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Abstract
The impacts of global climate warming on maize yield vary regionally. However, less is known about how soil modulates
regionally specific impacts and soil properties that are able to alleviate adverse impacts of climate warming on maize produc-
tivity. In this study, we investigated the impacts of multiple soil inherent properties on the sensitivity of maize yield (SY,T) to
growing season temperature across China. Our results show that a 1°Cwarming resulted in the largest yield decline (11.2 ± 6.1%)
in the mid-eastern region, but the moderate yield increase (1.5 ± 2.9%) in the north-eastern region. Spatial variability in soil
properties explained around 72% of the variation in SY,T. Soil organic carbon (SOC) content positively contributed the greatest
extent (28.9%) to spatial variation of SY,T, followed by field capacity (9.7%). Beneficial impacts of increasing SOC content were
pronounced in the north-eastern region where SOC content (11.9 ± 4.3 g kg−1) was much higher than other regions. Other soil
properties (e.g., plant wilting point, sand content, bulk density, and saturated water content) were generally negatively correlated
with SY,T. This study is the first one to answer how soil inherent properties can modulate the negative impacts of climate warming
on maize yield in China. Our findings highlight the importance of SOC in alleviating adverse global warming impacts on maize
productivity. To ensure food security for a rapidly increasing population under a changing climate, appropriate farming man-
agement practices that improve SOC content could reduce risk of adverse effects of global climate warming through a gain in
yield stability and more resilient production in China’s maize belt.
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1 Introduction

With a rapidly increasing global population and growing food
demand, farmers are facing a dilemma of producing crops
with higher yield in the same (or even less) cultivated areas
(Cammarano and Tian, 2018; Harrison et al., 2012). More
specifically, the mean growth rate of global crop yield must

exceed 2.4% per year to feed 10 billion people by 2050s (Ray
et al., 2013), without degrading natural resources (water, air,
biodiversity, etc.) or producing additional greenhouse gas
emissions (Alcock et al., 2015; Harrison et al., 2014a).
However, the ongoing climate change and increasingly severe
extreme climatic events are preventing farmers from fulfilling
this goal. As current farming systems have evolved to fit
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within historical climate conditions, climate change-induced
changes of meteorological factors, in particular rising temper-
ature, are expected to pose significant risks for future farming
outputs (Chang-Fung-Martel et al., 2017; Zhao et al., 2017).
Understanding the impacts of shifting meteorological factors
can provide invaluable information to improve farming’s re-
silience to climate change, thereby enhancing food security
while preserving the natural resource base (Harrison et al.,
2021).

Temperature is a major determinant of crop productivity
and crop phenological responses to climate warming have
been well studied from local through to global scales.
Asseng et al. (2015) estimated that global wheat production
is likely to fall by 6% when annual temperature increases by
1°C, based on simulations from process-based crop models.
Lobell and Field (2007) demonstrated a negative response of
global maize yield to increased temperature through an ana-
lysis of global recorded maize yield for 1961-2002.
Nevertheless, the actual impacts of increased temperature on
crop yield are usually not uniform across regions. For exam-
ple, maize crops had heterogonous sensitivities in different
regions, e.g., positive in South American yet negative in
northwest Africa during 1961-2014 (Liu et al., 2020). Even
within a country, the impacts can also vary greatly. For exam-
ple, positive impacts were mainly distributed in northeast
China from 1980 to 2010, while negative impacts occurred
in most areas of central China (Chen et al., 2011; Deng et al.,
2020). It has been reported that regional disparities in crop
yield impacts are related to latitudes, which present different
initial meteorological conditions (Deryng et al., 2014).
Nevertheless, different regions also share varied soil proper-
ties that also likely contribute to spatial variations. However,
the extent to which soil properties modulate the impact of
climate warming on crop yields is yet unknown.

In any cropping system, the suitability of a region for crop
cultivation is determined by climate, yet the yield level is
subject to soil characteristics as well (Bodner et al., 2015;
Pinheiro et al., 2019). Soil plays a fundamental role in crop
growth by providing physical support and more importantly,
acting as the source of water and nutrients (Bonfante and
Bouma, 2015). Such capabilities are based on a suite of phys-
ical, hydraulic, and chemical properties, which can show sig-
nificant spatial variation (Ara et al., 2021; Harrison et al.,
2011). Given the interacting nature of the soil-plant system
in response to atmospheric drivers, crop response to climate
warming is expected to vary spatially with different soil prop-
erties. Most soil properties are relatively stable and change
slightly under short-term farming practices. Some of them,
such as texture, water retention, and soil organic carbon
(SOC) concentration, have been demonstrated to account for
the spatial variability of crop responses to increased tempera-
ture (Farina et al., 2021; Sándor et al., 2020). For example,
yields of seven major crops between 1958 and 2019 in the

USA were generally more sensitive to temperature variability
in coarse-textured soils and less responsive in medium-
textured and fine-textured soils (Huang et al., 2021a). Rezaei
et al. (2018) also reported that wheat yield on sandy soils
decreased significantly by 24% with increased air temperature
at anthesis, compared to loamy soils or soils consisting of clay
in a controlled environment. In addition, SOC is an important
indicator of soil quality and soils with higher SOC tend to
show better water and nutrient retention (Karhu et al., 2011),
which can then help crops buffer the impacts of increased
temperature and even exploit positive effects (Droste et al.,
2020; Song et al., 2015). However, the quantitative impacts
of various soil properties on crop yields at a regional scale
remain uncertain.

With the largest cropping area in the world, China is one of
the world’s leading maize producers (FAOSTAT, 2020).
However, China is also the world’s most populous country.
Against a background of global warming, sustainable intensi-
fication of maize production without adverse environmental
trade-offs (Harrison et al., 2021) is of great importance for
Chinese both domestic food supply and global food security.
Here for the first time, we used the Agricultural Production
Systems sIMulator (APSIM), to investigate impacts of multi-
ple soil properties on the responses of maize yield to growing
season temperature in China’s Maize Belt (CMB). Our objec-
tives were to address the following questions: (I) How does
maize yield respond to climate warming in different zones of
CMB? (II) How do various soil physical, hydraulic, and
chemical properties modulate the impacts of climate warming
on maize yield? By answering these questions, we provide
insights into the development of adaptive strategies for global
warming from the perspective of soil amelioration (Figure 1).

2 Materials and methods

2.1 Study area

The study area is CMB (Fig. 2), accounting for over 70% of
national maize production and more than 15% of global pro-
duction (Meng et al., 2016). CMB is confined to a relatively
narrow band of land, spreading from the southwest to the
northeast (97.6-134.9° E, 21.4-50.9° N). The characteristics
of topography and climate vary greatly across CMB.
Topographically, the western and south-western parts of
CMB are occupied by plateaus with elevation more than
1000 m, but the eastern and north-eastern parts are mostly
plains of less than 500 m. Climatically, CMB is characterized
by warm and wet conditions in the south-western part, and
cold and dry conditions in the north-eastern part. Varied en-
vironmental conditions result in varied cropping systems, e.g.,
single cropping system with maize in the northeast and north-
west but double cropping system with winter wheat and
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summer maize in the middle of CMB. In addition, there is a
mixed cropping system in the southwest, with both single and
double cropping systems distributed. Thus, to consider the
impacts of regional variations in climate and soils, we divided
CMB into six maize planting regions (Fig. 2) according to a
previous study (Huang et al., 2020). The regions were divided
based on geographic location and different cropping systems,
which were derived from agrometeorological observational
data. Basic information of the six regions is given in Table 1.

The SPAM (spatial production allocation model) global
synergy cropland map was used to distinguish the maize crop
land (Lu et al., 2020). This map was developed by the Chinese
Academy of Agricultural Sciences based on a self-adapting
statistics model with multiple existing maps and national and

subnational statistics fused. It shows higher accuracy and bet-
ter consistency (99%) with statistics than many previous crop-
land maps. This map was originally at a resolution of 5 arc-
minute, but we upscaled to 15 arc-minute to make it match
with climate data. As shown in Fig. 2, there were 4283 grids in
total (Table 1) which illustrated cropland pixels over CMB.
Our subsequent data analysis and result visualization were
both performed on these maize cropland pixels.

2.2 Climate data

Historical gridded climate data were obtained from the
Terrestrial Hydrology Research Group at Princeton
University (Sheffield et al., 2006). This dataset was developed

Fig. 1 Maize cultivation in northeast China. Images show the farming practices of straw mulching and no tillage, as strategies to improve soil quality.
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Fig. 2 Six major maize
cultivating regions across China’s
Maize Belt. Grid colors denote
soil types based on the
classification of the FAO-
UNESCO (Food and Agriculture
Organization of the United
Nations-United Nations
Educational, Scientific and
Cultural Organization) Soil Map
of the world (https://www.fao.
org/soils-portal/en/).
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by blending the NCEP–NCAR (National Centers for
Environmental Prediction–National Center for Atmospheric
Research) reanalysis data with multiple observation-based
datasets. Known biases in the reanalysis data have been
corrected using observed data. The final product provides a
globally consistent dataset of near-surface meteorological fac-
tors at 15 arc-minute spatial resolution, which are designed for
the purpose of long-term and broad scale terrestrial modeling
studies (Parkes et al., 2019; Ruane et al., 2021). This dataset
has also been implemented for many modeling studies in
China and given satisfactory simulation results (Li et al.,
2019; Yao et al., 2018). We derived daily series of maximum
and minimum air temperatures, precipitation, and solar radia-
tion (1961–2016) for all of the grids located in CMB.

2.3 Soil data

Gridded soil profiles for crop model simulation were derived
from the Global High-Resolution Soil Profile Database of the
Harvard Dataverse (Hengl et al., 2014). This dataset is an
improved version of the SoilGrids dataset released by ISRIC
(International Soil Reference and Information Centre) in
2014, with more soil hydraulic properties (e.g., soil water
content at saturation, wilting point, and field capacity) includ-
ed, making it readily available for simulating crop growth.
Other soil physical and chemical properties, such as bulk den-
sity, texture, and organic carbon content, are also available
and have been frequently used as inputs for crop modeling
studies, including China (Wang et al., 2020; Zhang et al.,
2018). In all grids, the soil profiles have six layers, namely
0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, and 100-
200 cm. Spatial maps of several soil properties for each layer
are given in the supplementary material (Figures S1-S6). In
addition, these data are provided for each country at 5 arc-
minute resolution. To make them congruent with the climatic
grids, we aggregated 5 arc-minute grids into 15 arc-minutes.

2.4 APSIM simulations

We implemented the APSIM (Agricultural Production System
sIMulator, https://www.apsim.info/) cropmodel version 7.10 to
simulate the dynamics of maize growth and development.

APSIM is structured around soil, plant, atmosphere, and
management modules, making it a comprehensive model
capable of simulating manifold biophysical processes in
response to environmental variations (Holzworth et al., 2014).
Many studies have successfully used the APSIMmaize module
to quantify the impacts of climate change on maize yield in
China (Wang et al., 2018; Xiao et al., 2020; Zhu et al., 2022).

The APSIM model was originally developed in Australia
but since inception has been used with success in numerous
countries across the world (Harrison et al., 2014b).When used
in other regions, cultivar traits should be re-parameterized
only if local and robust datasets exist (Harrison et al., 2012;
Harrison et al., 2019). In this study, we obtained the genetic
parameters of six maize genotypes (Table S1) for the six cul-
tivating regions from the study of Huang et al. (2020), who
reported that the calibrated maize genotypes can well repre-
sent observed yield of maize cultivated in the belt with R2

being 0.74 and NRMSE being 17.7%. Then, we set up a
long-term simulation (1961-2016) for each grid across
CMB. Climate and soil inputs for each grid have been de-
scribed above. Sowing date was determined as multi-year av-
erage sowing date of the nearest agrometeorological observa-
tional site for each grid (Huang et al., 2020). Details can be
found in Figure S7. Maize planting density, depth, and row
space were same for all regions, i.e., 67,500 plants ha−1, 5 cm,
and 60 cm, respectively. The fertilizer at sowing was 180 kg
ha−1 urea-based N. These are common farming management
practices across China (Huang et al., 2022; Ren et al., 2016;
Zheng et al., 2021). With same management practices across
regions, we were able to focus on the effects of climate and
soil on maize yield in subsequent analysis.

It should be noted that climate, soil, cultivar, and manage-
ment practices have been changing during past decades.
Nonetheless, we did not focus on the effects of cultivar change
but on the responses of current maize planting to climate
change. Thus, we used one calibrated cultivar and kept soil
inherent properties and other management practices constant
over the study period. Moreover, to exclude any “carry-over”
effects from previous seasons, initial soil water and nitrogen
were reset to 20% of maximum soil available water and 80 kg
ha−1 NO3-N and 12.5 kg ha−1 NH4-N on the 1st of January
each year. Fallow was performed prior to sowing.

Table 1 Climatic and growth
information of the six maize
regions across China’s Maize
Belt. CS cropping system; TGS
typical growing season of maize;
AE average elevation; AMT,
AMP, and AMR are annual mean
temperature, precipitation, and
solar radiation, respectively.

Region No. of grids CS TGS AE (m) AMT
(°C)

AMP
(mm)

AMR
(MJ·m−2)

I 713 Single 1May–30 Sep 267 2.1 550 15.8

II 338 Single 1May–30 Sep 387 4.6 620 16.6

III 375 Single 1May–30 Sep 529 6.9 589 17.6

IV 680 Single 1May–30 Sep 1471 8.5 458 19.0

V 950 Double 1 Jun–30 Sep 388 13.2 677 17.9

VI 1227 Mixed 1 Apr–30 Sep 1380 15.6 1120 18.2
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2.5 Identification of temperature sensitivity

We implemented a widely used panel data model, ordinary
least squares regression with quadratic terms (Deng et al.,
2020; Schlenker and Lobell, 2010; Zhu et al., 2019), to esti-
mate temperature sensitivity of maize yield (SY,T). Growing
seasonmean temperature (T), total precipitation (P), and mean
solar radiation (R) were used as the explanatory variables.

ln Yieldi;t
� � ¼ a1Ti;t þ a2T2

i;t þ b1Pi;t þ b2P2
i;t þ c1Ri;t

þ c2R2
i;t þ ε ð1Þ

where ln(Yieldi, t) is the natural logarithm of yield at grid i in
year t. As the APSIM model simulated maize yield can be
viewed as climate-driven yield, we did not normalize for lon-
gitudinal yield gains associated with technological progress
(e.g., breeding, fertilizer, and pesticide application).
Quadratic terms are included for three climatic variables to
simulate their nonlinear impacts on maize yield. a, b, and c
are regression coefficients. ε represents the model error term.
Then, the SY,T can be defined as

SY ;T ¼ ∂Y
∂T

∙100% ¼ a1 þ 2a2Ti
� �

∙100% ð2Þ

where Ti denotes the mean temperature during the study pe-
riod 1961-2016 in grid i. a1 and a2 stand for the regression
coefficients derived from Eq. 1. As the response variable
(maize yield) has been log-transformed, the estimated temper-
ature sensitivity indicates the percentage change of yield for
1°Cwarming.We calculated the SY,T for all of the grids across
CMB using Eq. 1 and Eq. 2. The performance of the model
was evaluated using two metrics, namely coefficient of deter-
mination (R2) and normalized root mean square error
(NRMSE), given by the following equations:

R2 ¼
∑n

i¼1 Oi−O
� �

Pi−P
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1 Oi−O

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1 Pi−P

� �2
r

0

BB@

1

CCA

2

ð3Þ

NRMSE ¼ 1

O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑n

i¼1 Oi−Pið Þ2
r

ð4Þ

where n is the number of samples, Oi and Pi denote observa-
tional and predicted values, and O represents the mean of
observational values. Generally, the model with higher R2

and lower NRMSE is considered to be a better-performance
model.

2.6 Contributions of soil properties to temperature
sensitivity

We implemented the random forest (RF) to study the contri-
butions of various soil properties to temperature sensitivity.
RF, also known as random decision forest, is an advanced
tree-based ensemble machine learning algorithm (Breiman,
2001). Except for developing predictive regression or classi-
fication models, RF is also commonly used for investigating
the complicated relationships among variables, as it can ac-
count for nonlinear and hierarchical relationships between the
response and predictor variables (Dibari et al., 2020). For this
purpose, two built-in functions, namely variable importance
measures and partial dependence plots, can be employed after
an RF model has been built. In this study, we first built an RF
regression model with temperature sensitivity as the depen-
dent variable and multiple soil properties as independent var-
iables. The accuracy-based importance metric was used to
evaluate variable importance. This was generated using an
out-of-bag (OOB) validation procedure. In brief, during the
model building phase, about one-third of all input values were
randomly selected and set aside for subsequent OOB model
validation. Then, the prediction accuracy on the OOB sample
was determined. The mean decrease in prediction accuracy
when the values of a certain variable in the OOB sample were
randomly shuffled was defined as the importance value of the
variable (Heung et al., 2014), expressed as the mean square
error (MSE):

MSEOOB ¼ 1

n
∑n

k¼1 Ki−PkOOB
� �2 ð5Þ

where n denotes the number of observations, Ki indicates

known value, and PkOOB represents the average of all OOB
predictions across all trees.

We also used partial dependence plot (PDP) to evaluate the
marginal effects of a selected explanatory predictor on the
response variable. A PDP can show whether the relationship
between the response and a predictor is linear, monotonic, or
more complex, marginalizing over the values of all other input
predictor variables (the “complement” features) (Friedman,
2001). In this study, we used the “randomForest” package
sourced in the R software to build the RF model and derived
variable importance values and PDPs.

3 Results

3.1 Climatic and yield trends from 1961 to 2016

Temporal trends of climate and simulated maize yield in all
the grids over CMB for the period of 1961–2016 are illustrat-
ed in Figure 3. A significant increasing trend was detected for
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growing season mean temperature in nearly all central and
northern grids. Specifically, temperature increased faster in
inland grids (>0.2°C/10a). The trends varied in the southern
region (region VI), with a part in its east showing decreased
temperature. Solar radiation significantly increased in central
regions and parts of north-eastern regions, with a trend over
0.2MJm−2/10a. The linear trends of solar radiation in remain-
ing regions were not significant. For growing season total
precipitation, no significant trends were detected in most of
the regions. Maize yields generally increased in many grids,
e.g., northern regions, part of mid-eastern regions, and the
northeast part of the southern region (region VI). In some
grids of central and southern regions (regions IV and VI),
maize yield decreased. As model simulated maize yields were
climate-driven, it can be derived that yield trends were mainly
attributed to climate variations during 1961–2016. In addition,

as the trends of precipitation and solar radiation were not
significant in most grids, we did not consider the yield sensi-
tivity to them in subsequent analysis.

3.2 Temperature sensitivity of maize yield

The performance of the panel data model in each region is pre-
sented in Figure 4. Though with some fluctuations, the R2 values
for the six regions were mainly around 0.5, and the NRMSE
values were mainly lower than 1%, meaning that maize yield
variations could be largely explained by climate variables.

As rising temperatures are a uniform and consistent feature
associated with climate change, we separately analyzed the
contributions of temperature to maize yield (hereafter, temper-
ature sensitivity or SY,T). The results for all the grids across the
belt are illustrated in Figure 5. Temperature sensitivity varied

Trend of T (°C/10a)
<0
0~0.1
0.1~0.2
0.2~0.3
0.3~0.4
>0.4
NS

(a) 

Trend of P (mm/10a)
<−20
−20~−10
−10~0
0~10
10~20
>20
NS

(b) 

Trend of R (MJ m−2/10a)
0.2~0.4
0.4~0.6
>0.6
NS

(c) 

Trend of yield (kg ha−1/10a)
<−20
−20~−10
−10~0
0~10
10~20
>20
NS

(d) 

Fig. 3 Linear trend of growing season mean temperature (a), precipitation (b), solar radiation (c), and maize yield (d) in each grid of China’s Maize Belt
for the period 1961–2016. NS: not significant (P > 0.05). In addition, mean values of the four variables for the study period were illustrated in Figure S8.
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Fig. 5 Spatial distributions of SY,T (%/°C). SY,T is the temperature sensitivity of maize yield, representing the yield change (%) for 1°C warming.
Histograms show the distributions of SY,T values for all grids in each sub-region. The vertical dotted line indicates the average of each region.
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greatly in different grids. The most noticeable feature was that
SY,T values in region V were rather smaller than other regions.
Specifically, the values in region V were generally smaller
than 0 and the mean value was about −11%/°C. This indicated
that maize yield in region V negatively responded to temper-
ature increase and yield normally decreased by 11% for every
1°C increase. On the other hand, we also noticed that grids
with positive temperature sensitivity were mainly located in
the northeast, especially region I. Region I was the only one
with mean SY,T exceeding 0% per °C, reaching 1.5% per °C.
The values in other regions generally showed a normal distri-
bution with the mean values in the range of −5 to 0 %/°C.
Thus, in general, temperature increase could contribute to
yield losses in most regions of CMB, except for region I.

3.3 Impacts of soil properties on temperature
sensitivity

Figure 6 shows the performance of the RF model in
explaining the spatial variance of temperature sensitivity
based on soil properties. We selected input soil properties
according to three standards. First, they were APSIM param-
eters so that their impacts could be captured by modeling
methods. Second, their characteristics did not change greatly
under conventional farming management practices. Third,
they were commonly available in gridded soil datasets.
Thus, we selected six soil properties, namely soil organic car-
bon content (SOC), bulk density (BD), sand content (SC),
wilting point (WP), field capacity (FC), and saturated water

content (SWC). Weighted averages of these soil properties by
layers were used as explanatory predictors to develop the RF
model. The model explained 72% variation of SY,T with low
error (2.74% °C−1), indicating that temperature sensitivity was
largely under the modulation of soil inherent properties.

Next, we analyzed the relative importance of input predic-
tors through their marginal effects on temperature sensitivity
(Figure 7). SOC ranked highest with an importance value of
28.9%, showing a positive effect on temperature sensitivity.
While SOC content was highest in region I, it was lowest in
region V, partly explaining the differences of temperature sen-
sitivity in the two regions (Figure 7a). Next highest was
wilting point (20.2%), showing a negative effect on tempera-
ture sensitivity (Figure 7b). Moreover, wilting point in region
I was lowest, suggesting that this variable also contributed to
the high temperature sensitivity of region I. Sand content and
bulk density showed a similar negative impact and their im-
portance values were also similar (Figure 7c and d, noting that
the bulk density in regions I and V was larger than other
regions). The latter two predictors were field capacity and
saturated water content (Figure 7e and f), two hydraulic prop-
erties, showing positive and negative impacts on temperature
sensitivity respectively. The two soil properties were similarly
distributed across CMB, with region VI highest and region IV
lowest.

4 Discussion

Ensuring food security is the second most important
Sustainable Development Goals of the United Nations during
the period of 2015-2030. The agriculture sector is struggling
to fulfill this goal under the background of the climate crisis.
Temperature increase is the typical feature of climate change.
It is observed that global average land surface temperature has
increased by ~1°C in comparison with 1850-1900 and is go-
ing to increase by another 0.5°C over the next 20 years (IPCC
AR6). In our study, we also found increasing trends of grow-
ing season temperature in most grids of the CMB (Fig. 3),
with some grids increasing even faster than global averages.
Temperature has been previously reported as the predominant
factor affecting maize yield (Lobell et al., 2011); thus, any
changes on temperature are likely to cause substantial impacts
on maize yields. Our study revealed that for each unit increase
in growing season mean temperature, the maize yield across
the belt was generally reduced by 3.6% (Fig. 4). This is con-
sistent with Deng et al. (2020)’s study which also reported a
negative response of maize yield in China to climate warming.
A main reason is that increased temperature hastens phenolo-
gy and reduces the growth cycle, resulting in fewer days for
yield formation (Casali et al., 2021; Ibrahim et al., 2019).
Meanwhile, the adverse effects of high temperature are also
associated with increased maintenance respiration rates (Innes
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Fig. 6 Comparison of RF-predicted SY,T and actual SY,T for all of 4283
grids across China’s Maize Belt. The RFmodel was run based on a 10-fold
cross validation procedure. The dashed line is the 1:1 ratio line. The orange
line is the linear regression fit. Fitted equation y = 0.68x − 1.06, R2 = 0.72,
RMSE = 2.74% °C−1. Comparisons of RF-predicted SY,T and actual SY,T
for each sub-region are shown in Figure S9.
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et al., 2015) and decreased net photosynthesis (Rezaei et al.,
2015). Nevertheless, we also noticed the positive impacts of
climate warming on maize yield, specifically in north-eastern
of the belt (Fig. 4). This might be related to antecedent low
temperature conditions, under which increased temperature
still lied within the optimum temperature range of 18-25°C
(Muchow et al., 1990) for maize growth and yield.

The soil-plant-atmosphere continuum is a connected holis-
tic system (Harrison et al., 2012) such that changes in one part
of the system influence feedbacks in other parts. Given this,
we would expect soil properties to influence crop-climate re-
sponses, thereby contributing to the spatial variation in SY,T.
This was confirmed by our results that in grids at a same
latitude, the response of maize yield to rising temperature

could also vary greatly (Fig. 4). Our results also illustrated
that among multiple soil properties, SOC contributed most
to the sensitivity of maize productivity to climate warming
(Fig. 5), in particular the resilience to warming. Many previ-
ous studies have demonstrated that crop yields are under the
modulation of soil carbon stocks and higher SOC content can
normally lead to higher pasture and/or crop yields (Harrison
et al., 2021; Osanai et al., 2020; Stockmann et al., 2013). Here
we further demonstrated that SOC could help buffer the ad-
verse effects of climate warming. This might be related to the
improvement of soil quality by SOC. Soil organic carbon
content is a fundamental representation of soil quality (Lal,
2016), supporting multiple soil functions determining soil
physical, chemical, and biological features (Reeves, 1997)
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Fig. 2.
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which can significantly affect the productive ability of soils
for food production. SOC correlates with multiple soil biodi-
versity dimensions, e.g., community structure, microbial bio-
mass, and its activities (Mau et al., 2015). Decomposition of
SOC mainly releases absorbable nitrogen and higher nitrogen
content has been previously demonstrated to provide resil-
ience for maize to cope with warming (Deng et al., 2020). In
addition, SOC can also increase soil structure (e.g., aggregate
stability and porosity) and water retention (Bronick and Lal,
2005; Karhu et al., 2011). In this case, crops can normally
obtain more available water to maintain high productivity
via evapotranspiration during high temperature conditions
(Huang et al., 2021a; Williams et al., 2016).

Our results also show that wilting point largely accounted
for the spatial variations of temperature sensitivity, more im-
portant than other two hydraulic features, field capacity and
saturated water content. This might be also due to the differ-
ences of plant available water capacity (PAWC) in different
regions. The PAWC is determined as the difference between
field capacity and wilting point. In CMB, the variations of
wilting point in different regions were relatively larger than
field capacity (Fig. 5); thus, it was the wilting point that ac-
counted more for the variations of PAWC as well as SY,T.
Sand content ranked third and it showed negative impacts of
SY,T. This was consistent with results obtained by Rezaei et al.
(2018), reporting that wheat yield reduced significantly by
24% grown on sandy soil substrate with increasing air tem-
perature in a chamber-based experiment and with Van
Ittersum et al. (2003)’s study monitoring a declined of wheat
yield in a sandy soil under warmer (increase of temperature up
to 3°C) scenarios in western Australia. This was mainly due to
that high wilting point usually represented low water-holding
capacity (Huang et al., 2021a). Bulk density also showed neg-
atively influenced SY,T, as higher bulk density normally re-
sulted in lower soil porosity (Song et al., 2015).

Our results also reveal feasible, reversible pathways for
farmers to take action against global climate change. Over
the past few decades, intensive farming practices, e.g., exces-
sive inorganic fertilization and tillage, have been widely
adopted to enhance crop productivity to meet the increasing
domestic food demand in China. These practices degrade soil
quality, meaning more unfavorable soil conditions for crops to
grow (Droste et al., 2020; Waqas et al., 2020). Degraded soil
quality will also make a cropping system more vulnerable to
warming according to our results. These problems can be
alleviated through improving soil quality. With appropriate
farming management practices at long-term context, farmers
can control soil quality (unlike the weather) to produce high
crop yields under current climate conditions, as well as main-
tain yields despite climate change (Macholdt et al., 2020;
Manns and Martin, 2018). For example, Song et al. (2015)
conducted a 22-year field experiment in northeast China and
claimed that compared to inorganic fertilizer treatments,

organic matter amendments (crop straw or farmyard manure)
can not only increase maize yield but also maintain an increas-
ing trend. As demonstrated by Song et al. (2015), organic
amendments can mitigate the negative and promote the posi-
tive effects of climate warming on maize production through
increasing SOC. Farming practices that increase SOC can
usually enable soils to keep higher levels of biodiversity, sup-
ply more plant nutrients, have better water-holding capacity,
and be less vulnerable to erosion (Manns and Martin, 2018;
Minasny et al., 2017). Moreover, increasing SOC is identified
as a main approach for greenhouse gas emission mitigation
(Farina et al., 2021; Lal et al., 2007); thus, it can also contrib-
ute to the mitigation of climate change. In addition, some
conservation agriculture practices, such as no tillage
(Figure 1), are also proved to improve soil quality (Sithole
et al., 2019; Valkama et al., 2020). Nevertheless, different
regions might be varied in most suitable practices. Thus, fur-
ther studies are needed to explore what farming practices can
maximize the benefit to soil quality in certain regions to create
resilient and sustainable agro-ecosystems in face of climate
change.

5 Conclusions

This study is the first one to quantify the potential of soil inherent
properties to mitigate the effects of increased growing season
temperature on maize yield across the CMB. Climate warming
caused yield losses (up to 20% decline for 1°Cwarming) inmost
areas but gains in north-eastern regions (up to 10% increase for
1°C warming). Around 72% of the spatial variation of yield
sensitivity could be attributed to the variation in soil properties.
Soil organic carbon contributed most to the temperature sensi-
tivity of yield, with positive correlations. As previous intensive
farming practices have been widely carried out across the belt,
soil degradation potentially reduced agriculture’s resilience to
climate warming and thus food security. Here we provided evi-
dence that preservation of soil carbon and improved soil quality
reduced yield losses due to climate warming.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s13593-022-00818-z.

Code availability Not applicable.

Authors’ contributions Funding acquisition: Jing Wang and Kelin Hu.
Data collection and formatting: Puyu Feng, Mingxia Huang, and De Li
Liu. Data analysis: Puyu Feng and Bin Wang. Writing original draft:
Puyu Feng, Bin Wang, Matthew Tom Harrison, Jing Wang, Ke Liu,
and Qiang Yu. Writing, review, and editing: all co-authors.

Funding Open Access funding enabled and organized by CAUL and its
Member Institutions. This study was supported by the Strategic Priority
Research Program of the Chinese Academy of Sciences (XDA28060200)
and the National Key R&D Program of China (2016YFD0201202).

85 Page 10 of 13 P. Feng et al.

https://doi.org/10.1007/s13593-022-00818-z


Data availability The datasets generated during and/or analyzed during
the present study are available from the corresponding author on reason-
able request.

Declarations

Ethical approval Not appropriate.

Consent to participate Not appropriate.

Consent for publication Not appropriate.

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/ .

References

Alcock DJ, Harrison MT, Rawnsley RP, Eckard RJ (2015) Can animal
genetics and flock management be used to reduce greenhouse gas
emissions but also maintain productivity of wool-producing enter-
prises? Agric Syst 132:25–34. https://doi.org/10.1016/j.agsy.2014.
06.007

Ara I et al (2021) Modelling seasonal pasture growth and botanical com-
position at the paddock scale with satellite imagery. Silico Plants
3((1):diaa013. https://doi.org/10.1093/insilicoplants/diaa013

Asseng S, Ewert F, Martre P, Rötter RP, Lobell DB, Cammarano D,
Kimball BA, Ottman MJ, Wall GW, White JW, Reynolds MP,
Alderman PD, Prasad PVV, Aggarwal PK, Anothai J, Basso B,
Biernath C, Challinor AJ, de Sanctis G et al (2015) Rising temper-
atures reduce global wheat production. Nat Clim Chang 5(2):143–
147. https://doi.org/10.1038/nclimate2470

Bodner G, Nakhforoosh A, Kaul HP (2015) Management of crop water
under drought: a review. Agron Sustain Dev 35(2):401–442. https://
doi.org/10.1007/s13593-015-0283-4

Bonfante A, Bouma J (2015) The role of soil series in quantitative land
evaluation when expressing effects of climate change and crop
breeding on future land use. Geoderma 259:187–195. https://doi.
org/10.1016/j.geoderma.2015.06.010

Breiman L (2001) Random Forest. Mach Learn 45:5–32. https://doi.org/
10.1023/A:1010933404324

Bronick CJ, Lal R (2005) Soil structure and management: a review.
Geoderma 124(1-2):3–22. https://doi.org/10.1016/j.geoderma.
2004.03.005

Cammarano D, Tian D (2018) The effects of projected climate and cli-
mate extremes on a winter and summer crop in the southeast. Agric

For Meteorol 248:109–118. https://doi.org/10.1016/j.agrformet.
2017.09.007

Casali L, Herrera JM, Rubio G (2021) Modeling maize and soybean
responses to climatic change and soil degradation in a region of
South America. Agron J 113:1381–1393. https://doi.org/10.1002/
agj2.20585

Chang-Fung-Martel J, Harrison M, Rawnsley R, Smith A, Meinke H
(2017) The impact of extreme climatic events on pasture-based dairy
systems: a review. Crop Pasture Sci 68(12):1158–1169. https://doi.
org/10.1071/CP16394

Chen CQ et al (2011) Will higher minimum temperatures increase corn
production in Northeast China? An analysis of historical data over
1965-2008. Agric ForMeteorol 151(12):1580–1588. https://doi.org/
10.1016/j.agrformet.2011.06.013

Deng X, Huang Y, Qin ZC (2020) Soil indigenous nutrients increase the
resilience of maize yield to climatic warming in China. Environ Res
Lett 15(9):11. https://doi.org/10.1088/1748-9326/aba4c8

Deryng D, Conway D, Ramankutty N, Price J, Warren R (2014) Global
crop yield response to extreme heat stress under multiple climate
change futures. Environ Res Lett 9(3):034011. https://doi.org/10.
1088/1748-9326/9/3/034011

Dibari C, Costafreda-Aumedes S, Argenti G, Bindi M, Carotenuto F,
Moriondo M, Padovan G, Pardini A, Staglianò N, Vagnoli C,
Brilli L (2020) Expected changes to Alpine pastures in extent and
composition under future climate conditions. Agronomy 10(7):926.
https://doi.org/10.3390/agronomy10070926

Droste N, May W, Clough Y, Börjesson G, Brady MV, Hedlund K
(2020) Soil carbon insures arable crop production against increasing
adverse weather due to climate change. Environ Res Lett 15(12):13.
https://doi.org/10.1088/1748-9326/abc5e3

FAOSTAT, 2020. Food and Agriculture Organization of the United
Nations 2020. FAOSTAT Database (https://fao.org/aquastat/en/).
Accessed 26 Sept 2021.

Farina R, Sándor R, Abdalla M, Álvaro-Fuentes J, Bechini L, Bolinder
MA, Brilli L, Chenu C, Clivot H, de Antoni Migliorati M, di Bene
C, Dorich CD, Ehrhardt F, Ferchaud F, Fitton N, Francaviglia R,
Franko U, Giltrap DL, Grant BB et al (2021) Ensemble modelling,
uncertainty and robust predictions of organic carbon in long-term
bare-fallow soils. Glob Chang Biol 27(4):904–928. https://doi.org/
10.1111/gcb.15441

Friedman JH (2001) Greedy function approximation: a gradient boosting
machine. Ann Stat 29:1189–1232. https://doi.org/10.1214/AOS/
1013203451

Harrison MT, Cullen BR, Mayberry DE, Cowie AL, Bilotto F, Badgery
WB, Liu K, Davison T, Christie KM, Muleke A, Eckard RJ (2021)
Carbon myopia: the urgent need for integrated social, economic and
environmental action in the livestock sector. Glob Chang Biol
27(22):5726–5761. https://doi.org/10.1111/gcb.15816

Harrison MT, Evans JR, Dove H, Moore AD (2011) Recovery dynamics
of rainfed winter wheat after livestock grazing 2. Light interception,
radiation-use efficiency and dry-matter partitioning. Crop Pasture
Sci 62(11):960–971. https://doi.org/10.1071/CP11235

Harrison MT, Evans JR, Moore AD (2012) Using a mathematical frame-
work to examine physiological changes in winter wheat after live-
stock grazing: 1. Model derivation and coefficient calibration. Field
Crop Res 136:116–126. https://doi.org/10.1016/j.fcr.2012.06.015

Harrison MT, Jackson T, Cullen BR, Rawnsley RP, Ho C, Cummins L,
Eckard RJ (2014a) Increasing ewe genetic fecundity improves
whole-farm production and reduces greenhouse gas emissions in-
tensities: 1. Sheep production and emissions intensities. Agric Syst
131:23–33. https://doi.org/10.1016/j.agsy.2014.07.008

Harrison MT, Roggero PP, Zavattaro L (2019) Simple, efficient and
robust techniques for automatic multi-objective function
parameterisation: case studies of local and global optimisation using
APSIM. Environ Model Softw 117:109–133. https://doi.org/10.
1016/j.envsoft.2019.03.010

Soil properties resulting in superior maize yields upon climate warming Page 11 of 13 85

https://doi.org/10.1016/j.agsy.2014.06.007
https://doi.org/10.1016/j.agsy.2014.06.007
https://doi.org/10.1093/insilicoplants/diaa013
https://doi.org/10.1038/nclimate2470
https://doi.org/10.1007/s13593-015-0283-4
https://doi.org/10.1007/s13593-015-0283-4
https://doi.org/10.1016/j.geoderma.2015.06.010
https://doi.org/10.1016/j.geoderma.2015.06.010
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.geoderma.2004.03.005
https://doi.org/10.1016/j.geoderma.2004.03.005
https://doi.org/10.1016/j.agrformet.2017.09.007
https://doi.org/10.1016/j.agrformet.2017.09.007
https://doi.org/10.1002/agj2.20585
https://doi.org/10.1002/agj2.20585
https://doi.org/10.1071/CP16394
https://doi.org/10.1071/CP16394
https://doi.org/10.1016/j.agrformet.2011.06.013
https://doi.org/10.1016/j.agrformet.2011.06.013
https://doi.org/10.1088/1748-9326/aba4c8
https://doi.org/10.1088/1748-9326/9/3/034011
https://doi.org/10.1088/1748-9326/9/3/034011
https://doi.org/10.3390/agronomy10070926
https://doi.org/10.1088/1748-9326/abc5e3
https://fao.org/aquastat/en/
https://doi.org/10.1111/gcb.15441
https://doi.org/10.1111/gcb.15441
https://doi.org/10.1214/AOS/1013203451
https://doi.org/10.1214/AOS/1013203451
https://doi.org/10.1111/gcb.15816
https://doi.org/10.1071/CP11235
https://doi.org/10.1016/j.fcr.2012.06.015
https://doi.org/10.1016/j.agsy.2014.07.008
https://doi.org/10.1016/j.envsoft.2019.03.010
https://doi.org/10.1016/j.envsoft.2019.03.010


Harrison MT, Tardieu F, Dong Z, Messina CD, Hammer GL (2014b)
Characterizing drought stress and trait influence on maize yield un-
der current and future conditions. Glob Chang Biol 20(3):867–878.
https://doi.org/10.1111/gcb.12381

Hengl T, de Jesus JM, MacMillan RA, Batjes NH, Heuvelink GBM,
Ribeiro E, Samuel-Rosa A, Kempen B, Leenaars JGB, Walsh
MG, Gonzalez MR (2014) SoilGrids1km—global soil information
based on automated mapping. PLoS One 9(8):e105992. https://doi.
org/10.1371/journal.pone.0105992

Heung B, Bulmer CE, SchmidtMG (2014) Predictive soil parent material
mapping at a regional-scale: a random forest approach. Geoderma
214:141–154. https://doi.org/10.1016/j.geoderma.2013.09.016

Holzworth DP, Huth NI, deVoil PG, Zurcher EJ, Herrmann NI, McLean
G, Chenu K, van Oosterom EJ, Snow V, Murphy C, Moore AD,
Brown H, Whish JPM, Verrall S, Fainges J, Bell LW, Peake AS,
Poulton PL, Hochman Z et al (2014) APSIM–evolution towards a
new generation of agricultural systems simulation. Environ Model
Softw 62:327–350. https://doi.org/10.1016/j.envsoft.2014.07.009

Huang J, Hartemink AE, Kucharik CJ (2021a) Soil-dependent responses
of US crop yields to climate variability and depth to groundwater.
Agric Syst 190(4):103085. https://doi.org/10.1016/j.agsy.2021.
103085

HuangM, Wang J, Wang B, Liu DL, Feng P, Yu Q, Pan X, Li S, Jiang T
(2022) Dominant sources of uncertainty in simulating maize adap-
tation under future climate scenarios in China. Agric Syst 199:
103411. https://doi.org/10.1016/j.agsy.2022.103411

Huang MX et al (2020) Optimizing sowing window and cultivar choice
can boost China’s maize yield under 1.5 degrees C and 2 degrees C
global warming. Environ Res Lett 15(2). https://doi.org/10.1088/
1748-9326/ab66ca

IbrahimA, HarrisonMT,Meinke H, ZhouM (2019) Examining the yield
potential of barley near-isogenic lines using a genotype by environ-
ment by management analysis. Eur J Agron 105:41–51. https://doi.
org/10.1016/j.eja.2019.02.003

Innes PJ, Tan DKY, Van Ogtrop F, Amthor JS (2015) Effects of high-
temperature episodes on wheat yields in New South Wales,
Australia. Agric For Meteorol 208:95–107. https://doi.org/10.
1016/j.agrformet.2015.03.018

Karhu K, Mattila T, Bergstrom I, Regina K (2011) Biochar addition to
agricultural soil increased CH4 uptake and water holding capacity -
results from a short-term pilot field study. Agric Ecosyst Environ
140(1-2):309–313. https://doi.org/10.1016/j.agee.2010.12.005

Lal R (2016) Soil health and carbon management. Food and Energy
Security 5(4):212–222. https://doi.org/10.1002/fes3.96

Lal R, Follett RF, Stewart BA, Kimble JM (2007) Soil carbon sequestra-
tion to mitigate climate change and advance food security. Soil Sci
172(12):943–956. https://doi.org/10.1097/ss.0b013e31815cc498

Li L, Zhang Y, Wu J, Li S, Zhang B, Zu J, Zhang H, Ding M, Paudel B
(2019) Increasing sensitivity of alpine grasslands to climate variabil-
ity along an elevational gradient on the Qinghai-Tibet Plateau. Sci
Total Environ 678:21–29. https://doi.org/10.1016/j.scitotenv.2019.
04.399

Liu D,Mishra AK, RayDK (2020) Sensitivity of global major crop yields
to climate variables: a non-parametric elasticity analysis. Sci Total
Environ 748:12. https://doi.org/10.1016/j.scitotenv.2020.141431

Lobell DB, Field CB (2007) Global scale climate - crop yield relation-
ships and the impacts of recent warming. Environ Res Lett 2(1):7.
https://doi.org/10.1088/1748-9326/2/1/014002

Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and
global crop production since 1980. Science 333(6042):616–620.
https://doi.org/10.1126/science.1204531

LuM,WuW, You L, See L, Fritz S, Yu Q,Wei Y, Chen D, Yang P, Xue
B (2020) A cultivated planet in 2010–part 1: the global synergy
cropland map. Earth Syst Sci Data 12(3):1913–1928. https://doi.
org/10.5194/essd-12-1913-2020

Macholdt J, Gyldengren JG, Diamantopoulos E, Styczen M (2020) How
will future climate depending agronomic management impact the
yield risk of wheat cropping systems? A regional case study of
Eastern Denmark. J Agric Sci 158(8-9):660–675. https://doi.org/
10.1017/S0021859620001045

Manns HR, Martin RC (2018) Cropping system yield stability in re-
sponse to plant diversity and soil organic carbon in temperate eco-
systems. Agroecol Sustain Food Syst 42(7):724–750. https://doi.
org/10.1080/21683565.2017.1423529

Mau RL, Liu CM, Aziz M, Schwartz E, Dijkstra P, Marks JC, Price LB,
Keim P, Hungate BA (2015) Linking soil bacterial biodiversity and
soil carbon stability. ISME J 9(6):1477–1480. https://doi.org/10.
1038/ismej.2014.205

Meng Q, Chen X, Lobell DB, Cui Z, Zhang Y, Yang H, Zhang F (2016)
Growing sensitivity of maize to water scarcity under climate change.
Sci Rep-Uk 6(1):1–7. https://doi.org/10.1038/srep19605

Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D,
Chambers A, Chaplot V, Chen ZS, Cheng K, das BS, Field DJ,
Gimona A, Hedley CB, Hong SY, Mandal B, Marchant BP,
Martin M, McConkey BG, Mulder VL et al (2017) Soil carbon 4
per mille. Geoderma 292:59–86. https://doi.org/10.1016/j.
geoderma.2017.01.002

Muchow RC, Sinclair TR, Bennett JM (1990) Temperature and solar
radiation effects on potential maize yield across locations. Agron J
82(2) :338–343. h t tps : / /do i .o rg /10 .2134/agronj1990 .
00021962008200020033x

Osanai Y, Knox O, Nachimuthu G, Wilson B (2020) Increasing soil
organic carbon with maize in cotton-based cropping systems: mech-
anisms and potential. Agric Ecosyst Environ 299:106985. https://
doi.org/10.1016/j.agee.2020.106985

Parkes B, Higginbottom TP, Hufkens K, Ceballos F, Kramer B, Foster T
(2019)Weather dataset choice introduces uncertainty to estimates of
crop yield responses to climate variability and change. Environ Res
Lett 14(12):124089. https://doi.org/10.1088/1748-9326/ab5ebb

Pinheiro EAR, van Lier QD, Simunek J (2019) The role of soil hydraulic
properties in crop water use efficiency: a process-based analysis for
some Brazilian scenarios. Agric Syst 173:364–377. https://doi.org/
10.1016/j.agsy.2019.03.019

Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insuf-
ficient to double global crop production by 2050. PLoS One 8(6):
e66428. https://doi.org/10.1371/journal.pone.0066428

Reeves D (1997) The role of soil organic matter in maintaining soil
quality in continuous cropping systems. Soil Tillage Res 43(1-2):
131–167. https://doi.org/10.1016/S0167-1987(97)00038-X

Ren X, Sun D, Wang Q (2016) Modeling the effects of plant density on
maize productivity and water balance in the Loess Plateau of China.
Agric Water Manag 171:40–48. https://doi.org/10.1016/j.agwat.
2016.03.014

Rezaei EE, Siebert S, Manderscheid R, Müller J, Mahrookashani A,
Ehrenpfordt B, Haensch J, Weigel HJ, Ewert F (2018) Quantifying
the response of wheat yields to heat stress: the role of the experi-
mental setup. Field Crop Res 217:93–103. https://doi.org/10.1016/j.
fcr.2017.12.015

Rezaei EE, Webber H, Gaiser T, Naab J, Ewert F (2015) Heat stress in
cereals: mechanisms andmodelling. Eur J Agron 64:98–113. https://
doi.org/10.1016/j.eja.2014.10.003

Ruane AC, Phillips M, Müller C, Elliott J, Jägermeyr J, Arneth A,
Balkovic J, Deryng D, Folberth C, Iizumi T, Izaurralde RC,
Khabarov N, Lawrence P, Liu W, Olin S, Pugh TAM,
Rosenzweig C, Sakurai G, Schmid E et al (2021) Strong regional
influence of climatic forcing datasets on global crop model ensem-
bles. Agric For Meteorol 300:108313. https://doi.org/10.1016/j.
agrformet.2020.108313

Sándor R, Ehrhardt F, Grace P, Recous S, Smith P, SnowV, Soussana JF,
Basso B, Bhatia A, Brilli L, Doltra J, Dorich CD, Doro L, Fitton N,
Grant B, HarrisonMT, KirschbaumMUF,KlumppK, Laville P et al

85 Page 12 of 13 P. Feng et al.

https://doi.org/10.1111/gcb.12381
https://doi.org/10.1371/journal.pone.0105992
https://doi.org/10.1371/journal.pone.0105992
https://doi.org/10.1016/j.geoderma.2013.09.016
https://doi.org/10.1016/j.envsoft.2014.07.009
https://doi.org/10.1016/j.agsy.2021.103085
https://doi.org/10.1016/j.agsy.2021.103085
https://doi.org/10.1016/j.agsy.2022.103411
https://doi.org/10.1088/1748-9326/ab66ca
https://doi.org/10.1088/1748-9326/ab66ca
https://doi.org/10.1016/j.eja.2019.02.003
https://doi.org/10.1016/j.eja.2019.02.003
https://doi.org/10.1016/j.agrformet.2015.03.018
https://doi.org/10.1016/j.agrformet.2015.03.018
https://doi.org/10.1016/j.agee.2010.12.005
https://doi.org/10.1002/fes3.96
https://doi.org/10.1097/ss.0b013e31815cc498
https://doi.org/10.1016/j.scitotenv.2019.04.399
https://doi.org/10.1016/j.scitotenv.2019.04.399
https://doi.org/10.1016/j.scitotenv.2020.141431
https://doi.org/10.1088/1748-9326/2/1/014002
https://doi.org/10.1126/science.1204531
https://doi.org/10.5194/essd-12-1913-2020
https://doi.org/10.5194/essd-12-1913-2020
https://doi.org/10.1017/S0021859620001045
https://doi.org/10.1017/S0021859620001045
https://doi.org/10.1080/21683565.2017.1423529
https://doi.org/10.1080/21683565.2017.1423529
https://doi.org/10.1038/ismej.2014.205
https://doi.org/10.1038/ismej.2014.205
https://doi.org/10.1038/srep19605
https://doi.org/10.1016/j.geoderma.2017.01.002
https://doi.org/10.1016/j.geoderma.2017.01.002
https://doi.org/10.2134/agronj1990.00021962008200020033x
https://doi.org/10.2134/agronj1990.00021962008200020033x
https://doi.org/10.1016/j.agee.2020.106985
https://doi.org/10.1016/j.agee.2020.106985
https://doi.org/10.1088/1748-9326/ab5ebb
https://doi.org/10.1016/j.agsy.2019.03.019
https://doi.org/10.1016/j.agsy.2019.03.019
https://doi.org/10.1371/journal.pone.0066428
https://doi.org/10.1016/S0167-1987(97)00038-X
https://doi.org/10.1016/j.agwat.2016.03.014
https://doi.org/10.1016/j.agwat.2016.03.014
https://doi.org/10.1016/j.fcr.2017.12.015
https://doi.org/10.1016/j.fcr.2017.12.015
https://doi.org/10.1016/j.eja.2014.10.003
https://doi.org/10.1016/j.eja.2014.10.003
https://doi.org/10.1016/j.agrformet.2020.108313
https://doi.org/10.1016/j.agrformet.2020.108313


(2020) Ensemble modelling of carbon fluxes in grasslands and crop-
lands. Field Crop Res 252:107791. https://doi.org/10.1016/j.fcr.
2020.107791

Schlenker W, Lobell DB (2010) Robust negative impacts of climate
change on African agriculture. Environ Res Lett 5(1):014010.
https://doi.org/10.1088/1748-9326/5/1/014010

Sheffield J, Goteti G, Wood EF (2006) Development of a 50-year high-
resolution global dataset of meteorological forcings for land surface
modeling. J Clim 19(13):3088–3111. https://doi.org/10.1175/
JCLI3790.1

Sithole NJ, Magwaza LS, Thibaud GR (2019) Long-term impact of no-
till conservation agriculture and N-fertilizer on soil aggregate stabil-
ity, infiltration and distribution of C in different size fractions. Soil
Tillage Res 190:147–156. https://doi.org/10.1016/j.still.2019.03.
004

Song ZW et al (2015) Organic amendments increase corn yield by en-
hancing soil resilience to climate change. Crop J 3(2):110–117.
https://doi.org/10.1016/j.cj.2015.01.004

Stockmann U, Adams MA, Crawford JW, Field DJ, Henakaarchchi N,
Jenkins M, Minasny B, McBratney AB, Courcelles VR, Singh K,
Wheeler I, Abbott L, Angers DA, Baldock J, Bird M, Brookes PC,
Chenu C, Jastrow JD, Lal R et al (2013) The knowns, known un-
knowns and unknowns of sequestration of soil organic carbon.
Agric Ecosyst Environ 164:80–99. https://doi.org/10.1016/j.agee.
2012.10.001

Valkama E, Kunypiyaeva G, Zhapayev R, Karabayev M, Zhusupbekov
E, Perego A, Schillaci C, Sacco D, Moretti B, Grignani C, Acutis M
(2020) Can conservation agriculture increase soil carbon sequestra-
tion? Amodelling approach. Geoderma 369:114298. https://doi.org/
10.1016/j.geoderma.2020.114298

Van Ittersum M, Howden S, Asseng S (2003) Sensitivity of productivity
and deep drainage of wheat cropping systems in a Mediterranean
environment to changes in CO2, temperature and precipitation.
Agric Ecosyst Environ 97(1-3):255–273. https://doi.org/10.1016/
S0167-8809(03)00114-2

Wang N, Wang E, Wang J, Zhang J, Zheng B, Huang Y, Tan M (2018)
Modelling maize phenology, biomass growth and yield under con-
trasting temperature conditions. Agric For Meteorol 250:319–329.
https://doi.org/10.1016/j.agrformet.2018.01.005

WangX, Huang J, FengQ, YinD (2020)Winter wheat yield prediction at
county level and uncertainty analysis in main wheat-producing re-
gions of China with deep learning approaches. Remote Sens 12(11):
1744. https://doi.org/10.3390/rs12111744

Waqas MA, Li Y’, Smith P, Wang X, Ashraf MN, Noor MA, Amou M,
Shi S, Zhu Y, Li J, Wan Y, Qin X, Gao Q, Liu S (2020) The
influence of nutrient management on soil organic carbon storage,
crop production, and yield stability varies under different climates. J
Clean Prod 268:121922. https://doi.org/10.1016/j.jclepro.2020.
121922

Williams A,HunterMC, KammererM, KaneDA, Jordan NR,Mortensen
DA, Smith RG, Snapp S, Davis AS (2016) Soil water holding ca-
pacity mitigates downside risk and volatility in US rainfed maize:
time to invest in soil organic matter? PLoS One 11(8):e0160974.
https://doi.org/10.1371/journal.pone.0160974

Xiao D, Liu DL, Wang B, Feng P, Bai H, Tang J (2020) Climate change
impact on yields and water use of wheat and maize in the North
China Plain under future climate change scenarios. Agric Water
Manag 238:106238. https://doi.org/10.1016/j.agwat.2020.106238

Yao Y, Piao S, Wang T (2018) Future biomass carbon sequestration
capacity of Chinese forests. Sci Bull 63(17):1108–1117. https://
doi.org/10.1016/j.scib.2018.07.015

Zhang F, Zhang W, Qi J, Li F-M (2018) A regional evaluation of plastic
film mulching for improving crop yields on the Loess Plateau of
China. Agric For Meteorol 248:458–468. https://doi.org/10.1016/j.
agrformet.2017.10.030

Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, HuangM, Yao Y,
Bassu S, Ciais P, Durand JL, Elliott J, Ewert F, Janssens IA, Li T,
Lin E, Liu Q, Martre P, Müller C et al (2017) Temperature increase
reduces global yields of major crops in four independent estimates. P
Natl Acad Sci USA 114(35):9326–9331. https://doi.org/10.1073/
pnas.1701762114

Zheng J, Fan J, Zhang F, Zhuang Q (2021) Evapotranspiration
partitioning and water productivity of rainfed maize under contrast-
ing mulching conditions in Northwest China. Agric Water Manag
243:106473. https://doi.org/10.1016/j.agwat.2020.106473

Zhu G, Liu Z, Qiao S, Zhang Z, Huang Q, Su Z, Yang X (2022) How
could observed sowing dates contribute to maize potential yield
under climate change in Northeast China based on APSIM model.
Eur J Agron 136:126511. https://doi.org/10.1016/j.eja.2022.126511

Zhu P, Zhuang Q, Archontoulis SV, Bernacchi C, Müller C (2019)
Dissecting the nonlinear response of maize yield to high temperature
stress with model-data integration. Glob Chang Biol 25(7):2470–
2484. https://doi.org/10.1111/gcb.14632

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Soil properties resulting in superior maize yields upon climate warming Page 13 of 13 85

https://doi.org/10.1016/j.fcr.2020.107791
https://doi.org/10.1016/j.fcr.2020.107791
https://doi.org/10.1088/1748-9326/5/1/014010
https://doi.org/10.1175/JCLI3790.1
https://doi.org/10.1175/JCLI3790.1
https://doi.org/10.1016/j.still.2019.03.004
https://doi.org/10.1016/j.still.2019.03.004
https://doi.org/10.1016/j.cj.2015.01.004
https://doi.org/10.1016/j.agee.2012.10.001
https://doi.org/10.1016/j.agee.2012.10.001
https://doi.org/10.1016/j.geoderma.2020.114298
https://doi.org/10.1016/j.geoderma.2020.114298
https://doi.org/10.1016/S0167-8809(03)00114-2
https://doi.org/10.1016/S0167-8809(03)00114-2
https://doi.org/10.1016/j.agrformet.2018.01.005
https://doi.org/10.3390/rs12111744
https://doi.org/10.1016/j.jclepro.2020.121922
https://doi.org/10.1016/j.jclepro.2020.121922
https://doi.org/10.1371/journal.pone.0160974
https://doi.org/10.1016/j.agwat.2020.106238
https://doi.org/10.1016/j.scib.2018.07.015
https://doi.org/10.1016/j.scib.2018.07.015
https://doi.org/10.1016/j.agrformet.2017.10.030
https://doi.org/10.1016/j.agrformet.2017.10.030
https://doi.org/10.1073/pnas.1701762114
https://doi.org/10.1073/pnas.1701762114
https://doi.org/10.1016/j.agwat.2020.106473
https://doi.org/10.1016/j.eja.2022.126511
https://doi.org/10.1111/gcb.14632

	Soil properties resulting in superior maize yields upon climate warming
	Abstract
	Introduction
	Materials and methods
	Study area
	Climate data
	Soil data
	APSIM simulations
	Identification of temperature sensitivity
	Contributions of soil properties to temperature sensitivity

	Results
	Climatic and yield trends from 1961 to 2016
	Temperature sensitivity of maize yield
	Impacts of soil properties on temperature sensitivity

	Discussion
	Conclusions
	References


