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Abstract: Integrated photonic architectures based on optical waveguides are one of the leading
candidates for the future realisation of large-scale quantum computation. One of the central
challenges in realising this goal is simultaneously minimising loss whilst maximising interfero-
metric visibility within waveguide circuits. One approach is to reduce circuit complexity and
depth. A major constraint in most planar waveguide systems is that beamsplitter transformations
between distant optical modes require numerous intermediate SWAP operations to couple them
into nearest neighbour proximity, each of which introduces loss and scattering. Here, we propose
a 3D architecture which can significantly mitigate this problem by geometrically bypassing
trivial intermediate operations. We demonstrate the viability of this concept by considering
a worst-case 2D scenario, where we interfere the two most distant optical modes in a planar
structure. Using femtosecond laser direct-writing technology we experimentally construct a 2D
architecture to implement Hong-Ou-Mandel interference between its most distant modes, and
a 3D one with corresponding physical dimensions, demonstrating significant improvement in
both fidelity and efficiency in the latter case. In addition to improving fidelity and efficiency of
individual non-adjacent beamsplitter operations, this approach provides an avenue for reducing
the optical depth of circuits comprising complex arrays of beamsplitter operations.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Linear optics quantum computing [1] is one of the leading candidates for the realisation of
scalable quantum computation. In this model, universal quantum circuits can be decomposed
into series of unitary optical transformations, measurement and feedforward. Due to present-day
technological limitations in which fast-feedforward is not yet viable, we are limited to passive
linear optics. Despite ruling out universal quantum computation, passive linear optics is sufficient
for implementing restricted computational models such as quantum walks [2,3] and boson-
sampling [4–6], where the quantum advantage milestone has already been reached [5]. Such
so-called noisy intermediate-scale quantum (NISQ) computers [7] have also been demonstrated
in other architectures [8,9].
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In the optical context, noise and loss in quantum gates limits the scalability of quantum circuits,
thus optimising linear optics transformations to reduce loss and maximise interferometric visibility
is a primary goal [10]. In the case of boson-sampling, this enables larger-scale demonstrations,
whilst in the future context of fault-tolerant quantum computers [11], this reduces quantum error
correction overheads [12,13], thereby improving scalability.

Integrated photonic waveguides are an attractive way to construct large-scale optical circuits
owing to their inherent optical stability and miniaturization [14]. Additionally, significant progress
has been made towards enabling dynamic reconfiguration of waveguide circuits [15]. The primary
limitation is that waveguide architectures are largely limited to 2D planar constructions, by virtue
of the fabrication technology. This planar constraint implies that implementing beamsplitter
transformations between non-nearest neighbour optical modes requires intermediate trivial SWAP
operations to bring them into proximity, each of which introduces inefficiency. In addition, in the
2D architecture, we need to finely control each beamsplitter ratio to obtain better interference
results. The imperfection of any beamsplitter will affect the stability of the interference results.

In this paper, we demonstrate that 3D architectures are able to implement arbitrary beamsplitter
operations between distant modes by geometrically bypassing intermediate modes, thereby
significantly mitigating these limitations. Using femtosecond laser direct-writing technology,
we construct two commonly used quantum gates: long-range SWAP gates; and long-range
Hong-Ou-Mandel interference (i.e a 50:50 beamsplitter). We do so using both a 2D planar
construction and a 3D construction, each with matching numbers of optical modes, physical
dimensions and mode separations. We demonstrate that the 3D architecture, which bypasses
intermediate trivial operations, reduces waveguide transmission loss and prevents the photons
scattering into undesired modes, hence significantly improving fidelity and efficiency compared
to the conventional 2D construction.

2. Experiment

Arbitrary quantum computations can be implemented optically using a combination of unitary
linear optical transformations, measurement and fast-feedforward [1]. Here we focus on the former
component. It was shown by Reck et al. [16] that any n-mode unitary optical transformation
Û ∈ SU(n), implementing a⃗† → Û · a⃗† on the associated vector of photonic creation operators a⃗†,
can be decomposed into O(n2) beamsplitter and phase-shifter operations in a planar configuration.

A discrete-time beamsplitter operation, represented by an SU(2) mode transformation, can be
realised using the continuous-time coupled oscillator Hamiltonian [17] of the form,

Ĥ = ξâ†b̂ + ξ∗âb̂†, (1)

where â and b̂ are the canonical mode operators and ξ is a complex interaction parameter
characterising the interaction between two neighbouring modes. This Hamiltonian generates the
unitary,

Û = e−iĤt, (2)

where t = L/c is the interaction time, proportional to the interaction length L. The interaction
length L determines the effective beamsplitter ratio, while wavelength-scale adjustments on
the input and output modes control phase relationships, enabling arbitrary SU(2) beamsplitter
operations to be implemented.

Currently, most photonic waveguide chips are manufactured on silicon wafers using well-
established CMOS fabrication processes. This technology has the limitation of being confined to
a 2D surface.

As shown in Fig. 1(a), if we want to interact modes k and m, which are not neighbouring
modes, we require (m − k − 1) completely transmissive beamsplitters (SWAP gates) to transport
photons from mode k to neighbour mode m, then interact the two modes using an appropriate
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beamsplitter, followed by another (m − k − 1) SWAP beamsplitters to transport back to mode k.
The entire operation consumes 2(m − k) − 1 beamsplitters. Similarly, an arbitrary long-range
beamsplitter operation can be implemented by adjusting the splitting ratio of the red beamsplitter.

Fig. 1. Comparison of 2D and 3D architectures for the long-range SWAP gate. (a)
For two distant modes k and m, 2(m − k) − 1 beamsplitters are required to implement the
SWAP(k, m) gate. By adjusting the splitting ratio of the red beamsplitter, we can equivalently
implement an arbitrary long-range beamsplitter. (b) Using the 3D architecture we can realize
the same operation using only one single red beamsplitter.

It is intuitively clear that 3D routing enables these intermediate operations to be bypassed,
allowing us to avoid the associated photons leakage and reduce experimental error. As shown in
Fig. 1(b), if we are not constrained to two dimensions, we can route arbitrary modes directly
without requiring trivial intermediate operations, allowing us to reduce the number of mode
interactions required to implement the transformation, thereby improving the fidelity and efficiency
of the circuit. In two dimensions, a SWAP operation between modes m and k, denoted π̂m,k, can
be decomposed into a product of nearest-neighbour π̂i,i+1 SWAP operations,

π̂m,k = π̂k,k+1π̂k+1,k+2 . . . π̂m−1,mπ̂m−2,m−1 . . . π̂k,k+1, (3)

which contains 2(m−k)−1 operations (see Supplement 1 for the derivation of this decomposition).
In three dimensions, on the other hand, π̂m,k can be implemented directly without further
decomposition, requiring only 1 operation.

3. Results

Femtosecond laser direct-writing technology [18] provides an excellent platform for engineering
3D architectures, and has previously been used for demonstrating quantum walks [19–22],
boson-sampling [23,24] and topological photonics [25,26].

To implement the long-range SWAP and beamsplitter operations, we first experimentally
determine the effective beamsplitter ratio as a function of waveguide interaction length, as plotted
in Fig. 2(a). These beamsplitters are fabricated in borosilicate glass (see Supplement 1 for details
of the fabrication process). The spacing between input modes is 127µm, and the spacing of the
coupling region is fixed at 8µm. In order to reduce loss associated with waveguide bending, arc
formations with radius R = 30mm smoothly transition mode location.

https://doi.org/10.6084/m9.figshare.20272026
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Fig. 2. Experimental parameter selection. (a) Beamsplitter implementation in the 2D
architecture. (b) Beamsplitter implementation in the 3D architecture. Note the larger
curvature radius, enabled by the simplified circuit structure. (c) Bending transformation
along the z-axis (i.e chip depth) in the 3D architecture. (d) Beamsplitter ratio as a function
of coupling length L at 170µm depth for the 2D case. (e) Beamsplitter ratio as a function of
coupling lengths L at 100µm depth for the 3D case.

We inject coherent light (via a λ = 780nm semiconductor laser) into the beamsplitter as
per Fig. 2(a), capturing the output intensity distribution with a CCD camera. We extract the
intensities I1 and I2 of the two output modes, from which the beamsplitter ratio is determined as
r = I2/I1.

By sweeping through different coupling lengths L at two different depths along the chip’s
z-axis (170µm and 100µm), we obtain two beamsplitter ratio curves, shown in Figs. 2(d,e). From
this we establish the approximate regimes for the 100:0 and 50:50 beamsplitter ratios. For the
two distant modes in the 3D architecture, we have the topological liberty to increase the curvature
radius to R = 50mm, enabling a reduction in associated loss, as per Fig. 2(b). Figure 2(c)
illustrates the bending transformation between 170µm and 100µm under the upper surface of the
chip.

In Fig. 3(a), we show the waveguide structure of the long-range SWAP gate in both the 2D and
3D architectures. Considering the loss and chip length (10cm), we set the waveguide number to
N = 7. Waveguide coloring denotes distinct optical paths. In the 2D architecture all waveguides
are at the same depth of 170µm, and in the 3D architectures we transform the two waveguides
on the outermost side to 100µm depths. Multiple samples were fabricated to obtain the best
swapping effect by finely scanning parameters within the windows described in Fig. 2(d,e).

We measure the output intensity distributions of modes 1, 4 and 7 respectively. As shown in
Fig. 3(a), in the 2D architecture a small amount of light intensity scatters into undesired output
modes, constituting leakage errors. We define the fidelity [27],

F =
N∑︂

i=1

√
eiti, (4)
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Fig. 3. Long-range SWAP gate. (a) Optical paths involved in the SWAP gate for the
2D (left) and 3D (right) architectures. Red and orange represent paths involved in the
interaction, and blue represents paths not involved. The central figure shows the output
intensity distributions (columns represent output mode-number) when single photons enter
input modes 1, 4 and 7 respectively (represented by the three different rows), taken with
a CCD camera. (b) Gate fidelity, comparing the 2D and 3D architectures, demonstrating
improved fidelity in the 3D case. (c) Cross- and auto-correlation measurement results. The
cross-correlation in the 2D architecture demonstrates a clear decline compared to the 3D
architecture. The auto-correlation demonstrates no significant change between the 2D and
3D cases. The auto-correlation and cross-correlation plots share the same horizontal axes.

To quantify the operation of the SWAP operation, where ei is the experimental probability
distribution and ti the theoretical probability distribution for the ith waveguide, extracted from
Fig. 3(a).

Our results are shown in Fig. 3(b). Choosing three different paths, the fidelity of the 3D
architecture is always above 98%. In contrast, if we choose inputs 1 or 7 in the 2D architecture,
six intermediate 100:0 beamsplitters are required, significantly reducing fidelity. Choosing input
4, this only requires two 100:0 beamsplitters and the fidelity improves, remaining above 95%,
still worse than the respective 3D architecture. We can define the fidelity of a single beamsplitter
as η and estimate the fidelity of a series of n beamsplitters scales as ηn. The fidelity of the
long-range SWAP gate in the 2D architecture therefore decreases exponentially with the number
of intermediate beamsplitters (equivalently their separation), which the 3D architecture mitigates.

The auto-correlation g(2)s−s, g(2)i−i and cross-correlation functions g(2)s−i [28] provide confirmation
of single-photon states and two-photon correlations. The correlation function g(2)xy is defined by,

g(2)xy =
NxyNp

NxNy
, (5)

where Nxy represents coincidence detection counts, Nx single-mode detection counts, and Np the
laser repetition rate.

To measure the cross-correlation, we inject a pair of λ = 780nm correlated photons generated
by spontaneous parametric down conversion (SPDC) [29] (see Supplement 1 for details) into input

https://doi.org/10.6084/m9.figshare.20272026
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modes 1 and 7, detecting coincidence counts between the respective output modes. As shown in
Fig. 3(c), the g(2)s−i = 16.86± 0.27 of the 3D architecture is very close to the g(2)source = 16.74± 0.06,
well above the classical bound of g(2)s−i = 2. The g(2)s−i of the 2D architecture decreases to
10.67 ± 0.19, owing to scattering into undesired outputs.

To measure the auto-correlation, we inject the SPDC signal and idler photons into input 1
separately, measuring coincidence counts following a balanced fiber beamsplitter, as shown in
Fig. 3(c). The auto-correlation should ideally be 2 for single-photon behavior. Compared with
the quantum source, the g(2)s−s and g(2)i−i for both the 2D and 3D architectures exhibit no significant
difference.

Next we implement Hong-Ou-Mandel interference [30] between the two most spatially distant
modes in a circuit. In Fig. 4(a), we illustrate the respective waveguide structures where red
denotes the expected optical paths. In the 2D architecture, these paths are subject to additional
bending transformations compared to the 3D case, resulting in increased loss and scattering. In
the 3D architecture these intermediate modes are bypassed, enabling direct interference between
the desired modes with improved visibility.

Fig. 4. Hong-Ou-Mandel interference via a long-range beamsplitter. (a) Optical paths
using the same convention as per Fig. 3(a), however now we replace the 100:0 beamsplitter
(i.e SWAP gate) with a 50:50 beamsplitter and employ a two-photon input state, with one
photon at each of the input modes 1 and 7. The central CCD plots show the input and
output intensities. In the 2D case the output intensity distribution demonstrates leakage into
undesired modes (2-6), whereas in the 3D case leakage is negligible. (b) Hong-Ou-Mandel
fringes and their associated HOM-visibility for the SPDC source alone (left), the 2D
architecture (middle), and the 3D architecture (right). The 3D architecture demonstrates
substantially higher HOM-visibility (97.3%) than the 2D architecture (87.6%), and roughly
a five-fold improvement in count-rates, indicative of reduced loss.

We characterize the performance of both architectures by measuring their Hong-Ou-Mandel
visibility. We inject photon pairs into input modes 1 and 7, measuring coincidence rates against
introduced relative temporal delays, from which we calculate their HOM visibilities, shown in
Fig. 4(b). Comparing these against the HOM visibility obtained directly from the SPDC source
(i.e without the waveguide chip), the 3D architecture retains high visibility, whereas for the 2D
architecture the visibility is significantly reduced and total count rates are reduced by a factor
of ∼ 5 due to lower chip efficiency. For larger circuits where many modes repeatedly interfere
with each other in both 2D and 3D structures, different bending transformations will introduce
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additional phases. By changing the deformation coefficient [31] such as curvature radius R or
adding the thermal regulation [32], we can quantitatively control the phase-shift and compensate
for the accumulated phases.

4. Conclusions and discussions

In summary, we present a proof-of-principle construction of a 3D architecture demonstrating
significant improvement in efficiency and interference visibility compared to an equivalent 2D
construction. Our proof-of-principle demonstration is based on considering the worst-case
scenario of interfering the two most distant optical modes in a waveguide chip. By eliminating
redundant operations, 3D architectures enable simplification of optical circuits and the mitigation
of errors associated with redundant operations. The 3D structure reduces unnecessary bending
transformations in the circuit, so the transmission loss is smaller. On the other hand, the 3D
structure expand the experimental dimension. We can make any two waveguides perform a gate
operation at different depths and then return to the same depth, which provides the possibility of
parallel operation. Since there is no intermediate coupling process, the waveguides do not affect
each other, so the 3D structure can achieve smaller scattering losses and obtain higher fidelity.

The limitation of our model is that we consider fixed circuit structures, which is only applicable
for static circuits with a priori knowledge of the circuit structure. More advanced 3D architectures
will need to incorporate tunable beamsplitters to enable both reconfigurable circuits and the
fast-feedforward operations necessary for universal optical quantum computation.

Given that large-scale optical circuits can always be decomposed into sequences of two-mode
transformations, it is expected that more complex optical circuits comprising multiple pairwise
transformations will exhibit greater improvement, given that total efficiency and fidelity scale
exponentially with the number of constituent operations. Therefore, the 3D architecture has
the potential application in quantum network [33], multistage entanglement swapping [34] and
large-scale quantum circuits.
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