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Abstract: A new damaged cable identification method using the basis vector matrix (BVM) is pro-
posed to identify multiple damaged cables in cable-stayed bridges. The relationships between the
cable tension stiffness and the girder bending strain of the cable-stayed bridge are established using
a force method. The difference between the maximum bending strains of the bridges with intact and
damaged cables is used to obtain the damage index vectors (DIXVs). Then, BVM is obtained by the
normalized DIXV. Finally, the damage indicator vector (DIV) is obtained by DIXV and BVM to
identify the damaged cables. The damage indicator is substituted into the damage severity function
to identify the corresponding damage severity. A field cable-stayed bridge is used to verify the pro-
posed method. The three-dimensional finite element model is established using ANSYS, and the
model is validated using the field measurements. The validated model is used to simulate the strain
response of the bridge with different damage scenarios subject to a moving vehicle load, including
one, two, three, and four damaged cables with damage severity of 10%, 20%, and 30%, respectively.
The noise effect is also discussed. The results show that the BVM method has good anti-noise capa-
bility and robustness.

Keywords: multiple damaged cables identification; basis vector matrix; bending strain; finite
element model; cable-stayed bridge
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Multiple Damaged Cables Cable-stayed bridges are widely used around the world due to their rigid stiffness,

good aerodynamics, high seismic resistance, and desired aesthetics [1]. Like other types
of bridge structures, cable-stayed bridges deteriorate over time due to damage accumula-
tion caused by their aging and operational loading. If the damage cannot be identified
early, the deterioration or damage accumulation of the bridges will lead to the collapse of
entire structures and result in devastating human fatalities and substantial economic
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damage index method (DI), mode shape curvature method (MSC), and modal flexibility
index method (MFI) [3]. A probabilistic neural network with modal frequency data was
used to predict damage locations in the Ting Kau Bridge by Zhou et al. [4]. When the noise
level is less than 10%, the damage type and region can be identified with high confidence
(greater than 85%) using the first 20 modes. The method cannot identify the multi-damage
situations. Based on the three-dimensional multi-scale FE models of the Runyang Bridge,
the performance of some damage location methods is evaluated by Ding et al. [5], includ-
ing a modal curvature index, a modal strain energy index, and a modal flexibility index.
The relative modal flexibility change (RFC) between intact and damage states was formu-
lated as an index to locate damage in the Ting Kau Bridge by Ni et al. [6]. Without the
environmental effects, the RFC index performs well for locating damage in single-damage
cases. For multi-damage cases, the RFC index may provide false damage identification at
members with low sensitivity. A technique to reduce the limitations of modal identifica-
tion in damage detection using reduced field data for nondestructive structural health
monitoring of a cable-stayed concrete bridge was designed by Ismail et al. [7]. The method
was able to detect the general area of the damage, but was not able to locate the damage,
and the refined meshing and analysis have to be carried out around the identified areas.
The mode shapes of a cable-stayed bridge could be used to indicate the location of the damage
but not the extent or intensity of the damage. The acceleration time history response of the
Tianjing Yonghe Bridge was used to identify girder or support damage by Liang et al. [8],
Huang et al. [9], Bisheh et al. [10,11], and Entezami et al. [12]. To eliminate the ambient
temperature influences on the bridge frequency, a damage identification method based
on Kalman filter and cointegration (KFC) was developed by Huang et al. [9]. Feature ex-
traction and selection methods were proposed to identify the damage by Bisheh et al.
[10,11] and Entezami et al. [12]. Based on acceleration responses and strain responses, a
damage identification method was proposed by Alamdari et al. [13]. This method applies
incremental tensor analysis for data fusion and feature extraction, and then a one-class
support vector machine is used to detect anomalies. Finite element (FE) model updating
is a well-recognized approach for SHM purposes, as an accurate model serves as a base-
line reference for damage detection and long-term monitoring efforts. The latest advances
in finite element modeling and model updating of cable-stayed bridges were presented
by Sharry et al. [14]. In addition, influence lines or static methods are also used for damage
identification of cable-stayed bridges. The displacement influence line (DIL) of the bridge
under live load tests was used to identify the damage of a cable-stayed bridge by Alamdari
et al. [15]. This method can identify the damage location, and cannot identify the damage
severity.

Furthermore, cables are the crucial components in cable-stayed bridges, which bear
the supporting role similar to piers. They are prone to deterioration and damage because
of fatigue and corrosion [16,17]. Consequently, the design service life of a cable-stayed
bridge is 100 years, while the cable life is generally only 15-20 years in China. If some
cables are damaged, the redistribution of cable forces will lead to or accelerate the damage
of more cables, which poses a serious threat to the safety, integrity, and static and dynamic
characteristics of bridge structures. Therefore, damaged cable identification is important
for cable-stayed bridges. Most of the cable monitoring approaches obtain the cable forces
through various ways to evaluate the damage state of the cables [18]. A damage assess-
ment and warning method for stay cables based on the acoustic emission (AE) technique
and the fractal theory was developed by Li et al. [19]. A hybrid structural health monitor-
ing approach for condition assessment of cable-stayed bridges was presented by Arjo-
mande et al. [20]. The structural integrity of cables is evaluated through incorporating
visual inspection, ultrasound test, and local and global vibration analysis data. A combi-
national identification method of three efficient techniques, including statistical analysis,
clustering, and neural network models, was proposed to detect damaged cables in a cable-
stayed bridge by Son et al. [21]. A vibration-based model-free damage diagnosis method for
stay cables using the changes in natural frequencies was proposed by An et al. [22]. This
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method divides the stay cable into a short part and a long part by a steel bar. The local
frequency change in the short part due to the damage in the whole stay cable is amplified
dramatically. Then, small damage of a stay cable can be diagnosed. Based on the vibration
signal, a Shannon entropy-based methodology for detecting and locating a lost cable in a
cable-stayed bridge exposed to ambient vibrations was presented by Jose et al. [23]. A
methodology based on statistical features, principal component analysis (PCA), and Ma-
halanobis distance (MD) for detecting and locating cable loss using vibration signals was
proposed by Jesus et al. [24]. These two methods were validated in the Rio Papaloapan
Bridge (Veracruz, Mexico) with a 100% effectiveness to detect the lost cable location. Based
on the concept of influence surface, the slope of the linear relationship of the matched
cable tension ratio of two cables located on the same side is used as the damage sensitive
feature. A long-term condition assessment method for stay cables in cable-stayed bridges
using the monitored cable tension forces under operational conditions was developed by
Peng et al. [25]. An improved residual force algorithm independent of the static load vec-
tor for cable damage identification in cable-stayed bridges was proposed by Fang et al.
[26]. By combining two different static loading modes, a damage indicator vector was de-
fined for damage localization and quantification. The relative strain variation in the an-
chor was used to detect wire breakage in unbonded tendons by Abdullah et al. [27]. The
feasibility of an impedance-based stress monitoring method for local-strand breakage de-
tection in multi-strand anchorage systems was investigated by Dang et al. [28]. A method
to detect the location and the magnitude of the damaged cables of cable-stayed bridges
based on the dynamic distributed sensing of bridge deck strains was introduced by
Scarella et al. [29].

All the above studies identified the damage on girders or cables in cable-stayed
bridges. However, there are still some limitations. For instance, most of the methods can
only identify high-severity damage, and have a low anti-noise capability. Furthermore,
few of them could identify multiple damage. To overcome the above limitations, the au-
thors are committed to solving these problems, and a support vector machine (SVM)-
based method was developed to identify single and double damaged cables from bridge
deck strain differences in a previous study [18]. The data from all damage scenarios are
needed to train the SVM model for damage detection. However, it is difficult or even im-
possible to obtain the data for all damage scenarios, especially multiple damage scenarios.
Therefore, this paper adopts the single damaged cable identification index vector in the
previous paper [18] to construct a basis vector matrix (BVM), and a new method based on
the BVM is proposed for identification of multiple damaged cables. This method can di-
rectly identify single or multiple damaged cables, including early small damage. The re-
lationship between the cable cross-section area and the bending strain of the bridge deck
is established firstly using a force method. Then, the damage index vector (DIXV) is ob-
tained from the difference between the maximum bending strains of the bridge deck with
intact and damaged cables. The DIXV is normalized in [0, 1] to obtain the BVM. Finally,
the damage indicator vector (DIV) is obtained by the relationship between the DIXV and
BVM to identify the damaged cables. The proposed method is verified using a field cable-
stayed bridge for identification of single or multiple damaged cables.

2. Basis Vector Matrix Method
2.1. Relationship between the Cable Tension and the Bending Strain

The damage of a cable is mainly caused by the fracture or failure of the steel wire due
to corrosion, fatigue, or overload, and it results in a decrease in the effective cross-section
area of the cable. Therefore, the damage of the cable is usually simulated by reducing the
cross-sectional area of the cable in the finite element model. At the same time, when the
cable is damaged, the bearing capacity of the cable will be decreased and the cable forces
of the whole bridge will be redistributed. Then, the internal force and strain of the bridge
are changed correspondingly. To illustrate the relationship between the cable damage and
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the bending strain of the girder underneath, a single tower cable-stayed bridge is used, as
shown in Figure 1. The side view of the cable-stayed bridge is shown in Figure 2a. The left
end of the bridge is a pin support to restrict the vertical and longitudinal linear displace-
ments, and the right end and the tower are roller supports to restrict the vertical linear
displacement, as shown in Figure 2b. The vehicle is considered as two moving concen-
trated forces F1 and Fe. In Figure 2a, the beam bridge is a statically indeterminate contin-
uous beam. The force method can be used to calculate the internal force of the cable-stayed
bridge under the vehicle at x, and the relationship between the cable tensile stiffness EA
and the bending strain of the beam can be derived. The derivation procedure is as below.

. ‘ X8
(b)

Figure 1. A single tower cable-stayed bridge. (a) The cable-stayed bridge; (b) the girder layout [1].
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Figure 2. The cable force calculation diagram of the cable-stayed bridge. (a) A simple plane calcula-
tion diagram; (b) calculation diagram after the cables substituted by the cable forces; (c) the force
method basic system.

The basic system is obtained by removing redundant constraints, as shown in Figure
2c. The equation is established by the force method,
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where F;(x) is the unknown redundant reaction forces of the redundant constraints.
A;(x) are the displacements corresponding to the unknown redundant reaction forces in
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the original structure (Figure 2a). A;p(x) are the displacements corresponding to the un-
known redundant reaction forces in the basic structure under the vehicle loads, also called
free term. Ej, A;, L; are the ith cable’s elastic modulus, cross-sectional area, and length, re-
spectively. §;; is the flexibility coefficient, that is, the displacement along the ith unknown
redundant force when the jth unknown redundant force is 1 and the other unknown re-
dundant forces are all 0. Equation (1) can also be rewritten as

L
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Equation (2) can be written as the matrix form,
8F = -, ©)

where 8 = 8, + 8, 6y, and 8. are the flexibility matrixes, which are respectively related
to the parameters of the beam and the cable, independent of the external force. They are
written as
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F is the column vector of the unknown redundant reaction forces. A, is the column
vector of the free terms.
From Equation (3), F is obtained as

F=-674, (6)

Then, the redundant reaction forces F can be regarded as the external loads acting on
the basic structure shown in Figure 2c. When the basic structure is statically determinate,
the bending moments M(x") can be obtained at any cross-sections by the static equilib-
rium equation. Further, the bending strain £(x’) at the lower beam of any cross-section
x" can be obtained as

e(x) = M @)

where M(x') is the bending moment at the cross-section x', y is the distance between the
neutral axis and the bottom surface of the cross-section x’, and EI is the bending stiffness
of the beam.

From Equations (2), (6), and (7), when the cable cross-section area is reduced, the
cable forces will be redistributed. As a result, the bending moments and bending strains
on the beam also change accordingly. It means that the change in the bending strain of the
beam can reflect the damage of the cable. Similarly, the equations for the three-dimensional
bridge structure under vehicle loads can be obtained but that is not in the scope of this

paper.
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2.2. Damage Index for the Damaged Cables of Cable-Stayed Bridges

It is well known that damage will reduce the tensile stiffness EA of the cable. In order
to facilitate simulation, it is assumed that the elastic modulus E is constant when the cable
is damaged. Then, the cable damage is described using the cable cross-section area reduc-
tion. The cable damage severity is defined as

_ EAjn—EAq4a

de =202 % 100% = 2242 X 100% )

m n
where de is the cable damage severity, and Ain and Ada are the cross-section areas of the
intact and damaged cables, respectively.

In practice, the bridge deck bending strains under operational conditions can be mon-
itored through a long-term monitoring system. When a vehicle passes over the bridge, the
bending strains are varied over time and that is related to the vehicle location on the
bridge. In this study, the maximum bending strains of the time history strain responses at
measurement locations are extracted as the features of the bending strain data. The meas-
urement locations on the bridge deck are around the cable anchors [18]. Then, the damage
index vector (DIXV) is defined as the absolute value of the difference between the maxi-
mum bending strains of the bridge at measurement points with or without damaged ca-
bles, that is,

. . . . T
DIXVItde = (yihde . yJhde BN = (|Agy| o |Ag] .. |Ag,)DT ©)

n

where DIXV/#2¢ and x/*¢ are DIXV and the ith damage index for cables of the bridge
with the j# damaged cable. n is the total number of measuring points. |Ag] is
|Ag;| = [max(g;in) — max(gaa)l (10)

where max(g;,)and max(g;q,) are the maximum bending strains of the ith measured
point with or without the damaged cable, respectively.

2.3. Basis Vector Matrix

When the j# cable damage severity is de, DIXV/*%¢ is normalized as

i xj#,de
X" = "wae (11)

max

#de . . ; i# . .
where x]2%¢ is the maximum value of DIXV/#49¢, and X/ is the corresponding normal-

ized value of the ith measurement point with the j# damaged cable.
Then, the basis vector BV/* with the j# damaged cable is obtained.

. . . i T
BV = (x* .. xJ* . X)) (12)
The basis vector matrix (BVM) can be written as

rX11# X12# le# le#]

A
BVM = [y By?* .. Byi* .. va#]=iX3# XEoe xt X{"#I (13)

| : S R A A

lxé# szz# XT{L# X;"#Jnxm

where BVM is the basis vector matrix, m is the number of damaged cables. BVM is an nxm
matrix.

2.4. Damaged Cable Identification
From Equations (11)—~(13), DIXV/#4¢ can be expressed as
DIXVi#de = BYM - DIV = BV/J# . xJ*:d¢ (14)

where DIV is the damage indication vector (DIV),
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pIv=(0 - xM*e . 0) (15)

xmax

From Equation (14), DIV can be calculated as below:
DIV = BVM™! - DIXV/#de (16)

where BVM™! is the inverse matrix of BVM. In fact, for the case with the j# damaged
cable, all components of DIV should be 0, except the jth component is x]{fax # 0. Accord-
ing to the location of the nonzero components in DIV, the number of damaged cables can
be identified. For the scenario with several damaged cables, the location of the nonzero
components in DIV correspond to the number of damaged cables. In practice, there may
be some small nonzero items in the DIV due to noise interference, and a threshold can be
set to eliminate the noise effect. For example, the threshold can be determined by the max-
imum value in the DIXV that corresponds to the minimum allowable damage severity,
such as 3%, etc.

After the damaged cables are identified, the damaged severity of these cables can be
identified in the next step. It is known that the maximum value xr];,#ax in DIXV’* increases
with the increase in damage severity de [18]. When the cable damage severity de varies
continuously, xrl;l#ax is a nonlinear function of de. The relationship between xr];,#ax and de
can be established using the nonlinear regression method, that is,

de; = f; (xmax (17)
where de; is the damage severity of the j# cable, fi( ) is the nonlinear functional relation-
ship between de; and xrj:ax, that is, the damage severity identification function.

Finally, the damage severity of the j# cable can identified by substituting the nonzero
component DIV; into Equation (17).

The flow chart of the BVM method for the damaged cable identification is shown in
Figure 3.
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&max of the intact bridge
and the damaged bridge
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Figure 3. The flow chart of the BVM damaged cable identification procedure.
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3. Applications
3.1. Description of the Structural Health Monitoring System

A field cable-stayed bridge, as shown in Figures 1 and 4, is used to verify the pro-
posed method. The bridge is a single-lane highway bridge with a span of 46 m and a width
of 6.3 m. There are 16 stay cables in a semi-fan arrangement and the single A-shaped steel
tower is 33 m high. The bridge deck is a composite steel-concrete deck. The concrete deck
has a thickness of 0.16 m, it is supported by four I-beam steel girders. The girders are
internally attached by a set of equally spaced cross-girders, shown in Figure 1b [1]. A long-
term monitoring system has been installed on the bridge with an array of strain gauge
sensors installed under the bridge deck at the intersection of the girders and floor beams
(shown in Figure 5). Figure 5b shows the magnified view of the strain gauge array be-
tween CG6 and CG7 marked in the yellow area in Figure 5a. Figure 6 shows the sensor
locations of the shear strain gauge and the uniaxial strain gauges on the cable-stayed
bridge. An HBM Quantum-X data acquisition system (HBM, Darmstadt, Germany) was
adopted for signal conditioning and data logging. The Quantum system provides an inte-
grated and reliable device to log high-quality data with 24-bit resolution with a bandwidth
capability of 0-3 kHz. The response signals of the bridge were collected at 600 Hz while
test vehicles were traveling over the bridge [30].
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Figure 4. Schematic view of the cable-stayed bridge [1]. (a) Elevation view of the bridge; (b) bridge
mast.
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Figure 5. Illustration of the strain gauge array of the cable-stayed bridge structural health monitor-
ing system. (a) The deck plan; (b) the strain gauge array between CG6 and CG7.
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Figure 6. Sensor location on the cable-stayed bridge [30]. (a) Shear strain gauge on the web of the
girder; (b) uniaxial gauge under the deck; (c) uniaxial gauge under the flange of the girder.

3.2. Finite Element Model of the Cable-Stayed Bridge

Figure 7 shows the finite element model (FEM) of the cable-stayed bridge which is
the same as the FEM in the literature [18]. The steel-reinforced concrete part is simulated
by SHELL63 with a thickness of 160 mm. The lower longitudinal and transverse girders
are simulated by BEAM189 with Universal Beam (410UB54) cross-section properties. The
cables are simulated by LINK10. The bridge mast is simulated by BEAM189 with variable
cross-sections, and all degrees of freedom of the mast base are restrained. As shown in
Figures 1 and 2, the left end of the bridge is a pin support under every longitudinal girder
and the right end of the bridge is a roller support. The vehicle load is simulated by four
moving concentrated forces acting on the bridge.
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Figure 7. The FEM of the cable-stayed bridge under vehicle loads [18].

To verify the FEM of the cable-stayed bridge, the frequencies and modes are calcu-
lated using FEM and compared with the field testing results. Table 1 lists the first five
frequencies of the cable-stayed bridge by FEM and the comparison with the field testing
results by Sun et al. [31]. Figure 8 shows the comparison of the first mode shapes by FEM
and the field testing [32].

Table 1. Comparison of the first five frequencies by the proposed model and experimental results.

Frequency (FEM) Frequency (Test) Difference
Mode No. (Hz) (Hz) [31] (%) MAC
1 2.038 2.014 1.192 0.978
2 3.163 3510 9.886 T~
3 4.088 3.645 12154 T~
4 5.329 5.538 3774 T~
5 6.530 6.068 7.614

The difference = absolute (Frequency (FEM)—Frequency (Test))/Frequency (Test) x 100%.

(a) (b)

\ \ \

Mode 1: 2.039 Hz Mode 2: 3.301 Hz Mode 3:4.254 Hz

Mode 4: 5.329 Hz Mode 5:6.530 Hz

Figure 8. The first five mode shapes of the cable-stayed bridge [18]. (a) The 1st test mode shape [32];
(b) the 1st FEM mode shape at side; (c) the first five FEM mode shapes in 3D perspective.

In Table 1, the mode’s modal assurance criterion (MAC) [33] is calculated by
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(0§ 0f) (o o)

where @f and @7" are the ith calculated modal vector and measured modal vector, re-
spectively. When MACi is closer to 1, @f agrees well with @7".

From Table 1, the frequencies by FEM are very close to the experimental results, and
the maximum difference is 12.154%, which is the third frequency. Especially, the differ-
ence between the first frequencies by FEM and the test is 1.192%, and the corresponding
MAC1is 0.978, close to 1. It should be mentioned that only the first mode is measured and
only the MAC of the first mode is calculated in Table 1.

In Figure 8, it can also be found that the 1st modal shapes by FEM and the test agree
well. Therefore, the FEM of the cable-stayed bridge can represent the bridge.

Further, as DIXV is calculated using the bending strains, the bending strains by FEM
are also compared with the measured data to further verify the model. The measurements
of sensor SU15 (shown in Figure 5), which is located at point A in Figure 7, are used. The
field test vehicle is a Holden Colorado Ute, as shown in Figure 9a. The gross weight of the
test vehicle is 2.20 t, with front and rear axle loads of F1=1.20 t and F2=1.00 t, respectively.
The distance between these two axles is 3.10 m, and the wheel spacing is 1.75 m [1]. The
axle load is evenly distributed between two wheels. Therefore, the vehicle load is simpli-
fied as four moving concentrated forces acting on the bridge, shown in Figure 7. The test
vehicle passed the bridge at a constant speed of v =10 km/h along the center line of the
bridge deck. Figure 9b shows the comparison of the bending strains of the longitudinal
girder at point A by FEM and the measurements. From Figure 9b, the results show that
they have a similar trend, and the bending strain peaks corresponding to the front and
rear wheels, respectively, are very close. It shows that the proposed model is reliable and
accurate to determine the bending strains. By Equations (9) and (10), DIXV can be calcu-
lated by the maximum bending strains. Therefore, the finite element model is reliable and
accurate to obtain the basis vector matrix BVM.

MAC; = (18)

bending strain/ue

Figure 9. The test vehicle and the bending strains. (a) Holden Colorado Ute [1]; (b) the measured
bending strain (black line) [1] and the FEM bending strain (red line) [18].

3.3. Cable Damage Identification

As shown in Figure 2a, the cables are symmetrically arranged along the longitudinal
center line of the bridge deck, and they are numbered as listed in the brackets. Since Cables
5#-8# and Cables 13#-16# are directly anchored on the anchorage footing, only the dam-
age identification of Cables 1#—4# and Cables 9#-12# is studied here. The damage is sim-
ulated in Cables 1#—4# and Cables 9#-12# with damage severities of 10%, 20%, and 30%,
respectively. DIXVs are calculated and their poly line diagrams are shown in Figure 10.
The measured points are on the bottom surface of the longitudinal girders close the an-
chors of Cables 1#—4# and Cables 9#-12#.
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Figure 10. The poly lines of DIXV with 10%, 20%, and 30% in Cables 1#-4# and Cables 94-12#. (a)
Cable 1#; (b) Cable 24#; (c) Cable 3#; (d) Cable 4#; (e) Cable 9%; (f) Cable 10#; (g) Cable 11#; (h) Cable
124

Figure 10 shows that the DIXV/*9¢ poly lines are significantly different from
DIXV*#de for j#k. When Cable j# is damaged, the maximum value of DIXV/#9¢ increases
with the damage severity. For two cables in symmetrical positions, such as Cables 1# and
94#, the value of DIXV at measured position 1 for Cable 1#, due to its damage, is equal to
that at the symmetrical measurement point 5 due to the damage in Cable 94.

The DIXVs are normalized to obtain the basic vectors BV/#4¢ by Equation (11). Fig-
ure 11 shows the poly line diagrams of the normalized DIXVs for Cables 14-4#, and they
are BV/#4¢ The diagrams for Cables 94—12# can be obtained by the symmetry.

1 1 1
0.8 BY#10% 0.8 —Ry3#10% 0.8 —py+#.10%
0.6 e BV 1200 0.6 o BY3H20% 061 [ Yo BV ##20%

Y= 3 1

04 04 0.4
0.2 02 02

0 - — 0 . 0 e

1 23 456 7 8 1 23 456 7 8 I 2 35 4 5 6 7 8 1 23 456 7 8
Measuring point Measuring point Measuring point Measuring point
(a) (b) (© (d)

Figure 11. The poly line diagrams of BV/#4¢ for Cables 14—4# with 10%, 20%, and 30% damage,
respectively. (a) Cable 1#; (b) Cable 2#; (c) Cable 3#; (d) Cable 4#.

As shown in Figure 11, the basis vectors are not changed with the damage severity.
For simplification, BV/#%¢ can be abbreviated as BV/#. For Cable j#, BV/# can be ob-
tained from the corresponding DIIV/#9¢ Then, the basic vector matrix (BVM) for dam-
aged cable identification can be written as

BVM = [BV'* BV** BV** BV** BV®* BV'** BV''* BV'?¥] (19)

The DIXV for two damage cables is also studied here. DIXV#20%4#10% js the DIXV
using FEM when Cables 1# and 4# have 20% and 10% damage, respectively.
DIXV1#20%:4#10% s obtained by the sum of DIXV'#20% and DIXV*10%  eg,
DIXVH20%10% = prxy1#20% 4 pIXV4*19% Their poly line diagrams are shown in Fig-
ure 12.
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Figure 12. Comparison of DITV:*2%4#10%htained by FEM and DIIV:*20%*#1%% ohtained by su-
perposition.

Figure 12 shows that the two poly lines are very close to each other. It means that
DIV F0%A10% 45 almost equal to DIIV#20%*#10% and the proposed BVM method in
Section 2 can be used to identify multiple damaged cables simultaneously.

3.4. The Hypothetical Damage Scenarios

To verify the performance and robustness of the proposed method, the hypothetical
damage scenarios are listed in Table 2, including single-damage scenarios and multiple-
damage scenarios. DIXVs for all damage scenarios are calculated by FEM and white noise
is added to simulate the measurements by Equation (20).

DIXVi€ = DIXV X (1 + eR))(i = 1,2,++-,m) (20)

where DIXV/# is the DIXV of the jth damaged scenario with the measurement noise level
¢. Here, € is 5%, 10%, 15%, and 20%, respectively. R; is the ith value of the normally dis-
tributed random data with a mean value of 0 and a standard deviation of 1. m is total
number of measured points. Eight measurement points corresponding to Cables 14—4#
and Cables 9#-12# are adopted.

Table 2. The hypothetical damage scenarios.

SDCZT:EZ CIZ;;: i;f;il Damage Severity (%) Remarks

© 1# 20

@ 44 10 Single cable damaged

©) 10# 25

@ 14 20
4# 10 Two cables damaged

® 2# 20 simultaneously
124 20

® iz ;,8 Threg cables damaged
10 20 simultaneously
14 30

@ 3# 10 Four cables damaged
o# 20 simultaneously
114 30

To verify the robustness of the proposed method, 100 samples for the DIXV of each
damage scenario are generated by adding the noise. For instance, DIXV,***% has 100
DIXVs with 5% measurement noise, k = 1,2,---,100. The test dataset with 2800 DIXVs is
obtained.
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Here, BVM is only constructed by BV/#20% and is used to identify the damaged
cables with other damage severities, such as 10%, 30%, to test the performance of the pro-

posed BVM method.

3.5. Damaged Cable Identification

In this section, the BVM method is used to identify the damaged cable labels in Table
2. The test dataset is substituted into Equation (16) to obtain DIV. The componentsin DIV
are compared with the set threshold to identify the damaged cable labels and the thresh-
old is 5 in this study, which is determined by the maximum value in DIXV'#3%_ Figure
13 shows the DIV histogram for seven damage scenarios calculated by the DIXV with
different noise levels. Table 3 lists the identified damaged cables using the BVM method
and the SVM method [18], respectively.

From Figure 13, the DIV values corresponding to the damaged cables are much
larger than that of the intact cables. Although the measurement noise has a large influence
on DIV, the components corresponding the damaged cables are still identified success-
fully. With the noise level increases and more cables damaged simultaneously, some com-
ponents corresponding to intact cables may be larger than the threshold value 5.

From Table 3, the SVM method [18] can only correctly identify the damaged cables
for Scenarios (D~(5), which are single or double cable damage scenarios. The BVM
method can correctly identify the damaged cables in Scenarios (D~(4) regardless of noise
level. For Scenarios (5) and (6), the damaged cables are still identified successfully when
the noise level is under 15%. With the noise level increasing, some intact cables adjacent
to the damaged cables are misidentified. For the four damaged cables in Scenario (7), the
damaged cables are correctly identified and the cables adjacent to damaged ones are misiden-
tified.

To deal with the misidentified cables, Figure 14 shows the sample proportion histo-
gram of the identified cables from the test dataset with 2800 DIXVs. From Figure 14, it
can be seen that the correct sample proportions of the damaged cables are all above 90%.
For Scenarios (D~(5), the sample proportions are approximately 100%. Although the sam-
ple proportion of Cable 3# is the lowest among the damaged cables in Scenario (7), it is
92%. For other damage scenarios, the sample proportion of any intact cables is less than
40%. For Scenario (7) with four damaged cables, the sample proportion of the intact Cable
2# is only 71%.

The proportion confidence interval is calculated by Equation (21) to validate this

methOd'S rellablllty .
p(1-p p(1-p

where p is the sample proportion, z is the critical value corresponding to the confidence
level, n is the sample size. Here, the confidence level is 95%, the corresponding z is 1.96,
and n is 100.

For the lowest sample proportion of 92% of the damaged Cable 3# in Scenario (7), the
proportion confidence interval is (87%, 97%). For the highest sample proportion of 71% of
the intact Cable 2# in Scenario (7), the proportion confidence interval is (62%, 80%). There-
fore, in actual cable-stayed bridge damage identification, it is recommended to collect sev-
eral sets of DIXV as far as possible to identify the damaged cables. When the sample iden-
tification proportion of a cable is greater than 90%, it can be confirmed as a damaged cable.

In summary, the BVM method proposed in this paper can quickly and accurately
identify single damaged cable and multiple damaged cable scenarios at one time. It also
has a good generalization and anti-noise capability.
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Figure 13. Histogram of DIV obtained from a set of DIXV for each damage scenario without noise
and adding 5%, 10%, 15%, and 20% noise, respectively. (a) Scenario (1; (b) Scenario (2); (c) Scenario
(3); (d) Scenario (3); (e) Scenario (5); (f) Scenario (6); (g) Scenario (7).
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Figure 14. The sample proportion histogram of the cable labels identified by the test dataset with
2800 DIXVs. (a) Scenario (1); (b) Scenario (2); (c) Scenario (3); (d) Scenario (4); (e) Scenario (5); (f)

Scenario (6); (g) Scenario (7).
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Table 3. Results of identified damaged cables by a set of DIXVs for each damage scenario using the
BVM method and the SVM method [18].

Noise

Scenario Scenario Scenario

Level Method Scenario (1) @ ® ® Scenario (5) Scenario (6) Scenario (7)
0% BVM 1 4 10 1,4 2,12 1, 4,10 1,2,3,9,10,11
SVM 1 4 10 1,4 2,12 —— ——
59, BVM 1 4 10 1,4 2,12 1,4,10 1,2,3,9,10,11
SVM 1 4 10 1,4 2,12 == ==
10% BVM 1 4 10 1,4 2,12 1,4,10 1,2,39 11
SVM 1 4 10 1,4 2,12 —— ——
15% BVM 1 4 10 1,4 1,2,3,12 1, 4,10 1,3,9,10, 11
SVM 1 4 10 1,4 2,12 —— ——
20% BVM 1 4 10 1,4 2,11,12 1,3,4,9, 10 1,3,9,10,11
SVM 1 4 10 1,4 2,12 —— ——
“— —” means this item does not exist. The values in the blue zone are the identified damaged cables
using the SVM method [18].
3.6. Damage Severity Identification
The damage scenarios in Table 2 are used in this section. Table 4 shows the damage
severity identification functions. These functions are obtained by cubic polynomial regres-
sion in Matlab based on the maximum values of DIXV when the cables have 10%, 20%,
and 30% damage, respectively. Here, x is the nonzero component in DIV, which is greater
than the threshold value.
Table 4. The damage severity identification function, when a single cable is damaged.
Damaged Cable Label Damage Severity Identification Function
1#(9#) dei(x) =1.268 x 10-7x? - 3.624x10-%x2 + 0.006903x — 4.684x10-17
2#(10#) dez(x) = 9.334 x 10708x3 — 2.985x10-%x2 + 0.006615x + 4.372x10-17
3#(11#) des(x) =2.758 x 10708x3 — 1.341x10-9x2 + 0.004704x + —6.592x10-17
44(12#) des(x) =1.148 x 10-08x3 — 7.828x10-%x2 + 0.004198x + —3.504x10-17

The damage severity can be identified by substituting the component x into the cor-
responding cable damage severity identification function. Tables 5 and 6, respectively, list
the identified results and errors for seven damage scenarios corresponding to Figure 13
using the BVM method and the SVM method [18]. The error is calculated by the difference
between the identified damage severity and the true damage severity as

error; = de; — D; (22)

where dei and D: are the identified and true damage severities of the ith cable.

The performance of the BVM method and the SVM method [18] is measured by mean
squared error (MSE) [34], and the square of the regression correlation coefficient (R?) and
the uncertainty interval (U95) [35]. The mathematical relations of these parameters are
given as

MSE =~%L, (de; — D;)? (23)
2 — E:Iiv=1de'i2
R = Z?’:ldeiz_zli\il(dei_[)i)z (24)
v = %\[Z?ﬂwi = D) 4+ Z,(Di — dep)? (25)

where N is the number of data samples, and here it is 100. D is the mean value of the true
damage severity, and here it is Di. When MSE is closer to 0, R? is closer to 1, and U95 is
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closer to 0, the performance of this method is better. The MSE, R?, and U95 of the identified
results for seven damage scenarios are listed in Table 7, Table 8 and Table 9, respectively.
Tables 7-9 also list the MSE, R?, and U95 of the SVM method to compare these two meth-
ods’ performance. From Tables 5 and 6, with the increase in noise level, the two methods’
results all fluctuate around the true value. The errors are less than 10% except for two
cases corresponding to Cable 1# in Scenario (4) and Cable 94 in Scenario (7), respectively,
as shown in Table 6. For Scenario @, the errors are large. The identified errors of the
misidentified cables in Table 5 are all under 10% except that of Cable 104 of Scenario (7)
that is 13.05% when the noise level is 15%. It indicates that even if there are misidentified
cables, the identified results will be small.

Table 5. The damage severity identification results using the BVM method and the SVM method
[18].

The Damage

Damaged Exact Damage Severity

Identified Damage Severity (%)

. o Noise Noise  Noise Noise  Noise
Scenario Cable (%) Method 0% 5% 10% 15% 20%
@ 1# 20 BVM 19.99 20.26 18.14 22.15 22.80
SVM 19.43 19.17 20.25 23.57 19.28
BVM 10.00 9.76 10.81 7.64 5.78
@ 4 10 SVM 10.14 10.29 9.36 9.94 9.34
©) o 25 BVM 25.00 26.37 24.46 29.71 29.02
SVM 24.73 25.01 23.04 23.06 26.09
1# 20 BVM 19.99 22.09 20.88 13.43 30.13
@ SVM 19.28 19.32 20.07 19.61 23.80
44 10 BVM 10.01 10.26 9.78 11.69 12.32
SVM 7.92 8.16 8.68 7.81 5.06
ok 20 BVM 20.41 20.91 20.67 21.13 16.17
SVM 19.16 19.34 19.48 18.39 13.05
104 20 BVM 19.70 19.46 22.86 19.83 17.47
® SVM 19.31 18.21 20.21 19.39 19.73
14 —— BVM —— —— —— 5.36 ——
34 —— BVM —— —— —— 3.42 ——
11# —— BVM —— —— —— —— 3.00
1# 10 BVM 941 9.64 10.46 9.22 8.11
44 30 BVM 29.73 28.64 28.95 26.48 34.61
® 10# 20 BVM 20.66 20.87 22.81 27.99 15.87
3# —— BVM —— —— —— —— 9.60
94 —— BVM —— —— —— —— 3.91
14 30 BVM 28.02 26.44 21.01 25.35 30.31
3# 10 BVM 6.78 6.42 3.82 11.75 9.93
@ ot 20 BVM 15.00 15.31 8.59 13.11 22.74
11# 30 BVM 28.26 28.73 27.63 22.30 30.58
24 —— BVM 4.08 7.48 5.50 —— ——
104 —— BVM 4.69 3.52 —— 13.05 5.78
The bold italics indicate the misidentified damaged cable labels and their identified damage sever-
ity. “——" means this item does not exist. The values in the pink zone are the identified damage

severity using the SVM method [18].
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Table 6. The error of the identified damage severity using the BVM method and the SVM method

[18].
The Damage Damaged Exact Damage Error.of Identified Dama.ge Severity (%) .
Scenario Cable Severity (%) Method Noise  Noise  Noise Noise Noise
0% 5% 10% 15% 20%
BVM -0.01 0.26 -1.86 2.15 2.8
© 1 20 SVM -0.57 -0.83 0.25 3.57 -0.72
BVM 0 -0.24 0.81 -2.36 -4.22
@ b 10 SVM 0.14 0.29 -0.64 -0.06 -0.66
BVM 0 1.37 -0.54 471 4.02
® 10# 2 SVM -0.27 0.01 -1.96 -1.94 1.09
14 20 BVM -0.01 2.09 0.88 -6.57 10.13
@ SVM -0.72 -0.68 0.07 -0.39 3.80
At 10 BVM 0.01 0.26 -0.22 1.69 2.32
SVM -2.08 -1.84 -1.32 -2.19 -4.94
ot 20 BVM 0.41 0.91 0.67 1.13 -3.83
® SVM -0.84 -0.66 -0.52 -1.61 -6.95
14 20 BVM -0.3 -0.54 2.86 -0.17 -2.53
SVM -0.69 -1.79 0.21 -0.61 -0.27
1# 10 BVM -0.59 -0.36 0.46 -0.78 -1.89
® 4# 30 BVM -0.27 -1.36 -1.05 -3.52 4.61
10# 20 BVM 0.66 0.87 2.81 7.99 -4.13
14 30 BVM -1.98 -3.56 -8.99 -4.65 0.31
@ 3# 10 BVM -3.22 -3.58 -6.18 1.75 -0.07
o# 20 BVM -5 -4.69 -11.4 -6.89 2.74
11# 30 BVM -1.74 -1.27 -2.37 -7.7 0.58
The values in the pink zone are the errors of the identified damage severity using the SVM method
[18].
Table 7. The MSE of the identified damaged severity of the 7 damage scenarios’ test dataset using
the BVM method and the SVM method [18].
The Damage Damaged Exact Damage MSE of Identified Damage Severity
Scenario Cable Severity (%) Method Noise 5% Noise 10% Noise 15% Noise 20%
® 1# 20 BVM 0.0001 0.0006 0.0013 0.0019
SVM 0.7590 1.891 3.889 5.9577
@ A 10 BVM 0.0000 0.0001 0.0003 0.0005
SVM 0.0655 0.2088 0.3985 1.1179
BVM 0.0003 0.0013 0.0024 0.0041
® 10% 25 SVM 0.6353 2.4003 4.7062 10.0898
1# 20 BVM 0.0001 0.0005 0.0013 0.0018
@ SVM 1.0166 2.4357 4.3462 59171
4 10 BVM 0.0000 0.0001 0.0003 0.0005
SVM 4.1723 4.5239 5.0131 5.5097
ot 20 BVM 0.0002 0.0007 0.0022 0.0040
® SVM 1.0083 1.5974 2.9434 4.7203
14 20 BVM 0.0001 0.0005 0.0011 0.0016
SVM 1.0372 3.5539 6.3826 10.2385
1# 10 BVM 0.0001 0.0003 0.0006 0.0014
® 4# 30 BVM 0.0002 0.0011 0.0015 0.0036
10# 20 BVM 0.0003 0.0008 0.0019 0.0039
@ 1# 30 BVM 0.0007 0.0013 0.0044 0.0046




Sensors 2023, 23, 860 20 of 23

34 10 BVM 0.0011 0.0014 0.0023 0.0021
9# 20 BVM 0.0033 0.0037 0.0080 0.0076
11# 30 BVM 0.0009 0.0017 0.0035 0.0055

The values in the pink zone are MSE of the identified damage severity using the SVM method [18].

Table 8. The R? of the identified damaged severity of the 7 damage scenarios’ test dataset using the
BVM method and the SVM method [18].

The Damage Damaged Exact Damage R? of Identified Damage Severity
Scenario Cable Severity (%) Method Noise 5% Noise 10% Noise 15% Noise 20%
® 14 20 BVM 1.0028 1.0154 1.0319 1.0484

SVM 1.0020 1.0050 1.0101 1.1056
BVM 1.0028 1.0096 1.0296 1.0516

@ 4 10 SVM 1.0006 1.0020 1.0039 1.0107
BVM 1.0053 1.0203 1.0390 1.0720

® 10% 25 SVM 1.0010 1.0039 1.0075 1.0166
1# 20 BVM 1.0032 1.0114 1.0334 1.0470

@ SVM 1.0028 1.0065 1.0116 1.0154
" 10 BVM 1.0033 1.0091 1.0255 1.0524

SVM 1.0701 1.0768 1.0864 1.0927

ot 20 BVM 1.0055 1.0181 1.0541 1.1033

® SVM 1.0028 1.0043 1.0080 1.0129
BVM 1.0038 1.0128 1.0305 1.0412

124 20 SVM 1.0028 1.0095 1.0180 1.0269
1# 10 BVM 1.0156 1.0297 1.0738 1.1627
® 44 30 BVM 1.0028 1.0122 1.0177 1.0420
104 20 BVM 1.0062 1.0192 1.0488 1.0982
14 30 BVM 1.0085 1.0167 1.0622 1.0556
@ 34 10 BVM 1.2923 1.3935 1.8755 1.6798
o# 20 BVM 1.1725 1.1846 1.4798 1.3949
114# 30 BVM 1.0113 1.0213 1.0467 1.0714

The values in the pink zone are R? of the identified damage severity using the SVM method [18].

Table 9. The U95 of the identified damaged severity of the 7 damage scenarios’ test dataset using
the BVM method and the SVM method [18].

The Damage Damaged Exact Damage U95 of Identified Damage Severity
Scenario Cable Severity (%) Method Noise 5% Noise 10% Noise 15% Noise 20%
@ 1# 20 BVM 0.0021 0.0048 0.0071 0.0087

SVM 0.1708 0.2696 0.3865 0.4784
BVM 0.0010 0.0019 0.0033 0.0045

@ 4 10 SVM 0.0502 0.0896 0.1237 0.2072
BVM 0.0036 0.0072 0.0096 0.0126

® 10¢ 25 SVM 0.1562 0.3037 0.4252 0.6226
1# 20 BVM 0.0022 0.0042 0.0071 0.0083

@ SVM 0.1976 0.3059 0.4086 0.4768
" 10 BVM 0.0011 0.0019 0.0032 0.0045

SVM 0.4004 0.4169 0.4388 0.4601

iy 20 BVM 0.0030 0.0053 0.0091 0.0124

SVM 0.1968 0.2477 0.3363 0.4258

1o 20 BVM 0.0024 0.0044 0.0066 0.0079

SVM 0.1996 0.3695 0.4952 0.6272
1# 10 BVM 0.0023 0.0033 0.0050 0.0073
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44 30 BVM 0.0031 0.0064 0.0077 0.0117
10# 20 BVM 0.0031 0.0056 0.0086 0.0122
1# 30 BVM 0.0051 0.0072 0.0130 0.0133
@ 34 10 BVM 0.0064 0.0073 0.0094 0.0090
o# 20 BVM 0.0112 0.0119 0.0175 0.0171
114# 30 BVM 0.0058 0.0081 0.0115 0.0145

The values in the pink zone are U95 of the identified damage severity using the SVM method [18].

As listed in Tables 7-9, MSE and U95 of the BVM method are close to 0, and R? is
close to 1. They all increase with the noise level. The MSE, R?, and U95 for Cables 3# and
9# of Scenario (7) are much greater than that of other scenarios. For Cable 3# of Scenario
@ with 15% measurement noise, the R? value is 1.8755 which is greater than 1. That is
because the damage severity of Cable 3# in Scenario (7) is 10% and the measurement noise
is 15%. Furthermore, the maximum values of the MSE and U95 are 0.0080 and 0.0175 for
this case, which shows the good performance of the method. Although damage severity
of 25% has not been used in obtaining the function dei(x), the identification errors for this
scenario are small and the corresponding MSE and U95 are close to 0, and R?is close to 1.
Meanwhile, for the SVM method [18], MSE and U95 are larger than 0, the smallest MSE
and U95 are 0.0655 and 0.0502, and the largest MSE and U95 are 10.2385 and 0.6272, re-
spectively. R?is a little better than those of the BVM method, and is close to 1. In summary,
this damage severity identification method has good performance, robustness, and strong
anti-noise capability, and is better than the SVM method.

4. Conclusions

The bending strain-based BVM method has been developed to identify damaged ca-
bles in a cable-stayed bridge. The relationship between bending strain and the cable stiff-
ness is derived by a force method. The FEM for the cable-stayed bridge is established us-
ing ANSYS and validated using field measurements. Furthermore, DIXV, BVM, and a test
dataset are obtained using the validated FEM. Some conclusions are made as follows:

1.  For asingle-cable case, the damage severity does not have an effect on the BV. There-
fore, the BVM does not change with the cable damage severity, which is the key to
the proposed BVM method.

2. The BVM method can directly identify single damaged cables and multiple damaged
cables. With 100 samples, the sample probability of damaged cables is greater than
90%. The damage identification functions have a good performance to identify the
cable damage severity. Therefore, the BVM method has good generalization and anti-
noise capability.

3. The BVM method may be easily adapted to the field cable-stayed bridge health mon-
itoring system. The identification probability could be improved with the increase in
monitoring data.

Furthermore, further investigations on the sensitivity of this method to temperature
variation, nonlinear vibration of the cable, vehicle-bridge coupling vibration, and differ-
ent kinds of actual vehicle load are needed. More experimental data are also needed to
further validate this method.
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