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Abstract: Numerous path planning studies have been conducted in the past decades due to the 1

challenges of obtaining optimal solutions.Path planning of mobile robots is essential for autonomous 2

operations, and multiple robots have been widely applied due to the complexity of tasks. This paper 3

reviewsprovides a review of multi-robot path planning approaches and decision-making strategies 4

and . It focuses on real-time implementation and introduces the path planning algorithms for various 5

types of robots, including aerial, ground, and underwater robots. The multi-robot path planning 6

approaches have been classified as classical approaches, heuristic algorithms, bio-inspired techniques, 7

and artificial intelligence approaches. Bio-inspired techniques are the most employed approaches, and 8

artificial intelligence approaches have gained more attention recently. From the literature, real-time 9

implementations are less than offline implementations, achieved by fast computational speed or 10

local communication. The decision-making strategies mainly consist of centralized and decentralized 11

approaches. The trend of the decision-making system is to move towards the decentralized planner. 12

Finally, the new challenge in multi-robot path planning is proposed as fault tolerance, which is 13

important for real-time operations. the new challenges in multi-robot path planning are described 14

Keywords: Multi-robot path planning; bio-inspired algorithms; robots 15

1. Introduction 16

Robot applications have been widely implemented in various areas, such as industry 17

[1], agriculture [2], surveillance [3], search and rescue [4], environmental monitoring [5], 18

and traffic control [6]. A robot is referred to as an artificial intelligence system that integrates 19

microelectronics, communication, computer science, and optics [7]. Due to the development 20

of robotics technology, mobile robots have been utilized in different environments, such 21

as Unmanned Aerial Vehicle (UAV) for aerospace, Automated Guided Vehicle (AGV) for 22

production, Unmanned Surface Vessel (USV) for water space, and Autonomous Underwater 23

Vehicle (AUV) for underwater. 24

To perform tasks, employing a set of vehicles cooperatively and simultaneously gain 25

more interest due to the increased demand. Multiple robots can execute tasks in parallel 26

and cover larger areas. The system keeps working even failure of one robot [8], and it has 27

the advantages of robustness, flexibility, scalability, and spatial distribution [9]. Each robot 28

has its coordinates and independent behavior for a multi-robot system, and it can model 29

the cooperative behavior of real-life situations [10]. For reliable operation of the robot, the 30

robotics system must address the path/motion planning problem. Path planning aims to 31

find a collision-free path from the source to the target destination. 32

Path planning is the NP-hard problem in optimization, and it involves multiple 33

objectives, resulting in its solution would be polynomial verified [11]. The robots are 34

aimed to accomplish the tasks in the post-design stage with higher reliability, higher speed, 35

and lower energy consumption [12]. Task allocation, obstacle avoidance, collision-free 36

execution, and time window are considered [13]. Multi-robot path planning has high 37

computational complexity, which results in a lack of complete algorithms which offer 38

solution optimality and computational efficiency [14]. 39
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Substantial optimality criteria have been considered in path planning, such as ren- 40

dezvous and operation time, path length, velocity smoothness, safety margin, and head- 41

ing profiles for generating optimal paths [15]. During missions, the robot systems have 42

limitations, such as limited communication with the center or other robot, stringent non- 43

holonomic mission constraints, and limited mission length because of weight, size, and 44

fuel constraints [16]. The planned path must be a smooth curvature due to nonholonomic 45

motion constraints and support kinematic constraints with geometric continuity. Also, the 46

path’s continuity is significant for collaborative transport [17]. 47

Path planning approaches can be divided into offline and real-time implementation. 48

Offline generation of a multi-robot path cannot exploit the cooperative abilities, which 49

have little or no interaction between robots, leading to the multi-robot system not ensuring 50

the robots are moving along a predefined path or formation [18]. A real-time system is 51

proposed to overcome the problems created by offline path generation, which can maximize 52

the efficiency of algorithms. The chart of offline/real-time implementation included in the 53

literature review is exhibited in the discussion section. 54

Decision-making strategies can be classified as centralized and decentralized ap- 55

proaches. The centralized system has the central decision-maker, so the degree of coopera- 56

tion is higher than in the decentralized approach. All robots are treated as one entity in 57

the high-dimensional configuration space [19]. A central planner assigns tasks and plans 58

schedules for each robot, and the robots start operation after completion of the planning 59

[20]. The algorithms used in the centralized structure are without limitation because the 60

centralized system has better global support for robots. 61

However, the decentralized approach is more widely employed in real-time imple- 62

mentation. Decentralized methods are typical for vehicle autonomy and distributed compu- 63

tation [21]. It makes the robot communicate and interact with each other and has a higher 64

degree of flexibility, robustness, and scalability, supporting dynamic changes. The robots 65

execute computations and produce suboptimal solutions [20]. The decentralized approach 66

includes task planning and motion planning, and it has reduced computational complexity 67

with limited shared information [22]. 68

Many surveys have been conducted for the mobile robot path planning strategies 69

[23–25], but these papers only focus on single robot navigation and without cooperative 70

planning. This review’s motivation is to introduce the state-of-art path planning algorithms 71

of the multi-robot system and provides an analysis of multi-robot decision-making strate- 72

gies, considering the real-time performance. This paper not only investigates the 2D or 73

ground path planning, but the 3D environment is also involved. It reviews the recent 74

literature and classifies the path planning approaches based on the main principles. The 75

paper is organized as follows. Section 2 presents the multi-robot path planning approaches 76

with classification. Section 3 provides the decision-making strategies for the multi-robot 77

system. Section 4 discusses the mentioned path planning algorithms and concludes the 78

paper. 79

2. Multi-robot path planning approaches 80

Figure 1 presents the classification of multi-robot path planning algorithms, and it 81

is divided into three categories: classical approaches, heuristic algorithms, and Artificial 82

intelligence (AI)-based approaches. The subcategories are linked to the primary categories 83

and only display the significant subcategories. The classical approaches include the Artifi- 84

cial potential field, sampling-based and graph-based approaches. The heuristic algorithms 85

mainly consist of A* and D* search algorithms. The AI-based approaches are the most com- 86

mon algorithms for the multi-robot system, and the bio-inspired approaches take the most 87

of the attention, including metaheuristic algorithms and neural networks. Metaheuristic 88

has been applied to most of the research, and the famous algorithms are PSO and GA. From 89

[26], GA and PSO are the most commonly used approaches. 90
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Figure 1. Classification of multi-robot path planning approaches
91

2.1. Classical approaches 92

2.1.1. Artificial Potential Field (APF) 93

The APF uses its control force for path planning, and the control force sums up the 94

attractive and the repulsive potential field. The illustration of APF is shown in Figure 2; the 95

blue force indicates the attractive field, and the yellow force represents the repulsive field. 96

The APF establishes path planning optimization and dynamic particleparticle dynamic 97

models, and the additional control force updates the APF for multi-robot formation in a 98

realistic and known environment [27]. Another APF-based approach is presented for a 99

multi-robot system in the warehouse. It uses the priority strategy and solves the drawbacks 100

of traffic jams, local minima, collisions, and non-reachable targets [28]. An innovative APF 101

algorithm is proposed to get all possible paths under a discrete girded environment. It 102

implements a time-efficient deterministic scheme for getting the initial path and then using 103

enhanced GA to improve it [29]. A potential field-based controller in [30] supports robots 104

to follow the designed path, avoid collision with nearby robots, and distribute the robots 105
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stochastically across different paths in topologically distinct classes. The illustration of APF 106

is shown in Figure 2. 107

Figure 2. Illustration of APF algorithm
108

An improved APF is proposed to overcome the traditional APF’s shortcomings, in- 109

cluding target unreachable and local minimum in [31] for real-time performance with 110

dynamic obstacles for realizing local path planning. A collision avoidance strategy and risk 111

assessment are proposed based on the improved APF and the fuzzy inference system for 112

multi-robot path planning under a completely unknown environment [32]. APF is applied 113

in the approximate cost function in [33], and integral reinforcement learning is developed 114

for the minimum time-energy strategy in an unknown environment, converting the finite 115

horizon problem with constraints to an infinite horizon optimal control problem. APF is 116

introduced for the reward functions and integrates Deep Deterministic Policy Gradient and 117

Model Predictive Control to address uncertain scenes [34]. 118

2.1.2. Sampling-based 119

The rapidly exploring random tree (RRT) searches high-dimensional and nonconvex 120

space by getting a space-filling tree randomly, and the tree is built incrementally from 121

samples to grow towards unreached areas. The sampling-based approach’s outline is 122

demonstrated in Figure 3, and the generated path is highlighted in green. For a multi-robot 123

centralized approach, multi-robot path-planning RRT performs better in optimizing the 124

solution and exploring search space in an urban environment than push and rotate, push 125

and swap and the Bibox algorithm [35].For the multi-AGV routing problem, the improved 126

A* algorithm plans the global path and uses a dynamic RRT algorithm to get a passable 127

local path with kinematic constraints, avoiding collisions in the grid map [36]. The discrete- 128

RRT extends the celebrated RRT algorithm in the discrete graph with a speedy exploration 129

of the high-dimensional space of implicit roadmaps in [37]. The sampling-based approach’s 130

outline is demonstrated in Figure 3, and the generated path is highlighted in green. 131
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Figure 3. Demonstration of RRT algorithm
132

2.1.3. Other classical approachesOthers 133

Tabu search keeps searching the solutions in the neighborhood and records the solu- 134

tions in the Tabu list. The classic Tabu search is integrated with particle swarm optimization 135

(PSO) to enhance optimization ability in [38], and it is aimed at the decision-making of 136

routing and scheduling. It is based on the PSO and Tabu search algorithm with a "minimum 137

ring" for obtaining the dynamic path planning for adapting the online requirements for 138

a dynamic environment. A polygon area decomposition strategy is applied to explore a 139

target area with located waypoints. It analyzes the effect of the partition of the area, and the 140

number of robots [39]. Planar graphs are used to solve optimal multi-robot path planning 141

problems with computational complexity and establish the intractability of the problems on 142

the graphs to reduce the sharing of paths in opposite directions [40]. The grid pattern map 143

decomposition is developed for coverage path planning and employing multiple UAVs for 144

collecting the images and creating a response map to obtain helpful information [41]. 145

For remote sensing and area coverage with multi-robot, a graph-based task modeling 146

is proposed with mixed-integer linear programming to route the multiple robots [42]. A 147

mixed-integer linear programming model is presented based on the hexagonal grid-based 148

decomposition method [43]. It can be applied for multi-UAV coverage path planning in 149

rescue and emergency operations [43]. AGV, planetary exploration, automatic packages, 150

video games, and robotics mining are the domains of multi-AGV path planning problems, 151

and the The biconnected graph, user input, and small critical benchmark are controlled by 152

a path planner presented in [44] to solve the multi-AGV path planning problems of AGV 153

planetary exploration, automatic packages, and robotics mining. A multi-robot informative 154

path planning approach transforms the continuous region into Voronoi components, and 155

the robots are allocated free regions [45]. The multi-robot navigation strategy with path 156

priority is presented in [46]; a generalized Voronoi diagram divides the map according to 157

the robot’s path-priority order and gets the path-priority order for each robot. 158

For the cited papers, the classical approaches consist of APF and sampling-based 159

algorithms. The classical algorithms usually involve the predefined graph, requiring high 160

computational space. The trend of implementing the classical algorithms is combined with 161

other state-of-art algorithms. The heuristic algorithms are proposed for complete and fast 162

path planning. 163
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2.2. Heuristic algorithms 164

2.2.1. A* search 165

A* search algorithm is one of the most common heuristic algorithms in path plan- 166

ning. Figure 4 shows the simple example of the gird-based A* algorithm, and the path 167

is highlighted in green. It uses heuristic cost to determine the optimal path on the map. 168

The relaxed-A* is used to provide an optimal initial path and fast computation, and Bezier- 169

splines are used for continuous path planning to optimize and control the curvature of 170

the path and restrict the acceleration and velocity [17]. A two-level adaptive variable 171

neighborhood search algorithm is designed to be integrated with the A* search algorithm 172

for the coupled mission planning framework. It models the path planning problem and the 173

integrated sensor allocation to minimize travel costs and maximize the task profit [47]. For 174

the multi-AGV routing problem, the improved A* algorithm plans the global path and uses 175

a dynamic RRT algorithm to get a passable local path with kinematic constraints, avoiding 176

collisions in the grid map [36]. Figure 4 shows the simple example of the gird-based A* 177

algorithm, and the path is highlighted by green. 178

Figure 4. Simple example of A* algorithm
179

Additionally, [48] utilized the A* algorithm for the predicted path and generated 180

a flyable path by cubic B-spline in real-time for guidance with triple-stage prediction. 181

With the computational efficiency of cluster algorithms and A*, the proposed planning 182

strategy supports online implementation. An optimal multi-robot path planning approach 183

is proposed with EA* algorithm with assignment techniques and fault-detection algorithm 184

for the unknown environment based on the circle partitioning concept in [49]. A proposed 185

navigation system integrates a modified A* algorithm, auction algorithm, and insertion 186

heuristics to calculate the paths for multiple responders. It supports connection with 187

a geo-database, information collection, path generation in dynamic environments, and 188

Spatio-temporal data analysis [50]. 189

D* algorithm is employed for multi-robot symbiotic navigation in a knowledge-sharing 190

mechanism with sensors [8]. It allows robots to inform other robots about environmental 191

changes, such as new static obstacles and path blockage, and it can be extended for real-time 192

mobile applications. Additionally, D* Lite is applied with artificial untraversable vertex 193

to avoid deadlocks and collisions for real-time robot applications, and D* Lite has fast 194

re-planning abilities [9]. A cloud approach is developed with D* Lite and multi-criteria 195

decision marking to offer powerful processing capabilities and shift computation load to 196

the cloud from robots in the multi-robot system with a high level of autonomy [51]. An 197

integrated framework is proposed based on D* Lite, A*, and uniform cost search, and it 198

is used for multi-robot dynamic path planning algorithms with concurrent and real-time 199

movement [52]. 200

2.2.2. Other heuristic algorithmsOthers 201

Conflict-Based Search is proposed for multi-agent path planning problems in the 202

train routing problem for scheduling multiple vehicles and setting paths in [53]. A con- 203
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structive heuristic approach is presented to perceive multiple regions of interest. It aims 204

to find the robot’s path with minimal cost and cover target regions with heterogeneous 205

multi-robot settings [6]. Conflict-Based Search is proposed for multi-agent path planning 206

problems in the train routing problem for scheduling multiple vehicles and setting paths 207

in [53]. For multi-robot transportation, a primal-dual-based heuristic is designed to solve 208

the path planning problem as the multiple heterogeneous asymmetric Hamiltonian path 209

problem, solving in a short time [54]. The linear temporal logic formula is applied to 210

solve the multi-robot path planning by satisfying a high-level mission specification with 211

Dijkstra’s algorithm in [55]. A modified Dijkstra’s algorithm is introduced for robot global 212

path planning without intersections, using a quasi-Newton interior point solver to smooth 213

local paths in tight spaces [56]. 214

Moreover, cognitive adaptive optimization is developed with transformed optimiza- 215

tion criteria for adaptively offering the accurate approximation of paths in the proposed 216

real-time reactive system; it takes into account the unknown operation area and nonlinear 217

characteristics of sensors [18]. Grid Blocking Degree (GBD) is integrated with priority 218

rules for multi-AGV path planning, and it can generate a conflict-free path for AGV to 219

handle tasks and update the path based on real-time traffic congestion to overcome the 220

problems caused by most multi-AGV path planning is offline scheduling [57]. Heuristic 221

algorithms, minimization techniques, and linear sum assignment are used in [58] for multi- 222

UAV coverage path and task planning with RGB and thermal cameras. [59] designed the 223

extended Angular-Rate-Constrained-Theta* for a multi-agent path planning approach to 224

maintaining the formation in a leader-follower formation. Figure 5 displays the overview 225

of the mentioned heuristic algorithms. 226

Figure 5. Search algorithms

Figure 5 displays the overview of the mentioned heuristic algorithms. The heuristic 227

algorithms are widely used in path planning, and the heuristic cost functions are developed 228

to evaluate the paths. The algorithms can provide the complete path in a grid-like map. 229

But for the requirement of flexibility and robustness, bio-inspired algorithms are proposed. 230

2.3. Bio-inspired techniques 231

Particle swarm optimization (PSO) 232

2.3.1. Particle swarm optimization (PSO) 233

PSO is one of the most common metaheuristic algorithms in multi-robot path planning 234

problems and formation. The flowchart of PSO is shown in Figure 6. It is a stochastic 235

optimization algorithm based on the social behavior of animals, and it obtains global and 236

local search abilities by maintaining a balance between exploitation and exploration [60]. 237

[61] presents an interval multi-objective PSO using an ingenious interval update law for 238

updating the global best position and the crowding distance of risk degree interval for the 239

particle’s local best position. PSO is employed for multiple vehicle path planning to mini- 240

mize the mission time, and the path planning problem is formulated as a multi-constrained 241

optimization problem [62], while the approach has low scalability and executionimplement 242

ability. An improved PSO is developed with differentially perturbed velocity, focusing on 243

minimizing the maximum path length and arrival time with a multi-objective optimiza- 244

tion problem [63]. The time stamp segmentation model handles the coordination cost. 245

Improved PSO is combined with modified symbiotic organisms searching for multi-UAV 246

path planning, using a B-spline curve to smooth the path in [64]. For a non-stationary 247
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environment, improved PSO and invasive weed optimization are hybrids for planning a 248

path for each robot in the multi-robot system, balancing diversification and intensification, 249

and avoiding local minima [65]. 250

Figure 6. Flowchart of PSO algorithm
251

PSO is adapted for a leader-follower strategy in multi-UAV path planning with obstacle 252

avoidance [60]. A distributed cooperative PSO is proposed for obtaining a safe and flyable 253

path for a multi-UAV system, and it is combined with an elite keeping strategy and the 254

Pythagorean hodograph curve to satisfy the kinematic constraints in [66]. The enhanced 255

PSO is improved by greedy strategy and democratic rule in human society inspired by sine 256

and cosine algorithms. The projected algorithm can generate a deadlock-free path with 257

preserving a balance between intensification and diversification [67]. For the multi-robot 258

path planning issue, a coevolution-based PSO is proposed to adjust the local and goal 259

search abilities and solve the stagnation problem of PSO with evolutionary game theory 260

in [68]. An improved gravitational search algorithm is integrated with the improved PSO 261

for a new methodology for multi-robot path planning in the clutter environment, and it 262

updates the particle positions and gravitational search algorithm acceleration with PSO 263

velocity simultaneously [69]. 264

A hybrid algorithm of democratic robotics PSO and improved Q-learning is proposed 265

to balance exploitation and exploration, and it is fast and available for a real-time environ- 266

ment. However, it cannot guarantee the completeness of the path, and it is hard to achieve 267

robot cooperation [70]. PSO-based and a B-Spline data frame solver engine is developed 268

for uninterrupted collision-free path planning. It is robust to deal with current disturbances 269

and irregular operations and provides quick obstacle avoidance for real-time implemen- 270

tation [15]. A wireless sensor network is presented for locating obstacles and robots in a 271

dynamic environment. It combines a jumping mechanism PSO algorithm and a safety gap 272

obstacle avoidance algorithm for multi-robot path planning [7]. The jumping mechanism 273

PSO estimates the inertia weight based on fitness value and updates the particles. The 274

safety gap obstacle avoidance algorithm focuses on robots struck when avoiding obstacles. 275

[71] designs the hybrid GA and PSO with fuzzy logic controller for multi-AGV conflict-free 276

path planning with rail-mounted gantry and quay cranes, but it is inapplicable to real-time 277

scheduling. 278

Genetic Algorithm (GA) 279
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2.3.2. Genetic Algorithm (GA) 280

GA is widely utilized for solving optimization problems as an adaptive search tech- 281

nique, and it is based on a genetic reproduction mechanism and natural selection [72]. 282

The flowchart of GA is indicated in Figure 7. [73] uses GA and reinforcement learning 283

techniques for multi-UAV path planning, considers the number of vehicles and a response 284

time, and a heuristic allocation algorithm for ground vehicles. GA solves the Multiple 285

Traveling Sales Person problem with the stop criterion and the cost function of Euclidean 286

distance, and Dubins curves achieve geometric continuity while the proposed algorithm 287

cannot avoid the inter-robot collision or support online implementation [16]. A 3D sensing 288

model and a cube-based environment model are involved in describing a complex environ- 289

ment, and non-dominated sorting GA is modified to improve the convergence speed for 290

the Pareto solution by building a voyage cost map by the R-Dijkstra algorithm in [74] as an 291

omnidirectional perception model for multi-robot path planning. [75] applies the sensors 292

in the area to get minimal cost and solves the traveling salesman, and GA is adapted for 293

persistent cooperative coverage. 294

Efficient genetic operators are developed to generate valid solutions on a closed metric 295

graph in a reasonable time and are designed for multi-objective GA for multi-agent systems 296

[76]. GA assigns the regions to each robot, sets the visiting orders, and uses simultaneous 297

localization and mapping to create the global map in [77] for coverage path planning. [78] 298

presents GA to optimize the integration of motion patterns that represent the priority of the 299

neighbor cell and divide the target environment into cell areas, then using a double-layer 300

strategy to guarantee complete coverage. A domain knowledge-based operator is proposed 301

to improve GA by obtaining the elite set of chromosomes, and the proposed algorithm 302

can support robots that have multiple targets [79]. For intelligent production systems, 303

the improved GA is aimed at complicated multi-AGV path planning and maneuvering 304

scheduling decision with time-dependent and time-independent variables. It first addresses 305

AGV resource allocation and transportation tasks, then solves the transportation scheduling 306

problem [80]. 307

An improved GA is presented with three-exchange crossover heuristic operators than 308

the traditional two-exchange operators, which consider double-path constraints for multi- 309

AGV path planning [81]. [72] proposed a boundary node method with a GA for finding 310

the shortest collision-free path for 2D multi-robot system and using a path enhancement 311

method to reduce the initial path length. Due to the short computational time, it can be 312

used for real-time navigation, while it can only be implemented in a known environment 313

without dynamic obstacles. A high degree of GA is employed for optimal path planning 314

under a static environment at offline scheduling, and online scheduling is aimed to solve 315

conflicts between AGVs for the two-stage multi-AGV system [82]. The evolution algorithm 316

is used for planning a real-time path for multi-robot cooperative path planning with a 317

unique chromosome coding method, redefining mutation and crossover operator in [83]. 318
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Figure 7. Flowchart of GA algorithm
319

Ant colony optimization (ACO) 320

2.3.3. Ant colony optimization (ACO) 321

Ants will move along the paths and avoid the obstacle, marking available paths 322

with pheromone, and the ACO treats the path with higher pheromone as the optimal 323

path. The principle of ACO is demonstrated in Figure 8, and the path with a higher 324

pheromone is defined as the optimal path marked by green. For collision-free routing 325

and job-shop scheduling problems, an improved ant colony algorithm is enhanced by 326

multi-objective programming for a multi-AGV system [84]. For multi-UGVs, a continuous 327

ACO-based path planner focuses on coordination and path planning. It is integrated with 328

an adaptive waypoints-repair method and a probability-based random-walk strategy to 329

balance exploration and exploitation and improve the algorithm’s performance, resolving 330

the coordination by a velocity-shifting optimization algorithm [85]. The principle of ACO 331

is demonstrated in Figure 8. 332

K-degree smoothing and the improved ACO are integrated as a coordinated path 333

planning strategy for the multi-UAV control and precise coordination strategy in [86]. 334

Voronoi models the environment by considering various threats, and the improved ACO’s 335

pheromone update method and heuristic information are redefined for path planning, 336

then using a k-degree smoothing method for the path smoothing problem. For precision 337

agriculture and agricultural processes, ACO, Bellman-Held-Karp, Christofides, and Nearest 338

Neighbor based on K-means clustering are used for the optimization path of multi-UAV 339

[87]. 340
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Figure 8. Changes of ACO algorithm with different timeslots
341

Pigeon-inspired optimization (PIO) 342

2.3.4. Pigeon-inspired optimization (PIO) 343

The pigeons’ navigation tools inspire PIO, and it uses two operators for evaluating 344

the solutions. Social-class PIO is proposed to improve the performances and convergence 345

capabilities of standard PIO with inspiring by the inherent social-class character of pigeons 346

[88], and it is combined with time stamp segmentation for multi-UAV path planning. [89] 347

analyzing and comparing the changing trend of fitness value of local and global optimum 348

positions to improve the PIO algorithm as Cauchy mutant PIO method, and the plateau 349

topography and wind field, control constraints of UAVs are modeled for cooperative 350

strategy and better robustness. 351

Grey wolf optimizer (GWO) 352

2.3.5. Grey wolf optimizer (GWO) 353

GWO is inspired by the hunting behavior and leadership of grey wolves, and it 354

obtain the solutions by searching, encircling, and attacking prey. An improved grey wolf 355

optimizer is employed for the multi-constraint objective optimization model for multi- 356

UAV collaboration under the confrontation environment. It considers fuel consumption, 357

space, and time [90]. The improvements of the grey wolf optimizer are individual position 358

updating, population initialization, and decay factor updating. An improved hybrid 359

grey wolf optimizer is proposed with a whale optimizer algorithm in a leader-follower 360

formation and fuses a dynamic window approach to avoid dynamic obstacles [91]. The 361

leader-follower formation controls the followers to track their virtual robots based on the 362

leader’s position and considers the maximum angular and linear speed of robots. [92] 363

proposes a hybrid discrete GWO to overcome the weakness of traditional GWO, and it 364

updates the grey wolf position vector to gain solution diversity with faster convergence in 365

discrete domains for multi-UAV path planning, using greedy algorithms and the integer 366

coding to convert between discrete problem space and the grey wolf space. 367

Neural network 368
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The self-organizing neural network has self-learning abilities and competitive characteristics369

for the multi-robot system’s path planning and task assignment. [93] combines it with 370

Glasius Bio-inspired neural network for obstacle avoidance and speed jump while the 371

environment changes have not been considered in this approach. The biological-inspired 372

self-organizing map is combined with a velocity synthesis algorithm for multi-robot path 373

planning and task assignment. The self-organizing neural network supports a set of robots 374

to reach multiple target locations and avoid obstacles autonomously for each robot with 375

updating weights of the winner by the neurodynamic model [94]. 376

Convolution Neural networks analyze image information to get the exact situation 377

in the environment, and Deep q learning achieves robot navigation in a noble multi-robot 378

path planning algorithm [95]. This algorithm learns the mutual influence of robots to 379

compensate for the drawback of conventional path planning algorithms. In an unknown 380

environment, a bio-inspired neural network is developed with the negotiation method, 381

and each neuron has a one-to-one correspondence with the position of the grid map [96]. 382

A biologically inspired neural network map is presented for task assignment and path 383

planning, and it is used to calculate the activity values of robots in the maps of each target 384

and select the winner with the highest activity value, then perform path planning [97]. 385

The simple neural network diagram is exhibited in the following figure. 386

Others 387

2.3.6. Other bio-inspired techniquesOthers 388

The simulated annealing is integrated with the Dijkstra algorithm for calculating the 389

optimal path based on the Boolean formula and the global map for a high-level specification 390

for multi-robot path planning [13]. The fruit fly optimization approach usually solves the 391

nonlinear optimization problem. The multiple swarm fruit optimization algorithm is pre- 392

sented for the coordinated path planning for multi-UAVs, improves the global convergence 393

speed, and reduces the possibilities of local optimum [98]. An improved gravitational 394

search algorithm is proposed for multi-robot path planning under the dynamic environ- 395

ment based on a cognitive factor, social, memory information of PSO, and deciding the 396

population for the next generationnext-generation based on greedy strategy [99]. The 397

simulated annealing is integrated with the Dijkstra algorithm for calculating the optimal 398

path based on the Boolean formula and the global map for a high-level specification for 399

multi-robot path planning [13]. The hybrid algorithm of Sine-cosine and kidney-inspired 400

the kidney-inspired algorithm is developed for multi-robot in a complex environment. It 401

selects the optimal positions for each robot to avoid conflicts with teammates and dynamic 402

obstacles [100]. The hybridization of invasive weed optimization and firefly algorithm is 403

employed to adjust the movement property of the firefly algorithm and spatial dispersion 404

property of invasive weed optimization for exploration and exploitation [101]. The Differ- 405

ential Evolution algorithm tunes differential weight, population size, generation number, 406

and crossover for multi-UAV path planning in [102]. It defines the minimum generation’s 407

weightage required between the computational and the path cost. 408

Physarum is a bio-inspired method for path planning, and it can take a quick response 409

to external change. [12] proposes a Physarum-based algorithm for multi-AGV for model- 410
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based mission planning in dynamic environments, with an adaptive surrogate modeling 411

method. A novel swarm intelligence algorithm is developed as an Anas platyrhynchos 412

optimizer for multi-UAV cooperative path planning. The Anas platyrhynchos optimizer 413

simulates the swarm’s moving process and warning behavior [103]. It proposes low- 414

communication cooperation and heterogeneous strategies for online path planning based 415

on differential evolution-based path planners [104]. It summarizes local measurements with 416

the sparse variation Gaussian process, sharing information even in a weak communication 417

environment. [105] develops a multi-task multi-robot framework for challenging industrial 418

problems. It adaptsproposes Large Neighbor Search as a new coupled method to make task 419

assignment choices by actual delivery costs. The artificial immune network algorithm is 420

improved with the position tracking control method for providing the abilities of diversity 421

and self-recognition for multi-robot formation path planning with leader robots, and it 422

overcomes the shortcomings of immature convergence and local minima [106]. Differential 423

evolution algorithm is improved in [107] for calculating collision-free optimal path with 424

multiple dynamic obstacle constraints in a 2D map. An efficient artificial bee colony 425

algorithm is proposed for online path planning, selecting the appropriate objective function 426

for collision avoidance, target, and obstacles [108]. 427

Bio-inspired techniques mainly include PSO, GA, ACO, PIO, and GWO. They are 428

inspired by animals’ natural behaviors and employ particles for path generation. Because 429

of computational efficiency and powerful implementation, they are popular in multi-robot 430

path planning. AI-based approaches are proposed due to the development of intelligent 431

systems and the requirements of adapting to changing environments. 432

2.4. Artificial intelligence 433

2.4.1. Fuzzy logic 434

Fuzzy logic uses the principle of “degree of truth” for computing the solutions. It 435

Fuzzy logic can be applied for controlling the robot without the mathematical model, but it 436

cannot predict the stochastic uncertainty in advance. As a result, a probabilistic neuro-fuzzy 437

model is proposed with two fuzzy level controllers and an adaptive neuro-fuzzy inference 438

system for multi-robot path planning and eliminating the stochastic uncertainties with 439

leader-follower coordination [109]. The fuzzy C-means or the K-means methods filter 440

and sort the camera location points, then use A* as a path optimization process for the 441

multi-UAV traveling salesman problem in [5]. 442

For collision avoidance and autonomous mobile robot navigation, Fuzzy-wind-driven 443

optimization and a singleton type-1 fuzzy logic system controller are hybrid in the unknown 444

environment in [110]. The wind-driven optimization algorithm optimizes the function 445

parameters for the fuzzy controller, and the controller controls the motion velocity of the 446

robot by sensory data interpretation. [111] proposes a reverse auction-based method and a 447

fuzzy-based optimum path planning for multi-robot task allocation with the lowest path 448

cost. 449

2.4.2. Machine learning 450

Machine learning simulates the learning behavior to obtain the solutions. It Machine 451

learning is used for path planning, embracing mobile computing, hyperspectral sensing, 452

and rapid telecommunication for the rapid agent-based robust system [112]. Kernel smooth 453

techniques, reinforcement learning, and the neural network are integrated for greedy 454

actions for multi-agent path planning in an unknown environment [10] to overcome the 455

shortcomings of traditional reinforcement learning, such as high time consumption, slow 456

learning speed, and disabilities of learning in an unknown environment. A multi-agent 457

path planning algorithm based on deep reinforcement learning is proposed, providing 458

high efficiency [113]. Another multi-agent reinforcement learning is developed in [114], 459

and it constructs a node network and establishes an integer programming model to extract 460

the shortest path. The improved Q-learning plans the collision-free path for a single robot 461
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in a static environment and then uses the algorithm to achieve collision-free motion among 462

robots based on prior knowledge in [115]. 463

The self-organizing neural network has self-learning abilities and competitive charac- 464

teristics for the multi-robot system’s path planning and task assignment. [93] combines it 465

with Glasius Bio-inspired neural network for obstacle avoidance and speed jump while the 466

environment changes have not been considered in this approach. The biological-inspired 467

self-organizing map is combined with a velocity synthesis algorithm for multi-robot path 468

planning and task assignment. The self-organizing neural network supports a set of robots 469

to reach multiple target locations and avoid obstacles autonomously for each robot with 470

updating weights of the winner by the neurodynamic model [94]. 471

Convolution Neural networks analyze image information to get the exact situation 472

in the environment, and Deep q learning achieves robot navigation in a noble multi-robot 473

path planning algorithm [95]. This algorithm learns the mutual influence of robots to 474

compensate for the drawback of conventional path planning algorithms. In an unknown 475

environment, a bio-inspired neural network is developed with the negotiation method, 476

and each neuron has a one-to-one correspondence with the position of the grid map [96]. 477

A biologically inspired neural network map is presented for task assignment and path 478

planning, and it is used to calculate the activity values of robots in the maps of each target 479

and select the winner with the highest activity value, then perform path planning [97]. The 480

simple neural network diagram is exhibited in the following figure. 481

Figure 9. Diagram of a Three-layer Neural network
482

Moreover, a multi-agent path planning algorithm based on deep reinforcement learn- 483

ing is proposed, providing high efficiency [113]. Another multi-agent reinforcement learn- 484

ing is developed in [114], and it constructs a node network and establishes an integer 485

programming model to extract the shortest path. The improved Q-learning plans the 486

collision-free path for a single robot in a static environment and then uses the algorithm 487

to achieve collision-free motion among robots based on prior knowledge in [115]. The 488

reinforcement learning framework is applied to optimize the quality of service and path 489

planning, describe the users’ requirements, and consider geometric distance and risk by 490

reinforcement learning reward matrix with a sigmoid-like function [116]. 491

The reinforcement learning framework is applied to optimize the quality of service 492

and path planning, describe the users’ requirements, and consider geometric distance and 493

risk by reinforcement learning reward matrix with a sigmoid-like function [116]. The atten- 494

tion neural network is used for generating the multimachine collaborative path planning as 495

attention reinforcement learning, and it can meet high real-time requirements [117]. A deep 496

Q-network is implemented with a Q-learning algorithm in a deep reinforcement learning 497

algorithm for a productive neural network to handle multi-robot path planning with faster 498

convergence [118]. The meta-reinforcement learning is designed based on transfer learning 499

in [119], and it improves proximal policy optimization by covariance matrix adaptation 500

evolutionary strategies to avoid static and dynamic obstacles. Multi-agent reinforcement 501

learning is improved by an iterative single-head attention mechanism for multi-UAV path 502

planning, and it calculates robot interactions for each UAV’s control decision-making [120]. 503
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Fuzzy reinforcement learning is proposed for the continuous-time path planning algorithm, 504

combining a modified Wolf-PH and fuzzy Q-iteration algorithm for cooperative tasks [121]. 505

2.5. Others 506

The algorithms based on mathematical principles or other unclassified systems are 507

listed in this session. These principles of algorithms are not typically classified into four 508

classifications: classical, heuristic, bio-inspired, and AI-based approaches. 509

A multi-robot path planning system is developed with Polynomial-Time for solutions 510

with optimality constant-factor in [14], and it provides efficient implementations and 511

adapted routing subroutines. A multi-robot path planning algorithm for industrial robots is 512

presented based on the first low polynomial-time algorithm on grids [122]. An innovative 513

method based on Fast Marching Square is proposed in [123] for simple priority-based 514

speed control, the planning phase, and conflict resolution in 3D urban environments. The 515

fast Marching Square algorithm is also used in a triangular deformable leader-follower 516

formation for multi-UAV coverage path planning [124]. [125] combines polynomial time 517

with Push and spin algorithm for multi-robot path planning algorithm and enhances the 518

performance of choosing the best path. A first low-polynomial running time algorithm 519

is proposed for multi-robot path planning in grid-like environments and solves average 520

overall problem instances by constant factors make-span optimal solutions [126]. For 521

optimal multi-robot coverage path planning, spanning tree coverage is proposed, and it 522

divides the surface into many equal areas for each robot to guarantee minimum coverage 523

path, complete coverage, and a non-backtracking solution [127]. 524

For multi-UAV coverage path planning, a metric Cartesian system is proposed, and it 525

transforms the coordinates into Cartesian and splits the field to assign to each robot, then 526

forms the path with minimizing the time [2]. Probability Hypothesis Density representation 527

is used to optimize the number of observed objects in multi-agent informed path planning, 528

and it can represent unseen objects [128]. An iterative max-min improvement algorithm 529

is designed to make span-minimized multi-agent path planning to solve the constrained 530

optimization problem using a local search approach in discrete space [129]. The new 531

route-based optimization model is presented for multi-UAV coverage path planning with 532

column generation, and it can generate feasible paths and trace energy required for mission 533

phases [130]. A multi-agent collaborative path planning algorithm is provided in [131] 534

to guarantee complete area coverage and exploration and use a staying alive policy to 535

consider battery charge level limitation in the indoor environment. 536

Integer linear programming models the path planning problem for three objectives 537

with task due times, including minimizing total unit penalties, tardiness, and maximum 538

lateness [132]. Integer linear programming solves the multi-robot association path planning 539

problem for optimizing the path and robots’ access points associations in industrial scenar- 540

ios [133]. For finding the optimal path for robots to perform tasks, the optimal problem is 541

transformed into integer linear programming with the Petri net model in [134]. One-way 542

multi-robot path planning is proposed for the warehouse-like environment, and it is based 543

on Integer programming to reduce the robots’ configuration costs [135]. A mixed-integer 544

linear programming formulation is designed for multi-robot discrete path planning, and it 545

extends the single robot decision model to multi-robot settings with anticipated feedback 546

data [4]. It supports real-time action based on modeling extension. 547

For multi-agent navigation, the reciprocal velocity obstacles (RVO) model is used for 548

collision detection and prevention and uses an agent-based high-level path planner [136]. 549

A cooperative cloud robotics architecture is developed as a cooperative data fusion system 550

to gather data from various sensing sources and renew the global view to extend the field 551

of view for each AGV in the industrial environment and uses flexible global and local path 552

planning to avoid unexpected obstacles and congestion zones [1]. The hybrid approach 553

is presented in [137] based on the improved Interfered Fluid Dynamical System and the 554

Lyapunov Guidance Vector Field for multi-UAV cooperative path planning. It introduces a 555

vertical component for target tracking and uses the improved Interfered Fluid Dynamical 556
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System to resolve local minimum problems and avoid obstacles. Cooperative sensing 557

and path planning for multi-vehicle is transformed as a partially observable decision- 558

making problem, and it uses Markov decision processes as a decision policy and deploys a 559

multi-vehicle communication framework [138]. 560

2.6. Discussion of path planning classification 561

The classical approaches include APF and sampling-based algorithms, such as RRT. 562

The classical techniques usually require more computational time and space, especially for 563

the sampling-based methods. Also, the classical techniques cannot ensure completeness 564

or capability, and it requires a predefined graph and is hard for them to re-plan the path 565

during the implementation. 566

A* and dynamic A* (D*) algorithms are standard applications for heuristic algorithms. 567

The heuristic algorithms primarily consist of the graph search algorithm, and they are easy 568

to apply for path planning problems and evaluate the path by the developed cost function. 569

The heuristic algorithms can successfully provide the globally optimal path with lower 570

required runtime and space than the classical approaches in a graph. 571

The bio-inspired approaches have been widely researched in recent years as the 572

primary algorithms used in multi-robot path planning, especially metaheuristic algorithms. 573

This paper discusses PSO, GA, ACO, PIO, and GWO. They are inspired by nature, such 574

as the social behavior of animals and neural networks. The bio-inspired approaches use 575

various particles to generate the optimal solution for the defined problem. 576

The AI-based approaches based on fuzzy logic or machine learning have gained more 577

attention recently, and Neural networks are also part of the machine learning approaches. 578

They have fast computation abilities, and the models are usually adapted for online path 579

planning. The AI-based strategies learn from the previous data to train the models. The 580

neural network is the primary application of machine learning for multi-robot path plan- 581

ning, which consists of multiple layers for learning. The detailed analysis refers to session 582

4.1. 583

Path planning is part of the multi-robot system’s consideration, and the multi-robot 584

system and the structure of the multi-robot system can be classified as centralized or 585

decentralized based on the planner. The multi-robot system is centralized if the system has 586

supervisory control or a central planner. For robots making their decisions, the system is 587

decentralized. The details of the decision-making of the multi-robot system refer to section 588

3. 589

3. Decision-making 590

Multi-robot system can be a centralized or decentralized structure. A centralized sys- 591

tem is controlled by the central decision-maker, while a decentralized multi-robot system 592

has no supervisory control. Centralized architecture has a high degree of coordination, 593

while dynamic and real-time actions are weak [139]. Figure 10 exhibits a centralized frame- 594

work. Decentralized architecture has more vital fault-tolerant ability while poor global 595

ability. Figure 11 indicates a decentralized framework in which robots use the neighbors’ 596

information. 597
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Figure 10. Structure of Centralized framework
598

Figure 11. Structure of Decentralized framework
599

3.1. Centralized 600

A centralized framework for an industrial robot is proposed in [140], which combines 601

GA and A* algorithms for 2D multi-robot path planning. GA is utilized for task allocation, 602

and the A* algorithm is for path planning, and this approach addresses collision avoidance. 603

A two-stage centralized framework solves multi-agent pickup and delivery problems, and 604

it achieves path and action planning with orientation under non-uniform environments 605

by heuristic algorithms, detecting and resolving conflicts by a synchronized block of 606

information [141]. A practical centralized framework is developed based on an integer 607

linear programming model, and it operates time expansion in the discrete roadmap to 608

get the space-time model with dived and conquer heuristic and reachability analysis [19]. 609

In grid graphs, a centralized and decoupled algorithm is proposed for multi-robot path 610

planning in automated and on-demand warehouse-like settings, and it explores optimal 611

sub-problem solutions and path diversification databases for resolving local path conflicts 612

[142]. It uses a decoupling-based planner with two heuristic attack phases and goal 613

configuration adjustments. [143] uses a centralized controller for multi-target multi-sensor 614

tracking for environmental data acquisition for path planning and the feedback control for 615

sending the path to the system. 616
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The optimal bid valuation is proposed with the Dijkstra algorithm to find the shortest 617

path, and the proposed centralized model supports an alternative sampling-based method 618

to reduce the computation time with achieving optimality [20]. A self-organizing map is 619

used for data collection tasks and active perception for online multi-robot path planning, 620

and it jointly picks and allocates nodes and finds sequences of sensing positions [144]. A 621

mixed-integer programming formulation is adapted for a discrete centralized multi-agent 622

path planning problem, and a two-phase fuzzy programming technique gains the Pareto 623

optimal solution in [145]. The centralized simultaneous inform and connect (SIC) strategy 624

is applied for multi-objective path planning by GA, and it uses SIC to optimize search, 625

communicate and find the best path, and monitor tasks with quality of service [146]. A 626

developed synthesized A* algorithm is used for path planning through a centralized meta- 627

planner based on Bag of Tasks, and it runs on distributed computing platforms to avoid 628

dynamic obstacles [147]. A wireless network is proposed for commutation among the 629

robots in APF links, and it uses the Software Defined Network technique to update the 630

network architecture and employ the topology and APF to establish a network control 631

model [148]. 632

Centralized architecture has a high degree of coordination, while dynamic and real- 633

time actions are weak [139]. The decentralized structure is proposed to overcome the 634

drawback of the centralized structure, providing a higher level of flexibility. 635

3.2. Decentralized 636

Task assignment for multi-robot is essential during path planning. The decentralized 637

heuristic path planning algorithm is proposed as Space utilization optimization for multi- 638

robot structures, and it reduces computation time and the number of conflicts to gain the 639

solution for one-shot and life-long problems [149]. An offline time-independent approach 640

is developed with deadlock-based search and conflict-based search to assign the path to 641

each robot when agents cannot share information [150]. The distributed multi-UAV system 642

utilizes an insertion-based waypoint for path planning and its reconfiguration in [151]. The 643

roadmap algorithm receives near-optimal paths in a decentralized coordination strategy 644

to maximize connectivity and redundancy, while the global path planning utilizes shared 645

information for the proposed two-layer control architecture [152]. The coordinated loco- 646

motion of a multi-robot system is divided into sub-problems as homogenous prioritized 647

multi-robot path planning and task planning, and it uses prioritized reinforcement learning 648

for these problems [22]. For the swarm of UAVs, PSO is adapted as a path planner for dis- 649

tributed full coverage path planning in a dynamic and stochastic environment, minimizing 650

the cost function and maximizing the fitness function [3]. 651

The enhanced A* algorithm referred to as the MAPP algorithm, is delivered in [153] 652

as the decentralized planner for task assignment and cooperative path planning for multi- 653

UAV in urban environments. Free-ranging motion scheme is implemented in autonomous 654

multi-AGV path planning and motion coordination. It considers nonholonomic vehicle 655

constraints for path planning and reliable detection and resolution of conflicts for motion co- 656

ordination based on a priority scheme [154]. A sampling-based motion planning paradigm 657

is developed for decentralized multi-robot belief space planning in an unknown environ- 658

ment for high-dimensional state spaces in [21], and it calculates the utility of each path 659

based on incremental smoothing of efficient inference and insights from the factor graph. 660

A fully completed distributed algorithm is developed for considering plan restructuring, 661

individual path planning, and priority decision-making for a distributed multi-agent sys- 662

tem in [155]. Graph search algorithm and APF are mixed for multi-robot delivery service 663

in different environments, and it uses a strongly connected digraph to simplify the path 664

planning problem and use APF to prove flexibly [156]. 665

A cluster-based decentralized task assignment is proposed for real-time missions [48]. 666

It generates a path, assigns tasks for each robot in the initial planning stage, and adds the 667

popup tasks into the task list to be considered in the next planning stage. A novel smooth 668

hypocycloidal path is developed for multi-robot motion planning with local communication, 669
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and it maintains safe clearances with obstacles [157]. A multi-agent distributed framework 670

formulates the path planning problem as a centralized linear program and then uses a 671

framework for each agent while only communicating with its neighbors as the distributed 672

algorithms [158]. The proposed model in [159] integrates decision-making policies and 673

local communication for multi-robot navigation in constrained workspaces, and it uses a 674

convolutional neural network to extract features from observations with a graph neural 675

network to achieve robot communication. A localized path planning and a task allocation 676

module are combined into a decentralized task and path planning framework, and it models 677

each task as a mixed observed Markov Decision Process or Markov Decision Process, using 678

the max-sum algorithm for task allocation and the localized forward dynamic programming 679

scheme for conflict resolution [160]. Graph Neural Network is utilized to combine with 680

a key-query-like mechanism to evaluate the relative importance of messages and learn 681

communication policies in a decentralized multi-robot system [161]. 682

The path planning problem is formulated as a decentralized partially observable 683

Markov decision process in [162], and the multi-agent reinforcement learning approach 684

is proposed for multi-robot path planning to harvest data from distributed end devices. 685

It can support the non-communicating, cooperative, and homogenous UAVs, and the 686

control policy can be used for challenging urban environments without prior knowledge. A 687

genetic programming approach is proposed in a decentralized framework, and the robots 688

conduct the learning program to determine the following action in real-time until they 689

reach their respective destinations [163]. A decentralized multi-robot altruistic coordination 690

is improved for cooperative path planning and resolves deadlock situations [164]. APF is 691

adapted in a proposed decentralized space-based potential field algorithm for a group of 692

robots to explore an area quickly and connect with the team by dispersion strategy, using a 693

monotonic coverage factor for a map exchange protocol, avoiding minima, and realistic 694

sensor bounds [165]. Another study [166] proposes APF with the notion of priority, the 695

neighborhood system, and the non-minimum speed algorithm to resolve the intersection of 696

robots and minimum local problems for the multi-robot system. The multi-agent Rapidly 697

exploring Pseudo-random Tree is developed for real-time multi-robot motion planning and 698

control based on the classical Probabilistic Road Map (PRM) algorithm. It extends PRM as 699

a deterministic planner with probabilistic completeness, simplicity, and fast convergence 700

[167]. 701

3.3. Discussion of decision-making strategies 702

The centralized framework has higher control abilities for robots, and the actions are 703

directly sent from the center controller to the robots, making decisions for each robot. It 704

provides better support and task assignment scheduling, and the algorithms applied in the 705

centralized framework have no restrictions. The cited papers use the classical approaches, 706

the heuristic algorithms, and bio-inspired and AI-based techniques for the centralized 707

framework, especially the heuristic algorithms. 708

However, centralized frameworks are weak for dynamic applications. The decentral- 709

ized structure is proposed to overcome the drawbacks of the centralized frameworks, and 710

it makes robots can communicate with others and share information. The algorithms used 711

in the decentralized structure involve heuristic algorithms, optimization metaheuristic 712

algorithms, neural networks, APF, sampling-based approaches, and AI-based algorithms. 713

More discussion of decision-making strategies refers to section 4.2. 714

4. Discussion and conclusion 715

4.1. Multi-robot path planning 716

From the literature, the multi-robot path planning approaches are classified into four 717

primary categories: classical approaches, heuristic approaches, bio-inspired techniques, 718

and artificial intelligence-based approaches. Table 1 summarizes the main algorithms used 719

in the categories, focusing on real-time implementation. The online/offline implementation 720
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percentage is indicated in Figure 12. The offline executions occupy 62% of the multi-robot 721

path planning approaches, and real-time operation reaches 38%. 722

Figure 12. Offline/Real-time implementation
723

The classical requires huge computational space to save the predefined map and 724

generated nodes, so they are mainly implemented in offline strategies. In the men- 725

tioned papers, only 36.36% of the classical approaches can be employed for online per- 726

formance. The hybridization of the classical approach is adapted to solve the mentioned 727

problem and achieve real-time implementation by other algorithms with developed al- 728

gorithms or functions. 72.73% of papers are improved as hybrid algorithms to overcome 729

the drawbacks of the classical approaches. The classical approaches include APF and 730

sampling-based algorithms, such as RRT. The classical approaches usually require more 731

computational time and space, especially for the sampling-based approaches. Also, the 732

classical approaches cannot ensure completeness or capability, and it requires a predefined 733

graph and is hard for them to re-plan the path during the implementation. The hybridization 734

of the classical approach is adapted to solve the mentioned problem to achieve real-time 735

implementation by other algorithms. A* and dynamic A* (D*) algorithms are standard 736

applications for heuristic algorithms. The heuristic algorithms primarily consist of the 737

graph search algorithm, and they are easy to apply for path planning problems and evaluate 738

the path by the developed cost function. The heuristic algorithms can successfully provide 739

the globally optimal path with lower required runtime and space than the classical approaches740

in a graph. The power heuristic algorithms or the approaches involved in interactive 741

robots can be applied for online processing with poor convergence performance. 742
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The heuristic algorithms require less computation space than the classical approaches, 743

and they can produce complete solutions. It is typical for the heuristic algorithms to be 744

integrated with other algorithms, and the percentage of the hybrid approaches reaches 745

88.89%. Also, 66.67% of the papers indicate they can be applied for online path planning 746

and are achieved by computational efficiency. The power heuristic algorithms or the 747

approaches involved in interactive robots can be used for online processing but with poor 748

convergence performance. 749

The bio-inspired techniques are proposed for simple but powerful and robust solu- 750

tions. They can consider multiple constraints during path planning, even for a complex 751

or dynamic environment. From the cited literature, PSO and GA are mainly involved 752

in path optimization. High computational efficiency and fast convergence ensure real- 753

time performance in dealing with dynamic obstacles, and 19.44% of metaheuristic algo- 754

rithms demonstrate real-time abilities. The hybrid coevolutionary algorithms are usually 755

proposed to overcome the drawbacks of a single evolutionary algorithm, such as trap- 756

ping in local optima and uncertainly scenes. The percentage of the hybrid approaches 757

reaches 66.67%. The bio-inspired approaches have been widely researched in recent years 758

as the primary algorithms used in multi-robot path planning, especially PSO and GA. 759

They are inspired by nature, such as the social behavior of animals and neural networks. 760

The bio-inspired approaches use various particles to generate the optimal solution for the 761

defined problem. They can consider multiple constraints during path planning, even for 762

a complex or dynamic environment. High computational efficiency and fast convergence 763

ensure real-time performance in dealing with dynamic obstacles. The hybrid coevolutionary 764

algorithms are usually proposed to overcome the drawbacks of a single evolutionary 765

algorithm, such as trapping in local optima and uncertainly scenes. The AI-based approaches766

based on fuzzy logic or machine learning have gained more attention recently, and Neural 767

networks are also part of the AI-based approaches. They have fast computation abilities, 768

and the models are usually adapted for online path planning. 769

The AI-based approaches are developed to satisfy the dynamic environmental changes, 770

especially with machine learning. Machine learning for the multi-robot path planning 771

mainly includes neural network and reinforcement learning. They can usually achieve 772

dynamic operation according to the environmental changes with the designed model or 773

sensors, reaching 75% cited in AI-based papers. 60% of AI-based algorithms are combined 774

with other approaches to improve learning abilities and reduce the consumed time. 775
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Table 1. Comparison of multi-robot path planning algorithmsThe main cited literature

Category Approach Paper Real-time How to achieve real-time
implementation Experiment results Hybrid approach

Classical

APF

[27] N N N
[28] N N Y
[29] N N Y
[30] N Y Y
[31] Y Repulsion function N N
[32] Y Priority-based algorithm N Y
[33] Y APF N Y
[34] Y Predictive capabilities N Y

Sampling-based
[35] N N Y
[36] N N Y
[37] N N N

Heuristic

A*

[17] N N Y
[47] N N Y
[48] Y Computational efficiency N Y
[49] Y Robot N N
[50] Y Computational efficiency N Y

D*

[8] Y Sharing mechanism for
robots Y Y

[9] Y Algorithm N Y
[51] N N Y
[52] Y Algorithm N Y

Bio-inspired

PSO

[60] N N N
[61] N N N
[62] N N N
[63] N Y Y
[64] N N Y
[65] N Y Y
[66] N N N
[67] N N Y
[68] N N N
[69] N Y Y
[70] N Y Y
[15] Y Computational efficiency N Y
[7] Y Computational efficiency N Y
[71] N N Y

GA

[72] Y Computational efficiency Y Y
[73] N N Y
[16] N N Y
[74] N N Y
[75] N N Y
[76] N N Y
[77] N N Y
[78] N N Y
[79] N N N
[80] Y Simplify the model N N
[81] N N N
[82] Y Two-stage strategies N N
[83] Y Computational efficiency N Y

ACO

[84] N N Y
[85] N N N
[86] N Y Y
[87] N N Y

PIO [88] N N Y
[89] N N N

GWO
[90] N N N
[91] N N Y
[92] Y Computational efficiency N Y

Neural network

[93] Y Model N Y
[94] Y Algorithm N Y
[95] N N Y
[96] N N N
[97] Y Algorithm N N

AI-based

Fuzzy logic

[109] N N Y
[5] N N Y
[110] Y Model Y Y
[111] Y Computational efficiency N N

Machine Learning

[112] Y Sensor N N
[10] Y Algorithm Y Y
[93] Y Model N Y
[94] Y Algorithm N Y
[95] N N Y
[96] N N N
[97] Y Algorithm N N
[113] N N Y
[114] N N Y
[115] N N N
[116] Y Model N N
[117] Y Model N N
[118] Y Algorithm N N
[119] Y Model N Y
[120] Y Model N Y
[121] Y Model Y Y

Where N stands for No, and Y stands for Yes.
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4.2. Decision-making 776

Additionally, the decision-making strategies can be divided into two categories, cen- 777

tralized and decentralized. Figure 13 indicates the partitions of the real-time implementa- 778

tion; the percentage of real-time performance reaches 56%, and the portion of the offline 779

techniques is 44%. The real-time implementation has a higher rate due to the cited literature 780

on the decentralized framework. 781

Table 2. Comparison of decision-making approaches

Category Approach Paper Real-time
How to achieve

real-time
implementation

Experiment results Hybrid approach

Centralized

GA and A* [140] N N Y
Dijkstra and A* [141] N N Y
Integer linear
programming [19] N N N

Path diversification
heuristic [142] N N Y

Feedback loop [143] Y Multi-sensor N N
Bid valuation and
sampling-based

approach
[20] Y Computational

efficiency N Y

Self-organizing map [144] Y Computational
efficiency N N

Fuzzy programming [145] N N Y
Simultaneous inform

and connect [146] Y Computational
efficiency N Y

A* and cloud
computing [147] Y Computational

efficiency N Y

Software Defined
Network and APF [148] Y Wireless network N Y

Decentralized

Space Utilization
Optimization [149] N N N

Conflict based search [150] N N N
Insertion [151] N N N
Roadmap [152] N N Y
Prioritized

reinforcement
learning

[22] N N N

PSO [3] N N N
Free-ranging motion [154] N N N

A* [155] N N N

APF [156] Y Computational
efficiency N Y

Hypocycloid [157] Y Local communication Y N
geometry

Linear program [158] Y Computational
efficiency N N

Graph neural network [159] Y Communications
among robots N Y

Graph Neural
Network [161] Y

A key-query-like
mechanism to
communicate

N Y

Multi-agent
reinforcement

learning
[162] Y Computational

efficiency N N

Genetic Programming [163] Y Computational
efficiency N N

Altruistic
coordination [164] Y Computational

efficiency N N

Potential field [165] Y Robot
communications N N

APF [166] Y Computational
efficiency N N

RRT and PRM [167] Y Algorithms N Y
A* [153] N N N

Markov Decision
Process [160] Y Computational

efficiency N N

Where N stands for No, and Y stands for Yes.
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[S. 0] Table 2 is added.
The numerical data of
Figure 13 is indicated.
The new version is the
second one.

Figure 13. Offline/Real-time implementation of the decision-making strategies
782

For the centralized framework, the implemented algorithms include classical, bio- 783

inspired, heuristic, and AI-based approaches. It is general for an algorithm to combine 784

with other algorithms for improvement, and 72.73% of the cited centralized papers propose 785

hybrid strategies. The heuristic techniques or the classical methods are integrated with the 786

bio-inspired algorithms or network communications. The rate of real-time operation in the 787

centralized framework reaches 54.55%. Additionally, the decision-making strategies can 788

be divided into two categories, centralized and decentralized. The centralized framework 789

has higher control abilities for robots, and the actions are directly sent from the center 790

controller to the robots, making decisions for each robot. It provides better support and 791

task assignment scheduling, and the algorithms applied in the centralized framework 792

have no restrictions. The cited papers use the classical approaches, the heuristic algorithms, 793

and bio-inspired and AI-based techniques for the centralized framework, especially the 794

heuristic algorithms. The centralized framework achieves real-time implementation by an 795

online network/system, the algorithm with fast speed, or data generation from the sensors. 796

However, centralized frameworks are weak for dynamic applications. The decentralized797

structure is proposed to overcome the drawbacks of the centralized frameworks, and it 798

makes robots can communicate with others and share information. The algorithms used in 799

the decentralized structure involve the heuristic algorithms, the optimization metaheuristic 800

algorithms, neural networks, APF, sampling-based approaches, and AI-based algorithms. 801

The decentralized framework has more real-time applications than the centralized frame- 802

work. The robots gain information from the neighbors’ robots to determine the next step 803
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and operate the local communication system immediatelyin real-time. 57.14% of the de- 804

centralized approaches support the online operations. The Also, the algorithms with fast 805

convergence, simplicity, excellent robustness or little computational time and space are 806

widely implemented in the structure. Only 23.81% of the cited decentralized papers involve 807

the hybrid approaches.Figure 13 indicates the partitions of the real-time implementation, 808

and the real-time implementation has a higher percentage due to the cited literature on 809

the decentralized framework. 810

Moreover, the hybrid structure has been developed recently to combine the advantages 811

of centralized and decentralized approaches. It uses centralized problem formation while 812

the robots can make their decisions during task operations. Robots can gain information 813

from other robots or accomplish tasks under distributed structure arranged by the cen- 814

tral planner. The employed techniques have no restrictions because the hybrid method 815

combines the benefits of centralized and decentralized methods as [142,168]. 816

4.3. Challenge 817

From the review of multi-robot path planning and decision-making strategies, the 818

The traditional challenges involved in the multi-robot path planning can be considered 819

local optima, ungranted completeness, and slow convergence. Many papers aim to solve 820

these problems by integrating the different algorithms or with a developed controller. 821

Nevertheless, this paper has discovered a new challenge as the multi-robot path planning 822

approaches have not considered fault tolerance. The proposed papersresearches mention 823

real-time implementation, but most articlespapers mainly focus on the computational 824

efficiency or model simplicity to provide faster convergence for online computation. 825

However, in a real-time performanceimplementation, the update of robots’ status and 826

the backup of robots’ failures are essential. The robots can send positions or motions to 827

the controller or the neighbors to update their status in immediatelyreal-time rather than 828

entirely relyingrely on the predefined path, which can be achieved by the localization or 829

vision sensors. The multi-robot system’s fault tolerance is aimed to support the system 830

operating as expected, even if a robot fails. For an actual application, a multi-robot system 831

should detect the failure immediately and broadcast the information to avoid collisions 832

with other robots or path congestion. Also, the other robots should adjust their defined 833

task plans or paths in real-time to achieve the tasks if necessary. It has no limitations of the 834

system framework for fault tolerance because the centralized framework can inform all 835

robots quickly, and the decentralized framework can send the fault signs to the neighbor 836

robots. 837

However, in a real-time performanceimplementation, the update of robots’ status and 838

the backup of robots’ failures are essential. The robots can send positions or motions to 839

the controller or the neighbors to update their status in immediatelyreal-time rather than 840

entirely relyingrely on the predefined path, which can be achieved by the localization or 841

vision sensors. The multi-robot system’s fault tolerance is aimed to support the system 842

operating as expected, even if a robot fails. For an actual application, a multi-robot system 843

should detect the failure immediately and broadcast the information to avoid collisions 844

with other robots or path congestion. Also, the other robots should adjust their defined 845

task plans or paths in real-time to achieve the tasks if necessary. It has no limitations of the 846

system framework for fault tolerance because the centralized framework can inform all 847

robots quickly, and the decentralized framework can send the fault signs to the neighbor 848

robots. 849
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Abbreviations 860

The following abbreviations are used in this manuscript: 861

862

UAV Unmanned Aerial Vehicle
AGV Automated Guided Vehicle
USV Unmanned Surface Vesse
AUV Autonomous Underwater Vehicle
AI Artificial intelligence
APF Artificial Potential Field
RRT Rapidly exploring random tree
PSO Particle swarm optimization
GBD Grid Blocking Degree
GA Genetic Algorithm
PIO Pigeon-inspired optimization
GWO Grey wolf optimizer
RVO Reciprocal velocity obstacles
SIC Simultaneous inform and connect
PRM Probabilistic Road Map
D* Dynamic A*
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