
PyPop7: A Pure-Python Library for

Population-Based Black-Box Optimization

Qiqi Duan*,1, Guochen Zhou*,1, Chang Shao*,1,2,

Zhuowei Wang2, Mingyang Feng1, Yijun Yang1,2, Qi Zhao1, Yuhui Shi1
1Southern University of Science and Technology (SUSTech), Shenzhen

2University of Technology Sydney (UTS), Sydney

*Equal Contributions.

Abstract: In this paper, we present a pure-Python open-source library, called PyPop7,

for black-box optimization (BBO). It provides a unified and modular interface for

more than 60 versions and variants of different black-box optimization algorithms,

particularly population-based optimizers, which can be classified into 12 popular

families: Evolution Strategies (ES), Natural Evolution Strategies (NES), Estimation of

Distribution Algorithms (EDA), Cross-Entropy Method (CEM), Differential

Evolution (DE), Particle Swarm Optimizer (PSO), Cooperative Coevolution (CC),

Simulated Annealing (SA), Genetic Algorithms (GA), Evolutionary Programming

(EP), Pattern Search (PS), and Random Search (RS). It also provides many examples,

interesting tutorials, and full-fledged API documentations. Through this new library,

we expect to provide a well-designed platform for benchmarking of optimizers and

promote their real-world applications, especially for large-scale BBO. Its source code

and documentations are available at github.com/Evolutionary-Intelligence/pypop and

pypop.readthedocs.io/, respectively.

1. Introduction

Black-box optimization (BBO) problems widely exist in scientific and engineering

fields [1]. Recently, direct policy search [2] and black-box attacks [3] of deep neural

networks are two representative examples, to name a few. To tackle these challenging

black-box problems, a variety of powerful optimization algorithms (particularly their

large-scale variants) have been proposed from different research communities (e.g.,

artificial intelligence/machine learning, mathematical programming, statistics, control,

electronic engineering). In this paper, we incorporate many of these recent advances

on BBO into an open-source pure-Python library called PyPop7. The main objective

of this library is to provide a well-designed platform for benchmarking of black-box

optimizers and promote their real-world applications, especially for large-scale BBO.

 Recently, Hansen et al. [4] released a well-documented platform called COCO for

comparing continuous optimizers in a black-box setting, after experiencing ten-years

development. However, COCO focused on only the design of benchmarking functions

and did not provide any black-box optimizers. A similar work is the popular platform

named NeverGrad, developed recently by Facebook’s scientists [5]. Although it

provided basic versions of several black-box optimizers, NeverGrad did not widely

https://github.com/Evolutionary-Intelligence/pypop
https://pypop.readthedocs.io/

cover their variants1 for large-scale BBO (LSBBO). By providing many of their

newest LSBBO variants, our algorithms-design-centric library can be regarded as an

important complementary to the above two benchmarking-functions-centric libraries.

2. A Modular Framework for Black-Box Optimizers (BBO)

For readability and maintainability, PyPop7 provides a unified programming interface

with a modular code structure for >60 versions and variants of BBO from different

research communities, particularly population-based optimizers [6,7]. They can be

roughly classified into 12 popular algorithm families: Evolution Strategies (ES) [8],

Natural Evolution Strategies (NES) [9], Estimation of Distribution Algorithms (EDA)

[10], Cross-Entropy Method (CEM) [11], Differential Evolution (DE) [12], Particle

Swarm Optimizer (PSO) [13], Cooperative Coevolution (CC) [14], Simulated

Annealing (SA) [15], Genetic Algorithms (GA) [16,17], Evolutionary Programming

(EP) [18], Pattern Search (PS) [19], and Random Search (RS) [20].

 For almost all black-box optimizers, their sampling-based nature (i.e., considering

only the zeroth-order information of the objective function) typically results in the

well-established “curse of dimensionality” issue for large-scale optimization. See this

landmark theoretical paper [21] for the analysis of convergence rate (under convex

functions). To alleviate this issue, a variety of new sophisticated techniques have been

proposed over the past ten years, which can be roughly classified into 5 families:

decomposition/embedding of search space [14,22], low-memory approximation [23],

low-rank learning [24], variance-reduction sampling [25], and efficient (self-)adaptive

sampling [26].

2.1 Computational Efficiency

For computational efficiency, this library depends heavily on two core scientific

computing Python libraries (i.e., NumPy [27] and SciPy [28]). More specifically, the

numpy.array data structure and its functions are chosen as the basic way to store and

operate the population (e.g., sampling, updating, indexing, and sorting), which can

lead to significant speedups than the built-in data structure list.

2.2 Repeatability

For the randomized optimizer, properly controlling its random process is very key to

well repeat its numerical experiments. For this library, the random seed for each

optimizer needs to be explicitly given for repeatability [29], according to the newest

NumPy’s suggestion for Random Sampling.

 For each black-box optimizer considered in this library, we try our best to provide a

repeatability report (involving comparisons with the original reference), if possible.

3. Usage Case

In this section, we provide an optimization example to show PyPop7’s easy-to-use

programming interface unified for all black-box optimizers:

1 Although it incorporated one specific test suite for large-scale BBO (LSBBO), this LSBBO test suite is built mainly on the “Partially

Additive Separability” assumption. Since such an assumption is hard to satisfy on most real-world applications, we will not consider the

research line based on this “Partially Additive Separability” assumption in this library.

01>>> import numpy as np

02>>> def rosenbrock(x): # the notorious test function to be minimized in the optimization community

03... return 100 * np.sum(np.power(x[1:] - np.power(x[:-1], 2), 2)) + np.sum(np.power(x[:-1] - 1, 2))

04>>> ndim_problem = 1000 # dimension of fitness (cost) function to be minimized

05>>> problem = {'fitness_function': rosenbrock, # fitness function to be minimized

06... 'ndim_problem': ndim_problem, # dimension

07... 'lower_boundary': -5 * np.ones((ndim_problem,)), # search boundary

08... 'upper_boundary': 5 * np.ones((ndim_problem,))}

09>>> from pypop7.optimizers.es.lmmaes import LMMAES # to choose any optimizer you prefer in this library

10>>> options = {'fitness_threshold': 1e-10, # terminate when the best-so-far fitness is lower than 1e-10

11... 'max_runtime': 3600, # terminate when the actual runtime exceeds 1 hour (i.e., 3600 seconds)

12... 'seed_rng': 0, # seed of random number generation (which must be set for repeatability)

13... 'x': 4 * np.ones((ndim_problem,)), # initial mean of search (mutation/sampling) distribution

14... 'sigma': 0.3, # initial global step-size of search distribution

15... 'verbose': 500}

16>>> lmmaes = LMMAES(problem, options) # initialize the optimizer

17>>> results = lmmaes.optimize() # run its (time-consuming) search process

18>>> # print the best-so-far fitness and used function evaluations returned by the black-box optimizer

19>>> print(results['best_so_far_y'], results['n_function_evaluations'])

For more examples, refer to its documentation homepage: pypop.readthedocs.io/.

4. Conclusions

In this paper, we provide a well-designed open-source Python library for black-box

optimization with a modular code structure and full-fledged API documentations. We

expect it to be used as a benchmarking platform of large-scale BBO. In the future, we

will enhance its optimization capability via the following two new functionalities:

 Parallel and distributed computing (see [30] based on this new library),

 Automated algorithm selection and configuration [31].

Reference

1. Conn, A.R., Scheinberg, K. and Vicente, L.N., 2009. Introduction to

derivative-free optimization. Society for Industrial and Applied Mathematics.

2. Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., Elibol, M.,

Yang, Z., Paul, W., Jordan, M.I. and Stoica, I., 2018. Ray: A distributed

framework for emerging AI applications. In USENIX Symposium on Operating

Systems Design and Implementation (pp. 561-577).

3. Ilyas, A., Engstrom, L., Athalye, A. and Lin, J., 2018, July. Black-box adversarial

attacks with limited queries and information. In International Conference on

Machine Learning (pp. 2137-2146). PMLR.

4. Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T. and Brockhoff, D., 2021.

COCO: A platform for comparing continuous optimizers in a black-box setting.

Optimization Methods and Software, 36(1), pp.114-144.

5. Meunier, L., Rakotoarison, H., Wong, P.K., Roziere, B., Rapin, J., Teytaud, O.,

https://pypop.readthedocs.io/

Moreau, A. and Doerr, C., 2022. Black-box optimization revisited: Improving

algorithm selection wizards through massive benchmarking. IEEE Transactions on

Evolutionary Computation, 26(3), pp.490-500.

6. Eiben, A.E. and Smith, J., 2015. From evolutionary computation to the evolution

of things. Nature, 521(7553), pp.476-482.

7. Miikkulainen, R. and Forrest, S., 2021. A biological perspective on evolutionary

computation. Nature Machine Intelligence, 3(1), pp.9-15.

8. Ollivier, Y., Arnold, L., Auger, A. and Hansen, N., 2017. Information-geometric

optimization algorithms: A unifying picture via invariance principles. Journal of

Machine Learning Research, 18(18), pp.1-65.

9. Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J. and Schmidhuber, J.,

2014. Natural evolution strategies. Journal of Machine Learning Research, 15(27),

pp.949-980.

10. Brookes, D., Busia, A., Fannjiang, C., Murphy, K. and Listgarten, J., 2020, July. A

view of estimation of distribution algorithms through the lens of

expectation-maximization. In Proceedings of Genetic and Evolutionary

Computation Conference Companion (pp. 189-190). ACM.

11. Hu, J., Fu, M.C. and Marcus, S.I., 2007. A model reference adaptive search

method for global optimization. Operations Research, 55(3), pp.549-568.

12. Laganowsky, A., Reading, E., Allison, T.M., Ulmschneider, M.B., Degiacomi,

M.T., Baldwin, A.J. and Robinson, C.V., 2014. Membrane proteins bind lipids

selectively to modulate their structure and function. Nature, 510(7503),

pp.172-175.

13. Tang, D., Ye, Q., Yuan, S., Taylor, J., Kohli, P., Keskin, C., Kim, T.K. and Shotton,

J., 2019. Opening the black box: Hierarchical sampling optimization for hand pose

estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence,

41(9), pp.2161-2175.

14. Gomez, F., Schmidhuber, J. and Miikkulainen, R., 2008. Accelerated neural

evolution through cooperatively coevolved synapses. Journal of Machine

Learning Research, 9(31), pp.937-965.

15. Bouttier, C. and Gavra, I., 2019. Convergence rate of a simulated annealing

algorithm with noisy observations. Journal of Machine Learning Research, 20(1),

pp.127-171.

16. Chen, T., van Gelder, J., van de Ven, B., Amitonov, S.V., de Wilde, B., Euler,

H.C.R., Broersma, H., Bobbert, P.A., Zwanenburg, F.A. and van der Wiel, W.G.,

2020. Classification with a disordered dopant-atom network in silicon. Nature,

577(7790), pp.341-345.

17. Holland, J.H., 1962. Outline for a logical theory of adaptive systems. Journal of

the ACM, 9(3), pp.297-314.

18. Fogel, D.B., 1994. Evolutionary programming: An introduction and some current

directions. Statistics and Computing, 4(2), pp.113-129.

19. Hooke, R. and Jeeves, T.A., 1961. “Direct search” solution of numerical and

statistical problems. Journal of the ACM, 8(2), pp.212-229.

20. Bergstra, J. and Bengio, Y., 2012. Random search for hyper-parameter

optimization. Journal of Machine Learning Research, 13(2).

21. Nesterov, Y. and Spokoiny, V., 2017. Random gradient-free minimization of

convex functions. Foundations of Computational Mathematics, 17(2), pp.527-566.

22. Kabán, A., Bootkrajang, J. and Durrant, R.J., 2016. Toward large-scale continuous

EDA: A random matrix theory perspective. Evolutionary Computation, 24(2),

pp.255-291.

23. Loshchilov, I., 2017. LM-CMA: An alternative to L-BFGS for large-scale black

box optimization. Evolutionary Computation, 25(1), pp.143-171.

24. Li, Z. and Zhang, Q., 2018. A simple yet efficient evolution strategy for

large-scale black-box optimization. IEEE Transactions on Evolutionary

Computation, 22(5), pp.637-646.

25. Gao, K. and Sener, O., 2022, June. Generalizing Gaussian Smoothing for Random

Search. In International Conference on Machine Learning (pp. 7077-7101).

PMLR.

26. He, X., Zheng, Z. and Zhou, Y., 2021. MMES: Mixture model-based evolution

strategy for large-scale optimization. IEEE Transactions on Evolutionary

Computation, 25(2), pp.320-333.

27. Harris, C.R., Millman, K.J., Van Der Walt, S.J., Gommers, R., Virtanen, P.,

Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J. and Kern, R., 2020.

Array programming with NumPy. Nature, 585(7825), pp.357-362.

28. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau,

D., Burovski, E., Peterson, P., Weckesser, W., Bright, J. and Van Der Walt, S.J.,

2020. SciPy 1.0: Fundamental algorithms for scientific computing in Python.

Nature methods, 17(3), pp.261-272.

29. Sonnenburg, S., Braun, M.L., Ong, C.S., Bengio, S., Bottou, L., Holmes, G.,

LeCun, Y., Pereira, F. and Rasmussen, C.E., 2007. The need for open source

software in machine learning. Journal of Machine Learning Research, 8,

pp.2443-2466.

30. Duan, Q., Zhou, G., Shao, C., Yang, Y. and Shi, Y., 2022. Collective learning of

low-memory matrix adaptation for large-scale black-box optimization. In

International Conference on Parallel Problem Solving from Nature (pp. 281-294).

Springer, Cham.

31. Kerschke, P., Hoos, H.H., Neumann, F. and Trautmann, H., 2019. Automated

algorithm selection: Survey and perspectives. Evolutionary Computation, 27(1),

pp.3-45.

