A non-singular version of the Kingman ergodic theorem.

Anthony H. Dooley and Jie Jin

School of Mathematical and Physical Sciences
University of Technology Sydney
Ultimo 2007
Australia

anthony.dooley@uts.edu.au; Jie.Jin-3@student.uts.edu.au

Abstract. Kingman's subadditive ergodic theorem is traditionally proved in the setting of a measure-preserving invertible transformation T of a measure space (X,μ) . We show how to extend the theorem to the setting of a non-singular transformation, that is under the assumption that μ and $\mu \circ T$ have the same null sets. Using this, we are able to produce non-singular versions of the Furstenburg-Kestern Theorem and the Oseledeč ergodic theorem for products of random matrices.

1. Introduction

The study of ergodic theorems is an important bridge between functional analysis and probability theory. Originally proved by von Neumann and Birkhoff [4] in 1931, the Birkhoff ergodic theorem has become the fundamental theorem in the study of measure-preserving transformations of a measure space. The subadditive ergodic theorem, obtained by Kingman [8] in 1968 is an important extension of this fundamental result, which has found many applications. One important application is the Furstenberg-Kesten theorem [6], on the structure of multiplicative cocycles from a measure-preserving transformation T of a measure space (X, μ) , with values in $GL(d, \mathbb{R})$. The Furstenberg-Kestern theorem has been extended and refined by the well-known Oseledeč ergodic theorem on the products of randomly chosen matrices [9].

A statement of Kingman's theorem is as follows:

THEOREM 1 (THE SUB-ADDITIVE ERGODIC THEOREM) Let (X, \mathcal{B}, μ) be a probability space, and $T: X \to X$ an invertible and measure preserving transformation. Let $f_n \in L^1$ be a sequence of function satisfying the **subadditivity condition**: $f_{m+n}(x) \leq f_n(x) + f_m(T^n x)$ for almost all $x \in X$, then

$$\lim_{n \to \infty} \frac{f_n(x)}{n} = f(x) < \infty$$

exists μ a.e. Furthermore, f(x) is a T- invariant measurable function over (X, \mathcal{B}, μ) .

Prepared using etds.cls [Version: 1999/07/21 v1.0]

There have been several proofs of this theorem since Kingman's original version. See [1] for survey of these. Most of these have made the assumption that the measure μ is invariant under the transformation T. However, [12] Theorem 3.4 is a version of the subadditive ergodic theorem under the assumption that T is a Markovian transformation of (X, \mathcal{B}, μ) .

Note that the Theorem generalises the following result in elementary analysis, which we recover in the case where the f_n are all constant functions:

LEMMA 1. If (f_n) is a subadditive sequence then

$$\lim_{n} \frac{f_n}{n} = \inf_{n} \frac{f_n}{n} < \infty$$

The aim of this paper is to extend the Kingman theorem, the Furstenberg-Kestern Theorem and the Oceledeč theorem to the setting of non-singular transformations. The key idea is to define subaddditive sequences by

$$f_{m+n}(x) \le f_n(x) + \omega_n(x) f_m(T^n x)$$

where $\omega_n(x) = \frac{d\mu \circ T^n}{d\mu}$ is the Radon-Nikodým derivative.

Our version of the Kingman theorem (Theorem 4) then concludes that

$$\lim_{n \to \infty} \frac{f_n(x)}{\sum_{i=0}^{n-1} \omega_i(x)} = f_*(x) < \infty$$

exists μ a.e.

After some preliminary remarks and definitions in section 2, we state and prove our version of the Kingman theorem in section 3. In section 4, we state and prove non-singular versions of the Furstenberg-Kestern theorem (Theorem 5) and the Oseledeč ergodic theorem (Theorem 6).

We expect these results to lead to new applications of these theorems in the non-singular setting. One key application of the Oseledeč theorem in the measure-preserving case, is the calculation of Lyapunov exponents for Random Dynamical Systems, see [2]. In future work, we will extend this construction to non-singular random dynamical systems.

We have been influenced by Raghunathan's elegant proof of the Oseledeč theorem [10]. We would like to thank Anthony Quas for drawing our attention to this paper, and for useful discussions.

2. Preliminaries

The dynamical system (X, \mathcal{B}, μ, T) is said to be **non-singular** if the map $T: X \to X$ is a non-singular transformation of (X, μ) , that is for any $N \in \mathcal{B}$, $\mu(T^{-1}N) = 0$ if and only if $\mu(N) = 0$. Recall that the system is measure preserving if $\mu(A) = \mu(T^{-1}A)$ for all $A \in \mathcal{B}$. By the Poincaré recurrence lemma, measure preserving transformations are conservative.

The structure of non-singular transformations is given by the Hopf Decomposition Theorem, a proof of which can be found in [1].

THEOREM 2. [Hopf Decomposition] Let T be a non-singular transformation. There exist disjoint invariant sets $C, D \in \mathcal{B}$ such that $X = C \sqcup D$, T restricted to C is conservative, and $D = \bigsqcup_{n=-\infty}^{\infty} T^n W$, where W is a wandering set. If $f \in L^1(X,\mu)$, f > 0, then $C = \{x : \sum_{i=1}^{n-1} f(T^i x)\omega_i(x) = \infty \text{ a.e.}\}$ and $D = \{x : \sum_{i=1}^{n-1} f(T^i x)\omega_i(x) < \infty \text{ a.e.}\}$

The set C is called the **conservative part** of T. We suppose further that the non-singular transformation is invertible, so that T and its inverse T^{-1} are measurable. If T is non-singular then we have both $\mu \circ T^{-1} \sim \mu$ and $\mu \circ T \sim \mu$.

We will denote the Radon Nikodým-derivative $\frac{d(\mu \circ T^i)}{d\mu}$ by ω_i . Note that the Radon-Nikodým derivatives must satisfy the cocycle identity:

$$\omega_{i+j}(x) = \omega_i(x)\omega_j(T^ix)$$

for a.e. x and for every $i, j \in \mathbb{Z}$. Clearly, T is measure preserving if and only if $\omega_i(x) = 1$ for a.e. x for all i.

It follows that for every $f \in L^1(X, \mu)$

$$\int_{X} f(x)d\mu(x) = \int_{X} f(Tx)\omega_{1}(x)d\mu(x) = \int_{X} f(T^{n}x)\omega_{n}(x)d\mu(x)$$

If $f_n = \sum_{i=0}^{n-1} f(T^i x) \omega_i(x), n \geq 1$, where $\omega_0(x) = 1$. It is easy to show that $f_{m+n}(x) = f_n(x) + \omega_n(x) f_m(T^n x)$. The Hurewicz ergodic theorem [7] is a generalization of the Birkhoff Ergodic Theorem to the setting of non-singular conservative transformations.

THEOREM 3. [Hurewicz ergodic theorem] Let (X, \mathcal{B}, μ) be a probability space, and $T: X \to X$ an invertible, non-singular and conservative transformation. If $f \in L^1(\mu)$, then

$$\lim_{n \to \infty} \frac{\sum_{i=0}^{n-1} f(T^i x) \omega_i(x)}{\sum_{i=0}^{n-1} \omega_i(x)} = f_*(x)$$

exists μ a.e. Furthermore, $f_*(x)$ is T- invariant and

$$\int_X f(x)d\mu(x) = \int_X f_*(x)d\mu(x)$$

Note that if T is measure-preserving, the left hand side becomes $\lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}f(T^ix)$, and so we recover the Birkhoff Theorem.

Our aim is to use the Hurewicz theorem to formulate and prove a version of Theorem 4 which holds for non-singular conservative systems. We shall do that in the next section.

3. Non-singular Kingman Theorem

Thus, let T be a conservative non-singular transformation of a measure space (X, \mathcal{B}, μ) , and denote by ω_i the Radon-Nikodým derivative $\frac{d\mu \circ T^i}{d\mu}$.

DEFINITION 1. We say that $\{f_n\}$ in $L^1(X,\mu)$ is a subadditive sequence for T if for all integers m and n

$$f_{m+n}(x) \le f_n(x) + \omega_n(x) f_m(T^n x)$$

It is easy to see that if f is integrable, then

$$f_n(x) = \sum_{i=0}^{n-1} f(T^i x) \omega_i(x).$$

is subadditive.

Similarly, we say that $\{f_n\}$ in $L^1(X,\mu)$ is **superadditive** for T if for all integers m and n

$$f_{m+n}(x) \ge f_n(x) + \omega_n(x) f_m(T^n x)$$

Observe that f_n is a superadditive sequence if and only if $-f_n$ is subadditive sequence.

The goal of this section is to give a proof of the following:

THEOREM 4. [Non-singular Kingman ergodic theorem] Let (X, \mathcal{B}, μ) be a probability space, and $T: X \to X$ an invertible, non-singular and conservative transformation. Let $f_n \in L^1$ be a sequence of functions satisfying the subadditivity relation $f_{m+n}(x) \leq f_n(x) + \omega_n(x) f_m(T^n x)$ for almost all $x \in X$, then

$$\lim_{n \to \infty} \frac{f_n(x)}{\sum_{i=0}^{n-1} \omega_i(x)} = f_*(x) < \infty$$

exists μ a.e. Furthermore, $f_*(x)$ is T-invariant and

$$\int_X f(x)d\mu(x) = \int_X f_*(x)d\mu(x)$$

The essential idea of the proof is to show that

$$\int_X \limsup_{n \to \infty} \frac{f_n}{\sum_{i=0}^{n-1} \omega_i(x)} d\mu \leq \int L d\mu \leq \int_X \liminf_{n \to \infty} \frac{f_n}{\sum_{i=0}^{n-1} \omega_i(x)} d\mu$$

where L is

$$\lim_{n \to \infty} \frac{f_n}{\sum_{i=0}^{n-1} \omega_i(x)}.$$

Let
$$\overline{h}(x) = \limsup_{n \to \infty} \frac{f_n(x)}{\sum_{i=0}^{n-1} \omega_i(x)}$$
 and $\underline{h} = \liminf_{n \to \infty} \frac{f_n(x)}{\sum_{i=0}^{n-1} \omega_i(x)}$.

LEMMA 2. Let (X, \mathcal{B}, μ) be a probability space, and $T: X \to X$ an invertible, non-singular and conservative transformation. Let f_n be a superadditive sequence. Then $\underline{h} = \underline{h} \circ T$ almost everywhere.

PROOF 1. We have

$$\frac{f_{n+1}}{\sum_{i=0}^{n} \omega_i(x)} \ge \frac{f_1 + f_n(Tx)\omega_1}{\omega_0 + \sum_{i=0}^{n-1} \omega_i(Tx)\omega_1}$$

taking the lim inf of each side,

$$\underline{h} \ge \underline{h} \circ T$$
.

We set $\alpha(x) = \frac{\underline{h}(x)}{1+\underline{h}(x)} \in [0,1]$ and the set $A = \{x : \underline{h}(x) > \underline{h} \circ T(x)\} = \{\alpha(x) > \alpha \circ T(x)\}$. Let $\phi(x) = \alpha(x) - \alpha \circ T(x)$, by Theorem 2, $\sum_{i=1}^{n-1} \phi(T^i x) \omega_i = \infty$ almost everywhere on A. However, $\sum_{i=1}^{n-1} \phi(T^i x) \omega_i = \alpha - \alpha \circ T^{n-1} \omega_n \in [-1,1]$ everywhere, so we must have $\mu(A) = 0$.

For ease of notation, we put $\Omega_j = \sum_{i=0}^{j-1} \omega_i$.

LEMMA 3. $\int Ld\mu = \int_X \liminf_{n \to \infty} \frac{f_n}{\sum_{i=0}^{n-1} \omega_i(x)} d\mu$.

PROOF 2. Fix $\varepsilon > 0$ and define, for each $k \in \mathbb{N}$,

$$B_k = \{x \in X : f_j(x) \le \Omega_j(\underline{h}(x) + \varepsilon), j \in \{1, ..., k\}\},\$$

where $\underline{h} > -\infty$. It is clear that $\bigcup_k B_k = X$. Define

$$F_k = \begin{cases} \underline{h}(x) + \varepsilon & x \in B_k \\ f_1(x) & x \in B_k^c \end{cases}$$

by the definition of B_k , $f_1 > \underline{h}$ if $x \in B_k^c$. We define two sequences m_i and n_i such that:

$$0 = m_0 < n_1 < m_1 < n_2 < \dots$$

where n_j is the smallest integer greater than or equal to m_{j-1} such that $T^{n_j}x \in B_k$. By the definition of B_k , we may choose $1 \leq m_j - n_j$ such that

$$\frac{f_{m_j - n_j}(T^{n_j}x)}{\Omega_{m_i - n_j}(T^{n_j}x)} \le \underline{h} + \varepsilon.$$

Now, given $n \geq k$, let $l \geq 0$ be the largest integer such that $m_l \leq n$. By subadditivity,

$$\frac{f_{n_j - m_{j-1}}(T^{m_{j-1}}x)}{\Omega_{n_j - m_{j-1}}(T^{m_{j-1}}x)} \le f_1(T^ix)\omega_i.$$

Thus,

$$\frac{f_n}{\Omega_n} \le \sum f_1(T^i x) \omega_i \Omega_{n_j - m_{j-1}}(T^{m_{j-1}} x) + \sum_{i=1}^l \frac{f_{m_j - n_j}(T^{n_j} x)}{\Omega_{m_j - n_j}(T^{n_j} x)},$$

where the first sum $f_1(T^ix) = F_k(T^ix)$ for every $i \in \bigcup_{j=1}^l [m_{j-1}, n_j) \cup [m_l, \min\{n_{l+1}, n\}]$. On the other hand, \underline{h} is constant on the orbits, and $F_k \geq \underline{h} + \varepsilon$, so

$$\frac{f_{m_j - n_j}(T^{n_j}x)}{\Omega_{m_i - n_j}(T^{n_j}x)} \le \underline{h} + \varepsilon \le F_k(T^{n_j}x).$$

It follows that

$$\frac{f_n}{\Omega_n} \le \sum_{i=1}^{\min\{n_{l+1}, n\} - 1} F_k(T^i x) \Omega_{m_j - n_j}(T^{n_j} x) + \sum_{i=n_{l+1}}^{n-1} f_1(T^i x) \omega_i \Omega_{n_j - m_{j-1}}(T^{m_{j-1}} x).$$

Integrating each side, we obtain

$$\int \frac{f_n}{\Omega_n} d\mu \le (n-k) \int F_k d\mu + k \int (F_k \vee f_1) d\mu.$$

Letting $n \to \infty$, we obtain $\int L d\mu \leq \int F_k d\mu$. Then letting $k \to \infty$, we see that $\int L d\mu \leq \int \underline{h} d\mu + \varepsilon$. We see that there exists $C \in \mathbb{R}^+$, such that $\frac{f_n}{\Omega_n} \geq -C$. By Fatou's lemma, \underline{h} is integrable, with $\int \underline{h} \leq L$. Hence the lemma holds.

LEMMA 4. For any fixed k,

$$\limsup_{n} \frac{f_{kn}}{\Omega_{kn}} = \limsup_{n} \frac{f_n}{\Omega_n}.$$

PROOF 3. Since $\frac{f_{kn}}{\Omega_{kn}}$ is a subsequence of $\frac{f_n}{\Omega_n}$, the statement is true with = replaced by \leq . Fix k, and write n = kq + r with $r \in \{1, ..., k\}$. By subadditivity,

$$f_n \le f_{kq} + f_r(T^{kq}x)\omega_{kq}(x) \le f_{kq} + \psi(T^{kq}x)\omega_{kq}(x),$$

where $\psi = \max\{f_1^+, ... f_k^+\}$. Since k is fixed, $q \to \infty$ as $n \to \infty$. Taking the \limsup as $n \to \infty$, we see that

$$\limsup_{n} \frac{f_n}{n} \le \limsup_{n} \frac{f_{kq}}{n} + \limsup_{n} \frac{\psi(T^{kq}x)\omega_{kq}(x)}{n} = \frac{1}{k} \limsup_{n} \frac{f_{kq}}{q},$$

as $n \to \infty$ with $\psi \in L^1$, and $\psi(T^{kq}x)\omega_{kq}(x)$ converges to zero. Dividing both sides by $\frac{1}{\pi}\Omega_n$, we obtain

$$\limsup_{n} \frac{f_n}{\Omega_n} \le \limsup_{n} \frac{f_{kq}}{\Omega_n},$$

as stated in the lemma.

LEMMA 5. $\int_X \limsup_{n\to\infty} \frac{f_n}{\sum_{i=0}^{n-1} \omega_i(x)} d\mu \leq \int L d\mu$

PROOF 4. Let $\theta_n = -\sum_{j=0}^{n-1} f_k(T^{jk}x)\omega_{jk}$. By Theorem 3,

$$\int \frac{\theta_n}{\Omega_n} d\mu = -\int f_k d\mu.$$

Let $\underline{\theta} = \liminf_{\Omega_n} \frac{\theta_n}{\Omega_n}$. Since the sequence f_n is subadditive, $\theta_n \leq -f_{kn}$ for every n. By Lemma 3,

$$\underline{\theta} = \liminf_{n} \frac{\theta_n}{\Omega_n} \le -\limsup_{n} \frac{f_{kn}}{\Omega_{kn}} = -\limsup_{n} \frac{f_n}{\Omega_n} = -\overline{h}.$$

Thus $\int \overline{h} \leq -\int \underline{\theta} \leq \int f_k$. Hence $\int \overline{h} \leq L$.

Note that in the measure-preserving case, we have $\Omega_n(x) = n$, which gives us back the standard Kingman Theorem, Theorem 4.

Theorem 3.4 of [12] states that if $\{f_n\}$ is subadditive and $\{g_n\}$ is superadditive, the limit

$$\lim_{n\to\infty} \frac{f_n}{g_n} = \frac{\lim_{n\to\infty} (1/n) \mathbb{E}_{h\mu} [f_n/h|\mathcal{I}]}{\lim_{n\to\infty} (1/n) \mathbb{E}_{h\mu} [g_n/h|\mathcal{I}]}$$

for any positive μ -integrable function h (where \mathcal{I} is the invariant σ -algebra). Our theorem shows how to replace the quantity 1/n with $\frac{1}{\sum_{i=0}^{n-1} \omega_i(x)}$, which is the key to proving the multiplicative ergodic theorem below.

In the case where the measure μ is non-singular and has critical dimension $\alpha \in [0,1]$, see [5], we have $\frac{\Omega_n(x)}{n^{\alpha}}$ is non-zero a.e., and the conclusion of Theorem 5 is equivalent to $\lim_{n \to \infty} \frac{f_n(x)}{n^{\alpha}} = f(x) < \infty$.

4. The multiplicative ergodic theorem

We now introduce the notion of cocycles with values in GL(d) of a non-singular transformation T of (X, \mathcal{B}, μ) , see [11]. A **cocycle** with respect to the action of T is a function $\Phi : \mathbb{N} \times X \to GL(d)$ satisfying $\Phi(n+m,x) = \Phi(n,x)\Phi(m,T^{n-1}x)$.

Cocycles can be generated by choosing a (random) $d \times d$ -matrix, A(x) for each $x \in X$, and defining

$$\Phi(n,x) = A(x) \times A(Tx) \times A(T^2x) \dots \times A(T^{n-1}x).$$

It is easy to see that this formula defines a cocycle. We will say that A(x) is the **generator** of Φ .

The operator norm of a square matrix A of dimension d is defined as follows:

$$||A|| = \sup \left\{ \frac{||Av||}{||v||} : v \in \mathbb{R}^d \setminus \{0\} \right\}.$$

It follows directly from the definition that the norm of the product of two matrices is less than or equal to the product of the norms of those matrices. Thus

$$\|\Phi(n,x)\| \le \|A(x)\| \|A(Tx)\| \dots \|A(T^{n-1}x)\|.$$

If T is measure preserving, the Furstenberg-Kesten theorem is an application of the Kingman subadditive ergodic theorem, and the subadditive sequence is defined as follows:

$$\log \|\Phi(n+m,x)\| \le \log \|\Phi(n,x)\| + \log \|\Phi(m,T^mx)\|.$$

In the non-singular case, we define the non-singular subadditive sequence by:

$$\log \|\Phi(n, x)\| \le \sum_{i=0}^{n-1} \omega_i \log \|A(T^i x)\|.$$

We are going to define singular values and exterior powers before we introduce the theorem.

DEFINITION 2 (EXTERIOR POWER) Let V be a vector space with dimension r, for 1 < k < r, the k-fold Exterior power of V is $\wedge^k V$, which is the vector space of alternating k-linear forms on the dual space. The k-fold Exterior power of a matrix A is $\wedge^k A$, which has following property:

- (i) $(AB)^{\wedge k} = A^{\wedge k}B^{\wedge k}$
- (ii) $(A^{\wedge k})^{-1} = (A^{-1})^{\wedge k}$
- (iii) $(cA)^{\wedge k} = c^{\wedge k} A^{\wedge k}$, where $c \in \mathbb{R}$.

The singular valued decomposition of Exterior Powers is $\wedge^k A = \wedge^k V \wedge^k D \wedge^k U$, where $\wedge^k D$ is a diagonal matrix with entries $\{\delta_{i_1}\delta_{i_2}....\delta_{i_k}, 1 \leq i_1 \leq ... \leq i_k \leq r\}$. The largest singular value is $\delta_{r-k+1}....\delta_r$, the smallest value is $\delta_1....\delta_k$. The norm of $\wedge^k A$ is the largest singular value.

Theorem 5. (Non-singular Furstenberg-Kestern Theorem)

Let Φ be a linear cocycle with one side in discrete time over the non-singular dynamical system $(\Omega, \mathcal{F}, \mu, T)$. Assume the generator $A: X \to Gl(d, \mathbb{R})$ of Φ satisfies

$$\log^+\|A\|\in L^1$$

Then the following statements hold:

(1) For each k = 1, ..., d the sequence

$$f_n^k(x) = \log \| \wedge^k \Phi(n, x) \|, n \in \mathbb{N}$$

is subadditive and $f_1^{k+} \in L^1(X, \mathcal{F}, \mu)$. That is

$$f_{n+m}^k(x) \le f_m^k(x) + f_n^k(T^m x)\omega_m$$

(2) There is an invariant set $\bar{\Omega}$ of full measure and measurable functions $\gamma^k : X \to \mathbb{R}$ with $\gamma^{k+} \in L^1(X, \mathcal{F}, \mu)$

$$\gamma^{k}(x) = \lim_{n \to \infty} \frac{\log \| \wedge^{k} \Phi(n, x) \|}{\sum_{i=0}^{n-1} \omega_{i}(x)}$$

and

$$\gamma^k(Tx) = \gamma^k(x), \gamma^{k+l}(x) \le \gamma^k(x) + \gamma^l(x).$$

Let Λ_k be the function defined by $\Lambda_k = \gamma^{k+1} - \gamma^k$, and let δ_k be the corresponding singular value of $\Phi(n, x)$. then

$$\Lambda_k = \lim_{n \to \infty} \frac{\log \delta_k(\Phi(n, x))}{\sum_{i=0}^{n-1} \omega_i(x)}$$

PROOF 5. Note that $A(x) = \Phi(1, x)$. For all k

$$f_n^k(x) = \log \| \wedge^k \Phi(n, x) \|$$

is a subadditive sequence.

$$f_{n+1}^k(x) = \log \| \wedge^k \Phi(n+1,x) \| \le f_n^k(Tx)\omega_1(x) + \log \| \wedge^k A(x) \|.$$

Hence subadditivity of $f_n^k(x)$ follows. By theorem 4, we have

$$\gamma^k(x) = \lim_{n \to \infty} \frac{\log \| \wedge^k \Phi(n, x) \|}{\sum_{i=0}^{n-1} \omega_i(x)}.$$

Since $\|\wedge^{k+l} \Phi(n,x)\| \le \|\wedge^k \Phi(n,x)\|\|\wedge^l \Phi(n,x)\|$, γ^k is a subadditive sequence. For k=1,...,d:

$$\log \| \wedge^k \Phi(n, x) \| = \sum_{i=1}^k \log \delta_i(\Phi(n, x))$$

where δ_i is the corresponding singular value of $\Phi(n,x)$

Now we consider the behaviour of $\|\Phi(n,x)v\|$ for $v \in \mathbb{R}^d$ as $n \to \infty$. If $A \in M_d(\mathbb{R})$ with transpose A^* , both A^*A and AA^* are symmetric and positive semidefinite. Any positive semidefinite and symmetric matrix S may be written as the form as

$$S = C^{-1}DC$$

where D is diagonal with non-negative entries in non-deceasing order and C is orthogonal.

The polar decomposition of a matrix A is

$$A = C(AA^*)^{\frac{1}{2}}C' = C''(A^*A)^{\frac{1}{2}}$$

where C', C'' are orthogonal matrices. Applying the polar decomposition to $\Phi(n, x)$ in the theorem, we obtain:

$$\Phi(n,x) \approx C_n'' A^n(x)$$

for some orthogonal matrix C''_n . Since orthogonal matrices are isometries, we have $\|C''_nv\| = \|v\|$. Thus

$$\|\Phi(n,x)v\| = \|A^n(x)v\|.$$

Returning to the symmetric matrix $\Phi(n,x)^*\Phi(n,x)$, we know $\Phi(n,x)^*\Phi(n,x) = C_n^*D_nC_n$, and $\Phi(n,x) = L_n(D_n)^{\frac{1}{2}}C_n$, and hence

$$\lim_{n \to \infty} (\Phi(n, x)^* \Phi(n, x))^{\frac{1}{2n}} = \lim_{n \to \infty} C_n^* (D_n)^{\frac{1}{2n}} C_n.$$

If the limit exists, then there are an orthogonal matrix $C=\lim C_n$ and a diagonal matrix $D=\lim D_n^{\frac{1}{2n}}$. By theorem 5, we see that $\lim_{n\to\infty}\frac{\log\|\wedge^k\Phi(n,x)\|}{\sum_{i=0}^{n-1}\omega_i(x)}$ converges for all k to $-\infty$ or a finite limit. Hence $\lim_{n\to\infty}\frac{\log\delta_i(\Phi(n,x))}{\sum_{i=0}^{n-1}\omega_i(x)}$ converges to a finite limit for every i. Now, we can assume that $D_n^{\frac{1}{2n}}$ converges as $n\to\infty$. By the monotonicity of Λ^i ,

$$\Lambda^r(x) \ge \dots \ge \Lambda^1(x)$$

There is a unique partition I, given by:

$$I = \{1 = i_2 < i_1 < \dots < i_p < i_{p+1} = r+1\}$$

such that $\Lambda^{i_q} = \Lambda^{i_{q+1}-1} < \Lambda^{i_{q+1}}$. This partition splits $\{1,2,\cdots,r\}$ into finitely many intervals $[i_q,i_{q+1}-1]$. If $\Lambda^i = \Lambda^j$, then they belong to same interval. Let $\Sigma(I,q)(x)$ be vector subspace of \mathbb{R}^r , it is a union of the zero vector 0 and the set of all eigenvectors corresponding to eigenvalues smaller than or equal to $\Lambda^{i_{q+1}-1}$. It is easily seen that $\Sigma(I,0)(x)$ is $\{0\}$ and $\Sigma(I,p)(x)$ is \mathbb{R}^r . We see that $C_n^{-1}e_i$ is an eigenvector of $(\Phi(n,x)^*\Phi(n,x))^{\frac{1}{2}}$ with eigenvalue δ_i^2 . We know $D_n^{\frac{1}{2n}}$ converges, but the question is whether the vector space spanned by $C_n^{-1}e_i$ converges. We will formulate a one-sided multiplicative ergodic theorem which is based on Raghunathan's version [10].

THEOREM 6. (Non-singular Oseledeč theorem) Let (X, S, m) be a probability space. Suppose that T is a non-singular transformation and $u: Z \times X \to M(r, \mathbb{R})$ is a measurable cocycle over T such that $\log^+ \|\Phi(1,\dot{})\| \in L^1(X,S,m)$. We set

$$B = \{(x,v) \in X \times \mathbb{R}^r : \frac{\log \|\Phi(n,x)v\|}{\sum_{i=0}^{n-1} \omega_i(x)} \text{ tends to a finite limit or } -\infty\}$$

and

$$X' = \{x \in X | (x, v) \in B \text{ forall } v \in \mathbb{R}^r\}.$$

Then there is a subset Y of X' which has full measure and a sequence of functions $\Lambda^1(x) \leq \ldots \leq \Lambda^r(x)$ (taking values in $\mathbb{R} \cup -\infty$) such that:

Let $I = \{1 = i_1 < i_2 < \dots < i_p < i_{p+1} = r+1\}$ be n+1 tuples of integers. (i)

 $Y(I) = \{x \in X' | \Lambda^i(x) = \Lambda^j(x) \text{ for } i_q \leq i, j < i_{q+1} \text{ and } \Lambda^{i_q}(x) < \Lambda^{i_{q+1}}(x) \text{ for } i_q \leq i, j < i_{q+1} \text{ and } \Lambda^{i_q}(x) < \Lambda^{i_{q+1}}(x) \text{ for } i_q \leq i, j < i_{q+1} \text{ and } \Lambda^{i_q}(x) < \Lambda^{i_{q+1}}(x) \text{ for } i_q \leq i, j < i_{q+1} \text{ and } \Lambda^{i_q}(x) < \Lambda^{i_{q+1}}(x) \text{ for } i_q \leq i, j < i_{q+1} \text{ and } \Lambda^{i_q}(x) < \Lambda^{i_{q+1}}(x) \text{ for } i_q \leq i, j < i_{q+1} \text{ and } \Lambda^{i_q}(x) < \Lambda^{i_{q+1}}(x) \text{ for } i_q \leq i, j < i_{q+1} \text{ and } \Lambda^{i_q}(x) < \Lambda^{i_{q+1}}(x) \text{ for } i_q \leq i, j < i_{q+1} \text{ and } \Lambda^{i_q}(x) < \Lambda^{i_{q+1}}(x) \text{ for } i_q \leq i, j < i_{q+1} \text{ and } \Lambda^{i_q}(x) < \Lambda^{i_{q+1}}(x) \text{ for } i_q \leq i, j < i_{q+1} \text{ and } \Lambda^{i_q}(x) < \Lambda^{i_{q+1}}(x) \text{ for } i_q \leq i, j < i_{q+1} \text{ and } \Lambda^{i_q}(x) < \Lambda^{i_{q+1}}(x) \text{ for } i_q \leq i, j < i_{q+1} \text{ and } \Lambda^{i_q}(x) < i_{q+1} \text{ and } \Lambda^{i_$ all q with 1 < q < p.

Then for all $x \in Y(I), 1 < q < p$

Then for all
$$x \in I(I), 1 < q < p$$

$$\Sigma(I,q)(x) = \{ v \in \mathbb{R}^r | \lim_{n \to \infty} \frac{\log \|\Phi(n,x)v\|}{\sum_{i=0}^{n-1} \omega_i(x)} \le \Lambda^{i_q}(x) \}$$
is a vector subspace of \mathbb{R}^r with dimension $i^{q+1} - 1$.

(ii) If $\Sigma(I,0) = \{0\}$ then

$$\lim_{n\to\infty} \frac{\log \|\Phi(n,x)v\|}{\sum_{i=1}^{n-1} w_i(x)} = \Lambda^{i_q}(x)$$

 $\lim_{n\to\infty} \frac{\log \|\Phi(n,x)v\|}{\sum_{i=0}^{n-1} \omega_i(x)} = \Lambda^{i_q}(x)$ for any vector $v \in \Sigma(I,q)(x) - \Sigma(I,q-1)(x)$

(iii) for $x \in Y$ the sequence

$$A(n,x) = (\Phi(n,x)^*\Phi(n,x))^{\frac{1}{2n}}$$

converges to a matrix $A(x) \in M(r,\mathbb{R})$. The eigenspace of A(x) is the orthogonal complement of $\Sigma(I,q)(x)$ in $\Sigma(I,q+1)(x)$ corresponding to the eigenvalue $\exp \Lambda^{i_{q+1}}$

LEMMA 6. Suppose that $\log^+ \|\Phi(1,)\|$ is a measurable function and T a nonsingular transformation. There is a set $Y \subset X$ of full measure such that for every $x \in Y$,

- The sequence $S_n = \frac{\sum_{0 \le q < n} \log^+ \|\Phi(1, T^q(x))\|}{\sum_{i=0}^{n-1} \omega_i(x)}$ converges to a limit a.e. $\lim_{n \to \infty} \|\Phi(1, T^n(x))\| = 0$.

PROOF 6. (i)This follows directly from the Hurewicz Ergodic Theorem.

By (i), the sequence S_n converges to a limit,

$$S_n = \frac{\sum_{0 \le q < n} \log^+ \|\Phi(1, T^q(x))\|}{\sum_{i=0}^{n-1} \omega_i(x)}$$

$$\sum_{0 \le q < n-1} \log^+ \|\Phi(1, T^q(x))\|$$

$$S_{n-1} = \frac{\sum_{0 \le q < n-1} \log^+ \|\Phi(1, T^q(x))\|}{\sum_{i=0}^{n-2} \omega_i(x)}$$

By (i), the sequence
$$S_n$$
 converges to a limit,
$$S_n = \frac{\sum_{0 \le q < n} \log^+ \|\Phi(1, T^q(x))\|}{\sum_{i=0}^{n-1} \omega_i(x)}$$

$$S_{n-1} = \frac{\sum_{0 \le q < n-1} \log^+ \|\Phi(1, T^q(x))\|}{\sum_{i=0}^{n-2} \omega_i(x)}$$

$$S_n = \frac{\sum_{i=0}^{n-2} \omega_i(x)}{\sum_{i=0}^{n-1} \omega_i(x) \sum_{i=0}^{n-2} \omega_i(x)} \sum_{0 \le q < n-1} \log^+ \|\Phi(1, T^q(x))\| + \frac{\log^+ \|\Phi(1, T^n(x))\|}{\sum_{i=0}^{n-1} \omega_i(x)}.$$
Since $n \to \infty$ and $|S_n - S_{n-1}| \to 0$, we can conclude that

$$\frac{\log^+ \|\Phi(1, T^n(x))\|}{\sum_{i=0}^{n-1} \omega_i(x)} \to 0$$

for all $x \in Y$.

Now, given $\varepsilon > 0$, there exists $N(\varepsilon, x)$ such that for all n > N

$$\|\Phi(1, T^n(x))\| < \exp \sum_{i=0}^{n-1} \omega_i(x)\varepsilon$$

 $\|\Phi(n,x)\|$ satisfies the cocycle identity: $\Phi(n+1,x) = \Phi(1,T^n(x))\Phi(n,x)$. For a unit vector $v \in \Sigma(I, q, n)(x)$,

$$\|\Phi(n+1,x)v\| \leq \|\Phi(1,T^n(x))\| \|\Phi(n,x)v\|$$

$$\|\Phi(n+1,x)\|v\| \le \exp(\sum_{i=0}^{n-1} \omega_i(x)\varepsilon) \ \delta_{i_q}(\Phi(n,x))$$

$$\|\Phi(n+1,x)v\| \le \exp(\sum_{i=0}^{n-1} \omega_i(x)\varepsilon) \exp(\sum_{i=0}^{n-1} \omega_i(x)(\Lambda^{i_q}+\varepsilon))$$

 $||T(n+1,x)v|| \le \exp(\sum_{i=0}^{n-1} \omega_i(x)(\Lambda^{i_q} + 2\varepsilon))$ Choose a unit vector $v \in \Sigma(I,q,n)(x)$, and let $v' \in \Sigma(I,q,n+1)(x)$ be the orthogonal projection of v on $\Sigma(I,q,n+1)(x)$. The orthogonal complement of v' in $\Sigma(I,q,n+1)(x)$ has the form $C_{n+1}^{-1}\sum_{i\geq q+1}b_ie_i$.

LEMMA 7. Given $\varepsilon > 0$ there exists $N(\varepsilon, x), x \in Y$ with the following property. There is a unit vector $v \in \Sigma(I,q,n)(x)$, for some number $b_i \in \mathbb{R}$ and $v' \in$ $\Sigma(I,q,n+1)(x)$

$$v = v' + C_{n+1}^{-1} \sum_{i > i_{n+1}} b_i e_i$$

Then $|b_i| < \exp\{-\sum_{i=0}^{n-1} \omega_i(x)(\Lambda^i - \Lambda^{i_q} - \varepsilon\} \text{ for } n \ge N.$

PROOF 7. We have $\|\Phi(n+1,x)v\| \leq \exp \sum_{i=0}^{n-1} \omega_i(x) (\Lambda^{i_q} + 2\varepsilon)$ by Lemma 6. Notice

$$\|\Phi(n+1,x)v\| \ge \|\sum_{i\ge i_{q+1}} |b_i|\Phi(n+1,x)C_{n+1}^{-1}e_i\|.$$

Now $||b_i\Phi(n+1,x)C_{n+1}^{-1}e_i|| \le ||\sum_{i>i_{n+1}}b_i\Phi(n+1,x)C_{n+1}^{-1}e_i||$ as Λ^i is nondecreasing.

Hence
$$\|\Phi(n+1,x)v\| \ge \|b_i\Phi(n+1,x)C_{n+1}^{-1}e_i\|$$
.

Now $\|\Phi(n+1,x)C_{n+1}^{-1}e_i\|$ is the i-th eigenvalue, since

$$||b_i\Phi(n+1,x)C_{n+1}^{-1}e_i|| = |b_i|||L_{n+1}(D_{n+1})^{\frac{1}{2}}C_{n+1}C_{n+1}^{-1}e_i|| = |b_i|\delta_i(\Phi_{n+1}(x)).$$

Let Λ^i be the limit of $\frac{\log \delta_i(\Phi_{n+1}(x))}{\sum_{i=0}^n \omega_i(x)}$. It follows from the above that

$$\|\Phi(n+1,x)v\| \ge |b_i| \exp((\sum_{i=0}^n \omega_i(x))(\Lambda^i - \varepsilon)).$$

Thus Λ^i is in a bounded interval which is greater than Λ^{i_q} , $0 < \varepsilon < 1$. For large n, we may assume

$$\exp((\sum_{i=0}^n \omega_i(x))(\Lambda^i - \varepsilon)) \ge \exp((\sum_{i=0}^{n-1} \omega_i(x))(\Lambda^i - 2\varepsilon)).$$

Thus

$$|b_i| \le exp - (\sum_{i=0}^{n-1} \omega_i(x))(\Lambda^i - 4\varepsilon - \Lambda^{i_q})$$

which completes the proof of the Lemma.

Lemma 7 shows that a vector in $\Sigma(I,q,n)(x)$ can be combined with the projection on $\Sigma(I,q,n+1)(x)$ and the orthogonal complement of $\Sigma(I,q,n+1)(x)$, that is

$$C_n^{-1} \sum_{i=1}^{i_{q+1}-1} Ke_i = C_{n+1}^{-1} \sum_{j=1}^r b_j e_j$$
 and $v_n = v'_{m+1} + w_{m+1}$

Now v'_{m+1} is the orthogonal projection of v_n onto $\Sigma(I,q,n+1)(x)$ and the norm of v'_{m+1} is given by:

$$||v'_{m+1}|| = ||v_n - C_{n+1}^{-1} \sum_{i \ge i_{q+1}} b_i e_i||$$

Since v_n is a unit vector, we have the following upper and lower bounds for $||v'_{m+1}||$:

$$1 - \|C_{n+1}^{-1} \sum_{i \ge i_{q+1}} b_i e_i\| \le \|v'_{m+1}\| \le 1 + \|C_{n+1}^{-1} \sum_{i \ge i_{q+1}} b_i e_i\|.$$

We want to show $||v_{n+1} - v_n|| \le 2r \exp \{-(\sum_{i=0}^{n-1})\omega_i(x)(\Lambda^{i_{q+1}} - \Lambda^{i_q} - \varepsilon)\}$

LEMMA 8. If $v_{n+1} \in \Sigma(I, q, n+1)(x)$ is a unit vector and $v_n \in \Sigma(I, q, n)(x)$ satisfies the conditions of Lemma 2, then

$$||v_{n+1} - v_n|| \le 2r \exp\{-(\sum_{i=0}^{n-1} \omega_i(x))(\Lambda^{i_{q+1}} - \Lambda^{i_q} - \varepsilon)\}$$

PROOF 8. $\|v_{n+1} - v_n\| = \|v_n - v_{n+1}\| = \|v_n - v'_{n+1} + v'_{n+1} - v_{n+1}\|$, and $\|v_n - v'_{n+1} + v'_{n+1} - v_{n+1}\| \le \|v_n - v'_{n+1}\| + \|v'_{n+1} - v_{n+1}\|$. It follows that $\|v_n - v'_{n+1}\| = \|C_{n+1}^{-1} \sum_{i \ge i_{q+1}} b_i e_i\|$.

On the other hand, let $v'_{n+1} = av_{n+1}$, and we have $1 - \|C_{n+1}^{-1} \sum_{i \geq i_{q+1}} b_i e_i\| \leq \|v'_{m+1}\| \leq 1 + \|C_{n+1}^{-1} \sum_{i \geq i_{n+1}} b_i e_i\|$. Thus

$$1 - \|C_{n+1}^{-1} \sum_{i \ge i_{q+1}} b_i e_i\| \le a \le 1 + \|C_{n+1}^{-1} \sum_{i \ge i_{q+1}} b_i e_i\|$$
. Now

 $||v'_{n+1} - v_{n+1}|| = ||(a-1)v_{n+1}||$, which is smaller than $||C_{n+1}^{-1} \sum_{i \geq i_{q+1}} b_i e_i||$. We thus have

$$||v_{n+1} - v_n|| \le 2||C_{n+1}^{-1} \sum_{i > i_{n+1}} b_i e_i||.$$

It follows that

$$||C_{n+1}^{-1} \sum_{i \ge i_{q+1}} b_i e_i|| \le \sum_{i \ge i_{q+1}} ||b_i e_i|| \le r |b_{i_{q+1}}| \le r \exp\{-(\sum_{i=0}^{n-1} \omega_i(x))(\Lambda^{i_{q+1}} - \Lambda^{i_q} - \varepsilon)\}.$$

This completes the proof.

We will show that $||v_{n+k}-v_{n+l}||$ is a Cauchy sequence. In fact, the sequence $\sum_{i=l}^{\infty} r \exp\{-(n+i)(\Lambda^{i_{q+i}}-\Lambda^{i_q}-\varepsilon)\}$ is the sum of a geometric series. Thus

$$||v_{n+k} - v_{n+l}|| \le \sum_{i=l}^{\infty} ||v_{n+k} - v_{n+l}||$$

$$= 2r \frac{1}{1 - \exp\{-(\Lambda^{i_{q+1}} - \Lambda^{i_q} - \varepsilon)\}} \exp\{-(\sum_{i=0}^{n-1} \omega_i(x) + l)(\Lambda^{i_{q+1}} - \Lambda^{i_q} - \varepsilon)\}$$

$$= C \exp\{-(\sum_{i=0}^{n-1} \omega_i(x) + l)(\Lambda^{i_{q+1}} - \Lambda^{i_q} - \varepsilon)\}.$$

This shows that v_n is a Cauchy sequence, as claimed.

LEMMA 9. Let $\{v_n^1, v_n^2, \cdots, v_n^i\}$ be a collection of vectors which is a basis for $\Sigma(I,q,n)(x)$, where $0 \leq i < i_{q+1}$. The sequence $\{\Sigma(I,q,n)(x)\}$ has limit $\Sigma(I,q)(x)$. Furthermore,

$$||v_{n+k} - v_{n+l}|| \le \sum_{i=l}^{k} ||v_{n+k} - v_{n+l}|| \le \sum_{i=l}^{\infty} ||v_{n+k} - v_{n+l}||.$$

PROOF 9. By Lemma 8, we see easily that

$$\|v_{n+k}^i - v_{n+l}^i\| \leq C \, \exp\{-(\sum_{i=0}^{n-1} \omega_i(x) + \max(k,l))(\Lambda^{i_{q+1}} - \Lambda^{i_q} - \varepsilon)\}$$

for $i_q \leq i < i_{q+1}$. Moreover

$$||v_n^i - v^i|| \le C \exp\{-(\sum_{i=0}^{n-1} \omega_i(x))(\Lambda^{i_{q+1}} - \Lambda^{i_q} - \varepsilon)\}$$

where v^i is the limit of v^i_n . The sequence $\{v^i_n\}$ converges to a linearly independent set of vectors as $n \to \infty$. $\Sigma(I,q,n)(x)$ is the space spanned by $\{v_n^1,v_n^2,\cdots,v_n^i\}$. Thus $\Sigma(I,q,n)(x) \to \Sigma(I,q)(x)$ as $n \to \infty$.

Writing the matrix $B = C_n C_{n+k}^{-1}$, a vector in the space $\Sigma(I,q,n)(x)$ has the form $C_n^{-1}e_i$ which we can split into an orthogonal projection in $\Sigma(I,q,n+1)(x)$ and its orthogonal complement in $\Sigma(I,q,n+1)(x)^{\perp}$. By lemma 7, $C_n^{-1}e_i =$ $C_{n+1}^{-1}\sum_{j=1}^r b_j e_j$. Hence $|C_{n+1}C_n^{-1}|=|b_j|$ as e_i is the standard basis. The inverse of $C_{n+1}C_n^{-1}$ is $C_nC_{n+1}^{-1}$. Thus we have a similar decomposition of a vector in $\Sigma(I,q,n+1)(x)$, viz.

$$v = v' + C_n^{-1} \sum_{i \ge_{n+1}} b_{i*} e_i,$$

where $v' \in \Sigma(I,q,n)(x)$ and $C_n^{-1} \sum_{i \geq q+1} b_{i*} e_i \in \Sigma(I,q,n)(x)^{\perp}$. We set $a_i = \exp(\Lambda^i - i\varepsilon)$, and note that $|C_n C_{n+1}^{-1}| = |b_{i*}|$. It then follows that

$$|b_{i*}| \le C \exp -(\sum_{i=0}^{n-1} \omega_i(x))(\Lambda^i - \Lambda^{i_q} - r\varepsilon),$$

since we have a cycle of length r.

LEMMA 10. If $v^i \in \Sigma(I,q)(x)$, then $\limsup_{n \to \infty} \frac{1}{n} \log ||T(n,x)(v^i)|| \le \lambda^{i_q}(x)$.

PROOF 10. Firstly, we can see that $\limsup_{x \to 0} \frac{\log \|\Phi(n,x)(v_n^i)\|}{\Omega(x)} = \lim_{n \to \infty} \frac{\log \delta_i(\Phi(n,x))}{\Omega(x)} = \lim_{n \to \infty}$ $\Lambda^{i}. \text{ If } i < i_{q+1}, \text{ we have } \limsup_{n \to \infty} \frac{\log \|\Phi(n,x)(v_{n}^{i})\|}{\Omega(x)} \leq \Lambda^{i_{q}}.$ $On \text{ the other hand, } v^{i} - v_{n}^{i} = w + C_{n}^{-1} \sum_{i \geq q+1} b_{i*} e_{i}. \text{ For } w \in \Sigma(I,q,n)(x),$

 $\limsup \frac{\log \|\Phi(n,x)(w)\|}{\Omega(x)} \le \Lambda^{i_q}$. Hence

$$\limsup \frac{\log \|\Phi(n,x)C_n^{-1} \sum_{i \ge i_{q+1}} b_{i*}e_i\|}{\sum_{i=0}^{n-1} \omega_i(x)}$$

$$\leq \limsup \frac{\log \{C \exp -(\Omega(x))(\Lambda^i - \Lambda^{i_q} - r\epsilon) \times \delta_i(\Phi(n,x))\}}{\Omega(x)}$$

$$= -\Lambda^i + \Lambda^{i_q} + r\epsilon + \Lambda^i = \Lambda^{i_q} + r\epsilon$$

for $i \geq i_{q+1}$.

The triangle inequality implies that

$$\|\Phi(n,x)(v^i)\| \le \|\Phi(n,x)(v^i_n)\| + \|\Phi(n,x)(v^i - v^i_n)\| \le 2\exp(\sum_{i=0}^{n-1} \omega_i(x))(\Lambda^{i_q} + \varepsilon),$$

and thus $\limsup \frac{\log \|\Phi(n,x)(v^i)\|}{\sum_{i=0}^{n-1} \omega_i(x)} \leq \Lambda^{i_q}$.

LEMMA 11. If the vector v^i is not in $\Sigma(I, q-1)(x)$, for large n, the projection $v^{i\prime}$ belongs to $\Sigma(I, q-1, n)(x)$ with $||v^{i\prime}|| > c > 0$. Then

$$\lim\inf \frac{\log \|T(n,x)(v^i)\|}{\sum_{i=0}^{n-1}\omega_i(x)} \ge \Lambda^{i_q}(x)$$

PROOF 11. This proof is quite straightforward. We take a unit vector v^i which is not in $\Sigma(I, q-1)(x)$. There is a $\delta \in V$ such that $v^i + \delta \in \Sigma(I, q-1)(x)$. When n is large enough, the vector v^i_n has projection $v^{i'}$ in $\Sigma(I, q-1, n)(x)$ and orthogonal complement $v^{i''} \in \Sigma(I, q-1, n)(x)^{\perp}$. We take the difference $||v^i - v^{i'}|| \geq \frac{\delta}{2}$, obtaining

$$\begin{split} \|\Phi(n,x)(v^i)\| &\approx \|\Phi(n,x)v_n^i\| \\ &\geq \|\Phi(n,x)(v^i-v^{i\prime})\| \\ &\geq \frac{\delta}{2} \exp(\sum_{i=0}^{n-1} \omega_i(x))(\Lambda^{i_q}(x)-\varepsilon) \end{split}$$

Combining Lemmas 10 and 11, we can conclude that $\lim \frac{\log \|\Phi(n,x)(v^i)\|}{\sum_{i=0}^{n-1} \omega_i(x)} = \Lambda^{i_q}(x)$, for $v_i \in \Sigma(I,q)(x) \setminus \Sigma(I,q-1)(x)$. Now we see that the eigenspace is $C_n^{-1}e_i \to C^{-1}e_i$ and the eigenvalue is $\Lambda^k(x) = \lim_{n \to \infty} \frac{\log \delta_k(\Phi(n,x))}{\sum_{i=0}^{n-1} \omega_i(x)}$, so that the limit matrix $A(x) = \lim_{n \to \infty} (\Phi(n,x)^*\Phi(n,x))^{\frac{1}{2n}}$ exists.

References

- J. Aaronson, An introduction to infinite ergodic theory, American Mathematical Soc. (1997).
- [2] L. Arnold, Random Dynamical Systems, Springer (2003)
- [3] A. Avila, J. Bochi, On the subadditive ergodic theorem, preprint (2009).
- [4] G.D. Birkhoff, Proof of the ergodic theorem, Proceedings of the National Academy of Sciences, 17(1931), 656–660.
- [5] A.H. Dooley and G. Mortiss, On the critical dimension of product odometers, Ergod. Th. Dynam. Sys. 29(2008), 475-485.
- [6] H. Furstenberg, H. Kesten, Products of random matrices, Annals of Mathematical Statistics, 31(1960), 457–469
- [7] W. Hurewicz, Ergodic theorem without invariant measure, Annals of Mathematics, ${\bf 45}(1944),192-206.$
- [8] J.F.C. Kingman, The ergodic theory of subadditive stochastic processes, *Journal of the Royal Statistical Society: Series B (Methodological)*, **30**(1968),499–510.
- [9] Ivan Oseledets, A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19(1968), 197–231.
- [10] M. S. Raghunathan, A proof of Oseledec's multiplicative ergodic theorem, Israel Journal of Mathematics, 32(1979), 356–362.
- [11] Klaus Schmidt, Algebraic ideas in ergodic theory, CBMS vol. 76, American Mathematical Soc.(1990).
- [12] C. E, Silva, P. Thieullen, The subadditive ergodic theorem and recurrence properties of Markovian transformations, J. Math. Anal. Appl., 154 (1991), 83-99.