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Abstract: The high band pattern distortions in an 1810–2690 MHz frequency band, introduced due
to low band radiators working in 690–960 MHz, are mitigated by a simple yet effective change to
the low band-radiating elements. A novel horizontal and vertical radiating element is designed
instead of a conventional slant polarized low band-radiating element to reduce the scattering. The
slant polarization is achieved from the horizontal and vertical dipoles, using a 180◦ hybrid coupler.
The vertical dipole length is optimized to improve the high band patterns. The experimental results
verified that the proposed horizontal and vertical low band dipole result in the reduction of high
band pattern distortions. The low band-radiating elements provide >12 dB return loss over the entire
frequency band 690–960 MHz and provide comparable pattern performance to a conventional slant
low band dipole.

Keywords: base station antenna; hybrid-matching circuits; pattern distortion; crossband scattering
suppression; wideband matching

1. Introduction

The growth in connected devices requires high connection density in 5G networks. In
fact, requirements specify more than 1 million devices per square kilometer for 5G massive
machine-type communication (mMTC), a 10-fold increase compared to 4G [1]. This is
catered through small cell densification and improved spectrum utilization, which both
require compact multiband antenna systems. The compactness and need for multiband
antenna systems present conflicting demands, since the need for multiple bands requires
multiple arrays and thus more space [2,3]. The only way to realize a compact antenna is
to interleave these multiband arrays. The main challenge is to then ensure the radiation
patterns are not distorted due to scattering from other radiating elements in the vicinity.
In such multiband interleaved array, the high-frequency element patterns are impacted
due to the scattering from the currents induced in low-frequency radiating elements and
vice versa. The impact can be on multiple parameters such as beamwidth, squint, and
cross-polarization discrimination (XPD). Often, it is attempted to ensure that each radi-
ating element is transparent to each other in their operating frequency bands, which is a
challenging task.

The common approach to reducing the crossband scattering is to adopt different sizes
and shapes of metal cavities or walls [4–7]. Cavity-backed antenna is used in [8] to improve
the isolation of antenna elements in an array. In [9], the high-frequency band (HB) pattern
distortions caused by the lower frequency band (LB) radiating elements are minimized by
introducing chokes into the LB element. These chokes are quarter-wavelength open-circuit
segments at high band frequencies, which minimizes scattering. In [10], the printed dipole is
segmented into smaller segments that are not resonant in the higher-frequency band region.
Each segment is connected to the other by inductive thin lines. This makes the lower band
elements transparent to the high band-radiating elements. In [11], a cloaked antenna system
is realized to minimize the scattering of closely located antennas. Filtering techniques with
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different configurations are also employed to obtain better isolation between radiating
elements. As in [12], the filtering antenna as array elements has been proposed. The
radiating element realized the filtering response by adding the shorting pins and E-slot
to reduce the crossband scattering. A coupled resonator-based decoupling network is
deployed in [13] to improve crossband scattering. The currents induced by the coupled
resonator help to suppress the strong coupling between the antennas operated in two
frequency bands. The addition of a frequency-selective surface between the high band
and low band elements has been deployed in [14] to reduce the crossband scattering.
Although these techniques suppress the crossband scattering, they do require significant
modifications to LB or HB elements which can increase the cost of manufacturing due to
added complexity of products.

The novelty in this work is in the simple and effective approach proposed to reduce
the crossband scattering at HB by orienting the LB radiating element in horizontal (H)
and vertical (V) directions, as shown in Figure 1b, in contrast to the conventional slant
LB dipole configuration shown in Figure 1a. The main challenge then is to generate the
slant polarization (±45◦) from an H and V oriented dipoles. This has been overcome by
utilizing a 180◦ hybrid coupler. Below is a list of abbreviations in Table 1 to provide a better
understanding of acronyms used in the proposed technique.
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Figure 1. (a) Slant dipole configuration used in traditional interleaved scheme for dual-band dual-
polarized BSA. (b) The proposed horizontal and vertical LB dipole configuration (LBHV) with HB
subarrays. P1 and P3 refer to +45 polarizations; P2 and P4 refer to −45 polarization.

Table 1. List of Acronyms.

No. Acronym Description

1 HB High band
2 LB Low band
3 BSA Base station antenna
4 LBHV Low band horizontal–vertical
5 HPBW Half power beamwidth
6 HD Horizontal dipole
7 VD Vertical dipole
8 TL Transmission line

2. Low Band Horizontal and Vertical Configuration

The HB and LB elements are interleaved in the current base station antenna (BSA)
for space savings. Due to the use of ±45 polarized elements, the dipoles are oriented in a
slant configuration, as shown in Figure 1a. It should be noted that a full array has multiple
such elements arranged vertically, and that only a segment is depicted in this figure for
clarity. The presence of the LB radiator on top of the HB radiators can induce HB currents
on the LB dipoles, acting as resonating structures and distorting the patterns. In addition,
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being directly in front of the HB radiators disrupts the nearfield distribution and scatters
the desired HB patterns. This results in undesirable HB patterns, as shown in Figure 2.

Electronics 2022, 11, x FOR PEER REVIEW 3 of 10 
 

 

2. Low Band Horizontal and Vertical Configuration 
The HB and LB elements are interleaved in the current base station antenna (BSA) for 

space savings. Due to the use of ±45 polarized elements, the dipoles are oriented in a slant 
configuration, as shown in Figure 1a. It should be noted that a full array has multiple such 
elements arranged vertically, and that only a segment is depicted in this figure for clarity. 
The presence of the LB radiator on top of the HB radiators can induce HB currents on the 
LB dipoles, acting as resonating structures and distorting the patterns. In addition, being 
directly in front of the HB radiators disrupts the nearfield distribution and scatters the 
desired HB patterns. This results in undesirable HB patterns, as shown in Figure 2. 

 
Figure 2. High band-only and high band with slant LB antenna-measured azimuth patterns at (a) 
1.8 GHz, (b) 2.4 GHz and (c) 2.6 GHz. 

The aim of this work is to mitigate such HB pattern effects due to LB antenna element. 
The location of the dipoles of the LB antennas on top of the HB antenna elements was 
investigated. It was found that pattern distortions were significant as long as the LB dipole 
was directly above the HB antenna element, irrespective of the type of the HB radiator. 
This study uses a square-shaped cross-dipole antenna as the HB element [4]. The HB array 
itself, without any LB radiators, has cleaner patterns with half-power beamwidth (HPBW) 
around 65 ± 5° and almost no squint, as shown in Figure 2. 

A careful observation of the current distribution at HB frequencies revealed that the 
induced HB currents reduce in magnitude as the LB dipoles are moved away from a slant 
position to horizontal and vertical positions. As a result, HB patterns are cleaner, as shown 
in Figure 3. This LB configuration is referred to as Low Band Horizontal–Vertical (LBHV) 
from here onwards. The measured results show that the pattern performance of HB arrays 
with LBHV elements is similar to HB-only radiation patterns. 

  

Figure 2. High band-only and high band with slant LB antenna-measured azimuth patterns at
(a) 1.8 GHz, (b) 2.4 GHz and (c) 2.6 GHz.

The aim of this work is to mitigate such HB pattern effects due to LB antenna element.
The location of the dipoles of the LB antennas on top of the HB antenna elements was
investigated. It was found that pattern distortions were significant as long as the LB dipole
was directly above the HB antenna element, irrespective of the type of the HB radiator.
This study uses a square-shaped cross-dipole antenna as the HB element [4]. The HB array
itself, without any LB radiators, has cleaner patterns with half-power beamwidth (HPBW)
around 65 ± 5◦ and almost no squint, as shown in Figure 2.

A careful observation of the current distribution at HB frequencies revealed that the
induced HB currents reduce in magnitude as the LB dipoles are moved away from a slant
position to horizontal and vertical positions. As a result, HB patterns are cleaner, as shown
in Figure 3. This LB configuration is referred to as Low Band Horizontal–Vertical (LBHV)
from here onwards. The measured results show that the pattern performance of HB arrays
with LBHV elements is similar to HB-only radiation patterns.
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It is observed that the main beam shows a significant 3 dB and 10 dB beam squint
with the slant dipoles compared to the LBHV, as shown in Figure 4a–f. The proposed work
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is also compared with the recent state-of-the-art works in Table 2, which shows isolation
performances and the addition of structure type to radiating elements.
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Figure 4. Measured 10 dB azimuth beamwidth of HB arrays with (a) LBHV element (b) LB slant
element, 10 dB azimuth beam peak of HB arrays with (c) LBHV element (d) LB slant element, 3 dB
azimuth beam peak of HB arrays with (e) LBHV element (f) LB slant element. The P1, P2, P3, and P4
refer to polarizations indicated in Figure 1.
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Table 2. Comparison of recent state-of-the-art works with proposed work.

References Modification Type to Improve Isolation Frequency
Band (GHz) Isolation (dB) HPBW

(Measured)

[4] Metal baffles 0.77–0.98
1.65–2.9

>23
17.5

64.5 ± 57.1◦

84.4 ± 74.1◦

[5] Arc-shaped baffle plates 0.74–0.96
1.7–2.6 >27.5

61.5◦

90◦

[9] Chokes in LB element 0.82–1
1.71–2.28 NG

69.5 ± 4◦

65 ± 5◦

[12] Filtering antenna elements 1.71–1.88
1.9–2.17 >30 65 ± 5◦

Proposed Antenna No added structure 0.69–0.96
1.8–2.6

>36
>20

60 ± 5◦

65 ± 11◦

3. Virtual Slant Polarizations

The base station antennas require ±45 polarized antenna elements, and the proposed
horizontal and vertical dipoles provide only horizontal and vertical polarization. Therefore,
a novel technique creates a ±45 polarization virtually from H- and V-oriented dipoles. The
180◦ hybrid coupler is a common microwave component which can be realized either as a
rat-race, ring or magic T-hybrid. The 180◦ hybrid coupler is commonly used to get in and
out of phase signals. Different design approaches have been followed in the literature, just
as in [15] where a specialized TL is designed for a compact rat race coupler.

As shown in Figure 5a, a 180◦ hybrid coupler is used between the inputs and the
LBHV element. Port 2 feeds the horizontal polarized element, and port 3 of the hybrid
provides the vertically polarized dipole.
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The AH and AV can be expressed in terms of the +45 and −45 input signals A+45 and
A−45 as: [

AH
AV

]
= [S180◦ ]

[
A+45 ∠ θ+45
A−45 ∠ θ−45

]
AH =

1√
2
[A+45 ∠ θ+45 + A−45 ∠ θ−45]
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Av =
1√
2
[A+45 ∠ θ+45 + A−45 ∠ θ−45 − 180◦]

The output at port 2, fed to the horizontal-polarized dipole, contains the in-phase
components of both the +45 and −45 polarizations, while the output port 3 contains signals
of +45 in-phase and a−45 signal with a 180◦ phase shift. Since the +45 signal is fed in phase
to both the H and V polarizations, it virtually creates a sum vector in the +45 direction,
as shown in Figure 5b. The −45 component fed to the vertically polarized element has a
180◦ phase difference compared to the horizontally polarized dipole. Therefore, it creates a
signal polarized in the −45 direction, as shown in Figure 5b. By the theory of reciprocity,
the received signals at H and V dipoles provide the sum and difference signals, which are
+45 and −45 signals, back to the baseband unit.

4. Low Band Element

The LBHV element should have a comparable performance in terms of patterns to
a slant dipole, while providing minimum distortions to the HB patterns. The length of
the dipoles in the H and V polarizations are optimized to meet these requirements. The
optimized values were obtained through a series of parametric studies. It was found that
the vertical dipole length presents more resonant behavior at the high band and needs to
be shorter to reduce HB pattern distortions. This can result in a wider 3 dB beamwidth for
LB patterns. A longer dipole close to a full wavelength is required in the H orientation to
compensate for this.

The LB dipoles need to be impedance-matched for the 690–960 MHz band. The
impedance-matching network is based on a feed network design proposed in [16]. A ladder-
type band-pass filter using a serial and shunt resonant LC circuit is used for wideband
matching. As shown in Figure 6, a circuit model contains three tuners, i.e., a series resonator
and a shunt resonator used to control/reduce the changing reactance, followed by a quasi-
quarter wavelength transmission line (TL2). The optimization and physical realization
were conducted in a CST studio to obtain the best match over the required band.
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The matching circuit was implemented using microstrip technology, as shown in
Figure 7a. The lines TL1 (transmission line) and SL (short line) are realized as coupled
lines that are printed on the back-conducting layer, while TL2 and OL (open line) are
conventional microstrip layers.
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Figure 7. (a) Perspective view of the LBHV. The horizontal dipole is 135 mm long, and the vertical
dipole is 60 mm long, (b) details of the LB horizontal dipole (LBHD) feed, (c) details of the LB vertical
dipole (LBVD) feed.

The configuration of horizontal dipole balun is shown in Figure 7b, while short dipole
balun is depicted in Figure 7c. They are orthogonally arranged to feed the pair of horizontal
and vertical LB arms. Although matching the short dipole is quite challenging, the antenna
is well-matched with a reflection coefficient of better than 12 dB for horizontal polarization,
and better than 10 dB for vertical polarization from 690 MHz to 960 MHz, as shown in
Figure 8a. To have an insight into the working mechanism of the proposed antenna, VSWRs
are studied and shown in Figure 8b. The optimized dimensions of the structure are those
listed in Table 3. A fabricated prototype of the antenna is shown in Figure 9.
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Table 3. Optimized parameters of the proposed antenna.

Parameters. Values LB-HD (mm) Values LB-VD (mm) Description

W-SL 6.5 10 Width of SL

L-SL 95 95 Length of SL

W-TL1 8.5 8.5 Width of TL1

L-TL1 17 17 Length of TL1

W-TL2 2 3 Width of TL2

L-TL2 60 50 Length of TL2

W-OL 4 5 Width of OL

L-OL 18 17 Length of OL

g 19 13 Gap between SL
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Figure 9. Fabricated prototype with (a) LBHV antenna element (b) LB slant element.

Despite this, the achieved HPBW with LBHV configuration is relatively stable, with a
reflection coefficient larger than 12 dB. The port-to-port-measured worst-case isolation of
LBHV configuration in hybrid mode is 36 dB at 960 MHz and 20 dB at 2 GHz, as shown in
Figure 10, in the desired whole-band 690–960 MHz and 1810–2690 MHz, respectively.
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5. Conclusions

The high band pattern distortions can be reduced by using a horizontal and vertical
low band element instead of a conventional slant low band element. The scattering from
this low band element is minimized since dipoles are moved away from the high band-
radiating elements. This method is simpler compared to other techniques available in the
literature that require significant modifications to radiating element design, resulting in
an increased cost. The construction of the horizontal low band element is almost similar
to a conventional low band element design, and therefore, construction and assembly are
simple. The only addition is a 180◦ hybrid coupler, which is used to generate the slant
polarizations. The new low band element is matched over the entire low band frequency
range with >12 dB return loss and the low band patterns are identical to conventional slant
low band element pattern with 6.2 dB gain, 60 ± 5◦ beam width for a single element.
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