, 46, 57]
obtain node embeddings by exploring the spectral graph properties to perform dimensionality
reduction. They have been proved to be effective in learning node embeddings. However, it is
required to load the entire matrix into RAM for factorization, which requires a large amount of
memory and computational resources, or even infeasible. Therefore, they cannot be directly applied
to large-scale networks.

Random walk based approaches[9, 22, 35] are proposed to improve scalability. By performing
fixed-length random walks, a network can be transformed into a collection of node sequences, in
which skip-gram is utilized to lean node embeddings by maximizing the likelihood of co-occurrence
in these sequences.

In recent years, deep learning-based approaches become more and more popular due to their
improved embedding performance. Kipf et al.[15] first proposed graph convolution network (GCN)
which utilizes a message passing mechanism to obtain node embeddings. After GCN, many mes-
sage passing based graph neural network (GNN) architectures have been proposed, including
simple graph convolution network (SGC)[54], GraphSAGE[10], graph attention network (GAT)[51],
APPNP[16], FastGCN[1], EGNN[7], and GraphTransformer[42, 60].

2.2.2 Representation learning on dynamic network. Dynamic networks can be represented in both
continuous and discrete forms, as discussed in Section 1.

Most existing continuous dynamic network embedding approaches can be classified into temporal
random walks based approaches[24, 28, 33, 34], RNN based approaches[20, 25, 36], and temporal
point processes based approaches[11, 18, 48]. Recently, some new continuous dynamic network
embedding paradimgs are emerging. For example, HVGNN[44] use hyperbolic space and variational
autoencoder to better model the hierarchical of graph structure and uncertainty in evolution. As
discussed in Section 1, it is impractical to sense network changes in the smallest time unit (e.g.,
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second, day) in some real-world scenarios, and they cannot be applied to snapshots that lack precise
time information.

Existing discrete dynamic network embedding approaches can be classified into two categories[39]:
temporal smoothness approaches and recurrent approaches.

Temporal smoothness approaches are built on the assumption that the evolution of the network is
smooth, and they guarantee the stability of embedding across consecutive time-steps[64, 67]. Zhu et
al.[66] proposed a generalized eigen perturbation to incrementally update the results of generalized
SVD, which is designed to preserve the high-order proximity, to incorporate the changes of dynamic
networks. Goyal et al.[8] explored graph-autoencoders to incrementally build the embeddings of a
snapshot from embeddings of the snapshot at the previous step. However, these methods cannot
capture long-term changes in the network structure. More importantly, they lead to oversmoothing,
thus cannot handle nodes that exhibit widely varying evolutionary behaviors.

Recurrent approaches normally combine GNNs and recurrent architectures, and they capture
temporal dynamics by remaining hidden states[23, 40, 63]. Chen et al.[2] embedded GCN into
LSTM cells to better integrate structural and temporal information. Pareja et al.[32] proposed
EvolveGCN which uses the RNN to update the weights in the GCN model at each time step. Sankar
et al.[39] proposed the joint self-attention on structural and temporal domains to better capture
the structural and dynamic information at the same time.

BehaviorNet is a recurrent approach, and unlike existing methods, it preserves fine-grained
behavior information during the aggregation operation to generate snapshots. It is important
to note that the fine-grained information used in BehaviorNet also belongs to a time
interval, but such time interval is significantly finer-grained than the time interval of a
snapshot.

3 PRELIMINARIES

In this section, we introduce some preliminaries. We reserve bold capital letters for matrices and
bold lowercase letters for vectors. We omit some superscripts and subscripts in case they do not
lead to ambiguity. The symbols commonly used in this paper are listed in Appendix A for reference.

DEFINITION 1 (DYNAMIC NETWORKS). A dynamic network is a sequence of discrete snapshots
G = {GW,GP ... .GD}, where G = {V, &1 AD} denotes a weighted undirected graph at
timet.V = {01,0s,...,0n} denotes a set of nodes shared by all snapshots and &) = {el.()g)} is the
aggregated temporal links within fixed timespan [t — 7, t], where T is a positive constant. Each edge
ei(j.) € W is associated with a weight AE’? > 0 in the adjancy matrix A(*).

DEFINITION 2 (FINE-GRAINED BEHAVIOR IN A SNAPSHOT). For a given snapshot G generated
within the timespan [t — 7, t], the timespan can be split into K equal length fine-grained time intervals.
Then edge fine-grained behavior between nodes i and j can be denoted ase; ; = {e; j1,€ij2, ...,€ijK}
where e; i is the number of interactions between nodes i and j within the k-th fine-grained time
intervals. Node fine-grained behavior bst) is an aggregation of its associated edges behavior and can

be denoted as B = {bft)l Yiev eg’?, i€V}

With Definition 1 and Definition 2, we can support the simulation of 5 types of fine-grained
behaviors, including adding nodes, adding edges, dropping edges, node feature changes and edge
feature changes. Currently, BehaviorNet does not support simulating dropping nodes.

For example, in Fig. 1, each snapshot is generated within 8At, and this timespan is consist of 4
fine-grained time intervals. Then the edge behavior between node 1 and node 2 in the first snapshot
is ez = {1,1,0,0}, and the node behavior of node 1is b; = {2, 1,1, 0}.
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Fig. 2. The overall architecture of the fine-grained behavior aware network (BehaviorNet).

DEFINITION 3 (DyNAMIC LINK PREDICTION). Given a sequence of snapshots with length T, G =
(G, GU-T+1)  GW}. The dynamic link prediction aims to predict the existence of an edge in
the next time step t + 1 based on the historical information of G.

4 THE PROPOSED METHOD
4.1 Overall architecture

Shown in Fig. 2, BehaviorNet consists of a structural encoder and a temporal encoder. The structural
encoder is a variant of GraphTransformer, which can process edge behavior by treating it as an edge
attribute. The temporal encoder is a recurrent network (e.g., LSTM, GRU), where node behaviors are
processed and the evolution of nodes can be captured. Specifically, for the dynamic link prediction
task, the fully-connected layers are used as a decoder. Note that the decoder part is not shown in
Fig. 2 to keep the clarity.

4.2 Generation of fine-grained behavior features

As described in Definition 2, original edge behaviors can be represented as a K-dimension vector.
Such representation is appropriate when the edge appears multiple times in the given timespan
[t — 7, t] and is dispersed over K fine-grained time intervals.

However, we find that in some cases, edge behavior patterns are few in number and most edge
behaviors are concentrated on one pattern. Such sparse features are challenging to extract valuable
behavioral pattern information in the structural encoder because of overfitting. To tackle this
problem, we treat the edge behavior vector as a function and use the moments of the function to
characterize the behavior vector. Particularly, in this paper, we care about when the interaction
is happened k = {£|e; # 0,0 < k < K} and use the first three orders of moments to denote the
transformed edge behavior:

e = [E[ko],E[kl],E[kz]] (1)

The main purpose of Eq. 1 is to preserve the distribution properties of the original edge behavior e
using dense vectors. There could be many transformation methods for edge behaviors, but exploring
the best transformation method is not the major task of this paper. For convenience, when the
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Fig. 3. The architecture of the Graph Transformer layer.

transformation of edge behaviors is needed, we uniformly use Eq. 1 considering its simplicity and
effectiveness.

In the following sections, if not explicitly stated, the edge behaviors we refer to are transformed
by Eq. 1 by default and denoted as e. Node behaviors do not have a transformation step. They
remain as an aggregation of the original edge behaviors, as described in Definition 2.

4.3 Structural encoder

The structural encoder is a variant of graph transformer[42] with taking into account the case of
edge behaviors, and this architecture is illustrated in Fig. 3.

In practice, given a set of initial node features X € RIV*P» and edge behavior E € R1€/XPe, where
D, is the initial node features dimension and D, is the edge behavior dimension. The structural
encoder obtain a new set of node representations Z € R!"V*F with F dimensions through a message
passing (neighborhood aggregation) scheme:

neighborhood aggregation

zi= Wex; o+ Z a; j(Wyx; + Wge; ;) )
T jeN()
self propagation
The first term in Eq. 2 is self propagation, which is designed to preserve the features of the node
itself. This allows the output new node representation to have structural and semantic information

when the initial node vector is generated from additional attributes (e.g., description of entities in the
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knowledge graph). W € Rf*Pn is a trainable parameter. The second term in Eq. 2 is neighborhood
aggregation, which aims to grab local structural information of node i by aggregating information
from its immediate neighbors. Edge behavior is used in Eq. 2 to enhance structural information.
Attention coefficients a; ; are computed as follows:

< WQXi,WKXj +WEe,-3j >
ZueN(i) < WQXi,WKXu + WEel-,u >

(3)

ai,j

T
where < ¢,k >= exp(%) is exponential scale dot-product function. Wy € RF*Pn and Wy €

RF*Dr are two learnable parameters that used to transform the source node feature x; and target

node feature x; into query vector and key vector. Additionally, edge behavior e; ; is encoded by
W; € RFXPe and added into key vector as auxiliary information. Wy € RF*Pr also is a trainable
matrix that used to transform node feature x; into value vector.

To model the multi-faceted variations in dynamic networks, we follow DySAT[39] to introduce
multi-head attention in the graph transformer. We use C headers to model C different facets, and
concatenation is used to compute output representation:

z; = Concat(z}, z?, e, zl.c (4)

A single graph transformer layer can only capture first-order proximity. One can capture high-
order proximity by stacking more layers. However, experience shows that deep graph neural
networks always encounter the problem of oversmoothing[58, 62]. There are some tricks that can
be used to alleviate the oversmoothing problem, such as gated residual connection[3, 21, 42], but
in our experiments, we found that these tricks are not stable, and the performance of shallow
networks is no worse or even better than that of deep networks. In this paper, we stack two graph
transformer layers to capture second-order proximity and without using gated residual connection
between layers.

4.4 Temporal encoder

The temporal encoder layer is used to capture the temporal evolutionary patterns in a dynamic net-
work. The input of the temporal encoder layer is a sequence of node representations {Z*~1), ..., Z(1}
obtained by structural encoder and a sequence of node behaviors {B*~T), ... B®)} at different
time steps, where B € RIVIXK,

We first conduct a mixture node feature to capture both its structural information and its fine-
grained behavior pattern information by concatenating node representation and node behavior:

N® = Concat(z”,B®) (5)

The mixture node features are packed together across time to get the input representation
N e RIVIXTX(F+K) The output of the temporal encoder is a new node representation sequences
at each time step {H*=D H*T+D_ H®} H® e RIVXF Noted only the last time step node
representation H*) will be used for dynamic link prediction.

Gated Recurrent Unit (GRU)[4] is employed in the temporal encoder:

C = sigmoid(W, N + W, H' ™ +ac) (6)
R = sigmoid(W,, N + W, H™Y 1 ap) )
A = tanh(W,,N© + RO « (W, HOD + app)) (8)
H® = (1-ROFD + ROFE-D ©)

6

9
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where C®), R, H®) are the reset, update, and new gates, respectively. W,,. € RF*(F*K) and
W, € RF*F are trainable parameters. a is bias. * is the Hadamard product. Noted we set the initial
hidden representation H® = 0.

4.5 Dynamic link prediction decoder and loss function
The dynamic link prediction decoder predict the existence of edge e; ; at time step ¢ + 1 based on

historical node representations hl@ and h'"). We first concatenate these two vectors and then apply

a two-layer MLP, where ReLU is used as activation function between fully connected layers and

sigmoid function is applied on the last layer output, to obtain the edge existence probability:
gt = MLP(Concat (b, h")) (10)

We optimize a binary cross-entropy loss function:

£=31 > -lg@i - > leg1-g") (1)

i€V \ je N+ (4) JreP ) (i)

where P **1 (i) is a negative sampling of non-neighboring nodes of i. Empirically, we set |P**1 (i) | =
5| (1) (1)|[48] to balance the positive and negative samples.

4.6 Complexity Analysis

For the generation of fine-grained behavior features, we only need to iterate over all edges in
each snapshot, this operation can be processed just once before the data is loaded, and the time
consumed can be neglected during the model training.

For the structural encoder, the time complexity of the graph transformer layers is O(T1|E|max),
where [ is the number of stacked graph transformer layers and |E| ;4 is the maximal edge number
of all snapshots. As we can parallel process each each snapshot in the time window, the time
complexity can be reduce to O(I|E|max)-

For the temporal encoder, the time consumption is mainly from GRU, whose time complexity is
O(|V|x (F+K+F’)).

Overall, the time complexity of BehaviorNet is linear to the edge number or the node number
(depends on the graph density), which indicates BehaviorNet can be applied to large-scale graphs.

5 EXPERIMENTS

In this section, we present a comprehensive set of experiments to demonstrate the effectiveness of
BehaviorNet.

5.1 Datasets

We use six publicly available benchmark datasets for experiments. All datasets were collected by
Rossi et al.[37] and placed on the website http://networkrepository.com. The datasets are described
as follows:

e HYPERTEXT][12]. HYPERTEXT is a face-to-face proximity human contact network. The
dataset was collected from the wireless devices carried by the participants of the correspond-
ing events during the ACM Hypertext 2009 conference. If two people have a conversation
during a certain time interval, then a corresponding edge is generated.

e ENRONTJ17]. ENRON is an email network. Each node represents an employee of ENRON,
and a link occurs each time denotes an email sent from one employee to another.
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Table 1. Basic statistics of six datasets.

#Samples

#Nodes  #Edges (Train/ V}a)l/ Test)
HYPERTEXT 113 20,815 6/2/1
ENRON 151 43,007 6/2/1
EMAIL-DNC 1,484 29,208 6/2/1
FB-MESSAGES 1,595 44,273 6/2/1
UCI 1,899 42,979 6/2/1
SOC 3,704 23,797 6/2/1

e EMAIL-DNC|29]. EMAIL-DNC is an email network in the 2016 Democratic National Com-
mittee email leak. Nodes in the network correspond to persons in the dataset. An edge in the
dataset denotes that a person has sent an email to another person.

e FB-MESSAGES[30]. FB-MESSAGES is a Facebook-like social network originating from
an online community for students at the University of California, Irvine. Nodes in the
network correspond to users in the dataset. An edge in the dataset denotes that one user has
sent/received at least one message from another users.

e UCI[31]. UCl is an online community of students from the University of California, Irvine.
Edges in the UCI indicate messages sent or received between users.

e SOC[19]. SOC is a who-trusts-whom network of people who trade using Bitcoin on the
Bitcoin Alpha'.

The basic statistics of these datasets are summarized in Table 1. For convenience, all datasets are
divided into 12 equal-length snapshots, and each snapshot is internally divided into 50 fine-grained
time intervals, which means that the value of K is set to 50. The pseudo code for generating
snapshots is given in Appendix B. The training/validation/testing split is carried out along the time
dimension. We use continuous 4 snapshots as one sample, where the first 3 snapshots are used as
input, and the last snapshot is used as the target, equal to set time length T = 3.

5.2 Baselines
We employ the following dynamic network link prediction methods as baselines:

e CTGCN[23]: CTGCN proposes a k-core based temporal graph convolutional network, which
can preserve both local connective proximity and global structural similarity while simulta-
neously capturing network dynamics.

e DyGrAE[45]: DyGrAE uses gated graph neural networks to learn the topology of snapshots
and applies an encoder-decoder framework to process temporal information.

e DySAT[39]: DySAT computes node representation through joint self-attention along struc-
tural neighborhood dimension and temporal dynamic dimension, and uses multi-head atten-
tion to model multi-faceted variations in network structures.

e EvolveGCN[32]: EvolveGCN is a dynamic variant of GCN, which captures the dynamism
of the network sequence by using an RNN to evolve the GCN parameters. There are two
versions of EvolveGCN: EvolveGCN-H and EvolveGCN-O.

o GCLSTM[2]: GCLSTM proposes an end-to-end model with a GCN embedded LSTM. GCN is
applied to capture the local structure, and LSTM is adopted as the main framework to learn
temporal features of all snapshots of a dynamic network.

http://www.btc-alpha.com
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We use one-hot degree-based node feature matrices for all baselines and our proposed Behavior-
Net as the initial node representation. We adopt the Adam optimizer[14] with learning rate of 0.001
and weight decay of 107>, For a fair comparison, the dimensionality of final node embedding F” is
set to 128 for all methods and stack two layer structure information encoder. We set them according
to the suggested values in the corresponding papers for the other parameters involved in baselines,
Appendix C provide more implement details. It should be noted that when comparing with the
baselines, we don’t search for the optimal hyperparameters in BehaviorNet. The optimization of
hyperparameters in BehaviorNet will be discussed in Section. 5.7.

5.3 Dynamic link prediction results

Follow EvolveGCN [32], evaluation metrics used in this paper include mean average precision
(MAP), mean reciprocal rank (MRR) and HITS@5. All methods were performed in 10 independent
experiments on all datasets and we report the mean results in Table. 2. Noted BehaviorNet is the
version that uses the edge behavior transformation as described in Section 4.2 and BehaviorNet-NT
is the version that does not use.

From Table 2, we find that overall our methods BehaviorNet and Behavior-NT are significantly
better than the other baselines in all metrics, while DySAT and GCLSTM perform the worst.
However, under dataset UCI, GCLSTM obtained the optimal performance on all metrics, but noted
that all methods performed poorly on both UCI and FB-MEAASGES datasets, and the performance
gap between all methods on these two datasets is actually small. On the other four datasets,
BehaviorNet and its variants significantly outperformed the other baselines, especially on the
EMAIL-DNC dataset, BehaviorNet improved 0.0129, 0.097 and 0.1030 on HIT@5, MAP and MRR,
respectively, over DyGrAE, which obtained the best performance among all baselines.

CTGCN and DyGrAE outperform the remaining baselines overall. CTGCN achieves this by
introducing additional k-core graphs to enhance the representation of structural information, while
DyGrAE is achieved by using a bidirectional LSTM encoder-decoder architecture to enhance the
temporal information. BehaviorNet enhances structural and temporal information through edge
behavior and node behavior, respectively.

Comparing BehaviorNet and BehaviorNet-NT, we find that BehaviorNet outperforms BehaviorNet-
NT on EMAIL-DNC, FB-MESSAGES and UCIL While BehaviorNet-NT performs better on SOC. The
main reason for this is the diversity and balance difference in edge behavior patterns in the dataset,
as described in Section 4.2. To further demonstrate this point, we performed statistics on datasets.
The results are presented in Fig. 4, where the x-axis is the different edge behavior patterns denoted
by the number of non-zero elements in the edge behavior vector and y-axis is the percentage of
each behavior pattern. As we can see that The edge behavior patterns in the SOC are few and
concentrated, while the other three datasets are diverse and unbalanced. These phenomena prove
our point in Section 4.2 that sparse features are challenging to extract valuablebehavioral pattern
information in the structural encoder because of overfitting.

In addition, we also compare the number of model params for each model, the results are shown
in Fig. 5. DySAT has the lowest and most stable number of parameters, which is almost not affected
by the size of the dataset, at the cost of the worst performance of all the baselines in most cases.
CTGCN, DyGrAE and EvolveGCN typically require more parameters and are sensitive to the
dataset size. The number of parameters in BehaviorNet is intermediate between all baselines and is
insensitive to the size of the dataset, which indicates that BehaviorNet is scalable. Additionally, as
most models (except DySAT) use RNN-like structure as temporal encoder, which needs to maintain
a node number |V| related hidden embeddings. Thus, these models have difference in number of
params on different datasets.
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Fig. 5. Comparison of the number of model params for each model on each dataset.

5.4 Model convergence comparison

We compare the convergence speed of different models in this section. Since our experiments were
conducted on a shared server with many other running jobs, the model’s running time per epoch
fluctuated greatly, so we chose the number of epochs of convergence for comparison rather than
the running time per epoch.

Fig. 6 shows the convergence epochs of different models on the six datasets, where the horizontal
axis indicates the number of epochs to converge and the vertical axis indicates the MRR value.
DySAT usually requires more epochs to converge than other methods, except on the smallest
HYPERTEXT dataset. The other methods perform differently on different datasets. BehaviorNet
and its variant BehaviorNet-NT generally require more training epochs to converge than baselines
on small-scale networks but converge faster than most baselines on large-scale datasets. It should
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Fig. 6. Comparison of the number of epochs to converge of different models on the six datasets.

be emphasized that BehaviorNet performs significantly better than baselines. We also observed
that BehaviorNet-NT always needs fewer convergence epochs than BehaviorNet, which is caused
by the fact that BehaviorNet-NT and BehaviorNet have the same architecture, but BehaviorNet-NT
uses more hidden units for handling edge behavior (Eq. 2 and Eq. 3)[55].

5.5 Visualization

In this section, we explore the differences in the node representations obtained by different models
through visualization. We utilize t-distributed stochastic neighbor embedding (tSNE) [49] to project
node representations of a dynamic network from a high dimension into a 2D space. The visualization
results are presented in Fig. 7.

From Fig. 7, we can find that EvolveGCN (Fig. 7(d) and Fig. 7(e)) and DySAT (Fig. 7(c)) fail
to separate the inactive nodes (000) from the active nodes, while other methods make a clear
distinction between these nodes. This is the reason why EvolveGCN and DySAT perform much
lower than other models on EMAIL-DNC dataset. Despite GCLSTM (Fig. 7(f)) distinguishes inactive
nodes from active nodes, the difference between inactive nodes is not captured and the different
types of active nodes are not distinguished. While CTGCN (Fig. 7(a)) and DyGrAE (Fig. 7(b)) are
much improved compared to GCLSTM, they still do not distinguish well for nodes with activity
at the most recent time step ( , 001 and ). The main reason is that CTGCN enhances on
structural information by k-core graph, and DyGrAE enhances on temporal information by BiLSTM.
BehaviorNet enhances both structural and temporal information of dynamic graph by edge behavior
vector and node behavior vector, so that BehaviorNet is capable to distinguishing all type active
nodes clearly, as shown in Fig. 7(h). The results demonstrate that BehaviorNet can capture behavior
patterns in dynamic networks, which highly augments the expressive power of BehaviorNet.
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5.6 Ablation Study
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Fig. 8. Performance comparison for behavior vector ablation study.

BehaviorNet unifies two kinds of fine-grained behavioral information that contribute to its effective-
ness in predicting future links in dynamic networks. We give insights on each kind of behavioral
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information and how it is indispensable to BehaviorNet by conducting an ablation study. We
perform the following tests:

e BehaviorNet-w/o-eb. In this variant, we make Eq. 2 and Eq. 3 edge behavior independent
(i.e. remove Wge; ;).

¢ BehaviorNet-w/o-nb. In this variant, we make Eq. 5 node behavior independent (i.e. remove
B().

The results are shown in Fig. 8. We can observe that BehaviorNet consistently outperforms
BehaviorNet-w/o-eb and BehaviorNet-w/o-nb in all cases, except for the HIT@5 metric in the
EMAIL-DNC dataset, where BehaviorNet is slightly worse than BehaviorNet-w/o-eb and BehaviorNet-
w/o-nb. These experiments illustrate that fine-grained behavioral information can indeed improve
the performance of dynamic link prediction.

Additionally, we also find that the removing edge behaviors lead to a significant performance drop
for small networks (ENRON, HYPERTEXT) and sparse network (SOC), since these networks are
mainly inadequate representations of structural information. While for denser networks (EMAIL-
DNC, FB-MESSAGES, UCI), the removing node behaviors has a greater impact, because 1) temporal
information is the main bottleneck in these networks; 2) The edge behaviors patterns inside these
networks are much complex, and the transformation method introduced in Section. 4.2 not able
to fully capture these edge behavior patterns. How to better transform the edge behaviors will
become a priority in our future research.

BehaviorNet split the snapshot in 7 into K equal intervals to generate behavior vectors, here we
test a variant call BehaviorNet-K which directly use a more fine grained time interval £ for the
overall sequence without introducing the behaviors.

" O @ BehaviorNetK " O @ BehaviorNetK
1.0 1.0
09— 0.9
0.8 0.8
074
06

0.5

Relative MRR

0.4+

Relative Runing Time

0.3 0.3

0.2 0.2

0.1 0.1

0
T
EMAIL-DNC ENRON  FB-MESSAGES HYPERTEXT soc ucl EMAIL-DNC ENRON  FB-MESSAGES HYPERTEXT soc ucl

Fig. 9. Performance comparison for fine grained snapshots ablation study.

The results are shown in Fig. 9. Compared to BehaviorNet-K, BehaviorNet is more effective and
efficient, especially on large graph(FB-MESSAGES, UCI and SOC). The main reasons are as follows:

(1) Effectiveness. When snapshots are generated using fine grained time intervals, each snap-
shot is very sparse. It is hard for structural encoder to capture the high-order structural
information on such sparse snapshot.

(2) Efficiency. Using fine grained time intervals will generate more snapshots (K times) and
further more training samples (I’ —3 — T X K — 3). This dramatic increase in samples leads
to an increase in training time.

5.7 Parameter Sensitivity

The proposed BehaviorNet involves a number of parameters that may affect its performance. In
this section we discuss the effects of different parameters, noting that when we discuss a certain
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parameter, we may uniformly modify the other parameters of the model to make it work correctly
(e.g. node dimension and head number). In most case we only test the model performance on
HYPERTEXT and EMAIL-DNC with 5 independent experiments to save the computation time.

5.7.1 Node Embedding Dimension F’. On the ENRON and HYPERTEXT dataset we select the node
embedding dimension F’ from {8, 16, 24, 32, 50, 64, 100, 128}, while on the other datasets we choice
the node embedding dimension F’ from {8, 16, 32, 64, 128, 256, 384, 512}. The dynamic link prediction
results are shown in Fig. 10. From the figure we can find that higher node embedding dimension
does not necessarily bring better performance, which is also consistent with the conclusion that
only smaller nodes need to be selected to represent dimensionality in graph-related tasks in existing
studies[47].

ENRON HYPERTEXT FB-MESSAGE
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Fig. 10. Average MRR score with respect to the node embedding dimension F’ on six datasets.

We also found an interesting phenomenon that the model achieves the best performance and far
outperforms the other dimensions when the node embedding dimension F’ is close to y/4|V| on all
datasets except for the SOC dataset, but the performance is also competitive in the SOC dataset
when the node embedding dimension F’ is close to 4/4|V|. For example, the beset performance
is achieved when F’ = 24 on the HYPERTEXT dataset, where /4|V| = 21.45. While the best
performance is achieved when F’ = 64 on the EMAIL-DNC dataset, where /4|V| = 77.05.

The above experiments illustrate that BehaviorNet is sensitive to the node embedding dimension
F’, where a small dimension can lead to a significant performance degradation, while a large
dimension can also lead to performance degradation and increase the required computational
resources. Based on our experience, 1/4|V| can be used to guide the selection of the appropriate F’.
It should be noted that this finding is only an empirical finding, and we may need more theories or
more generalized scenarios to validate the correctness/formulation of this finding in our further
work.
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Fig. 11. Average MRR score with respect to the number of negative samples |#| on the HYPERTEXT and
EMAIL-DNC dataset.

5.7.2  Number of Negative Sampling |P|. This experiments focuses on analyzing the effect of
choosing different ratios of non-neighboring nodes in Eq. 10. And we test the cases where the
number of negative samples is {1,3,5,10,20,30,50,70,100} times that of positive samples.

As shown in Fig. 11, we can see that BehaviorNet is extremely sensitive with respect to the
number of negative samples. The suitable range for the number of non-neighboring nodes is
3|N| < |P| < 5|N|. BehaviorNet cannot get enough information to distinguish non-existing edges
form exist edges when |P| is too small, while when || is too large will lead to data imbalance and
“overwhelming” the model with negative samples. Both of these cases lead to performance drops.

Moreover, there is an unavoidable problem with the negative sampling: it very difficult to
guarantee random sampling of information-rich negative samples. How to overcome the negative
impact of random negative sampling will be a important part of our further work. One possible
solution is to use contrastive learning and adapt the negative-sampling-free contrastive loss function
used for the node classification task[47, 56] to the dynamic link prediction task.

5.7.3 Temporal History Window Size T. In this section, we analyze how temporal history window
size T affects BehaviorNet’s performance. We test the values of T from 1 to 8, and the results are
shown in Fig. 12.

We can find that the performance first increases as T increases, but there is a sharp drop in
the model performance when T is too large. The initial increase is due to the richer temporal
information brought by the increase of T. When T is too large, it introduces too old historical
information that does not provider valid complementary information for link prediction, or even
introduces noise. An appropriate temporal history window sizeis3 < T < 5.
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Fig. 12. Average MRR score with respect to the temporal history window size T on the HYPERTEXT and
EMAIL-DNC dataset.

This phenomenon could also inspire some existing dynamic graph representation learning tasks,
especially self-supervised dynamic network representation learning methods that use all historical
information (from 0 to t): more history information is not necessarily better, and by picking the
right temporal history time window size can lead to performance improvements.

0.35
1 @ EMAIL-DNC
] @ HYPERTEXT
0.30
7 .
o 0.25— \
o 4
= 4
0.20— —e
0.15+
‘ —T —T — —T —T T
0 5 10 15 20 25 30 35

number of head

Fig. 13. Average MRR score with respect to the number of attention heads in the Graph Transformer on the
HYPERTEXT and EMAIL-DNC dataset.
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5.7.4 Attention Heads C. Finally, we analyze the benefits of multifaceted modeling in structural
encoder via attention heads C, we vary the number of attention heads in Graph Transformer in
structural encoder in the range {1, 2, 4, 8, 16, 32}, while keeping the output dimension fixed to 128
for fairness. The results are shown in Fig. 13.

From Fig. 13, we can observe that BehaviorNet benefits from suitable attention head numbers.
The performance reaches its maximum when C is taken as 2. Further increase in the number of
attention heads will make the performance drop sharply, which is different from DySAT[39], where
the more attention heads there are, the higher the performance.

6 CONCLUSIONS

In this paper, we propose a fine-grained behavior- aware network for dynamic link prediction called
BehaviorNet. The entire BehaviorNet consist of a structural encoder and a temporal encoder, where
the structural encoder is implemented by a list of graph transformers and the temporal encoder is
implemented by GRU. BehaviorNet can capture both edge behavior and node behavior to enhance
structural and temporal information. Experimental results on several real-world dynamic networks
demonstrate the effectiveness and efficiency of BehaviorNet. The ablation study proves that edge
and node behaviors do have their unique values. We also discuss edge behavior transformation
methods, parameter sensitivity of BehaviorNet, and find many challenges to be solved in the future,
such as better and more general representation of edge behavior, negative sampling methods.
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A SYMBOLS

Table 3 list frequently-used symbols used in this paper and their meanings. We omit some super-
scripts and subscripts for clarity.



Table 3. Symbols used in this paper

Description

STONXRXT

@]

A sequence of discrete snapshots

Time ¢

A snapshot

A set of shared nodes

Edges in snapshot G

A node

An edge between node i and j

Adjancy matrix

Edge behavior vector of edge e;

Node behavior vector of node i

Number of fine-grained time intervals in a snapshot
Initial node features

Node representations given by structural encoder
Head number in structural encoder

Hidden representation in temporal encoder
Trainable parameters

The reset, update, and new gates.

Liu and Tu, et al.
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B GENERATION OF SNAPSHOTS
Algorithm 1: Generation Algorithm for Snapshots

Input :Number of snapshot T ;
Temporal sorted interaction set & = {(u,0,1)} ;
Start time t; and end time ¢, of & ;
Number of fine-grained intervals K ;
Output: A set of snapshots G;
1G < {}
2 N—{}
fort— 0toT do
‘ EW — {}; // The default value of edge e,gfz), in 80 is (w=0,e=0)
end
s (ts —te) /T
Tr — 15/K
for each (u,v,t) € & do
N — N U{u, v}
o | x5

1 xp = L—t_tf;TSxSJ
(xs) (xs)

12 Cuow < €uowt1

13 el(lf(;% — e,ﬁf‘z,f)eﬂl(xf) // 1(-) is indicator function with K dimension.
14 end

15 fort«— 0toT do

16 ‘ G — GU{GY = (N,ED)}

17 end

w

e ® N G s

18 return G

The pseudo code for generating snapshots is given in Algorithm 1, where I(+) is indicator function

with K dimension:
1 ifx=y,
I = 12
() {o ifx £ y. (12

C IMPLEMENT DETAILS

Table 4 show the initial one-hot degree-based node feature dimension D,, for each dataset.

Table 4. The Initial node feature X dimension on six datasets

HYPERTEXT ENRON EMAIL-DNC FB-MESSAGES UCI SOC
D, 58 62 153 185 190 149

All experiments were conducted on the same TitanXP server with 12GB memory. We uniformly
implemented all models using PyG[5], organized the experiments using hydra’ and pytorch-
lightning®, and used W&B* to automatically collect log information including model size, running

Zhttps://hydra.cc
3https://www.pytorchlightning ai
4https://wandb.ai/site
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time, etc. The implementation details and detailed parameters for all baselines and BehaviorNet are
listed as follows:

e CTGCN: We have reproduced it using PyG based on the official Pytorch code. We chose the
variant CTGCN-S because it is insensitive to K-core numbers[23, Fig. 9]. Parameter values
are: max_core_num = 3, cgcn_layer_num = 2.

e DyGrAE: We use the code provide by PyGT[38] with conv_num_layers = 2 and conv_aggr =
mearn.

e DySAT: We have reproduced it using PyG based on the official Tensorflow code. Based on
discussion in [39, Fig. 5] and their official code, we stack 2 structural self-attention layer and
set all self-attention layers (both structural and temporal) with 8 heads.

e EvolveGCN: We adopted the code provide by PyGT[38].

o GCLSTM: We use the code provide by PyGT[38] with stack 4 GCN layers and set Chebyshev
polynomial in each GCN is 3[2, Section 4.1].

e BehaviorNet: We implement BehaviorNet using PyG. We stack 2 graph transformer layers
and the head number in each graph transformer is 8 (directed use the best hyperparameters
in DySAT.)
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