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Abstract: In this paper, we present a pure-Python open-source library, called PyPop7, 

for black-box optimization (BBO). It provides a unified and modular interface for 

more than 60 versions and variants of different black-box optimization algorithms, 

particularly population-based optimizers, which can be classified into 12 popular 

families: Evolution Strategies (ES), Natural Evolution Strategies (NES), Estimation of 

Distribution Algorithms (EDA), Cross-Entropy Method (CEM), Differential 

Evolution (DE), Particle Swarm Optimizer (PSO), Cooperative Coevolution (CC), 

Simulated Annealing (SA), Genetic Algorithms (GA), Evolutionary Programming 

(EP), Pattern Search (PS), and Random Search (RS). It also provides many examples, 

interesting tutorials, and full-fledged API documentations. Through this new library, 

we expect to provide a well-designed platform for benchmarking of optimizers and 

promote their real-world applications, especially for large-scale BBO. Its source code 

and documentations are available at github.com/Evolutionary-Intelligence/pypop and 

pypop.readthedocs.io/, respectively. 

 

1. Introduction 

Black-box optimization (BBO) problems widely exist in scientific and engineering 

fields [1]. Recently, direct policy search [2] and black-box attacks [3] of deep neural 

networks are two representative examples, to name a few. To tackle these challenging 

black-box problems, a variety of powerful optimization algorithms (particularly their 

large-scale variants) have been proposed from different research communities (e.g., 

artificial intelligence/machine learning, mathematical programming, statistics, control, 

electronic engineering). In this paper, we incorporate many of these recent advances 

on BBO into an open-source pure-Python library called PyPop7. The main objective 

of this library is to provide a well-designed platform for benchmarking of black-box 

optimizers and promote their real-world applications, especially for large-scale BBO. 

  Recently, Hansen et al. [4] released a well-documented platform called COCO for 

comparing continuous optimizers in a black-box setting, after experiencing ten-years 

development. However, COCO focused on only the design of benchmarking functions 

and did not provide any black-box optimizers. A similar work is the popular platform 

named NeverGrad, developed recently by Facebook’s scientists [5]. Although it 

provided basic versions of several black-box optimizers, NeverGrad did not widely 

https://github.com/Evolutionary-Intelligence/pypop
https://pypop.readthedocs.io/


cover their variants1 for large-scale BBO (LSBBO). By providing many of their 

newest LSBBO variants, our algorithms-design-centric library can be regarded as an 

important complementary to the above two benchmarking-functions-centric libraries. 

2. A Modular Framework for Black-Box Optimizers (BBO) 

For readability and maintainability, PyPop7 provides a unified programming interface 

with a modular code structure for >60 versions and variants of BBO from different 

research communities, particularly population-based optimizers [6,7]. They can be 

roughly classified into 12 popular algorithm families: Evolution Strategies (ES) [8], 

Natural Evolution Strategies (NES) [9], Estimation of Distribution Algorithms (EDA) 

[10], Cross-Entropy Method (CEM) [11], Differential Evolution (DE) [12], Particle 

Swarm Optimizer (PSO) [13], Cooperative Coevolution (CC) [14], Simulated 

Annealing (SA) [15], Genetic Algorithms (GA) [16,17], Evolutionary Programming 

(EP) [18], Pattern Search (PS) [19], and Random Search (RS) [20]. 

  For almost all black-box optimizers, their sampling-based nature (i.e., considering 

only the zeroth-order information of the objective function) typically results in the 

well-established “curse of dimensionality” issue for large-scale optimization. See this 

landmark theoretical paper [21] for the analysis of convergence rate (under convex 

functions). To alleviate this issue, a variety of new sophisticated techniques have been 

proposed over the past ten years, which can be roughly classified into 5 families: 

decomposition/embedding of search space [14,22], low-memory approximation [23], 

low-rank learning [24], variance-reduction sampling [25], and efficient (self-)adaptive 

sampling [26]. 

2.1 Computational Efficiency 

For computational efficiency, this library depends heavily on two core scientific 

computing Python libraries (i.e., NumPy [27] and SciPy [28]). More specifically, the 

numpy.array data structure and its functions are chosen as the basic way to store and 

operate the population (e.g., sampling, updating, indexing, and sorting), which can 

lead to significant speedups than the built-in data structure list. 

2.2 Repeatability 

For the randomized optimizer, properly controlling its random process is very key to 

well repeat its numerical experiments. For this library, the random seed for each 

optimizer needs to be explicitly given for repeatability [29], according to the newest 

NumPy’s suggestion for Random Sampling. 

  For each black-box optimizer considered in this library, we try our best to provide a 

repeatability report (involving comparisons with the original reference), if possible. 

3. Usage Case 

In this section, we provide an optimization example to show PyPop7’s easy-to-use 

programming interface unified for all black-box optimizers: 

 
1 Although it incorporated one specific test suite for large-scale BBO (LSBBO), this LSBBO test suite is built mainly on the “Partially 

Additive Separability” assumption. Since such an assumption is hard to satisfy on most real-world applications, we will not consider the 

research line based on this “Partially Additive Separability” assumption in this library. 



01>>> import numpy as np 

02>>> def rosenbrock(x): # the notorious test function to be minimized in the optimization community 

03...     return 100 * np.sum(np.power(x[1:] - np.power(x[:-1], 2), 2)) + np.sum(np.power(x[:-1] - 1, 2)) 

04>>> ndim_problem = 1000 # dimension of fitness (cost) function to be minimized 

05>>> problem = {'fitness_function': rosenbrock, # fitness function to be minimized 

06...            'ndim_problem': ndim_problem, # dimension 

07...            'lower_boundary': -5 * np.ones((ndim_problem,)), # search boundary 

08...            'upper_boundary': 5 * np.ones((ndim_problem,))} 

09>>> from pypop7.optimizers.es.lmmaes import LMMAES # to choose any optimizer you prefer in this library 

10>>> options = {'fitness_threshold': 1e-10, # terminate when the best-so-far fitness is lower than 1e-10 

11...           'max_runtime': 3600, # terminate when the actual runtime exceeds 1 hour (i.e., 3600 seconds) 

12...           'seed_rng': 0, # seed of random number generation (which must be set for repeatability) 

13...           'x': 4 * np.ones((ndim_problem,)), # initial mean of search (mutation/sampling) distribution 

14...           'sigma': 0.3, # initial global step-size of search distribution 

15...           'verbose': 500} 

16>>> lmmaes = LMMAES(problem, options) # initialize the optimizer 

17>>> results = lmmaes.optimize() # run its (time-consuming) search process 

18>>> # print the best-so-far fitness and used function evaluations returned by the black-box optimizer 

19>>> print(results['best_so_far_y'], results['n_function_evaluations']) 

For more examples, refer to its documentation homepage: pypop.readthedocs.io/. 

4. Conclusions 

In this paper, we provide a well-designed open-source Python library for black-box 

optimization with a modular code structure and full-fledged API documentations. We 

expect it to be used as a benchmarking platform of large-scale BBO. In the future, we 

will enhance its optimization capability via the following two new functionalities: 

 Parallel and distributed computing (see [30] based on this new library), 

 Automated algorithm selection and configuration [31]. 
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