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Abstract: The performance of millimeter wave (mmWave) line-of-sight multiple input multiple
output (LOS MIMO) systems using hybrid arrays of planar subarrays was studied. We characterized
the achievable maximum spatial multiplexing gain for such LOS MIMO systems by the measures
of spectral efficiency and effective degree of freedom (EDoF). By proposing a joint plane-wave and
spherical-wave-based general 3D channel model, we derived the optimal design parameters in the
analog domain, i.e., the optimal subarray separation products, and analyzed their sensitivity on the
system performance. We also gave analytical eigenvalue expressions of the equivalent LOS MIMO
channel matrix, which are applicable to the case of a non-optimal design, as well as the upper and
lower bounds of the EDoF for system performance evaluation. A piecewise uniform quantization
codebook was further designed for quantizing phase shifter values in practical applications. The
numerical and simulation results show that planar subarrays are superior to traditional arrays in
terms of spectral efficiency and EDoF in Ricean fading channels because they are more robust to the
change in the communication distance and the deviation from the optimal design. The use of hybrid
arrays of planar subarrays effectively removes the limitation of mmWave LOS MIMO systems using
traditional arrays, through which, the conventional Rayleigh distance criterion has to be satisfied to
achieve the optimal performance.

Keywords: line-of-sight; multiple input multiple output; transceiver optimization; hybrid arrays;
quantization

1. Introduction

With the ever increasing demand for data traffic, network throughput and wireless de-
vices, traditional microwave frequency bands have been unable to satisfy the requirements
of a fast-growing system capacity and spectral efficiency [1]. Therefore, the millimeter wave
(mmWave) with a higher frequency band has recently attracted more attention [2–4]. The
mmWave communications generally operate at 30 GHz–300 GHz with a wavelength of
1 mm–10 mm, which leads to a relatively small physical size of the antennas. This enables
the large-scale multiple input multiple output (MIMO) with hundreds of antennas that
can meet the high throughput and coverage needs of future networks to be integrated in a
limited space for practical applications [5], and also to compensate for the high path loss of
mmWave channels for long-distance communications [6,7].

Unlike the traditional MIMO channels in dense scattering environments, mmWave
channels are usually characterized as sparse scattering, and thus go against conventional
spatial multiplexing [8,9]. Since the pure line-of-sight (LOS) component generally domi-
nates the mmWave channels, it is of great significance to study LOS MIMO spatial mul-
tiplexing by employing well-designed array deployment [10]. Hybrid antenna arrays
have proven to be a critical technology of cost-effectively achieving high-capacity and
long-range communications [11–13]. They will not only enable LOS MIMO without the
need for adjusting the spacing of subarrays, but also significantly increase the transmission
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power and decrease the propagation loss by beamforming to reach longer communication
distances [14]. The related works are not yet to be widely developed in LOS MIMO systems
using hybrid arrays of analog planar subarrays.

In LOS channels, the reflective paths do not exist or their power can be ignored, which
results in a higher probability of an insufficient rank in the MIMO channel matrix. However,
a well-designed antenna array can still be used to obtain a high-rank channel matrix and
higher spatial multiplexing gain in a pure LOS environment [15]. References [16,17] enhance
the spatial multiplexing gain of LOS MIMO systems by adjusting the array diameter in a
uniform circular array. The technique based on the optimization of antenna placement in
uniform linear digital arrays with respect to mutual information was investigated in [18,19],
and then extended to uniform planar arrays in [20]. The optimal antenna separation
product was derived for a general 3D geometrical LOS MIMO channel model. It was
found that the optimal performance can be obtained only when the system parameters
satisfy the Rayleigh distance criterion. In general, this refers to the condition that the
communication distance R should be equal to or less than the so-called Rayleigh distance,
i.e., R ≤ Vdtdr cos θt cos θr/λ, where dtdr is the antenna separation product, λ the carrier
wavelength, V the maximum number of antennas between the transceiver and θt (θr) the
angles of the local spherical coordinate system at the transmitter (receiver).

Although LOS MIMO has been considered to be able to achieve spatial multiplexing,
the conventional full digital array LOS MIMO technology is infeasible for use in aerial plat-
forms as the antenna spacing would have to be adjusted according to the communication
distance, which is ever-changing. The inflexible adjustment is likely to cause a serious
performance loss of spatial multiplexing when the Rayleigh distance criterion cannot be
satisfied. To reduce the optimal antenna spacing for achieving full spatial multiplexing,
the investigation in [21] added a dielectric medium to the signal transmission path for
potentially improving channel conditioning with additional phase shifting. Although the
limitation of the Rayleigh distance criterion can be relieved to a certain extent, each change
in the transmission distance has to be accompanied by the replacement of dielectric medi-
ums with different shapes and types, which is inflexible and even infeasible in practical
applications. The work in [22] introduced an asymmetric linear subarray structure instead
of the traditional digital arrays only at the transmitter, which can provide both array gain
and spatial multiplexing gain and achieve a trade-off between them. In [23], the design
of multiple planar arrays at the transceiver was investigated in LOS MIMO systems, and
an algorithm for optimizing the antenna position was proposed to reduce the computa-
tional complexity. However, only the spherical wave model was used for the LOS channel
component, and the phase shifters matrix was not considered for the beamforming design.

Considering the power consumption and system complexity, radio frequency (RF)
analog beamformer/combiners are typically implemented using phase shifters. The phase
shifters are controlled digitally, and a finite number of values is usually selected subject to
the quantization bits. Various quantization codebook designs or phase shifter structures
have been investigated in mmWave MIMO systems [24–26]. The study in [24] considered
two kinds of RF beamforming codebooks. One is the general quantized beamforming
codebook, which is usually designed for rich channels with a uniform quantization on
the space of beamforming vectors. The other is the beamsteering codebooks, where the
beamforming vectors as spatially matched filters can be parameterized by a simple angle.
Its simulation results showed the effect of the number of quantization bits on the spectral
efficiency in limited scattering mmWave channels. A two-phase-shifter structure for each
coefficient of the RF analog precoder was proposed and analyzed in [25], through which,
any precoding coefficients can be represented with a very small quantization error when
the number of quantization bits is sufficiently large. To reduce the large quantization error
introduced by separated quantization, a joint quantization method that uses a combined
codebook of the two phase shifters was proposed in [26]. Although the two-phase-shifter
structure can control the beamforming weight flexibly to achieve full multiplexing gain, the
doubled number of phase shifters will increase the complexity of hardware implementation.
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A codebook-based beamforming training method was used for RF precoding weights of
subarrays in [22], whereas the impact of codebooks and quantization bits on the system
performance was not given.

In this paper, we studied the performance of mmWave LOS MIMO systems employing
hybrid arrays of planar subarrays in terms of the spectral efficiency and effective degree
of freedom (EDoF), where the EDoF represents the achievable maximum system spatial
multiplexing gain. We propose a joint plane-wave and spherical-wave-based general 3D
channel model for the LOS MIMO channel, which allows for a non-parallel orientation
of hybrid arrays to be employed at the transceiver. The performance in terms of the
spectral efficiency and EDoF using hybrid arrays of planar subarrays was analyzed and
compared with that of the traditional digital arrays for different deviation factors and
Ricean fading channels. The numerical and simulation results show that using the proposed
planar subarray structure can still achieve an almost optimal performance even though the
parameter design deviates from the Rayleigh distance criterion in a relatively wide range.
The main contributions can be summarized as follows.

1. Based on the proposed 3D channel model, the optimal subarray separation products
in the vertical and horizontal directions were derived for maximizing the spectral
efficiency and EDoF, respectively, and an analysis of the sensitivity to the non-optimal
design was performed by means of deviation factors.

2. The theoretical expressions for the eigenvalues of an equivalent LOS MIMO channel
matrix were derived as a function of deviation factors, in both cases of optimal and
non-optimal designs. The upper and lower bounds of the EDoF are also given.

3. The piecewise uniform quantization codebooks for the phase angles in the beamformer
and combiner were designed for LOS MIMO systems, which enables the results
to be applied in practical systems with quantized RF phase shifters. Analytical
expressions for spectral efficiency using the designed codebooks were also derived.
The numerical results demonstrate that the designed codebooks outperform the
beamsteering codebook in [24] using the same number of quantization bits in terms
of spectral efficiency.

The remainder of this paper is organized as follows. Section 2 introduces the received
signal models using hybrid arrays with planar subarrays and performance measures,
followed by a joint plane-wave and spherical-wave-based 3D channel model. Section 3
derives the eigenvalue expressions of the equivalent channel matrix considering deviation
factors caused by a non-optimal design, and gives the upper and lower bounds of EDoF.
Section 4 designs uniform quantization codebooks for phase shifter values employed in
practical applications. In Section 5, numerical and simulation results are given to verify
our analysis and demonstrate the effects of design parameters on the system performance,
before concluding the paper in Section 6.

The following notations are used throughout this paper. AH denotes the conjugate
transpose of matrix A; ‖A‖F is the Frobenius norm of matrix A; 1U is the U ×U all-ones
matrix; IU is the U ×U identity matrix; diag(a) denotes a diagonal matrix whose diagonal
elements are formed by vector a; ‖a‖2 is the 2-norm of vector a, and aT is its transpose; E{·}
is used to denote expectation. Further, the notations det{·}, tr{·} and rank{·} represent
the determinant, trace and rank of {·}, respectively.

2. System Model
2.1. Signal Model

Consider a point-to-point LOS MIMO communication system where the hybrid arrays
with planar subarrays are used in the transceiver, respectively. As shown in Figure 1, each
subarray is connected by an RF chain with multiple phase shifters, which are used to im-
plement analog beamforming. Let the number of subarrays at the transmitter (receiver) be
N = Nty×Ntx (M = Mry×Mrx), where Nty and Ntx (Mry and Mrx) represent the numbers
of vertical and horizontal subarrays, respectively. We assume that each subarray at the
transmitter (receiver) contains P × P (Q × Q) antenna elements. Denote the transmitted
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signal vector as s ∈ CN×1 and the normalized complex channel matrix as H ∈ CMQ2×NP2
.

Let F ∈ CNP2×N and W ∈ CMQ2×M denote the phase shifter matrices at the transceiver,
respectively. Assuming slowly varying and frequency-flat fading channels (although we
only study the narrowband channels in this paper, the proposed approach can be extended
to wideband channels by dividing the wideband into multiple narrowbands, e.g., in OFDM
systems. The optimal design and analysis in this paper can be applied to each narrowband
subcarrier accordingly), the received signal vector y ∈ CM×1 after analog beamforming
combining for each subarray can be modeled as

y =
√

ρWHHFs+WHn=
√

ρH̃s+WHn, (1)

where ρ is the power attenuation coefficient of the transmitted signals over a subchannel
between a pair of transmit and receive subarrays, and assumed to be a constant for all
subchannels [27,28]. n ∈ CMQ2×1 is the additive white Gaussian noise (AWGN) vector with
zero mean value and noise power σ2

n . H̃ ∈ CM×N denotes the equivalent baseband channel
between the transceiver after the LOS MIMO propagation and the analog beamforming.

RF

Analog beamforming

F / W

1

1

tyN
RF

RF

RF

( )ryM

P ( )Q

P ( )Q

txN

( )rxM

Figure 1. The hybrid arrays with planar subarrays.

Assuming that the channel state information is perfectly known at the receiver and
equal power transmission is used, the spectral efficiency of the system can be expressed
as [29]

SE = log2 det
(

IU +
γ̄

N
V
)
=

U

∑
k=1

log2

(
1 +

γ̄

N
µk

)
bits/s/Hz, (2)

where γ̄ represents the average SNR after analog beamforming combining at the receiver
and U = min{M, N}. µk is the kth eigenvalue of matrix V, and V is expressed as

V =

{
H̃H̃H , M < N

H̃HH̃, M ≥ N.
(3)

The MIMO system can achieve the optimal performance only when its channel is
equivalent to multiple independent single input single output (SISO) subchannels. There-
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fore, we characterize the achievable spatial multiplexing gain of the system by maximizing
the EDoF as [23,30]

EDoF =
d
(
SE
(
2δγ̄
))

dδ

∣∣∣∣
δ=0

=
U

∑
k=1

γ̄µk
N + γ̄µk

. (4)

From (2) and (4), we can see that the spectral efficiency and EDoF are not only de-
termined by the eigenvalue µk of matrix V, but also by the number of subarrays at the
transmitter and the average SNR at the receiver. When the product of the eigenvalue µk
and the average SNR is far greater than N, a 3 dB increase in SNR leads to an approximate
increase in U bits/s/Hz in spectral efficiency [30]. The work in [19] revealed that the
optimal EDoF and system spectral efficiency can be achieved when any two columns or
rows of the channel matrix satisfy orthogonality, i.e., all eigenvalues of the channel matrix
are equal. This orthogonality criterion will be used in Section 3.

2.2. Channel Model

A Ricean channel matrix can be modeled as the sum of an LOS component and an
NLOS component in [31,32]. Assume that the normalized channel matrix H is Ricean and
can be expressed as

H =

√
K

1 + K
HLOS +

√
1

1 + K
HNLOS, (5)

where the Ricean factor K represents the ratio between the power of the two components.
In this paper, we focused on the pure LOS channel in an MIMO system, which indicates
that K = +∞. HLOS is hereinafter referred to as H unless stated otherwise. As shown
in [33], when the antenna array is appropriately configured, the pure LOS MIMO channel
matrix is a high-rank matrix with a number of nonzero eigenvalues, which leads to a high
spectral efficiency.

As illustrated in Figure 2, we assume that the separations of adjacent subarrays along
the vertical and horizontal directions at the transmitter (receiver) are Stx and Sty (Srx and
Sry), respectively, and that the spacings of adjacent antenna elements in each subarray along
the vertical and horizontal directions are d for simplicity. The transmit arrays are placed on
the xy plane, β is the angle between the xy plane and the plane of the receive arrays and R
represents the horizontal communication distance between the bottom of the transceiver
arrays. As in [34,35], due to d� (Stx, Sty, Srx, Sry)� R, we used the plane-wave model
for the received signals within a subarray, but the spherical-wave model for the received
signals between different subarrays, which is reflected in the distance between a pair of
antenna elements at the transceiver.

Therefore, an element of the channel matrix H, hr,t (r = 0, 1, . . . , MQ2 − 1,
t = 0, 1, . . . , NP2 − 1), in the planar subarray structure can be represented as

hr,t = ej 2π
λ lr,t , (6)

where λ is the carrier wavelength, lr,t represents the distance between the tth transmitting
antenna element and the rth receiving antenna element and

r = (my Mrx + mx)Q2 + ymrQ + xmr,

t = (nyNtx + nx)P2 + yntP + xnt, (7)

where mx (my) = 0, 1, . . . , Mrx − 1 (Mry − 1), nx (ny) = 0, 1, . . . , Ntx − 1 (Nty − 1),
xmr (ymr) = 0, 1, . . . , Q − 1 and xnt (ynt) = 0, 1, . . . , P − 1. Let m = my Mrx + mx and
n = nyNtx + nx. lr,t can be rewritten as [36]



Micromachines 2023, 14, 236 6 of 19

lr,t = lm,n + d · xnt sin θnt cos ϕnt + d · ynt sin θnt sin ϕnt

+ d · xmr sin θmr cos ϕmr + d · ymr sin θmr sin ϕmr, (8)

where lm,n represents the distance between a reference element in the nth transmit subarray
and that in the mth receive subarray. In this paper, we took the antenna element located
at the origin of the coordinate axis in the first subarray as the reference element. θnt and
ϕnt (θmr and ϕmr) are the signal elevation and azimuth angles away from the nth transmit
subarray (to the mth receive subarray), respectively. lm,n is further calculated by

lm,n =
[
(mxSrx − nxStx)

2 + (R + mySry sin β)2 + (mySry cos β− nySty)
2] 1

2

= (R + mySry sin β)

[
1+

(mxSrx−nxStx)
2+(mySry cos β−nySty)

2

(R + mySry sin β)2

] 1
2

(a)
≈ R + mySry sin β +

(mxSrx − nxStx)
2 + (mySry cos β− nySty)

2

2R
, (9)

where (a) holds due to R � (Stx, Sty, Srx, Sry) by using the McLaughlin approximation

formula; that is, when x → 0, (1 + x)1/a = 1 +
1
a

x.

x

z

R

β 

d

d

d

d

txS
tyS

rxS ryS

y

'x

'y
P Q

Figure 2. Channel model of signal transmission.

As a result, the channel matrix H can be expressed as

H =

 H0,0 . . . H0,(N−1)
...

. . .
...

H(M−1),0 . . . H(M−1),(N−1)

, (10)

where the subchannel matrix

Hm,n = hm,n


ĥ0,0 . . . ĥ0,(P2−1)

...
. . .

...
ĥ(Q2−1),0 . . . ĥ(Q2−1),(P2−1)





Micromachines 2023, 14, 236 7 of 19

and

ĥqm ,pn = exp(jd′[qx
m sin θmr cos ϕmr + qy

m sin θmr sin ϕmr

+ px
n sin θnt cos ϕnt + py

n sin θnt sin ϕnt]),

where qm = qy
mQ + qx

m, pn = py
nP + px

n, qx
m (qy

m) = 0, 1, . . . Q− 1, px
n (py

n) = 0, 1, . . . P− 1
and d′ = 2π

λ d.
As the equivalent channel matrix H̃ includes the analog beamforming matrix F and

combining matrix W, we need to consider their influence on the optimal design in the
analog domain of LOS MIMO systems with planar subarrays. F and W can be expressed as

F = diag{f0, f1, . . . , fNtx−1, fNtx , . . . , fN−1} (11)

and

W = diag{w0, w1, . . . , wMrx−1, wMrx , . . . , wM−1}, (12)

respectively. In this paper we used a single beam for each subarray, and therefore the
normalized weight vectors fn and wm of the nth transmit subarray and the mth receive
subarray are written as

fn =
1
P
[1, . . . , exp(−jd′(px

n sin αnt cos φnt + py
n sin αnt sin φnt)),

. . . , exp(−j(P− 1)d′(sin αnt cos φnt + sin αnt sin φnt))]
T (13)

and

wm =
1
Q
[1, . . . , exp(jd′(qx

m sin αmr cos φmr + qy
m sin αmr sin φmr)),

. . . , exp(j(Q−1)d′(sin αmr cos φmr+sin αmr sin φmr))]
T , (14)

which allow the main beam of the nth transmit subarray (the mth receive subarray) to be
directed towards the direction represented by the angles (αnt, φnt) ((αmr, φmr)).

3. Optimal Design of Planar Subarrays
3.1. Analysis of Eigenvalues

As stated in [19], for a conventional LOS MIMO system with linear digital arrays, the
optimal product of the inter-antenna distances at the transceiver can be acquired when
different columns or rows of the channel matrix satisfy orthogonality, which is used to
maximize the spectral efficiency and EDoF. Inspired by this, we investigated the effect
of the planar subarray separations at the transceiver on the system spatial multiplexing
performance.

We first considered the situation where M is larger than N. Although the rank of the
equivalent channel matrix H̃ is U in general, only the power allocated to EDoF out of U can
be devoted to the spectral efficiency. The correlation among the components of H̃ becomes
increasingly high with the reduced adjacent subarray separations at the transceiver, which
can cause a loss of system spectral efficiency and EDoF. In order to reduce the correlation
between RF chains, we aimed to design the beamforming matrices such that different
columns of H̃ are orthogonal, i.e., H̃H

n1
H̃n2 = 0 (n1 6= n2).
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From (10), (13) and (14), the orthogonality requires that

H̃H
n1

H̃n2

=
M−1

∑
m=0

fH
n1

HH
m,n1

wmwH
m Hm,n2 fn2

=
M−1

∑
m=0

1
P2Q2 hH

m,n1
hm,n2

Q2−1

∑
qm=0

exp[−jd′(Amqx
m + Bmqy

m)]

·
P2−1

∑
pn1=0

exp[−jd′(Cn1 px
n1
+ Dn1 py

n1)]
Q2−1

∑
qm=0

exp[jd′(Amqx
m + Bmqy

m)]

·
P2−1

∑
pn2=0

exp[jd′(Cn2 px
n2
+ Dn2 py

n2)]

=0, (15)

where

Am = sin θmr cos ϕmr − sin αmr cos φmr,

Bm = sin θmr sin ϕmr − sin αmr sin φmr,

Cnk = sin θnkt cos ϕnkt − sin αnkt cos φnkt

and

Dnk = sin θnkt sin ϕnkt − sin αnkt sin φnkt, (k = 1, 2).

Since
Q2−1

∑
qm=0

exp[−jd′(Amqx
m + Bmqy

m)] and the last three summations in (15) are not

guaranteed to be zero, we let

H̃H
n1

H̃n2 =
M−1

∑
m=0

hH
m,n1

hm,n2 =
M−1

∑
m=0

exp
(

j
2π

λ
(lm,n2 − lm,n1)

)
= 0. (16)

Substituting (9) into (16), we can obtain

M−1

∑
m=0

hH
m,n1

hm,n2

=
Mry−1

∑
my=0

Mrx−1

∑
mx=0

exp
(

j
2π

λ

[mx(n1x − n2x )StxSrx]

R

)
exp

(
j
2π

λ

[my(n1y − n2y )StySry cos β]

R

)

=

sin
(

Mryπ

λR
(n1y − n2y )StySry cos β

)
sin
( π

λR
(n1y − n2y )StySry cos β

) sin
(

Mrxπ

λR
(n1x − n2x )StxSrx

)
sin
( π

λR
(n1x − n2x )StxSrx

) (b)
= 0. (17)

There are infinite solutions for (b) in (17), but we only chose the smallest subarray
separation products in the vertical and horizontal directions as they are of most interest in
practical systems. Therefore, the optimal subarray separation products are derived by

SrySty =
λR

Mry cos β
, SrxStx =

λR
Mrx

, (18)
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which enable the maximal spatial multiplexing gain of the system with planar subarrays.
A similar result can be obtained by substituting Nty and Ntx for Mry and Mrx in (18) when
M is smaller than N. In general, the optimal subarray separation products for planar
subarrays can be given by

SrySty =
λR

V1 cos β
, SrxStx =

λR
V2

, (19)

where

(V1, V2) =

{
(Mry, Mrx), M ≥ N
(Nty, Ntx), M < N.

3.2. Analysis of Sensitivity to Displacement

In order to investigate the sensitivity of LOS MIMO systems with planar subarrays
to the deviations from the optimal planar subarray design in (19), we introduced the
deviation factors, defined as the ratio of the optimal subarray separation product to the
actual subarray separation product,

η1 =
λR

SrySty cos βV1
, η2 =

λR
SrxStxV2

, (20)

which indicate that the actual vertical (horizontal) subarray separation product is smaller
than the optimal one if η1 (η2) is larger than one.

From (2) and (4), we can see that the system spectral efficiency and EDoF depend
on the eigenvalues of V. For ease of illustration, we considered the case of Nty = Ntx =
Mry = Mrx = P = Q = 2, and thus the equivalent transmission channel matrix H̃ can be
expressed as

H̃ = WHHF =


H̃0,0 H̃0,1 H̃0,2 H̃0,3
H̃1,0 H̃1,1 H̃1,2 H̃1,3
H̃2,0 H̃2,1 H̃2,2 H̃2,3
H̃3,0 H̃3,1 H̃3,2 H̃3,3

, (21)

where

H̃m,n = wH
m Hm,nfn.

When the main beam direction of the nth transmit subarray (the mth receive subarray)
satisfies (αnt,φnt) = (θnt,ϕnt) ((αmr,φmr) = (θmr,ϕmr)), substituting (21) into (3) leads to

V = P2Q2 ·


G0,0 G0,1 G0,2 G0,3
G1,0 G1,1 G1,2 G1,3
G2,0 G2,1 G2,2 G2,3
G3,0 G3,1 G3,2 G3,3

, (22)

where

Gn1,n2 =
M−1

∑
m=0

hH
m,n1

hm,n2 =
M−1

∑
m=0

exp
(

j
2π

λ
(lm,n2 − lm,n1)

)
.

Substituting (9) into (22), we can rewrite V as

V = P2Q2


V1V2 V2X1Y2Z2 V1X2Y1Z1 X1X2Y1Y2Z1Z2

V2X−1
1 Y−1

2 Z2 V1V2 X−1
1 X2Y1Y−1

2 Z1Z2 V1X2Y1Z1
V1X−1

2 Y−1
1 Z1 X1X−1

2 Y−1
1 Y2Z1Z2 V1V2 V2X1Y2Z2

X−1
1 X−1

2 Y−1
1 Y−1

2 Z1Z2 V1X−1
2 Y−1

1 Z1 V2X−1
1 Y−1

2 Z2 V1V2

,
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where

X1 = exp
(

j
π

λR
· S2

tx

)
, X2 = exp

(
j

π

λR
· S2

ty

)
and

Yi = exp
(
−j

π

2ηi

)
, Zi =

sin(π/ηi)

sin(π/(2ηi))
(i = 1, 2).

We find that the eigenvalues of V are equivalent to the eigenvalues of V′, which is
given by

V′ = P2Q2 ·


V1V2 V2Z2 V1Z1 Z1Z2
V2Z2 V1V2 Z1Z2 V1Z1
V1Z1 Z1Z2 V1V2 V2Z2
Z1Z2 V1Z1 V2Z2 V1V2

.

Then, the eigenvalues can be found as

µ1 = V1V2P2Q2−P2Q2(V1Z1 + V2Z2)+P2Q2Z1Z2, (23)

µ2 = V1V2P2Q2+P2Q2(V1Z1 −V2Z2)−P2Q2Z1Z2, (24)

µ3 = V1V2P2Q2+P2Q2(V1Z1 + V2Z2)+P2Q2Z1Z2 (25)

and

µ4 = V1V2P2Q2−P2Q2(V1Z1 −V2Z2)−P2Q2Z1Z2. (26)

3.3. Upper and Lower Bounds of the EDoF Estimation

It is shown in (4) that the EDoF is determined by the distribution of eigenvalues of V.
The sum of the eigenvalues can be calculated as

U
∑

i=1
µi = tr

(
H̃HH̃

)
=

M−1
∑

m=0

N−1
∑

n=0

∥∥wH
m Hm,nfn

∥∥2
F

≤
M−1
∑

m=0

N−1
∑

n=0

∥∥wH
m
∥∥2

2‖Hm,n‖2
F‖fn‖2

2 = NMP2Q2,

where the equal sign holds only when the vector wH
m (fn) is linearly dependent on each

column (row) of the subchannel Hm,n, which corresponds to the case that all eigenvalues in
(23)–(26) are equal to V1V2P2Q2 when η1 = η2 = 0 dB.

When the subarray separations at the transceiver satisfy (19), i.e., H̃HH̃ = MP2Q2IN ,
different columns or rows of the equivalent channel matrix meet the orthogonality condi-
tion, which is equivalent to U independent SISO subchannels. In this case, rank(V) = U
and all eigenvalues of V are equal to NMP2Q2/U, which corresponds to the maximum
EDoF given by

EDoFmax =
U

∑
k=1

γ̄µk
N + γ̄µk

=
γ̄MP2Q2

1 + γ̄
MP2Q2

U

. (27)

When the separations between adjacent subarrays are zero, i.e., H̃HH̃ = MP2Q21N ,
the RF equivalent channel is completely correlated, and becomes equivalent to a SISO
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channel. In this case, rank(V) = 1, and there is a unique eigenvalue µ1 = NMP2Q2, which
corresponds to the minimum EDoF given by

EDoFmin =
γ̄µ1

N + γ̄µ1
=

γ̄MP2Q2

1 + γ̄MP2Q2 . (28)

4. Quantization Codebook Design for Phase Shifters

The continuous and complete phase angle information is usually assumed to be avail-
able at the transceiver for RF phase shifter configuration. However, the phase shifters
for the analog beamformer/combiner are implemented by discrete phase shifts due to
the constraints on the RF hardware in a practical system, and thus the analog beamform-
ing/combining vectors can only take specific values selected from the given quantization
codebooks, as they can be easily implemented at a low cost in practical applications, though
the spectral efficiency may be lower than that without quantization.

Most of the existing quantization codebooks are designed for traditional MIMO with
rich scattering channels, and yet they are not applicable to LOS MIMO channels with few
scatterers. According to the introduced channel model, we designed beamsteering code-
books Ft (Fr) to uniformly quantize the phase angle αt (αr) of the beamformer (combiner)
using Nb (Mb) bits for LOS MIMO channels, which are given by

Ft :
{

αtmin +
∆αt

2Nb+1 , αtmin +
3∆αt

2Nb+1 , . . . , αtmax −
∆αt

2Nb+1

}
(29)

and

Fr :
{

αrmin +
∆αr

2Mb+1 , αrmin +
3∆αr

2Mb+1 , . . . , αrmax −
∆αr

2Mb+1

}
, (30)

respectively, where αtmin and αtmax (αrmin and αrmax) represent the minimum and maxi-
mum achievable phase angles in the beamformer (combiner) before quantization, respec-
tively; ∆αt = αtmax − αtmin and ∆αr = αrmax − αrmin. The quantization codebooksWt and
Wr of phase angles φt and φr have the same expression forms.

In the following, we characterize the effect of quantization bits on the spectral efficiency.
Without a loss of generality, we assume that the elevation and azimuth angles of transmitted
and received signals are evenly distributed in [0, π] and Nb = Mb = b, and thus the average
spectral efficiency after quantization can be expressed as

SE(b) = E{ f (θt, θr, ϕt, ϕr;N )} = 1
π4

∫ π

0

∫ π

0

∫ π

0

∫ π

0
f (θt, θr, ϕt, ϕr;N )dθtdθrdϕtdϕr, (31)

where f (θt, θr, ϕt, ϕr;N ) denotes the system spectral efficiency given (θt, θr, ϕt, ϕr) when
the four designed codebooks N = {Ft,Fr,Wt,Wr} are used. Note that the quantized
phase angles in the codebooks are selected such that an estimated phase angle has the
closest distance among the quantized ones in their respective codebook.

For ease of illustration, we assume that the phase shifters for phase angles φt and φr
are implemented by continuous phase shifts, i.e., φt = ϕt and φr = ϕr. The minimum and
maximum achievable phase angles are assumed to be 0 and π for αt and αr, respectively, and

the corresponding codebook is
[

π

2b+1 ,
3π

2b+1 , . . . , π − π

2b+1

]
from (29) and (30). Therefore,

for a 2× 2 subarray’s pure LOS channel with η1 = η2 = 0 dB, (31) becomes
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SE(b) =
1

π2

∫ π

0

∫ π

0
f (θt, θr;Ft,Fr)dθtdθr

=
U
π2

∫ π

0

∫ π

0
log2

(
1 +

γ̄

N
· µ(θt, θr;Ft,Fr)

)
dθtdθr

(a)
≈ U

π2

2b−1

∑
c1=0

2b−1

∑
c2=0

∫ (c1+1)π
2b

c1π

2b

∫ (c2+1)π
2b

c2π

2b

[
kbγ̄

N
f1

(
θt;

(2c1+1)π
2b+1

)
· f2

(
θr;

(2c2 + 1)π
2b+1

)
+ ab

]
dθtdθr

= U · ab +
U
π2 ·

kbγ̄

N

2b−1

∑
c1=0

2b−1

∑
c2=0[

F1

(
(c1+1)π

2b ;
(2c1+1)π

2b+1

)
−F1

(
c1π

2b ;
(2c1+1)π

2b+1

)]
[

F2

(
(c2+1)π

2b ;
(2c2+1)π

2b+1

)
−F2

(
c2π

2b ;
(2c2+1)π

2b+1

)]
, (32)

where the specific expressions of f1

(
θt;

(2c1+1)π
2b+1

)
and f2

(
θr; (2c2+1)π

2b+1

)
are shown as

f1

(
θt;

(2c1 + 1)π
2b+1

)
=

∣∣∣∣∣P
2−1

∑
p=0

exp
(

jd′
(

sin θt − sin
(
(2c1 + 1)π

2b+1

))
(px cos ϕt + py sin ϕt)

)∣∣∣∣∣
2

,

f2

(
θr;

(2c2 + 1)π
2b+1

)
=

∣∣∣∣∣∣
Q2−1

∑
q=0

exp
(

jd′
(

sin θr − sin
(
(2c2 + 1)π

2b+1

))
(qx cos ϕr + qy sin ϕr)

)∣∣∣∣∣∣
2

.

Their integral primitive functions are represented as F1

(
θt;

(2c1+1)π
2b+1

)
and F2

(
θr; (2c2+1)π

2b+1

)
,

respectively. In (32), the approximation (a) holds because log2

(
1 + γ̄

N µ
)

can be approx-

imated as linear functions of µ, i.e., kb · γ̄
N µ + ab for different numbers of quantization

bits when γ̄
N · µ � 1. The constants kb and ab can be calculated offline given other pa-

rameters. For a given set of parameters, the theoretical results of (32) can be obtained by
high-precision numerical integration.

Figure 3 compares the spectral efficiency SE(b) among different quantization strate-
gies of using the designed codebooks, without quantization and with the quantization
scheme in [24], where 2× 2 subarrays (each with 2× 2 or 4× 4 antennas) and LOS channels
are considered. It is shown that SE(2) ≈ 28.60 bits/s/Hz, SE(3) ≈ 29.15 bits/s/Hz and
SE(4) ≈ 29.30 bits/s/Hz, which becomes increasingly closer to the spectral efficiency with-
out quantization, 29.32 bits/s/Hz in (2), with the increasing quantization bits. Targeting a
loss of spectral efficiency within 5%, two quantization bits are needed for each subarray
with 2× 2 antennas, whereas three quantization bits are required for each subarray with
4× 4 antennas. This indicates that the quantization bits for each phase angle are required to
increase by one bit when the dimension of arrays is doubled. The number of bits required
to properly quantize the phase angles increases with the increase in array size, as larger
arrays produce narrower beams and require finer steering. The results in Figure 3 show
that the designed codebooks are superior to that in [24] in terms of spectral efficiency using
the same number of quantization bits. The performance under different Ricean factors K is
also provided for comparison.
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2 3 4
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16×16

64×64 without quantization

traditional quantization

proposed quantization

Figure 3. Spectral efficiency SE(b) versus quantization bits b with γ̄ = 10 dB and R = 50 m, where
16× 16 and 64× 64 indicate that there are 2× 2 subarrays at the transceiver, each with 2× 2 and
4× 4 antennas, respectively.

5. Numerical and Simulation Results

In this section, we present the numerical and simulation results to evaluate the LOS
MIMO system performance using hybrid arrays with planar subarrays at the transceiver.
Unless stated otherwise, we considered hybrid arrays with Nty = Ntx = Mry = Mrx =

P = Q = 2 and the carrier frequency of 220 GHz. We chose Stx = Sty = Srx = Sry =

√
λR
2

and d =
λ

2
as the subarray separation for a practical array placement to achieve the

optimal performance at β = 0◦ and R = 50 m. The average SNR after analog beamforming
combining, γ̄, was set to be 10 dB in the simulation.

Figure 4 shows the eigenvalues {µi}i=1,...,4 versus the deviation factor η, where
η1 = η2 = η is assumed. There are only three eigenvalue curves in the figure due to
µ2 = µ4. It is found from (20) that the optimal performance is achieved when η = 0 dB,
which corresponds to the smallest subarray separation product in practical applications.
Substituting η= 0 dB into (23)–(26), we have {µi}i=1,...,4 = 64, which is consistent with the
simulation results. When η > 0 dB, the LOS MIMO channels will approach the statistical
characteristics of SISO channels. The associated eigenvalue µ3 = 16P2Q2 = 256, and
the others become zero when η → ∞ . When η < 0 dB, the optimal performance can
be achieved a few times corresponding to {µi}i=1,...,4 = 64 due to the periodicity of the
trigonometric function in (17).

Figure 5 shows the cumulative distribution function (CDF) of EDoF for traditional
array (TRA) and planar subarray (PLA) structures considering the optimal design in the
analog domain and design mismatch, where traditional arrays are assumed to be the 2× 2
antennas at the transceiver, respectively. It is observed that the two array structures have a
similar trend of CDFs under the same conditions, but planar subarrays are always superior
to traditional arrays in terms of EDoF. When K = −10 dB, i.e., the channel approaches
Rayleigh fading, traditional arrays exhibit a close performance under different η, whereas
there is an obvious difference for planar subarrays, which means that it is sensitive to η.
When K = 15 dB, i.e., the channel approaches a pure LOS condition, the EDoF becomes
more sensitive to η. It is seen that LOS channels with an optimal subarray separation
product are superior in term of EDoF compared to MIMO systems based on independent
identically distributed Rayleigh channels.
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Figure 4. {µi} as a function of η in dB when H = HLOS.
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Figure 5. CDF of EDoF for different deviation factors η, and Ricean factors K with γ̄ = 10 dB.

In Figure 6, the EDoFs are plotted as functions of η with different Ricean factors K.
It is shown from this figure that the EDoF becomes increasingly dependent on η with the
increase in K. It is also interesting to note that the EDoF using planar subarrays is almost
independent of K when η ≈ 7 dB, whereas η ≈ 4 dB for traditional arrays. Under the same
conditions, using planar subarrays can achieve a higher EDoF than traditional arrays. This
figure reveals that, for the traditional array structure, the best performance for K = +∞ can
be obtained only when the corresponding parameters meet the Rayleigh distance criterion.
The EDoF will be degraded once η deviates from the optimal design in the analog domain.
However, for the planar subarray structure, it becomes less sensitive when the parameters
deviate from the optimal design in the analog domain within a certain range. This means
that the planar subarray structure is more robust to the design mismatch. The minimum
and maximum EDoFs in (27) and (28) were calculated as EDoFmax ≈ 3.9752 and EDoFmin ≈
0.9984, respectively. For traditional arrays, EDoFmax ≈ 3.6364 and EDoFmin ≈ 0.9756. The
above calculations are consistent with the simulation results in Figure 6. Figure 7 shows
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the 3D graphics of the system spectral efficiency as the function of η1 and η2 in a pure LOS
MIMO channel.

Figure 6. EDoF as a function of η, with γ̄ = 10 dB and different Ricean factors K.

Figure 7. Spectral efficiency for different η1 and η2 with γ̄ = 10 dB when H = HLOS.

Figure 8 investigates how sensitive the EDoF is to the communication distance R for
different carrier frequencies. It can be seen that the EDoF decreases with increasing R, but
it falls more slowly using planar subarrays than traditional arrays. The EDoF of the former
is always higher than that of the latter. These indicate that the use of planar subarrays not
only reduces the sensitivity of EDoF to the change in R, but also achieves a higher EDoF
under the same conditions compared to traditional arrays in LOS MIMO systems. We can
also see that the system EDoF using planar subarrays is also less sensitive to the change in
carrier frequency compared to using traditional arrays.

Figure 9 shows the spectral efficiency as a function of phase angles αt and αr in
the analog beamformer and combiner, respectively, where the phase angles φt and φr are
assumed to be equal to π/3 for simplicity. We also assume the elevation and azimuth angles
of the signals, θnt = θmr = π/6 and ϕnt = ϕmr = π/3, ∀ n, m. Through a comprehensive
analysis of the above two figures, it can be observed that the system spectral efficiency
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achieves the maximum value when αt = αr = π/6, which corresponds to the main beam
directions of all subarrays directed at the directions of incoming signals. The large mismatch
of phase angles will cause a serious loss in the system spectral efficiency.
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Figure 8. The comparison of EDoF for different Rs and carrier frequencies with γ̄ = 10 dB.
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Figure 9. The relationship between spectral efficiency and phase angles of analog beamformer (a) and
combiner (b), respectively.
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6. Conclusions

Based on the introduced joint plane-wave and spherical-wave 3D channel model for
hybrid arrays with planar subarrays, we investigated the spatial multiplexing performance
of mmWave LOS MIMO systems and derived the optimal subarray separation products in
the vertical and horizontal directions with respect to maximizing the spectral efficiency and
EDoF. It is shown that the subarray separation products can be represented as a function of
the communication distance, carrier wavelength, the number of subarrays and the angles
of the array placement. Compared to traditional arrays, a planar subarray structure can not
only achieve a higher EDoF but can also be more robust to the change in the communication
distance and the NLOS components. Therefore, using the planar subarray structure can
remove the limitation that the optimal performance is achieved only when the Rayleigh
distance criterion is satisfied for traditional arrays. It is also found that the influence of the
carrier frequency on the system EDoF in planar subarrays is lower than that in traditional
arrays. With the designed quantization codebooks, it was found that, when the dimension
of arrays is doubled, the number of quantization bits of each phase angle needs to be
increased by one to maintain the performance. In future work, the considered system
models can be extended to a multi-user case for more general applications by exploiting
the user separation in the angular domain. How to further develop the joint optimal design
approaches for analog–digital hybrid beamforming, e.g., exploiting the iterative method
in [37] for multi-user LOS MIMO systems, will be an interesting future research topic.
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