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Magnetoencephalography is a noninvasive neuromagnetic technology to

record epileptic activities for the pre-operative localization of epileptogenic

zones, which has received increasing attention in the diagnosis and surgery

of epilepsy. As reported by recent studies, pathological high frequency

oscillations (HFOs), when utilized as a biomarker to localize the epileptogenic

zones, result in a significant reduction in seizure frequency, even seizure

elimination in around 80% of cases. Thus, objective, rapid, and automatic

detection and recommendation of HFOs are highly desirable for clinicians

to alleviate the burden of reviewing a large amount of MEG data from

a given patient. Despite the advantage, the performance of existing HFOs

rarely satisfies the clinical requirement. Consequently, no HFOs have been

successfully applied to real clinical applications so far. In this work, we

propose a multi-head self-attention-based detector for recommendation,

termed MSADR, to detect and recommend HFO signals. Taking advantage of

the state-of-the-art multi-head self-attention mechanism in deep learning,

the proposed MSADR achieves a more superior accuracy of 88.6% than peer

machine learning models in both detection and recommendation tasks. In

addition, the robustness of MSADR is also extensively assessed with various

ablation tests, results of which further demonstrate the e�ectiveness and

generalizability of the proposed approach.
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high frequency oscillations (HFOs), magnetoencephalography, MEG, deep learning,
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1. Introduction

About 30% of pediatric patients with epilepsy are medically

intractable and require respective neurosurgery to gain seizure

freedom (Durnford et al., 2011; Yamakawa et al., 2020).

Recording epileptic activities are crucial to the pre-operative

localization of epileptogenic zones and the optimization of the

diagnosis of epilepsy. The success of epilepsy surgery depends on

the pre-operative localization of epileptogenic zones (Guo et al.,

2018). Although intracranial electroencephalography (iEEG) is

commonly treated as the gold standard for the localization of

epileptogenic zones, it may bring a risk of infection and bleeding

during implantation (Hu et al., 2015). Thus, a noninvasive

detectionmethod for epileptogenic zones is preferred to epilepsy

surgery. Magnetoencephalography (MEG) is a noninvasive

technology for the detection of epileptic activities. MEG has

a higher spatial resolution to localize epileptic activities for

epilepsy surgery than other noninvasive approaches, such as

electroencephalography (EEG) (Nakasato et al., 1994).

Localizing epileptogenic zones play a central role in epilepsy

surgery. However, to date, there are no robust biomarkers that

are able to accurately capture the location of epileptogenic

zones (Tamilia et al., 2017). A variety of diagnostic indicators

are introduced in the current clinical practice to estimate the

epileptogenic zones. Despite the progress, existing methods,

which heavily rely on epileptic spikes (typically ≤70 Hz),

fail to reduce seizure frequency in approximately 50% of the

cases, which greatly limits their applications in epilepsy surgery

(Stigsdotter-Broman et al., 2014; Olan Çocuklarda and Öncesi,

2015; Oldham et al., 2015; Reinholdson et al., 2015; Verdinelli

et al., 2015). High frequency oscillations (HFOs) (typically 80-

500 Hz) can be used to localize the epileptogenic zones as

biomarkers. Recent studies (Xiang et al., 2010; Ontario, 2012;

Modur, 2014; Van Klink et al., 2014; Van’t Klooster et al., 2015;

Leung et al., 2018; Nevalainen et al., 2020) show that applying

pathological HFOs to localize the epileptogenic zones leads

to a significant reduction in seizure frequency, even seizure

elimination in about 80% of cases. Thus, pathological HFOs have

been associated with epileptogenic zones (Xiang et al., 2009;

Miao et al., 2014). There is increasing evidence to show that

HFOs are putative biomarkers to identify epileptic regions of

the brain, whichmay improve the surgical diagnosis and surgical

outcomes of patients with epilepsy.

Recent reports (Papadelis et al., 2009, 2016; Van Klink

et al., 2016; Von Ellenrieder et al., 2016; Hedrich et al., 2017;

Fan et al., 2021; Guo et al., 2022) have shown that MEG can

detect epileptic spikes and HFOs effectively. In the presurgical

diagnosis process, it is critical to accurately detect the HFOs

in MEG signals for improving the post-surgical outcomes of

patients with epilepsy. Visual reviews of HFOs in MEG signals

by human experts play an important role in current clinical

practices. However, visual identification of HFOs is usually

subjective, time-consuming, and error prone due to the large

volume of MEG signal data (Zelmann et al., 2012; Roehri

et al., 2017; Fujiwara et al., 2020). Consequently, a number of

automatic approaches (Gardner et al., 2007; Zelmann et al., 2010;

Jacobs et al., 2012; Burnos et al., 2014) has been proposed to

enable HFO detection so as to assist human experts for the

visual review of iEEG and MEG signals. During the detection

tasks, a universally two-step framework is applied by most of

these methods: (1) The whole recording data is divided into a

large number of signal segments. (2) The HFO detectors extract

certain signal features for decision making. The handcrafted

features that are manually designed based on observation or

statistical analysis play as the solution for the feature of HFO

signals. For example, Van Klink et al. (2017) proposed an

automatic HFO detection and visualization approach in MEG.

Similarly, in another work (Burnos et al., 2014), handcrafted

features (e.g., high frequency peak and low frequency peak)

were proposed to automatically distinguish HFOs in EEG

signals. In these works, a cutoff for handcrafted features is

often required to recognize an HFO signal segment. It is clear

that these approaches based on handcrafted features require

to be adjusted or re-optimized when the detectors are applied

to similar neuroimaging data from different populations. This

circumstance hinders the generalizability of HFOs in unseen

conditions. Recently, machine learning provides a possible

opportunity for improving the performance of HFO detections

and reducing human interference. Traditional machine learning

algorithm (Elahian et al., 2017), such as logistic regression,

has been used for the identification of the epileptogenic zones.

More recently, a deep learning approach SMO detector (Guo

et al., 2018) was proposed. Such deep learning based HFO

detector requires minimal human interference by using a golden

standard dataset to train the detector.

Objective and automatic detection of HFOs in MEG

signals with advanced deep learning algorithms may serve as

a promising clinical decision support system to assist human

experts for the visual review of MEG signals (Guo et al., 2018;

Kong et al., 2019). In addition to the correct detection of

HFOs in the MEG signals, recommending the possible results

to clinicians is also crucial for an accurate and timely clinical

evaluation. The recommended HFO list may not only serve as

evidence for the particular patients but also serve as clinical

diagnosis cases for future data retrieval purpose (e.g., teaching

and research). In this study, our overall goal is set to develop a

deep learning model to detect HFO signals with high confidence

among a large amount of MEG data and recommend these

findings to clinicians as a clinical decision support system.

To that effect, we propose a multi-head self-attention deep

neural network as the HFO detector. Compared to the existing

algorithms (e.g., SMO detector Guo et al., 2018), we introduce

the popular multi-head self-attention mechanism in this paper

to enable an HFO detector to jointly pay attention to important
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information from various representation subspaces at multiple

positions. Instead of computing the attention once, this multi-

head self-attention strategy is able to compute the importance

of each feature multiple times in parallel. Our hypothesis is that

an HFO detector with multi-head self-attention mechanism is

able to outperform the existing detector based on deep neural

networks. Our newly developed HFO detector enables clinicians

to objectively and automatically observe and localize HFOs for

the preparation of epilepsy surgery without human designed

signal features. According to the output probability values of our

proposed detector, the MEG signals can be sorted in descending

order. In order to accurately and timely understand the patient’s

condition, we can recommend N signals with the highest HFO

signal probability value (e.g., top-10) to the clinician and assist

in developing a treatment plan. This process is also known as

a top-N recommendation task (Zhao et al., 2013, 2014; Wang

et al., 2017; Zhang et al., 2017).

The following sections of this paper are organized as follows:

First, we describe the patients and their associated MEG data in

this work and the detailed MSADR framework in the Section

2. Second, experiment setups, such as model evaluation, peer

machine learning models, and developmental environment are

described. Third, we present the performance of detection and

recommendation of MSADR for HFO signals. Then, ablation

studies are also conducted to test ourMSADR approach. Fourth,

the discoveries and limitation of this work are discussed. Finally,

we conclude the paper by summarizing the contributions and

future directions.

2. Materials and methods

2.1. MEG data

2.1.1. Data acquisition

In this retrospective study, we obtained interictal MEG data

from 20 clinical patients with epilepsy consisting of 10 females

and 10 males (age: 6–60 years, mean age: 32 years), who were

affected by focal seizures arising from one part of the brain. The

Institutional Review Board was approved, and written informed

consents were obtained from all subjects.

Full details of MEG data acquisition can be found in

our prior study (Guo et al., 2018). Briefly, MEG recordings

were performed using a 306-channel, whole-head MEG

system (VectorView, Elekta Neuromag, Helsinki, Finland) in a

magnetically shielded room. Sleep deprivation and reduction of

anti-epileptic drugs were used to increase the chance for capture

HFOs during MEG recordings, as one part of the pre-surgical

evaluation. An approximate 1 h of MEG data was recorded

for all patients. The sampling rate of MEG data was 2,400 Hz.

The noise floor in our MEG systems was calculated with MEG

data acquired without a subject (empty room). The noise floor

was used to identify MEG system noise. The noise level was

about 3–5 fT/Hz. The empty roommeasurements were also used

to compute the noise covariance matrix for localizing epileptic

activities (i.e., HFOs). A three-dimensional coordinate frame

relative to the subject’s head was derived from these positions.

The system allowed head localization to an accuracy of 1 mm.

The changes in head location before and after acquisition were

required to be less than 5 mm for the study to be accepted.

To identify the system and environmental noise, we routinely

recorded one background MEG dataset without patients just

before the experiment.

2.1.2. Segment

A public available software MEG Processor (Xiang et al.,

2009) was used to correct and label the MEG data. In the current

work, the MEG data were segmented into about 11,016,000

signal segments1 with 2 s window size without overlap. Each

signal segment was aMEG signal intensity vector with 4,800 data

points in the time domain. These segments were first filtered

automatically, which segments with a goodness-of-fit value of

< 85% or confidence volume of >3mm3 were dropped. Second,

two band-pass filter, an 80–250 Hz one for ripples and a 250–

500 Hz one for fast ripples, were introduced to filter high

frequency MEG data into candidate segment set while the low

frequency ones were automatically dropped. Both physiologic

and pathologic high frequency neuromagnetic signals were

included in the candidate segment set. The physiologic HFOs

were manually rejected, and then the pathologic ones were

selected by comparing MEG ripples and iEEG recordings at

source levels (Wu et al., 2014) by two human experts. A total of

660 HFO signal segments selected by human experts, together

with 660 normal control (NC) signal segments randomly

selected from the rest segments, were compiled into our gold

standard dataset. Figure 1 shows examples of MEG data, HFO,

and NC segments.

2.2. Method

2.2.1. Overview framework for HFO detection
and recommendation

In Figure 2, we display the overview of our multi-head

self-attention based detector for recommendation (MSADR),

which consists of MEG data acquisition, signal segmentation

(purple box), multi-head self-attention based detector (orange

box), HFO signal probability (green box), and detection and

recommendation list.

The structure of multi-head self-attention based detector

(MSAD) is given in Figure 3. It consists of layers of dense,

1 The number of segments is calculated as 20(patients)× 306(channels)×

60(min)× 60(s)÷ 2(s/window).
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FIGURE 1

Examples of gold standard signals.

FIGURE 2

Overview of multi-head self-attention based detector for recommendation of neuromagnetic high frequency oscillations in epilepsy.

normalization, multi-head self-attention, self-attention. The

various components are described in the following sections.

2.2.2. Dropout, dense, and normalization

There is one dropout layer, three dense layers, and two

normalization layers in our proposed model. Figure 4 shows the

computation details of these layers.

A dropout layer, which prevents over-fitting during model

training, is applied to input data, i.e., HFO sequence. The white

circle in Figure 4 indicates dropped units according to dropout

probability. The dropout layer is followed by a dense layer, whose

hidden units are 512, and the activation function is “relu”, to

reduce the dimension of the previous layer. The normalization

layer (Ioffe and Szegedy, 2015) is used to accelerate deep network

training by reducing internal covariate shift.

2.2.3. Self-attention

The attention is proposed to compute an alignment score

between elements from two sources (Shen et al., 2018). In

particular, given a sequence of HFOs, x = [x1, x2, ..., xn]

and a representation of a query q ∈ R
d, the attention

computes the alignment score between q and each element xi
using a compatibility function f (xi, q). A softmax function then

transforms the alignment scores [f (xi, q)]
n
i=1 to a probability

distribution p(z|x, q), where z represents the importance degree

to q. That is, a large p(z = i|x, q) means that xi contributes
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FIGURE 3

The structure of multi-head self-attention-based detector in this

study.

important information to q. This attention process can be

formalized as follows:

α = [f (xi, q)]
n
i=1, (1)

p(z = i|x, q) = softmax(α). (2)

The output Attention is the weighted element according to its

importance, i.e.,

Attention(q, x) = p(z = i|x, q)x. (3)

FIGURE 4

Details of MLP block in DANN structure.

Additive attention (Bahdanau et al., 2015; Shang et al.,

2015) is a commonly-used attention mechanism where the

compatibility function f (·) is parameterized by a MLP, i.e.:

f (xi, q) = wTσ (W(1)xi +W(2)q), (4)

where W(1) ∈ R
d×d, W(2) ∈ R

d×d,w ∈ R
d are learnable

parameters, d is the number of columns of xi, and σ (·) is

an activation function. Compared with multiplicative attention

(Rush et al., 2015; Sukhbaatar et al., 2015) using cosine similarity

or inner product as the compatibility function for f (xi, q), i.e.:

f (xi, q) = 〈W(1)xi, W
(2)q 〉, (5)

Though additive attention is expensive in time cost and

memory consumption, it achieves better empirical performance

for downstream tasks.

Self-attention (Liu et al., 2016; Lin et al., 2017; Peng et al.,

2021) explores the importance of each feature to the entire

HFOs given a specific task. In particular, q is removed from the

common compatibility function which is formally written as the

following equation:

f (xi) = wTσ (W(1)xi), (6)
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α = [f (xi)]
n
i=1, (7)

p(z = i|x) = softmax(α). (8)

The output Attention is the weighted element according to its

importance, i.e.,

Attention(x) = p(z = i|x)x. (9)

2.2.4. Multi-head self-attention

Multi-head self-attention allows the model to jointly attend

to information from different representation subspaces at

different positions. We use the multi-head version with k heads,

as introduced in Vaswani et al. (2017),

MultiHead(x) = Concat(head1, . . . , headk)W
(O), (10)

where headi = Attention(xW(x)), (11)

where projections using learned parameter matrices W(x) ∈

R
d×d/k, andW(O) ∈ R

d×d.

2.2.5. Loss function

A standard cross-entropy loss is used as the training

objective of MSADR, defined as

L = −y log(p)− (1− y) log(1− p), (12)

where y is the target label (0 or 1) and p is the predicted

probability between 0 and 1 given an HFO sequence.

3. Experiment setup

We evaluate the proposed model on two tasks including the

classification of whole patients and recommendation for each

individual patient.

3.1. Model evaluation

We conduct a comprehensive evaluation in this study by

employing the proposed MSADR on the HFO dataset to classify

HFO data and recommend detected HFO sequences to medical

experts. We employ the evaluation strategy of leave-one-out

cross-validation in our experiments. In the 10-fold leave-one-

out cross-validation, the HFO dataset is separated to two parts.

One consists of 90% of the whole as training data while the rest

part is regarded as test data.

For the detection task, we put all segments from 20 patients

together to separate the training data and test data. We first

calculate true positive (TP), false positive (FP), true negative

(TN), and false negative (FN) by comparing the predicted labels

and gold-standard labels. Then, we calculate accuracy, recall,

precision, and F-score by

Accuracy =
TP + TN

TP + TN + FP + FN
,

Recall =
TP

TP + FN
,

Precision =
TP

TP + FP
,

F − score = 2×
Precision× Recall

Precision+ Recall
.

For the recommendation task, the dataset is separated

according to patients, in each split, segments from 18 patients

are selected into the training set while segments from the rest 2

patients as test data. We use top-N precision (P@N) (Choi et al.,

2016) to evaluate the ability of the algorithm to recommend

detected HFOs for individual patients in the test set, defined as

follows:

P@N =
TP@N

N
,

where “TP@N” in the formula stands for TP HFOs in top-N

recommendation task. Top-N precision mimics the behavior

of doctors conducting differential diagnoses, where doctors

list most probable diagnoses and treat patients accordingly to

identify the patient status. Therefore, a machine with a high top-

N precision translates to a doctor with an effective diagnostic

skill. This makes top-N precision an attractive performance

metric for our problem (Choi et al., 2016).

3.2. Peer machine learning models

To compare our proposed model MSADR with existing

machine learning models, we also implemented random forest

(RF) (Breiman, 2001; Nissen et al., 2018), support vector

machine (SVM) models (Ak et al., 1999; Zhang et al., 2020), and

SMO detector (Guo et al., 2018).

• Random Forest (RF): RF is a classic ensemble learning

methods by learning multiple decision trees and employing

averaging to improve classification performance and

control over-fitting. The number of trees in the forest was

optimized from empirical values [20, 40, 60, 80, and 100].

We set maximal depth of the tree as 10.

• Support Vector Machine (SVM): A SVM model is

developed to perform classification by using vectorized

FC features. We apply a linear kernel and search for the

margin penalty with empirical values [0.2, 0.4, 0.6, 0.8,

and 1.0].

• SMO detector (Guo et al., 2018): In terms of the existing

deep learning model, we compared our model with SMO
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detector, a DNN model developed previously for HFO

detection. Briefly, we implemented the SMO detector

model as a 7-layer DNN, with input number of HFO

sequence in the input layer, followed by dropout, dense

(512, ReLU), dense (128, ReLU), normalization, dense (32,

ReLU), normalization, and the sigmoid layer to generate

one output unit. A cross entropy loss function is applied to

supervise the network learning adopted. The learning rate

is set as 0.0001. A total of 10 epochs are applied to ensure

the convergence of the model.

3.3. Developmental environment

The proposed DANN and peer machine learning models

are all implemented in Python 3.7 environment. To build the

deep learning related models, we apply TensorFlow (2.0.0-rc1)

backend. For the traditional models, we adopt the models from

Sklearn 0.20.2.

All the experiments are conducted on a workstation with 10

cores of Intel Core i9 CPU and 64GB RAM. Due to the high

computation cost of deep learning algorithm, we use one GPU

(Nvidia TITAN Xp, 12GB RAM) to accelerate the training speed

of the models.

4. Results

We evaluate the performance of detection and

recommendation for each set of experiments. There are

two sets of experiments to be conducted, which consist

of overall performance compared with baseline models

and effectiveness of varying head number of multi-head

self-attention.

4.1. Overall performance comparison

4.1.1. Detection

We first compare the HFO detection performance of the

proposed MSADR model and multiple peer machine learning

models, including RF, SVM, and SMO. The results are derived

on a leave-one-out cross-validation experiment by using the

entire dataset. As shown in Table 1, our proposed MSADR

takes the lead place (the bold value) in all metrics of HFO

detection accuracy (0.886), recall (0.840), and F-score (0.859)

among compared machine learning models, while the RF model

returns the lowest detection performance on recall and F-score,

and SVM on accuracy. Our model outperforms the SVM model

by 0.126 on accuracy, the RF model by 0.263 on recall, and 0.142

on F-score.

4.1.2. Recommendation

We then compare the HFO recommendation performance

of the proposed MSADR model and baseline models including

RF, SVM, and SMO. The experiment setting is almost the same

as the detection task, except for an additional recommendation

module to generate a ranking list. As shown in Table 2, our

proposed MSADR obtains the best HFO recommendation

performance on P@1 (0.967), P@3 (0.858), and P@5 (0.879)

among the compared machine learning models, whereas the

RF model returns the lowest recommendation performance

on P@3, P@5, and SVM on P@1. Our model increases the

performance of SVM by 0.1 on P@1, the RF model by 0.162 and

0.215 on P@3 and P@5, respectively.

4.1.3. Computational costs

The computational costs of the proposed MSADR model

and baseline models are provided in Table 3. It is noticed that

our proposed MSADR takes a longer time for model training

and inference than baseline models. The main reason is the

complexity of the deep learningmodels (MSADR and SMO) and

the huge number of the parameters. The MSADR has 411,325

parameters to be trained, which obtains a stronger learning

capacity to get the best model performance. MSADR uses a

learned model to conduct the detection and recommendation

task, which theoretically take more time.

The results in Tables 1, 2 also show a trend that deep learning

models (MSADR and SMO) achieve improved performance

compared to the traditional model, such as SVM and RF,

demonstrating the superior capability of the deep learning

TABLE 1 Detection comparison of random forest (RF), support vector

machine (SVM), SMO, and multi-head self-attention-based detector

for recommendation (MSADR) trained using leave-one-out

cross-validation on the entire dataset.

Method Accuracy Recall Precision F-Score

RF 0.779 0.577 0.951 0.717

SVM 0.760 0.743 0.764 0.753

SMO detector (Guo et al., 2018) 0.845 0.732 0.951 0.826

MSADR 0.886 0.840 0.881 0.859

The bold values represent the lead place of the corresponding metric.

TABLE 2 Recommendation comparison of RF, SVM, SMO, and MSADR

trained using leave-one-out cross-validation on the entire dataset.

Method P@1 P@3 P@5

RF 0.893 0.696 0.664

SVM 0.867 0.800 0.760

SMO detector (Guo et al., 2018) 0.893 0.811 0.793

MSADR 0.967 0.858 0.879

The bold values represent the lead place of the corresponding metric.
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TABLE 3 Computational cost comparison of RF, SVM, SMO, and

MSADR.

Method Training

time (ms)

Inference

time (ms)

No. of

parameters

RF 284 6 -

SVM 83 5 2,400

SMO detector (Guo et al., 2018) 2,506 140 318,449

MSADR 12,317 525 411,325

model on complex data patterns, such as HFO. In addition,

the inference time of MSADR is about 0.5 s (525 ms).

This is an acceptable time cost while it can bring about

16.6% accuracy improvement on detection and 11.5% P@1

improvement on recommendation toward the fastest model

(SVM). Another trend can be observed that the P@1 returns

the best recommendation score a cross all models, which

demonstrates that the machine learning model is a promising

alternative approach to assist clinicians to make decisions.

4.2. E�ectiveness of varying head number
of multi-head self-attention

The effectiveness of our MSADR is further tested by varying

head number (k = [2, 4, 8, 16]) of multi-head self-attention

on two tasks of detection and recommendation. The results in

this set of experiments are calculated based on leave-one-out

cross-validation by using the entire dataset.

4.2.1. Detection

The HFO detection performance of the proposed MSADR

model has been evaluated by varying head number of multi-head

self-attention. Figure 5A displays plots of the accuracy, recall,

precision, and F-score of the proposed MSADR over different

strategies of varying head number.

It is apparent that the proposed MSADR achieves the state-

of-the-art in terms of accuracy, recall, and F-score when the head

number is set as 8, while the performance on precision is the

worst. Performance accuracy, recall, and F-score decrease as the

head number increase due to the over-fitting of self-attention,

whereas performance on precision slightly increases. Overall, the

proposed MSADR has the best three indicators out of four when

the head number of multi-head self-attention is set to 8.

4.2.2. Recommendation

The effectiveness of the proposed MSADR model over

HFO recommendation task has been compared in terms of

P@N by varying head number of multihead self-attention.

Figure 5B displays plots of the P@1, P@3, and P@5 of MSADR

over different strategies of varying head number. As shown in

the figure, our proposed MSADR achieves the highest HFO

recommendation performance on P@1 and P@5, while the

performance of the two indicators decreases as the head number

increases due to the over-fitting of multi-head self-attention.

Overall, the proposed MSADR has the best two indicators out

of three when the head number of multi-head self-attention is

set to 8.

4.3. Ablation study

A detailed ablation study is performed to examine the

contributions of the model’s components to the tasks of

detection and recommendation. There are four configurations

of replaceable components in this model. The two components

are (1) multi-head self-attention layer and (2) the self-attention

layer. The four configurations based on MSADR are

• raw (DNN): (1) and (2) are removed from MSADR, which

becomes a pure DNN, one of our peer baseline models

(SMO detector);

• Attn_1: (2) is removed and (1) is remained in MSADR;

• Attn_2: (1) is removed and (2) is remained in MSADR;

• MSADR: our proposed model.

All models are trained with 10 epochs and a batch size of 32.

The head number of multi-head self-attention is empirically set

to 8.

4.3.1. Detection

From Table 4, we find that the MSADR model obtains the

best performance on detection task compared to the ablated

models, except for the performance of Attn_1 on precision.

Moreover, we note that Attn_1 and Attn_2 outperform raw,

which gives us the confidence to apply self-attention to learn

the relationship between HFO signals. It is clear that the

single self-attention model provides comparable information

to the performance of the Attn_1 and Attn_2 model. In

particular, MSADR outperforms the best ablated model for

Accuracy by 1.1%, for Recall by 2.1%, and for F-score

by 1.0%.

4.3.2. Recommendation

Table 5 shows the recommendation performance for the

ablated models and our proposed model. As can be seen from

the table, the proposed model achieves the best performance

compared to the ablated models on the recommendation

task. We observe that Attn_1 and Attn_2 outperform raw

on P@1 and P@3, which again demonstrates that self-

attention is a vital component to learn the relationship
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FIGURE 5

E�ectiveness of varying head number of multi-head self-attention from 2 to 16. (A) Detection task. (B) Recommendation task.

TABLE 4 Detection comparison of ablated models trained using

leave-one-out cross-validation on the entire dataset.

Method Accuracy Recall Precision F-Score

raw 0.845 0.732 0.951 0.826

Attn_1 0.845 0.755 0.975 0.849

Attn_2 0.875 0.819 0.928 0.847

MSADR 0.886 0.840 0.881 0.859

The bold values represent the lead place of the corresponding metric.

TABLE 5 Recommendation comparison of ablated models trained

using leave-one-out cross-validation on the entire dataset.

Method P@1 P@3 P@5

raw 0.893 0.811 0.793

Attn_1 0.913 0.844 0.759

Attn_2 0.920 0.847 0.873

MSADR 0.967 0.858 0.879

The bold values represent the lead place of the corresponding metric.

between HFO signals. MSADR outperforms the best

ablated model by 4.7%, 1.1%, and 0.6% on P@1, P@3, and

P@5, respectively.

5. Discussion

Since first discovered in the 1990s, HFOs have been

considered a promising biomarker to locating the seizure

onset zone and improving postsurgical outcomes in patients

with epilepsy (Huang and White, 1989; Fan et al., 2021).

Noninvasive brain recording technologies (i.e., scalp EEG and

MEG) were a milestone in human HFO research and have

provided the possibility to investigate this brain activity in a

wider range (Papadelis et al., 2009, 2016; Van Klink et al.,

2016; Von Ellenrieder et al., 2016; Hedrich et al., 2017).

Due to excellent temporal resolution and acceptable spatial

resolution, MEG is able to effectively record HFOs and localize

epileptic activities for epilepsy surgery (Fan et al., 2021). After

noninvasive recording, the detection of HFOs is the next crucial

task for onset zone detection. Although visual identification is

still considered to be the gold standard for HFO detection, it

still faces the problem of highly time-consuming and subjective

(Frauscher et al., 2017).

This study mainly focuses on the automatic detection and

recommendation of HFOs from interictal MEG data. The MEG

data of clinical epileptic patients were recorded with a multi-

channel whole-head MEG system (Xiang et al., 2010; Guo

et al., 2018), and then segmented into signal segments with

2 s window size without overlap. The labeled HFO segments

by human experts and randomly selected NC segments from

the complementary set of labeled HFO set was compiled into

our gold standard dataset. With the gold standard data, we

trained the proposed MSADR algorithm for the detection and

recommendation model of HFOs. For a new patient, the trained

model can detect HFOs from the segmented MEG data and

recommend HFO signals to clinicians, alleviating the burden

on reviewing the large amount of MEG data. The effectiveness

of our proposed detection and recommendation approaches

were demonstrated by the cross-validation experimental results.

The proposed MSADR can improve the detection accuracy

by at least 13.7% and the top-1 recommendation precision

by 8.2% compared with the traditional machine learning

methods (RF and SVM) while improving the detection

accuracy by 4.8% and the top-1 recommendation precision

by 8.2% compared with another deep learning method (SMO

detector). The computational costs are important, especially

in real world applications. Though MSADR is a time-

consuming method, the acceptable inference time (0.5 s) can

guarantee the user experience. In addition, sliding window with

overlap can be used for segmenting, so as to improve the

possibility of HFO locating in the center of segments in real

world applications.

There are some limitations to this study. First, the

experiment was built on a small dataset with 20 patients. A

larger data set is required to further validate the effectiveness

and efficiency of MSADR. Second, this work only focused on
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the detection and recommendation of HFOs from interictal

MEG data. Performance of the MSADR approach on other

neuromagnetic data (i.e., ictal MEG, iEEG, and EEG) remains

unclear. We will test our method in future work. Third,

the MEG segments from different patients or channels are

treated equally and independently in this paper. However, there

are complex timing and co-occurrence relationships among

segments. Mining and utilizing these relationships may improve

the effectiveness of HFO detection and recommendation.

Finally, since the current approach requires signal segmentation

of MEG data, it is only able to differentiate HFOs and NC

segments with a pre-defined fixed signal length. It cannot

directly detect HFOs in an automatic way on the raw MEG data

(e.g., start and end positions).

Due to the high cost and lack of automatic detection

technology with broad applicability, traditionalMEG has limited

availability (Guo et al., 2018; Kong et al., 2019). However, the

technological innovations in MEG have been progressing. New

MEG systems with optically pumped magnetometers do not

require cooling with liquid helium and can be worn more

conveniently (Boto et al., 2019). This may reduce the cost

of MEG data recording and expand the scope of application.

The research and application of automatic or semi-automatic

HFO detection methods with broad applicability will make

more efficient use of MEG data (Guo et al., 2018), and

the integration into clinical review software can effectively

enhance clinical value, including preoperative localization

of epileptogenic regions, the assessment of disease severity,

predicting seizures, monitoring treatment, evaluating treatment

effects, and assessing epileptic susceptibility after brain injury

(Fan et al., 2021).

6. Conclusion

In this study, we develop an MSADR detector for

the detection and recommendation of HFO signals by

using the multi-head self-attention mechanism. By comparing

our model with traditional machine learning models (RF

and SVM) and deep learning model (SMO detector), the

proposed MSADR detector is proved to reach state-of-the-

art performance in both detection and recommendation tasks.

The robustness of our detector is also extensively assessed

with multiple ablation tests. The MSADR is supposed to

detect HFOs from a large amount of segmented MEG

data and recommend HFO signals to help clinicians locate

epileptogenic regions and assist in treatment. Our future

directions may focus on extending our model to capture

the timing and co-occurrence relationships among segments

to further improve the effectiveness of HFO detection

and recommendation.
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