

Introductory Programming and the Didactic Triangle

Anders Berglund
UpCERG, Uppsala Computing Education Research Group

Department of Information Technology
Uppsala University
Uppsala, Sweden

Anders.Berglund@it.uu.se

Raymond Lister
Faculty of Information Technology
University of Technology, Sydney

Sydney,
NSW, Australia

raymond@it.uts.edu.au

Abstract••••
In this paper, we use Kansanen’s didactic triangle to
structure and analyse research on the teaching and
learning of programming. Students, teachers and course
content are the three entities that form the corners of the
didactic triangle. The edges of the triangle represent the
relationships between these three entities. We argue that
many computing educators and computing education
researchers operate from within narrow views of the
didactic triangle. For example, computing educators
often teach programming based on how they relate to the
computer, and not how the students relate to the
computer. We conclude that, while research that focuses
on the corners of the didactic triangle is sometimes
appropriate, there needs to be more research that focuses
on the edges of the triangle, and more research that
studies the entire didactic triangle.

Keywords: didactic triangle, phenomenography, object-
oriented programming.

1 The teaching of introductory programming
is still a problem

Programming is hard to learn, and hard to teach. These
problems are frequently acknowledged within the
computing education community and are confirmed in
several studies (e.g. Bennedsen, 2008; Berglund & Lister,
2007; Pears et al., 2007; Robins, Rountree, & Rountree,
2003). This paper begins by discussing previous research
efforts that have tackled this problem. We then argue that,
while previous research has advanced our understanding
of how students learn to program, it is time to broaden
our collective research focus. We will argue for a wider,
more systematic focus on the complete teaching picture,
instead of focusing upon parts of the picture. We will
base our argument on new research findings, as well as
other research sources, and will, as a conclusion, sketch

• Copyright © 2010, Australian Computer Society, Inc. This
paper appeared at the Twelfth Australasian Computing
Education Conference (ACE2010), Brisbane, Australia, January
2010. Conferences in Research and Practice in Information
Technology, Vol. 103. Tony Clear and John Jamer Eds.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

the direction in which we propose that research now
move.

 We start (in section 2) by presenting Kansanen’s
(1999) didactic triangle, which is a model aimed at
analysing and describing the entire teaching and learning
situation. We then (in section 3) discuss separately each
of the three corners of the triangle – teachers, students
and programming. In section 4, we discuss the edges of
the triangle – the relationships between teachers and
programming, between students and programming, and
between teachers and students. In sections 3 and 4, our
analysis will focus on ambiguities and problems in the
components and/or their relationships. In section 5, we
then return to the complete didactic triangle, and apply
the research results described in sections 3 and 4. In
section 6, we conclude with our proposals for future
work.

Figure 1: The Didactic Triangle (Kansanen, 1999;

Kinnunen, forthcoming)

2 The Didactic Triangle
A teaching situation can be analysed and described in
terms of its three main components: the student, the
teacher and the content. These entities and their
interaction can be illustrated in a didactic triangle, as
shown in Figure 1 (Kansanen, 1999). When applying the
model to the teaching of introductory programming,
Kinnunen (forthcoming) argues that the context of the
teaching situation must be taken into account, as teaching

Proc. 12th Australasian Computing Education Conference (ACE 2010), Brisbane, Australia

35

does not occur in a vacuum; this is represented by the
shading in Figure 1.

Although the didactic triangle should be seen and
analysed as a whole – that is its raison d’être – we claim,
based on Kansanen & Meri (1999), that it is often fruitful
to precede (but not replace) analysis of the whole triangle
with analysis of its components. The following two
sections discuss the components of the didactic triangle,
as best we can, given that each component by necessity
has relations to its neighbours and the context.

The triangle is an analytic tool for, in the case of this
paper, improving our awareness of issues often taken for
granted and left implicit in discussions about
programming.

3 The Corners of the Didactic Triangle
In this section, we discuss content, students and teachers
in isolation from one another. Such a tight focus can
sometimes be useful and appropriate in research, but it
can also be a naïve perspective. Many of the topics
discussed here in section 3 will need to be revisited in
section 4, when we consider larger parts of the didactic
triangle.

3.1 The “Content” Corner of the Triangle
Discussion about the learning and teaching of
programming is often conducted without explicit
reference to students and teachers. Instead, the focus is on
the technology. Such a discussion rests upon the
plausible, but often implicit, assumption that the simpler a
technology is, the easier it is to learn. (In this paper, we
ignore the difficulty of measuring simplicity.)
Consequently, a discussion on how to simplify the
technology can proceed without explicit reference to
students and teachers. For example, Kolling, Koch and
Rosenberg (1995) enumerated 10 requirements for a first
year teaching language, where all 10 requirements related
to principles of simplicity and transparency in
programming languages. Students are only mentioned in
one of the requirements, and only then in passing. That is
not to say that the 10 requirements are wrong, or
inappropriate, but merely that the 10 requirements offer a
limited perspective on a complex issue.

The remainder of this section discusses briefly some other
examples of where the focus is on the “content” corner,
and where the student and teacher remain in the implicit
background.

3.1.1 Languages and Language Wars
ACM Java Task Force (2006) was convened in 2004

with the following charter:
To review the Java language, APIs, and tools
from the perspective of introductory computing
education and to develop a stable collection of
pedagogical resources that will make it easier to
teach Java to first-year computing students
without having those students overwhelmed by
its complexity.

The Task Force identified four significant challenges
that instructors face teaching Java:

• Static methods, including “main”
• Lack of a simple input mechanism

• Conceptual difficulty of the graphics model
• GUI components inappropriate for beginners

Some other researchers (e.g. Grandell et al., 2006)
have gone further, to advocate not using Java, and instead
using other object-oriented languages, such as Python.
There argument is that these other languages are simpler,
and therefore (in their view) simpler to learn.

3.1.2 Tools
It is only natural that, when computing scientists are
faced with a problem in their teaching, they look for a
software solution. For example a very popular notion
among computing educators is that students struggle with
programming because they have difficulty visualizing
how the algorithms work. That notion has spawned a
plethora of visualization tools. As Stasko and
Hundhausen (2004) explained, prior to a shift in the mid-
1990’s, the focus in that research was on the technology,
not the students:

The notion of using illustrations and pictures to
explain computer algorithms and programs is
nearly as old as computer programs themselves.
… Initial research in the field of algorithm
visualization was dominated by efforts to build
algorithm visualization software systems and to
expand the capabilities and expressiveness of
these systems. … system paradigms,
specification paradigms, types of views, and the
like...

In section 5.2, we will examine what Stasko and
Hundhausen then went on to say about the subsequent
work on visualization. As a preview, we now paraphrase
them, in terms of the nomenclature of this paper: they
wrote that subsequent research broadened to examine
larger parts of the didactic triangle.

3.2 The “Student” Corner of the Triangle
In this subsection, we discuss theories of student learning,
without reference to the specific content of what is learnt
by the student. Also, the theories discussed here assume
that the teacher has no influence on the behaviour of the
student. As noted at the commencement of section 3, such
a perspective of the student can be naïve, and we shall
revisit these topics later.

3.2.1 Deep and Surface Learning
In the 1970s, early phenomenographers identified two
different approaches that students bring to learning. In the
"deep" approach, students attempt to develop a genuine
understanding of what they are studying, while students
using the "surface" approach merely seek to complete the
tasks set by the teacher (Marton & Booth, 1997).

While the notions of deep and surface approaches to
learning are now well known, these notions are often
understood and articulated in an incorrect, naïve fashion,
where students are represented as being by nature “deep
learners” or “surface learners”. That is, the students are
described without reference to either the content they are
learning, or their teachers. As Biggs (2003) and many
others have noted, both the teacher and the content have a
profound influence on whether students adopt a deep or
surface approach to learning.

CRPIT Volume 103 - Computing Education 2010

36

3.2.2 Student motivation
In research on student motivation, the distinction between
intrinsic and extrinsic motivation is commonly made. For
an overview, see Entwistle (1998) or Ryan & Deci
(2000).

While “intrinsic” and “extrinsic” are often used by
teachers to describe the motivations of their students, the
terms are often used naïvely, perhaps even incorrectly. In
the naïve use of “intrinsic” and “extrinsic”, it is the
“student” corner of the didactic triangle that is in focus.
That is, the motivation of student is described as an
intrinsic property of the student, not as a reaction to the
teacher or content being learnt.

The educational psychology literature on motivation
reveals that student motivation is a complex issue that
involves more than just one corner of the didactic
triangle. Ryan & Deci divide extrinsic motivation into
four subcategories, of which only one, “external
regulation”, describes what most teachers mean by
“extrinsic motivation”. Two of the extrinsic subcategories
“identification” and “integration” are actually part of
what most teachers naively refer to as “intrinsic”
motivation. When many teachers use the terms “intrinsic”
and “extrinsic”, they are really referring to what Ryan &
Deci refer to as the locus of causality, “internal” or
“external”.

3.3 The “Teacher” Corner of the Triangle
In this subsection, we discuss how teachers view their
general role, independent of the specific content and
specific students they teach.

During the last twenty years, studies in teaching and
learning in higher education have to an increasing degree
focused on the role of teachers (see for example Boyer,
1997; Kember, 1997; Ramsden, 2003; Trigwell, Prosser,
Martin, & Ramsden, 2005), but such studies are sparsely
represented compared to studies focusing on students. In
computing education, there are very few studies of the
teacher.

3.3.1 Content- versus Student-Centred
Fox (1983) identified four personal theories of teaching
on the basis of his many anecdotal encounters with
polytechnic teachers, from a variety of disciplines. The
four personal theories formed pairs, with one pair being
content- or teacher-focused and the other pair being
student-focused.

Within the broad content- or teacher-focused category,
Fox identified the sub-categories of ‘transfer’ and
‘shaping’. In the first of these sub-categories, the student
is viewed as a container into which the knowledge is to
be poured. In the second sub-category, the student is
viewed as a raw material to be moulded, or turned by
some other ‘manufacturing’ process into a finished
product.

Within the broad student-focused category, Fox identified
the sub-categories of ‘travelling’ and ‘growing’. In the
‘travelling’ sub-category, the teacher views the student as
someone undertaking a journey, where discipline
knowledge is the landscape, and the teacher is a guide. To
define the ‘growing’ sub-category, Fox resorted to
quoting Northedge (1976):

In this case we conceive of the teacher as a
gardener with the student’s mind, as before, an
area of ground.

There have been a number of studies – among them
Dunkin (1990) and also Samuelowicz and Bain (1992) –
using a variety of research methods, that have drawn
broadly similar conclusions to Fox. In a meta-study,
Kember (1997) found that numerous studies in this area
showed a reliable distinction between teacher-
centred/content-oriented and student-centred/ learning-
oriented.

3.3.2 Research on Teachers within Computing
Lister et al. (2007) conducted a phenomenographic

study of computing academics’ understanding of
teaching, and found categories consistent with Kember’s
meta-study.

Pears et al (2007) discusses the attitudes of teachers
towards the students’ success or failure in learning to
program. They confirm that teachers often, when
discussing the students, focus their arguments on
themselves as teachers, not upon the students.

4 The Edges of the Didactic Triangle
In this section, we discuss the relationships between
content and teachers, between content and students, and
between teachers and students. With regard to content, we
focus upon computer programming, particularly object-
oriented programming.

4.1 Programming and Teachers
In section 3, we discussed teachers without reference to
what they taught. At the university level, most academics
do not separate the act of teaching from what they teach.
As Bowden and Marton (1998, p. 143) expressed it:

… being good at teaching means that you are
good at teaching something. You cannot teach in
general and the way in which you deal with the
particular content you are dealing with is what
matters.

 Rowland (2000, p. 120) expressed a similar sentiment,
and went further to warn of the dangers of making such a
separation:

… a focus on generic approaches to teaching, and
theories of learning, can lead to a separation of
teaching method and subject matter. Academics
or educational developers come to be seen as
experts in how to teach but ignorant about what to
teach … like experts of love who have no lover.

Shulman has written extensively on this topic,
introducing the concepts of pedagogical content
knowledge (Shulman, 1987) and pedagogy of substance
(Shulman, 1989).

4.1.1 Understandings of OO Programming
In April 2004, there was a vigorous e-mail discussion on
the ACM SIGCSE members’ mailing list (SIGCSE,
2004a, 2004b), concerning object-oriented programming
(that discussion has since been regularly reprised in the

Proc. 12th Australasian Computing Education Conference (ACE 2010), Brisbane, Australia

37

mailing list, on a smaller scale). Two quotes from that e-
mail discussion illustrate the differences in how members
of the SIGCSE community understand object-oriented
programming:

 [Some email messages in this discussion
imply] that selection and repetition are no
longer necessary in object-oriented
programming. I've been in this field for about
25 years, so maybe that makes me old, but I
don't see how you can write a graphics render,
a system simulation (eg: waiting-line
simulation), an operating system, etc. without
repetition and selection. (Jeffrey J. McConnell)

The second posting was written by Carl Alphonce:

Selection and repetition are fundamental, but if
statements and for loops are not. How selection
and repetition are expressed in different
paradigms differs. In OO polymorphism is the
primary means of achieving selection. (Carl
Alphonce)

Clearly, these two teachers have different understandings
of OOP. In an earlier paper (Lister et al., 2006), we
carried out a phenomenographic analysis (Berglund,
2006; Marton & Booth, 1997) of this April 2004 e-mail
discussion. In this subsection of this paper, we extend our
earlier work with a further analysis of the same data. This
new analysis revealed three fundamentally different
understandings of what OOP “is”:

OO1. OOP is an extension of procedural
 programming
OO2. OOP is something fundamentally new
OO3. OOP transcends OO1 and OO2

Table 1 summarizes our findings. The next three
subsections elaborate upon that summary.

4.1.1.1 OOP extends procedural programming
This category is illustrated by the earlier quote by Carl
Alphonce (above) and by the following quote from Stan
Warford:

Java has the assignment statement. It has the if
statement. It has loops. It has recursion. It has
arrays. Your statement would be more
convincing if it had none of these features
because they were abstracted away at a lower
level. But as long as it has them and students
must use them it seems that traditional
algorithmics (and by implication mathematics)
must remain at the heart of CS. (Stan Warford)

4.1.1.2 OOP is something fundamentally new
In the second category, polymorphism and the interaction
between objects are important. Also, the programming
methodology of OO focuses on extending classes (i.e.
inheritance) and refactoring rather than algorithm
development and writing code from scratch. This
understanding is illustrated in the following contribution
to the discussion:

I agree with your comments that if, while and
repeat are not fundamental concepts, but rather
selection and repetition are the fundamental
concepts that may be represented by if and
while. I can readily use and teach these
concepts using polymorphism and recursion.
(Richard Thomas)

4.1.1.3 OOP transcends OO1 and OO2
The third category presents an integrated perspective

of OOP. This category transcends the idea that either
procedural programming or object-oriented programming
is more fundamental than the other. It goes further than a
mere unification of categories OO1 and OO2, and
contains relationships between the two previous
understandings. The following contribution to the
discussion illustrates part of that understanding:

Philosophically, we must decide whether
successively higher levels of abstraction
provided by OO software development
environments have caused algorithmic thinking
and mathematics to become non-fundamental.
(Stan Warford)

Important aspects
of the categories Categories

 OO1. OOP is an extension
of procedural programming

OO2. OOP is something
fundamentally new

OO3. OOP transcends
OO1 and OO2

Selection IF-clause Polymorphism

}

The aspects that
distinguishes OO1
and OO2 are not
relevant. They are
simply variations
on a single theme

Program execution
Sequential execution of
algorithms

Interaction between objects
gives algorithm

Role of objects
Containers of data and
behaviour, created empty

The core concept. This is
where “everything
happens”

Development Writing code from scratch Completing a framework
Working methods Problem solving and

algorithm development. Extending and refactoring

Table 1: Teachers Understandings of Object-Oriented Programming

CRPIT Volume 103 - Computing Education 2010

38

Warford then continues his email with a comment on an
earlier statement by another discussant:

I find it interesting that you would consider the
Turing Machine, at the very lowest level of
abstraction, to be fundamental and OO
programming at the highest level to also be
fundamental, while algorithmic reasoning with
if, while, and arrays to be not so fundamental.

Warford acknowledges the thinking represented by the

two previous categories, by discussing algorithmic
thinking and OO programming. He then goes further in
that he evaluates certain aspects of them. To be able to
compare the understandings represented by the two
categories, he has to see both of them from “the outside”.
Thus, we have identified a third category that transcends
OO1 and OO2. This category takes a “bird’s eye”
perspective in that it sees the two previous understandings
as variations on the same theme.

4.1.2 Mathematics or Software Engineering?
In the SIGCSE-mailing discussion, a further variation
among teachers’ understandings of OOP was revealed in
their discussion of the relationship between OOP and
mathematics, on one hand, and the relationship between
OOP and software engineering (SE) on the other. In the
discussion, Michael Kölling made the following claim:

I think the only way this can eventually be
resolved is that separate degrees are being
taught in what are now regarded as sub-areas of
computing (computer science versus software
engineering being the obvious ones, but there
will be more). (Michael Kölling)

Later, Conrad Cunningham addresses the question in

the following way:
This dispute gets to the heart of what software
and computer science are all about. It is also
one battle in a war that rages up and down
modern intellectual history, the war between
mathematical and physical worldviews.
They have been fought in civil engineering: Do
we design bridges based on mathematical
models, or based on experience, aesthetics, and
intuition? (Conrad Cunningham)

Two main positions about what underlies OOP were

present in the data:

Underlying1. Mathematics underlies OOP
Underlying2. Software Engineering underlies OOP

The first category (Underlying1) offers a theory-driven

perspective, stating that the fundamentals of CS are of a
mathematical character. From this perspective, good
teaching emphasises the theoretical, or mathematical.

The second category (Underlying2) gives voice to
software engineering aspects. It is a people oriented
perspective, summarised below by Michael Kölling:

I also want students to learn to work in a
programming team, read other people's code,
assess quality of code in terms of
maintainability and adaptability, and reason
about quality trade-offs.

[…] There just are not many problems out
there anymore that are solved by recluse
individuals in a dark cellar room. (Michael
Kölling)

4.1.3 Teacher Familiarity with the Content
As part of the SIGCSE-members email discussion, Stuart
Reges made the following point:

… if the material isn’t straightforward for a
lifelong computer scientist to teach, then can it
really be all that fundamental? (Stuart Reges)

In a paper commenting upon the SIGCSE-mailing list
discussion, Bruce (2005) acknowledged that not all
computing academics have the background to teach OOP:

[Some academics] … are simply thrown into an
introductory Java course, even though their
main experience is with procedural
programming. Quite naturally, they will tend to
teach most of the course the way they always
have, including object-oriented topics where
they occur in the text or syllabus, but without
rethinking the overall approach of the course.
… [The teachers of OOP] need to have
developed programs larger than those assigned
in introductory courses to have a real
understanding why the organization supported
by the object-oriented style is valuable. Once
that understanding is there, the style can be
taught more effectively to novices, even on
relatively small programs. (Kim Bruce)

The technical background of teachers, and how it

affects their teaching, is a relatively unstudied area of
computing education research. We are aware of only two
studies in this area. The first study was a biographical
analysis done, by Carsten Schulte, as part of an ITiCSE
2006 working group (Lister et. al, 2006). Schulte
analysed only two biographies, one from a OOP advocate
and one from an OOP sceptic. One observed difference in
the two biographies was that the OOP advocate had made
a commitment to OOP before teaching it, whereas the
OOP sceptic had found himself teaching OOP, not by his
own decision, but as a result of an institutional decision.
The second study (Liberman, Kolikant and Beeri, 2009)
was of a high school teacher, who knew procedural
programming, but who had been called upon to teach
OOP while still learning it herself.

4.1.4 The Objectivist Perspective
By considering the relationship between programming
and the teacher, a conversation ensues that is more rich
than the conversation that ensues from considering each
by itself. However, any conversation that is restricted to
programming and teachers, and ignores the student, will
inevitably become a conversation in the objectivist
tradition. In that tradition, the curriculum and the
pedagogy are constructed in such a way as to be most
meaningful to the teacher, not the student. One example
of objectivist pedagogy was articulated by Gries (2008),
in his six principles for teaching objects first:

1) Reveal the programming process, in order to ease and
promote the learning of programming.

2) Teach skills, and not just knowledge, in order to
promote the learning of programming.

Proc. 12th Australasian Computing Education Conference (ACE 2010), Brisbane, Australia

39

3) Present concepts at the appropriate level of abstraction.
4) Order material so as to minimize the introduction of

terms or topics without explanation: as much as
possible, define a term when you first introduce it.

5) Use unambiguous, clear, and precise terminology.
6) Introduce names for entities under consideration.

Gries’ pedagogy is expressed in terms of content. The
student is implicit in Gries’ pedagogy. The constructivist
perspective, of building upon what a student already
knows, is not present in Gries’ pedagogy.

4.1.5 OOP and Students
This section gives some examples of recent research

on how students learn OOP.

4.1.5.1 Quantitative Studies
Butler and Morgan (2007) surveyed several hundred

students in an object-oriented introductory programming
unit. Students nominated the difficulty of several topic
areas, on a 7 point scale (with 7 as the hardest). The topic
areas were Algorithms, Syntax, Variables, Decisions and
Loops, Arrays, Methods, OO Concepts, OO Design, and
Testing. The average response was highest for OO
Concept and OO Design.

Ma et al. (2007) investigated the mental models of
assignment held by 90 students who had completed 70
hours of classroom learning in an introductory
programming class. They found that approximately one
third of the students held non-viable mental models of
value assignment and over 80% of students held non-
viable mental models of reference assignment.

4.1.5.2 Qualitative Studies
Eckerdal and Thuné (2005) performed a

phenomenographic study to determine how students
experienced the OOP concepts of object and class. They
found that the students experienced an object as:

1. A piece of code.
2. As something that is active in the program.
3. As a model of some real world phenomenon.

They found that the students experienced a class as:

1. An entity in the program, contributing to the
structure of the code.

2. As a description of properties and behaviour of
the object.

3. As a description of properties and behaviour of
the object, as a model of some real world
phenomenon.

Eckerdal and Thuné described the educational
implications of their research as follows:

For the Java educator, one challenge is to
construct an educational environment which
facilitates for students to reach a rich
understanding of the concepts object and class.
To this end it is important to know the different
ways in which students (as opposed to experts)
typically experience these concepts. Our
phenomenographic study has given such
insight. Next, the educator needs to identify
what variation the students have to discern in

order to become aware of aspects belonging to a
rich understanding of these concepts.

4.1.6 Student Motivation and Programming
Earlier, we discussed student motivation from the
perspective of the “student” corner of the didactic
triangle. That simple perspective has been problematized
and questioned – it has been argued that what students are
studying has an important role in motivation (see for
example Salili, Chiu, & Hong, 2001).

Hansen and Eddy (2007) have taken the interesting
step of surveying their students and directly asking them
to rate their engagement with, and frustration with, the
various assignments the students do across three courses.
They found that frustration and engagement do vary
according to the type of task given to the students.

4.1.7 Student Learning of CS in a context
Few education research projects have discussed learning
of computer science in a context. One example can be
found in Berglund (2005), which identifies complex
relationships between the learning and the learning
environment in a distributed project course in computer
systems. Kinnunen (forthcoming) studies introductory
programming courses and proposes models to analyse the
full picture of a teaching and learning situation, with the
ultimate aim of improving the teaching of programming.

Other projects take a more practical, and less research
focused approach. For example, in a project by Tew,
McCracken, & Guzdial (2005), exercises are remodelled
and the course reorganised to better suit the students
study interests.

4.1.8 Students and Teachers
The relationship between teachers and students is a
neglected area of computing education research.

Hitchens and Lister (2009) reported on a focus group
study of the attitude toward lectures by computing
students. One of the outcomes of the focus groups was
the importance the students attributed to a positive
personal relationship with the lecturer. This is illustrated
in the following comments by two students from the
focus groups:

… what makes a good lecture is more the
lecturer and his attitude towards giving the
lecture. … I've noticed that I've walked out of
lectures thinking ‘oh that's a good lecture’
actually when the lecturer's happy more or less.

… don't get me wrong because older people can
be really happy and really energetic and really
passionate. But, you know… I think they get
older so they just don't care. They just want to
hurry up and teach and get out of there.

The “feeling”, or climate, in a class-room was studied
by Barker & Garvin-Doxas (2004). They argued, based
on their empirical investigations, that the CS class-room
can be experienced as a male-dominated impersonal
environment with guarded behaviours.

The teacher–student relationship is two-way, but there is
probably less research on computing teachers’ attitudes to
their students than there is on the reciprocal relationship.
Kutay and Lister (2006) conducted focus groups with

CRPIT Volume 103 - Computing Education 2010

40

computing teachers and, amongst other issues, asked how
teachers felt about their students. One focus group
participant made the following statement about the
importance of the emotional connection with students:

… If you want to be a good teacher, you really
have to show the students … that you are
passionate about the things you are teaching.
The students can very quickly discover the
fraud, so you must actually show your love of
that material, if that comes across I think half
the battle is won.

4.1.9 Teacher- versus Student-Centred
Kember (1997) argued, from a phenomenographic
perspective, that the student-centred approach is more
advanced, or more complex, in that it presupposes the
teacher-centred approach. To focus on the student a
teacher must be capable of taking a step ‘outside’ herself
and seeing her acts not as an aim in itself, but in relation
to the student. The rather few studies that have quantified
these orientations with individual teachers confirm that
the student-focused orientation is less common than the
teacher-focused one.

The insights from Kember’s work tell us that the
attitude of the teacher is an important factor in
determining how she teaches. It would be interesting to
explore what it is that leads some teachers to take the step
to seeing their teaching, and the object of their teaching,
from the perspective of their students.

5 The Complete Didactic Triangle
In the previous two sections, we have explored parts of
the didactic triangle, and its implications for teaching
programming. In this section, we consider the whole.

Our first observation, flowing from the previous sections,
is that it is hardly surprising that there is not a consensus
in our community as to what OOP is and how to teach it,
when there are so many different perspectives stemming
from different foci on different portions of the didactic
triangle. Thus, we teachers “invite” our students to join a
community of practice (Wenger, 1998) when the
community itself does not share an understanding of what
is OOP. Similar results have been found in a study based
on questionnaires (Bennedsen & Schulte, 2007).

5.1 Content- versus Student-Centred, again
With the perspective gained from the didactic triangle,
perhaps the concepts of content- versus student-centred
teaching should not be seen as being in competition.
Instead, as the content-centred orientation falls on the
Teacher-Programming edge of the didactic triangle, while
the student-centred orientation falls on the Teacher-
Student edge of that triangle, perhaps it would be more
profitable to see them – not mutually exclusive, but
instead – as equally necessary aspects of the complete
teacher. The teacher who is an expert in their subject but
who cannot communicate with her students is perhaps no
more or less effective a teacher than the talented
communicator who simply doesn’t know the content.

5.1.1 Learning as Entering a Culture
As computer scientists and academics we are part of, and
carry, a certain culture, with its own values and norms.
These values and norms need to be made explicit in the
discourse of teaching. Booth (2001) presents learning of
programming as a entering a community with its own
ways of thinking.

Contrasts between our culture and the students’
culture, based on their own experiences of home
computers and games, are highlighted in the work of
Kolikant (2005), where she argues that errors in students’
programmes can have cultural reasons: “Correctness”
means something different to students than what it means
to us, their teachers.

Liberman, Kolikant and Beeri (2009) is a study
spanning the entire didactic triangle. One aspect of the
study is the way in which a teacher grapples with her own
uncertainty with OOP concepts, all the while attempting
to respond quickly to student questions.

In this culturally-oriented research work, all aspects of
the didactic triangle are explicit. Not only is the
technology and the student explicit in this research, but so
is the culture to which the teachers belong.

5.2 Tools, again
Earlier, we discussed the summary, written by Stasko and
Hundhausen (2004), of work in program visualization.
They described how, prior to the mid-1990s, the focus in
that work was on the technology, not the students, but
then they went on to add:

In the mid-1990’s, the focus of algorithm
visualization research shifted markedly. Rather
than concentrating on the development of
algorithm visualization technology …
researchers began to turn their attention to the
pedagogical effectiveness of the technology.
The evaluation of algorithm visualization
technology became paramount as researchers
began to question their intuitions about the
utility of algorithm visualizations as learning
aids.

Since the mid-1990s, this style of research in algorithm
visualization has encompassed the entire didactic triangle.
Not only is the technology and the student explicit in this
research, but so also are the (previously taken for granted)
intuitions of the teachers.

6 Conclusion
Much of the work presented at CS education conferences
today focuses upon details or “small picture” issues, such
as specific teaching tools or tips and tricks (Simon,
2007a, 2007b; Valentine, 2004). These projects
emphasise the corners of the didactic, but these projects
serve important needs by offering platforms for
discussions between teachers, and by disseminating good
teaching experiences. However, our students face other
problems than those which are addressed by these
projects.

Based on the research presented earlier, we argue that
an alternative line of research ought to be prioritized. Our
arguments are given below:

Proc. 12th Australasian Computing Education Conference (ACE 2010), Brisbane, Australia

41

1. Educators do not have a shared picture of the
fundamentals of object-oriented programming.
Certainly, a discussion is valuable and is a sign of
life in the community, but the question of what
OOP is might overshadow the question of what
our students need and what and how we should
teach them.

2. We tend to base our teaching on our own needs,
or our assumptions about the students’ needs. In
this paper, we have discussed how our knowledge
of both our students and ourselves is limited.

3. We know very little about our students’ world and
our students’ motivations. We need to meet our
students where they are, in order to make our
teaching accessible to them, and thereby
meaningful. Currently, we only approach them on
their terms to a very limited extent

4. We tend to focus on details instead of the bigger
picture.

In short: we teach and research that which we find
important, but what is important to us may not be as
important to our students and their learning. Computing
education research needs to broaden its focus. Although it
is tempting for us to explicitly prescribe certain lines of
research, we cannot, and should not, do this – research
should offer surprises. But we can hint at which forms of
projects we believe are of less importance, and we can
nominate research directions that we judge as more
important.

The development of new teaching tricks, new “single-
user” tools or other “detail-oriented” projects are
generally of a limited value. They often prove be beside
the point, as these projects are normally based upon the
teacher’s perception of importance, rather than on the
world of the students

 When studying student learning, we suggest that
researchers should frame their questions in terms of the
students’ point of view, not the teacher’s point of view.
However, we also suggest that researchers study the
teacher as much as the student.

 Many of us, as CS education researchers, have our
research training from computer science (or other
sciences), we are trained in an “objectivist” or
“positivistic” tradition (Cohen, Manion, & Morrison,
2000). Naturally, we bring this competence with us when
doing research in CS education. Complementing this
research with alternative approaches, stemming from the
social sciences, opens new research questions for
inspection and would, for example, invite to a further
exploration of the students’ learning context. (Berglund,
Daniels, & Pears, 2006)

Acknowledgements
Raymond Lister’s work in computing education research
is partially funded by an Associate Fellowship awarded to
he and Jenny Edwards from the Australian Learning and
Teaching Council (formerly the Carrick Institute).

References
ACM Java Task Force (2006) Version 1.0.

http://jtf.acm.org/ [Accessed September 2008]

Astrachan, O., Bruce, K., Koffman, E., Kölling, M., &
Reges, S. (2005). “Resolved: Objects Early Has
Failed”. SIGCSE'05, February 23-27, 2005, St.
Louis, Missouri, USA., 451-452.

Barker, L., & Garvin-Doxas, K. (2004). Making Visible
the Behaviors that Influence Learning
Environment: A Qualitative Exploration of
Computer Science Classrooms. Computer
Science Education, 14, 119-145.

Bennedsen, J. (2008). Teaching and learning
introductory programming – a model-based
approach (PhD thesis): Oslo University, Oslo,
Norway.

Bennedsen, J., & Schulte, C. (2007). What does “objects-
first” mean? An international study of teachers’
perceptions of objects-first. In proceedings of
Seventh Baltic Sea Conference on Computing
Education Research, Koli National Park, Koli,
Finland. 21 - 30.

Berglund, A. (2005). Learning computer systems in a
distributed project course: The what, why, how
and where (Uppsala Dissertations from the
Faculty of Science and Technology Vol. 62).
Uppsala, Sweden: Acta Universitatis
Upsaliensis.

Berglund, A. (2006). Phenomenography as a way to
research learning in computing. Bulletin of the
National Advisory Committee on Computing
Qualifications, BACIT, 4(1).

Berglund, A., Daniels, M., & Pears, A. (2006).
Qualitative Research Projects in Computing
Education Research: An Overview. Australian
Computer Science Communications, 28(5), 25 -
34.

Berglund, A., & Lister, R. (2007). Debating the OO
debate: Where is the problem? In proceedings of
Seventh Baltic Sea Conference on Computing
Education Research, Koli National Park,
Finland. 171 -174.

Biggs, J. B. (2003). Teaching for quality learning
university. Buckingham: Open University
Press/Society for Research into Higher
Education. (Second edition)

Booth, S. (2001). Learning to program as entering the
datalogical culture: A phenomenographic
exploration. In 9th European Conference for
Research on Learning and Instruction (EARLI),
28th August–1st September 2001, in Fribourg,
Switzerland.

Bowden, J. & Marton, F. (1998) The University of
Learning: Beyond Quality and Competence in
Higher Education. London: Kogan Page.

Boyer, E. (1997). Scholarship Reconsidered: Priorities
the Professoriate). Hillsdale, NJ, USA.: Jossey-
Bass.

CRPIT Volume 103 - Computing Education 2010

42

Bruce, Kim. Controversy on how to teach CS 1: a
discussion on the SIGCSE-members mailing list
ACM SIGCSE Bulletin. Volume 37, Issue 2
(June 2005) 111-117.

Butler, M. Morgan, M. (2007) Learning challenges faced
by novice programming students studying high
level and low feedback. Proceedings of the
Conference of the Australasian Society for
Computers in Learning in Tertiary Education
(ASCiLiTE). Singapore, December 2-5. http://
www.ascilite.org.au/conferences/singapore07/pr
ocs/procs/butler.pdf [Accessed September 2008]

Cohen, L., Manion, L., & Morrison, K. (2000). Research
Methods in Education (5th Edition)). London,
UK: Routledge Falmer.

Denning, P. (2008) The Computing Field: Structure. In
Wah, B. W. (Ed.) (2008) Wiley Encyclopedia of
Computer Science and Engineering. Wiley-
Interscience

Dunkin, M (1990): The induction of academic staff to a
university: processes and products. Higher
Education 20:47-66.

Eckerdal, A. and Thuné, M. 2005. Novice Java
programmers' conceptions of "object" and
"class", and variation theory. In Proceedings of
the 10th Annual SIGCSE Conference on
innovation and Technology in Computer Science
Education (Caparica, Portugal, June 27 - 29,
2005). ITiCSE '05. ACM, New York, NY, 89-
93.

Entwistle, N. (1998). Motivation and approaches to
learning: Motivating and conceptions of
teaching. In B. Brown, S. Armstrong & G.
Thompson (Eds.), Motivating students (pp. 15-
24). Lodon, UK: Kogan Page.

Fincher, S, and Petre, M. (2004) Computer Science
Education Research, Taylor & Francis.

Fox, D (1983): Personal Theories of Teaching. Studies in
Higher Education, 8(2):151-163.

Grandell, L., Peltomaki, M., Back, R.-J. and Salakoski, T.
(2006). Why Complicate Things? Introducing
Programming in High School Using Python. In
Proc. Eighth Australasian Computing Education
Conference (ACE2006), Hobart, Australia.
CRPIT, 52. Tolhurst, D. and Mann, S., Eds.
ACS. 71-80.

Gries, D. (2008). A principled approach to teaching OO
first. In Proceedings of the 39th SIGCSE
Technical Symposium on Computer Science
Education (Portland, OR, USA, March 12 - 15,
2008). SIGCSE '08. ACM, New York, NY, 31-
35.

Hansen, S. and Eddy, E. 2007. Engagement and
frustration in programming projects. SIGCSE
Bull. 39, 1 (Mar. 2007), 271-275.

Hitchens, M. and Lister, R. (2009). A Focus Group Study
of Student Attitudes to Lectures. In Proc.
Eleventh Australasian Computing Education
Conference (ACE 2009), Wellington, New

Zealand. CRPIT, 95. Hamilton, M. and Clear,
T., Eds. ACS. 93-100.

Kansanen, P. (1999). Teaching as Teaching-Studying-
Learning Interaction. Scandinavian Journal of
Educational Research, 43(1), 81 - 89.

Kansanen, P., & Meri, M. (1999). The Didactic relation
in the teaching-studying-learning process. In
TNTEE Publications (Vol. 2, pp. 107 - 116).

Kember, D. (1997). A reconceptualisation of the research
into university academics' conceptions of
teaching. Learning and instruction, 7(3), 255 -
275.

Kinnunen, P. (forthcoming). The instructional process in
an introductory programming course from
students', teachers', and organizations' point of
view - the system theoretical approach to the
higher education at Helsinki University of
Technology (prel.. title) (PhD theses in
Computer Science). Espoo, Finland: Helsinki
University of Technology.

Kinnunen, P., McCartney, R., Murphy, C., & Thomas, L.
(2007). Through the eyes of instructors: a
phenomenographic investigation of student
success. In proceedings of The Third
International Computing Education Research
Workshop, ICER, Atlanta, GA, USA. 61 - 72.

Kolikant, Y. B-D. (2005). Students' alternative standards
for correctness. In proceedings of ICER '05:
Proceedings of the 2005 international workshop
on Computing education research, Seattle, WA,
USA. 37–43.

Kölling, M., Koch, B., and Rosenberg, J. (1995)
Requirements for a first year object-oriented
teaching language. In proceedings of the
twenty-sixth SIGCSE technical symposium on
Computer science education, Nashville,
Tennessee, USA. pp. 173-177.

Kölling, M. (2007). I object. From http://www.bluej.org
/mrt/docs/objection.pdf

Kölling, M., Quig, B., Patterson, A., & Rosenberg, J.
(2003). The BlueJ System and its Pedagogy
Computer Science Education, 13(4), 240 - 268.

Liberman, N., Ben-David Kolikant, Y., and Beeri, C.
(2009) In-service teachers learning of a new
paradigm: a case study. In Proceedings of the
Fifth international Workshop on Computing
Education Research Workshop (Berkeley, CA,
USA, August 10-11, pp. 43-50.

Lister, R., Berglund, A., Clear, T., Bergin, J., Garvin-
Doxas, K., Hanks, B., et al. (2006). Research
Perspectives on the Objects-Early Debate.
SIGCSE Bulletin Inroads, 38(4), 173 - 192.

Lister, R., Berglund, A., Box, I., Cope, C., Pears, A.,
Avram, C., et al. (2007). Differing Ways that
Computing Academics Understand Teaching.
Australian Computer Science Communications,
29(5), 97-106.

Ma, L., Ferguson, J., Roper, M., and Wood, M. (2007).
Investigating the viability of mental models held

Proc. 12th Australasian Computing Education Conference (ACE 2010), Brisbane, Australia

43

by novice programmers. In Proceedings of the
38th SIGCSE Technical Symposium on
Computer Science Education (Covington,
Kentucky, USA, March 07 - 11, 2007). SIGCSE
'07. ACM, New York, NY, 499-503.

Marton, F., & Booth, S. (1997). Learning and awareness.
Mahwah, New Jersey, USA: Lawrence Erlbaum
Associates.

Northedge, A (1976): Examining our implicit analogies
for learning processes. Programmed Learning
and Educational Technology 13(4):67-78.

Pears, A., Berglund, A., Eckerdal, A., East, P., Kinnunen,
P., Malmi, L., et al. (2007). What’s the
Problem? Teacher’s experience of student
learning. In proceedings of 7th Baltic Sea
Conference on Computing Education Research,
Koli Calling, Koli, Joensuu, Finland. 207-211.

Ramsden, P. (2003). Learning to teach in higher
education 2nd ed.). London, UK; New York,
NY, USA: Routledge.

Robins, A., Rountree, J., & Rountree, N. (2003).
Learning and teaching programming: A review
and discussion. Computer Science Education
13(2), 137 - 172.

Rowland, S. (2000) The enquiring university teacher.
Buckingham: SRHE and Open University Press.

Ryan, R., & Deci, E. (2000). Intrinsic and Extrinsic
Motivations: Classic Definitions and New
Directions. Contemporary Educational
Psychology, 25(1), 54 - 67.

Salili, F., Chiu, C., & Hong, Y. (Eds.). (2001). Student
Motivation: The Culture and Context of
Learning. New York, MY, USA: Kluwer
Academic.

Samuelowicz, K, & Bain, J (1992): Conceptions of
teaching held by academic teachers. Higher
Education, 24:93-111.

Shulman, L. S. (1987) Knowledge and Teaching:
Foundations of the New Reform. Harvard
Educational Review, 57:1(Feb) pp. 1-22. Also
included in Shulman (2004), as chapter 5 (same
title), pp. 83-.113

Shulman, L. (1989) Towards a Pedagogy of Substance,
AAHE Bulletin, 41(10) pp. 8-13. Also included
in Shulman (2004), as chapter 7 (same title), pp.
127-138.

Shulman, L. S. (2004) Teaching as community property:
essays on higher education. San Francisco:
Jossey-Bass, 2004.

SIGCSE. (2004a). SIGCSE-MEMBERS Archives March
2004, Week 3. Retrieved February, 2008, from
http://listserv.acm.org/scripts/wa.exe?A1=ind04
03c&L=SIGCSE-members

SIGCSE. (2004b). SIGCSE-MEMBERS Archives March
2004, Week 4. Retrieved February, 2008, from
http://listserv.acm.org/scripts/wa.exe?A1=ind04
03d&L=SIGCSE-members

Simon. (2007a). A classification of recent Australasian
computing education publications. Computer
Science Education, 17(3), 155 - 169.

Simon. (2007b). Koli Calling comes of age: an analysis.
In proceedings of Seventh Baltic Sea
Conference on Computing Education Research
(Koli Calling), Koli National Park, Finland. 119
- 126

Simon, S., Carbone, A., de Raadt, M., Lister, R.,
Hamilton, M., and Sheard, J. 2008. Classifying
computing education papers: process and
results. In Proceeding of the Fourth international
Workshop on Computing Education Research
(Sydney, Australia, September 06 - 07, 2008).
ICER '08. ACM, New York, NY, 161-172.

Stasko, J and Hundhausen, C. (2004) Algorithm
Visualization. Chapter 17 in Fincher and Petre
(2004).

Tew, A. E., McCracken, M., & Guzdial, M. (2005).
Impact of Alternative Introductory Courses on
Programming Concept Understanding. In
proceedings of 2005 international workshop on
Computing education research Seattle, WA,
USA. 25 - 35.

Trigwell, K., Prosser, M., Martin, E., & Ramsden, P.
(2005). University teachers' experiences of
change in their understanding of the subject
matter they have taught. Teaching in Higher
Education, 10(2), 251-264.

Valentine, D. (2004). CS educational research: a meta-
analysis of SIGCSE technical symposium
proceedings In proceedings of the 35th SIGCSE
technical symposium on Computer science
education Norfolk, Virginia, USA 255-259

Wenger, E. (1998). Communities of Practice. Learning,
Meaning, and Identity). Cambridge, UK:
Cambridge University Press.

CRPIT Volume 103 - Computing Education 2010

44

	2009006984-paper
	2009006984-frontmatter

