
1

A Segment-based Drift Adaptation Method
for Data Streams

Yiliao Song, Student Member, IEEE, Jie Lu, Fellow, IEEE, Anjin Liu, Member, IEEE, Haiyan Lu, Senior Member,
IEEE, Guangquan Zhang

Abstract—In concept drift adaptation, we aim to design a
blind or an informed strategy to update our best predictor for
future data at each time point. However, existing informed drift
adaptation methods need to wait for an entire batch of data to
detect drift and then update the predictor (if drift is detected),
which causes adaptation delay. To overcome the adaptation
delay, we propose a sequentially updated statistic, called drift-
gradient to quantify the increase of distributional discrepancy
when every new instance arrives. Based on drift-gradient, a
segment-based drift adaptation(SEGA) method is developed to
online update our best predictor. Drift-gradient is defined on
a segment in the training set. It can precisely quantify the
increase of distributional discrepancy between the old segment
and the newest segment when only one new instance is available
at each time point. A lower value of drift-gradient on the old
segment represents that the distribution of the new instance is
closer to the distribution of the old segment. Based on the drift-
gradient, SEGA retrains our best predictors with the segments
that have the minimum drift-gradient when every new instance
arrives. SEGA has been validated by extensive experiments on
both synthetic and real-world, classification and regression data
streams. The experimental results show that SEGA outperforms
competitive blind and informed drift adaptation methods.

Index Terms—drift adaptation, concept drift, online learning,
data stream.

I. INTRODUCTION

DAta streams consists of infinite [1] and fast evolving data
instances which arrive in a sequential way [2], [3].For

a data stream, the newly arrived data instances may exhibit a
different pattern from the previous data [4]. This phenomenon
is called concept drift, where the terminology “concept” refers
to the hidden patterns or the underlying distribution of data [5].
For example, the pattern of raining may change in different
time period.

To solve the concept drift problem in a data stream, concept
drift adaptation aims to design a blind or an informed strategy
to update the best predictor for future data at each time
point [6]. The adaptation method with a blind strategy is also
categorised as “passive” approach and the adaptation method
with an informed strategy categorised as “active” approach [7].

However, existing informed drift adaptation methods need
to wait for an entire batch (time window) of data to detect
drift and then update the predictor (if drift is detected), which

Y. Song, J. Lu, A. Liu, H. Lu and G. Zhang are with the De-
cision Systems and e-Service Intelligence Laboratory, Centre for Arti-
ficial Intelligence, Faculty of Engineering and Information Technology,
University of Technology Sydney, Ultimo, NSW 2007, Australia (e-mail:
Yiliao.Song@student.uts.edu.au; Anjin.liu@uts.edu.au; Jie.Lu@uts.edu.au;
Haiyan.Lu@uts.edu.au; Guangquan.Zhang@uts.edu.au.)

causes adaptation delay. Specifically, the existing informed
adaptation methods only use the result of drift detection
process to assist adaptation [8]. They need a batch of data
to determine whether drift occurs [9], [10], which results in
the drift reaction delay.

To overcome the adaptation delay, we propose a sequentially
updated statistic, called drift-gradient, and develop a segment-
based drift adaptation (SEGA) method to update our best
predictor when every new instance arrives. During the learning
process, the training data is ordered by time and divided into
several equal length segments, and a predictor is learned with
the data in each segment. When a new instance arrives, we
first update the drift-gradient on each segment in the training
data. Based on the updated drift-gradient, SEGA retrains our
best predictors with the segments that have the minimum drift-
gradient.

Drift-gradient is to quantify the increase of segmented sym-
metric degree (SSD) when only one new instance is available
at each time point. SSD is a new statistic proposed to measure
the distributional discrepancy between an old segment and the
newest segment in the training set. The advantage of drift-
gradient is that it does not need to compute the value of SSD
before and after the new instance arrives, and therefore can
be sequentially updated with low computational cost. A lower
value of drift-gradient on an old segment represents that the
distribution of the new instance is closer to the distribution
of this old segment. Therefore, the predictor trained with this
segment should be a better predictor for the new instance.

SEGA has been validated by extensive experiments on both
synthetic and real-world, classification and regression data
streams. To our best knowledge, this is the first time that the
drift adaptation method has been comprehensively tested on
both continuous and discrete label variables. SEGA has been
compared to 15 benchmarks (where 7 of them are adaptation
methods for regression task, and 8 are for classification task)
and validated on 12 synthetic data (where 6 of them are for the
regression task and 10 are for the classification task) and 14
real-world data streams (where 7 of them are for the regression
task and 7 are for the classification task). The experimental
results show that SEGA outperforms competitive blind and
informed drift adaptation methods.

The contributions of this paper includes three aspects:
• A segmented symmetric degree (SSD) is proposed to

measure distributional discrepancy between old segments
and the newest segment in the training set. SSD is better
than a one-sided measurement when two distributions
have different variances;

2

• A sequentially updated statistic, drift-gradient is proposed
to quantify the increase of SSD (not SSD) when every
new instance arrives without computing the value of SSD
before and after the new instance arrives;

• An online drift adaptation method, SEGA is developed
based on drift-gradient. SEGA can effectively overcome
the adaptation delay issue in the existing informed drift
adaptation methods.

The remainder of this paper will cover the following: related
concept drift research is reviewed in Section II. Section III
explains the principle and procedure of the proposed SEGA
method. The experimental evaluations of the SEGA method
are presented in Section IV, and finally, this paper concludes
with a discussion of the future work in Section V.

II. RELATED WORK

A. An overview of concept drift

The idea of concept drift is proposed, to enable machine
learning predictors to be applicable in data streams with
changing distributions [11]. Much of the existing research has
validated the importance of solving the problem of concept
drift problem, from theory to practice [9], [12], [13].

A widely-accepted definition of concept drift is presented in
the form of probability distribution that ∃td : ptd+1 (X, y) 6=
ptd (X, y) [14]. The changes of p (y|X) are called real drift
[15], [16] and the changes of p (X) are virtual drift [17],
[18]; Concept drift can occurs as four types: sudden drift,
incremental drift, gradual drift and reoccurring drift [10]. This
paper focuses on all four types of the real drift.

B. Concept drift adaptation

The occurrence of concept drift denotes a trained predictor
is no longer suitable for predicting upcoming data, and the
concept drift adaptation methods are designed to solve this
problem [14], [19]. There are three basic requirements in drift
adaptation: 1) adaptation should be fast [20]. For example,
for a drift adaptation method, the adaptation process should be
done in half an hour if the frequency of data is half an hour.
2) adaptation should be robust [21]. 3) adaptation should
also be applicable in a non-drift data stream [22]. As it
is uncertain whether drift would occur in a real-world data
stream, the designed drift adaptation methods should also be
to applied in a non-drifted data stream.

Existing drift adaptation is implemented by two strategies:
blind adaptation strategy [23], [24] and informed adaptation
strategy [14]. Blind adaptation strategies do not involve drift
detection techniques such as evolving neural networks in [25],
AUE2 [26], DWMIL [27] and DTEL [28]. The predictor
could be ill-trained with the “always-adapt” mechanism in the
blind strategy [22]. In informed adaptation, a drift detection
technique is implemented help adaptation [29]. The drift
detection can be implemented based on the error [30], [31]
or a statistic [32], [33].

In existing informed adaptation methods, the drift detection
technique is used to output a binary variable of “drift is
detected” or “drift is not detected”, which has inevitable time

The key contribution

Dri� adapta�on: segments with
minimum dri�-gradient are used
for predict new instance

Defini�on 2. Symmetric Degree: Sta�s�c
measures distribu�onal discrepancy
between two batches of instances

Decomposi�on

Defini�on 3. Segment Symmetric Degree
(SSD): distribu�onal discrepancy between

two batches of instances on each
segment of the base batch

Defini�on 4. Dri�-Gradient:
increase of SSD from t-1 to t

“Deriva�ve”
on discrete t

Defini�on 5. k-nearest neighbor
distance matrix: help compute Dri�-

Gradient without compu�ng SSD

Fig. 1. Relationship between the definitions proposed in this paper.

delay [10]. In [34], [35], the PH-test statistic is updated when
a new instance arrives by adding a fixed parameter [34] or
the value of a fixed function of parameters [35]. Clearly, this
forgetting mechanism assumes that the drift has a regular
pattern, which is not always true in the real applications.

In this paper, we propose a statistic SSD which can be
used to detect drift. Instead of directly using SSD to iden-
tify whether drift occurs, we propose a sequentially updated
statistic, called drift-gradient to present the changes of SSD
without computing the value of SSD before and after a
new instance arrives. Drift-gradient can be used to select the
most appropriate segments in the current training set to make
adaption.

III. METHODOLOGY

This paper proposes a sequentially-updated statistic, called
drift-gradient and based on it, a segment-based adapta-
tion(SEGA) method is developed to update the predictor when
every new instance arrives. Drift-gradient is to quantify the
increase of segmented symmetric degree (SSD) when only one
new instance is available at each time point. SSD is a new
statistic that can measure the distributional discrepancy be-
tween old segments and the newest segment. The relationship
between the proposed new definitions is presented in Fig. 1.

In this section, we will firstly introduce the problem setting,
then introduce SSD, drift-gradient and finally SEGA. Basic
notations and the problem setting of drift adaptation are
outlined in section III-A. The proposed SSD is presented
in section III-B. Section III-C explains how to update drift-
gradient, and finally, SEGA is presented in section III-D.

A. Problem setting

To mimic the characteristic of data stream where data
instances are observed in a sequential way, the learning and
evaluation process for data stream is repeatedly activated
when new data instances are observed. Specifically, a trained
predictor is applied to predict the label value of the new data
instance before the true label is obtained. After the true label
is obtained, an evaluation process is activated and the instance
is included to retrain the existing predictor.

We refer to the concepts and notation of concept drift in [28]
and [16]. Given a data stream Dt = {(Xt, yt) |t = 1, ...∞},

3

generated from distribution Pt. pt (X, y) denotes the probabil-
ity of Pt in a discrete case or the probability density function
(pdf) of Pt in a continuous case. Concept drift is defined as
∃td : ptd+1 (X, y) 6= ptd (X, y).

So far, the widely accepted definition of concept drift has
highlighted the characteristics of drift, but has not explained
the meaning of “concept”. When studying the problem of
concept drift, the term “concept” is used to represent the
hidden data patterns such as the probability distributions and
relationships between X and y. Concept drift is caused by
the hidden context, rather than stochastic disturbances. Unlike
outliers, a concept will last for a period after it shows, rather
than existing momentarily. To present this characteristics of
concept, a constraint is added to the current definition of
concept drift as is presented in Definition 1.

Definition 1: Concept Drift occurs in a data stream if ∃td(i)
that{

pt+1(X, y) 6= pt(X, y), for t = td(i)

pt+1(X, y) = pt(X, y), for t ∈
[
td(i)+τi , td(i+1)

) (1)

where ∀i, td(i+1) − td(i) > 1, t ∈ Z+ presents the time point,
d(i) is an order statistics denoting the ith drifted time point,
and 1 < τi < td(i+1) − td(i) is specifically for the occurrence
of incremental drift.

Remark. In this definition, a data stream contains concept
drift if the data pattern changes at least once, namely {td(i)} 6=
∅ that pt+1(X, y) 6= pt(X, y), for t = td(i) ; in addition, the
changed pattern is not ephemeral, but will last for a period
(at least last for two time points), which is manifested by
∀i, td(i+1)−td(i) > 1. The pattern stays the same in this period
that pt+1(X, y) = pt(X, y), for t ∈

(
td(i)+τi , td(i+1)

)
; here

τi = 1 when the drift occurs suddenly while τi > 1 when the
drift occurs incrementally in the period of

(
td(i)+1, td(i)+τi

)
.

All drift adaptation methods are at least one-instance
delayed. Without the constraint that a new pattern will
retain for a period, the adaptation is invalid in principle.

According to Definition 1, a concept will exists for at least
a time period of τ once it appears, and the occurrence of
concept drift at td means the end of one concept. During the
time period of one specific concept, the learning goal is to
obtain a predictor Hc for pc (X, y), which can be denoted as

Hc = arg min
h∈H

E(X,y)∼pc [` (h(X), y)], (2)

where H is the hypothesis set, ` : R1 × R1 → R+ is the loss
function used to measure the magnitude of error. The goal of
the learning process on the whole data stream is to minimize
the loss over all concepts, which is to obtain the best predictors
h1, h2, ..., hc, ... at each time point in (3).

arg min
h1,h2,...,hc,...

∑
c

E(X,y)∼pc [` (hc(X), y)] . (3)

In this paper, h1, h2, ..., hc, ... is determined by drift-gradient.
Drift-gradient is to measure the increase of a proposed statistic
SSD. In the next two subsections, we will introduce SSD and
explain how to compute drift-gradient without computing the
values of SSD.

B. The segmented symmetric degree (SSD)

SSD is the decomposition of a symmetric degree (SD)
on segments. SD defined in Definition 2 is to measure the
distributional discrepancy between two samples of data.

In this subsection, we use the following notations.
• P , P1, P2, Q: data samples
• NP , NP1

, NP2
, NQ: sample size

• p, p1, p2, q: probability distributions
• Ki(k): the set of k nearest neighbors of an instance i
• Ni,S(k) = |Ki(k) ∩ S|: how many k nearest neighbors

of i are in S
In this paper, we use a kNN search to determine the neighbors
for each instance. For both regression and classification tasks,
we first normalize each variable (including the target variable)
into [0, 1] by using the min-max normalization. After that,
the distance is computed by the Euclidean distance. However,
using Euclidean distance denotes that we assume (Xt, yt) ∈
Rd+1 which is not always true in real application, especially
for the classification task. The kNN could also be determined
by other distance, which can further improve the method.

Definition 2: Symmetric Degree. Given two data samples
P and Q with p and q its distribution, the symmetric degree
d̄P,Q(k) is defined as the average density difference of P ’s
and Q’s k-nearest neighbors.

d̄P,Q(k) =
1

NP

∑
u∈P

(
Nu,P (k)

Np
− Nu,Q(k)

NQ

)
+

1

NQ

∑
v∈Q

(
Nv,Q(k)

NQ
− Nv,P (k)

NP

)
,

(4)

where for any u, v, Nu,P (k) + Nu,Q(k) = k and Nv,Q(k) +
Nv,P (k) = k.

If there are more than one candidates for the kth-nearest
neighbor of u, the kth-nearest neighbor is randomly chosen
from the candidates in P . Similarly for u, v’s kth-nearest
neighbor is determined from the candidates in Q if there are
more than one candidate. The first term in the summation
of Definition 2, measures the average density difference over
all of P ’s neighborhoods and the second term measures the
average density difference over Q’s neighborhoods. Clearly,
the proposed d̄P,Q(k) is symmetric on these two samples,
given the same k, namely d̄P,Q(k) = d̄Q,P (k). A larger
absolute value of SD, means that P is more likely to be
different from Q. As SD is a summation-based statistic, it
converges to a normal distribution according to the central
limit theorem, when NP and NQ approaches infinity. Similar
proof can be found in our previous studies [16], [36].

Next, a simple example in Fig. 2 is introduced to show
why the symmetric measurement is better than the one-
side measurement. The one-sided measurement, such as the
measurements in [16], [36], only counts the density difference
on either P or Q’s neighborhoods rather than both of them.
In Fig. 2, the red dots represents sample P and the blue dots
represents sample Q. According to the distribution of P and
Q, they have the same expectation but P has larger variance.
If the density difference is restricted to P ’s neighborhoods, as
shown in subplot (a). When k = 2, the neighborhoods of P

4

Fig. 2. An example to show the drawback of a one-sided measurement. There
is no density difference if neighbors of P are considered. However, density
difference exists if neighbors of Q are considered.

is framed by the black dotted ellipse and there is no density
difference in any ellipse. If the density difference is restricted
to Q’s neighborhoods in subplot (b), the neighborhoods of Q
is framed up by three ellipses. In the black ellipse, there is no
density difference between the blue and red dots. However, in
the red ellipses, they all contain blue dots. The density of the
blue dots is 1 and the density of the red dots is 0, giving a
density difference of 1. Therefore, if a one-sided measurement
of density difference is applied based on the sample that has
larger variance, such as is in subplot (a), it is invalid to reflect
the variance discrepancy between two samples.

Given SD able to measure the difference between two sam-
ples, let the current training data be sample P and the newest
batch of data instances be the sample Q, where NP � NQ,
SD can be used to test whether Q’s distribution is different
from P .

SSD is the decomposition of SD which can consider the
distributional discrepancy on each segment of the training data.
We firstly explain the decomposition of SD in the case of two
segments. Given P1 and P2 two absolute complements in P
that P1 ∪ P2 = P and P1 ∩ P2 = ∅, SD can be rewritten
as (5). Detailed derivation from SD to SSD can be found in
Appendix.

d̄P,Q(k) =
1

NP

∑
u∈P1

(
Nu,P (k)

NP
− Nu,Q(k)

NQ

)
+

1

NP

∑
u∈P2

(
Nu,P (k)

NP
− Nu,Q(k)

NQ

)
+

1

NQ

∑
v∈Q

(
Nv,Q(k)

NQ
− Nv,P (k)

NP

)
.

(5)

Given ssdP1,Q(k) and ssdP2,Q(k) in (6) and (7), d̄P,Q(k) =
ssdP1,Q(k) + ssdP2,Q(k).

ssdP1,Q(k) =
1

NP

∑
u∈P1

(
k −Nu,Q(k)

NP
− Nu,Q(k)

NQ

)
−

1

NQ

∑
v∈Q

Nv,P1(k)

NP
+

1

2NQ

∑
v∈Q

Nv,Q(k)

NQ
.

(6)

ssdP2,Q(k) =
1

NP

∑
u∈P2

(
k −Nu,Q(k)

NP
− Nu,Q(k)

NQ

)
−

1

NQ

∑
v∈Q

Nv,P2(k)

NP
+

1

2NQ

∑
v∈Q

Nv,Q(k)

NQ
.

(7)

Similar to the case of two segments, SD can be decomposed
into more than two segments.

Definition 3: Segmented Symmetric Degree. The seg-
mented symmetric degree is defined as the distributional
discrepancy between the ith segment of P to Q that

ssdPi,Q(k) =
1

NPNQ
{
∑
u∈Pi

(
−NQ
NP
− 1

)
Nu,Q(k)−

∑
v∈Q

Nv,P i(k)}+
kNPi
NP

+
1

imaxNQ

∑
v∈Q

Nv,Q(k)

NQ
.

(8)

ssdPi,Q measures the distributional discrepancy from Q to
each subset of P . A smaller ssdPi,Q indicates a better presen-
tation of Q by Pi.

C. Drift-gradient and how to sequentially update it

If we wait for an entire batch of data to detect drift
and then update the predictor (if drift is detected), which
causes adaptation delay. To overcome the adaptation delay, we
propose a sequentially updated statistic, called Drift-gradient.

Drift-gradient is to quantify the increase of SSD. We have
discussed in the previous subsection that a smaller ssdPi,Q
indicates a better presentation of Q by Pi. Therefore, a
lower value of drift-gradient on ith segment represents that
the distribution of Q is closer to the distribution of the ith
segment. In this section, we will explain how to update the
drift-gradient with computing the values of SSD.

We notice that SSD for different segments have common
items. Therefore, we simplified SSD from two aspects: 1.
we consider P is evenly segmented that NPi = N0; 2. The
common items in ssdPi,Q is excluded to computing drift-
gradient as it does not affect the result.

Given P and its segments with NPi = N0, the common
items for all i in ssdPi,Q(k) is (9), leaving the discrepancy
part of ssdPi,Q as is in (10). Clearly, ssdPi,Q(k) = C(k) +
δPi,Q(k)/NPNQ

C(k) =
kN0

NP
+

1

2NQ

∑
v∈Q

Nv,Q(k)

NQ
(9)

δPi,Q(k) = −
∑
v∈Q

Nv,P i(k)− (1 +
NQ
NP

)
∑
u∈Pi

Nu,Q(k) (10)

5

Compared to Definition 3, (10) is more concise. The task of
quantifying the increase of SSD can be equivalently transferred
to the task of quantifying the increase of δ.

Definition 4: Drift-Gradient. Given the simplified SSD at
a specific time point denoted by δ, drift-gradient is defined as

∇δi(k, t) = δPi,Qt(k)− δPi,Qt−1
(k) (11)

Given P obtained from the past, contains NP data instances
and Q the upcoming batch (batch size: NQ) of data instances
arrives instance by instance, the key to online compute∇δ is to
determine the relationship between δPi,Qt(k) and δPi,Qt−1

(k),
where Qt represents the state of Q at time t. Clearly, Qt =
Qt−1 ∪ vt where vt is the t-th data instance. It should be
noticed that drift-gradient is not a mathematical gradient. δ is
discrete because of t ∈ Z+. Therefore, ∇δ is not computed by
the derivative of a function of a real value. It is called drift-
gradient because it denotes the rate of change of δ, which is
similar to a gradient denoting the rate of change of a function.

Next, we will discuss how to compute drift-gradient when
every new instance arrives. As shown in (11) and (10), drift-
gradient is defined as the change of δPi,Qt(k), and δPi,Qt(k)
consists mainly of

∑
v∈QNv,P i(k) and

∑
u∈Pi Nu,Q(k). If

we know how
∑
v∈QNv,P i(k) and

∑
u∈Pi Nu,Q(k) changes

from their previous values, we do not need to compute the
value of δPi,Qt(k) and δPi,Qt−1

(k) to obtain drift-gradient.
Therefore, the sequential update of ∇δ contains of two parts
when we substitute (10) into (11): 1) the sequential updates of∑
v∈QNv,P i(k) denoted by ∇δQ; 2) the sequential updates of∑
u∈Pi Nu,Q(k) denoted by ∇δPi . Next, these two parts will

be discussed separately.

• Sequentially update
∑
v∈QNv,P i(k):

Given
∑
v∈Qt−1

Nv,P i(k) represents the number of k-
nearest neighbors of current data instances arrived in Q at
time point t− 1,

∑
v∈Qt Nv,P i(k) is computed as∑

v∈Qt

Nv,P i(k) =
∑

v∈Qt−1

Nv,P i(k) +Nvt,P i(k). (12)

Therefore,
∇δQ = Nvt,P i(k). (13)

• Sequentially update
∑
u∈Pi Nu,Q(k):∑

u∈Pi Nu,Q(k) can not be directly iterated as the case in∑
v∈QNv,P i(k). In order to implement the update, k-nearest

neighbor distance matrix is defined as Definition 5.
Definition 5: k-nearest neighbor distance matrix. Given a

m× n dimension matrix A = (a1,a2, · · · ,an), its k-nearest
neighbor distance matrix is defined as

D(k) =

d1(1) d1(2) · · · d1(k)
d2(1) d2(2) · · · d2(k)

...
. . .

...
dn(1) dn(2) · · · dn(k)

 , (14)

where dj(k), (j = 1, · · · , n) is the kth order of distance from aj

to A. The first column of D(k) is 0 because dj(1) is always the
distance from aj to itself. For example, A = (a1,a2,a3) =

[
1 0 5
3 2 1

]
, its distance matrix is

 0
√

2
√

20√
2 0

√
26√

20
√

26 0

, and

corresponding 3-nearest neighbor distance matrix D(3) =0
√

2
√

20

0
√

2
√

26

0
√

20
√

26

. Similarly, D(2) =

0
√

2

0
√

2

0
√

20

.

Given aj = (Xj , yj)
T and Pi = (a1, · · · ,aNPi) where

j ∈ (1, · · · , NPi), its k-nearest neighbor matrix Di(k) can be
computed by (14), denoted by Di(k) = (d1,d2, · · · ,dNPi)T .
Given Di(k) and Q = (vt0+1, vt0+2, · · · , vt0+NQ) arriving
by instance after t0, updating

∑
u∈Pi Nu,Q(k) is to compare

Di(k) and the distance from vt to Pi —d(vt, Pi), as well as
d(vt, Pi) and its previous values d(vt−1, Pi), d(vt−2, Pi), · · · .
Next, the updating process for an arbitrary u ∈ Pi will be
discussed.

Given Pi and its k-nearest neighbor distance matrix Di(k),
for an arbitrary u ∈ Pi, the ordered k-nearest neighbor
distance of u is one row of Di(k), denoted as du. dvt,u
represents the distance between u and the newly arrived
instance vt from Q. The one-step (one-instance) updating
process of Nu,Qt(k) is in Algorithm 1 where the updated
variable are denoted with t. Kd counts how many items in
du are larger than dvt,u. Kd ≤ 1, which means the newly
arrived vt is no nearer to u than u’s current nearest neighbors,
and therefore Nu,Qt(k) = Nu,Qt−1

(k). Once Kd > 1, it also
needs to consider whether a previous v is excluded from u’s
k-nearest neighbors, as vt becomes u’s k nearest neighbor.
To implement that, the variable ot is introduced to record the
order of dvt,u and the furthest neighbor in du will be deleted
from du (implemented in line 8). By this design, when the
length of current du is less than maxOQt , this denotes that the
previous dv,u are still less than the furthest neighbor from Pi.
Therefore, Nu,Qt(k) = Nu,Qt−1(k) + 1. Otherwise, Nu,Qt(k)
will not update, because although vt becomes one of u’s k-
nearest neighbors, a previous v is excluded from the neighbors
at the same time. An intuitive perception of this design is that
δQ is only updated when the threshold for v becoming u’s
k-nearest neighbors is leveled up.

Given
∑
u∈Pi Nu,Qt−1

(k),
∑
u∈Pi Nu,Qt(k) can be updated

by the sum of Nu,Qt(k) and ∇δPi =
∑
u∈Pi Nu,Qt(k) −

Nu,Qt−1
(k). When a new instance from Q arrives, the drift-

gradient on each segment in P is computed as ∇δi = ∇δQ +
∇δPi .

To validate the effectiveness of the proposed drift-gradient,
we conduct experiments of whether the drift-gradient can
correct identify the most appropriate segment in the training
set. We generate 50-dimensional instances from three different
uniform distributions denoted by P1, P2 and P3. P1 is gen-
erated by numpy.random.seed(1) in python, P2 is generated
with the mean 0.4 larger than P1, and P3 is generated with
the mean 0.4 larger than P2. The training set consists of three
segments, which are shown in Table I. Then we generate 200
instances from P3, and 200 instances from P2 as the testing
set, and they arrive one instance at a time. In Experiment1,
P3 arrives before P2, while in Experiment2 P2 arrives before
P3. In Table II, the Type I error of P1 is how many true P1
instances are correctly labelled by P1 on average. As there

6

Algorithm 1: One-step update of Nu,Qt(k)

Input : du, dvt,u, OQt−1
, Nu,Qt−1

(k).

Output: Nu,Qt−1
(k)

Initialization: OQ0
← []

1 Compute Kd = |du > dvt,u|;
2 if Kd > 1 then
3 % the new instance is nearer to u than u’s current neighbors

4 Compute ot = |du|+ 1−Kd;

5 Compute OQt =
[
OQt−1

; ot
]

6 if |du| ≤ maxOQt then
7 Update Nu,Qt (k)=Nu,Qt−1

(k) + 1;

8 Delete du[end];

9 else
10 % a previous v is excluded from u’s neighbors

11 Update Nu,Qt (k) = Nu,Qt−1
(k);

12 end
13 else
14 % the new instance is no nearer to u than u’s current neighbors

15 Update Nu,Qt (k) = Nu,Qt−1
(k);

16 end
17 return Nu,Qt (k), OQt

are no instances from P1 in the new instances, this value is
0. The Type II error of P1 concerns the number of true P2
and P3 instances wrongly labelled by P1 on average. As there
are 10 P2 instances wrongly labelled by P1 in Experiment1 in
the new instances, this value is 10/400. Similar computation is
conducted on P2 and P3. The Type I and Type II error shows
drift-gradient is able to select the segment that is closer to the
new instances.

D. A segment-based adaptation method—SEGA

The previous subsection solved how to sequentially update
drift-gradient. Based on this solution, an online drift adaptation
method, SEGA is presented in this section.

For a data stream {Dt = (Xt, yt), t = 1, · · · ,∞} with X
its attributes and y the corresponding label, {Dt, t ≤ T0} is
assumed to be already obtained as the historical data. The
data instances after T0 will arrive one by one, by time and Xt

is observed before yt. The online prediction is to first apply
the current trained predictor to predict yt for t > T0 given the
value of Xt. After the true value of yt is obtained, this newly
arrived Dt will be used to update the current predictor.

This paper uses an update process that combines batch and
online adaptation. Before a full batch of new instances arrives,
an online adaptation is activated to tune the current predictor,
and once a full batch of new instances is obtained, the
current predictor will be retrained as is in a batch adaptation.
Algorithm 2 presents how SEGA update the predictors from
Ĥt−1 to Ĥt. The parameter w denotes the length of the
segments in the training set. s presents the number of segments
that each training set contains. During the experiments, the s is
assigned a fixed size and a period of data instances of s×w will
be picked from the historical data as the initial training data. c
is an ensemble coefficient to control how many segments are

Algorithm 2: SEGA
Input : Dt, Ĥt−1 (·|Θ), P , Q, w, c, s.

Output: Ĥt, P , Q. % Ĥt is used to predict yt+1

1 Q = [Q;Dt] ;

2 if |Q| < w then
3 % sequentially update predictors and store new instance in Q

4 for Pi in P do
5 % compute drift gradient for each segment

6 Compute ∇δQ by (13);

7 for u in Pi do
8 Update Nu,Qt (k) by Algorithm 1;

9 ∇δPi ← ∇δPi + (Nu,Qt (k)−Nu,Qt−1
(k))

10 end
11 ∇δi = −∇δQ − (1 + w/|P |)∇δPi
12 end
13 ic = arg sort ∇δi

i
[1 : c]; %c segments with minimal drift gradient;

14 Ĥc (·|Θ) = 1
c

∑
i∈ic Ĥi (·|Θ); % combined by average;

15 Ĥt (·|Θ)← Ĥc (·|Θ)

16 else
17 % a batch of new data has been stored, initializing the buffer of

the new concept Q

18 Segment P into P1, · · · , Ps;

19 P ← [Q,P2, · · · , Ps]; % the training set is updated;

20 Ĥt (·|Θ)← Ĥ1 (·|Θ) ;

21 Q = []; % initialize Q

22 end

historical data
(the first training set stored as the buffer)

segment with the
minimum drift-gradient

+Segments
Initial drift-gradient

predict
label

No

Sequentially update drift-gradient
Store the new instance in the buffer

of new concept

obtain
true label

if the buffer of new concept
is full of w new instances

the training set (buffer) is updated
by the buffer of new concept

Yes

Fig. 3. Flowchart of SEGA.

picked. The row 7-10 updates δP by ∇δP can be skipped for
a faster computation with slightly lower accuracy.

The flowchart of SEGA is shown as Fig. 3. The training
set will be separated into disjointed segments and the drift-
gradient is computed to dynamically select the best segments
for prediction. If the whole training set is used to train the
predictor and retrain every buffer of new concept or every
instance, it is a sliding window adaptation. In the experiment
section, the sliding window adaptation will be compared as a
baseline method, to show the necessity of segments and the
effectiveness of drift-gradient for handling the concept drift
problem.

7

TABLE I
VALIDATION OF THE EFFECTIVENESS OF DRIFT-GRADIENT

Experiment1 segment1 segment2 segment3 new instance arrives one by one

numbers of instances 400 400 400 200 200
true distribution P1 P2 P3 P3 P2
lablled by drift-gradient - - - P1 P2 P3 P1 P2 P3
numbers of instances - - - 0 2 197 10 173 17

Experiment2
true distribution P1 P2 P3 P2 P3
lablled by drift-gradient - - - P1 P2 P3 P1 P2 P3
numbers of instances - - - 3 183 14 0 11 189

TABLE II
TYPE I AND TYPE II ERROR OF DRIFT-GRADIENT UNDER THREE

DISTRIBUTIONS

Experiment1 Experiment2 Average

Type I Type II Type I Type II Type I Type II
P1 0 10/400 0 3/400 0 0.01625
P2 1-173/200 2/200 1-183/200 11/200 0.11 0.0325
P3 1-197/200 17/200 1-189/200 14/200 0.035 0.0775

IV. EXPERIMENTAL EVALUATIONS

In this section, SEGA is compared to 15 benchmarks
on 12 synthetic data and 14 real-world data streams. The
experimental results and analysis are given in section IV-A
and IV-B. As the predictors used for SEGA in tested data
streams are different for regression and classification tasks, the
experimental configuration will be introduced and specified
at the beginning of each subsection. Friedman test of compar-
ison between SEGA and other baseline methods are conducted
in section IV-C. The parameter analysis and computation
complexity are presented in section IV-D.

Four kinds of data streams are involved: synthetic regression
data, synthetic classification data, real-world regression data
and real-world classification data. To our best knowledge,
this is the first time that the concept drift problem has been
comprehensively tested on both continuous and discrete label
variables. It is not known if a data stream contains drift. The
types of drift that exists in a real-world data stream is also
unknown, Therefore, drift is manually added into the synthetic
data streams. Experiments on the synthetic data streams are to
validate that SEGA can solve concept drift problems. In the
experiments on synthetic data, all types of drift have been
evolved. Details of drift types will be introduced in each
subsection of experiments.

Data streams are supposed to be infinite but to validate the
algorithm and present its effectiveness, it is essential to obtain
a finite period of data streams. A common way to evaluate
the algorithm effectiveness on data streams is prequential
evaluation, where each data instance is first used to test the
predictor, and then to train the predictor. In this paper, a
fixed length of historical data instances are available before
conducting the experiments. Future data instances are available
one by one during the experimental procedure. In this paper,
we consider prediction accuracy as the validation criterion
including mean absolute error (15) in regression tasks and

accuracy in classification tasks (16).

MAE =
1

(T − t0)

T∑
t=t0

|ŷt − yt| , (15)

Acc =
TP + TN

TP + TN + FP + FN
, (16)

In the following two subsections, the experimental results
of SEGA on synthetic and real-world data streams will be
displayed and analyzed. In both subsections, the experiments
contain regression cases and classification cases.

A. Evaluation on Synthetic Data

In this section, SEGA will be evaluated on six synthetic
data of regression tasks and ten synthetic data of classification
tasks. The aim of the experiments on synthetic data is to
validate that SEGA is effective to handle drift problem.
Therefore, SEGA will be compared to its corresponding non-
adaptation edition on data streams containing different types of
drift, including no drift. As discussed in section III-D, SEGA
will also be compared to its sliding window edition to validate
the effectiveness of segment.

Data Description. The synthetic data of regression data
is the same as the synthetic data in [22], which includes one
original data stream that does not contain drift, one data stream
containing virtual drift and four data streams with real drift.
Since the drifted data is generated based on the non-drifted
data, it is clear to understand the extent that SEGA solves the
problem of concept drift in a data stream.

For the classification task, ten widely used synthetic data is
introduced to validate the effectiveness of SEGA on the drift
problem in the classification task. All the synthetic data are
available from [37].

Configuration. In the regression tasks, the predictor in
SEGA is a linear predictor with L2-norm (ridge regression)
where α = 0.01, each segment is of 100 instances, the training
set contains 10 segments (namely, the length of training set is
1000), and the ensemble coefficient c = 6.

In the classification tasks, the predictor in SEGA is a
weighted k nearest neighbor (kNN) classifier with k = 5,
the length of each segment is 200, the training set contains 10
segments, and the ensemble coefficient c = 1.

Analysis of Results on Synthetic Regression Tasks. We
compare our method to its non-adaptation version and sliding
window version. The results are presented in Table III. In
addition, we also present a comparison result of our method

8

TABLE III
VALIDATION OF REGRESSION TASKS ON SYNTHETIC DATA (MAE AS THE EVALUATION CRITERION).

Data Streams
Data Description Tested Models Model Effectiveness

instances Drift Type Linear SlidWin SEGA-Linear SEGA-Ideal Effectiveness

Non-Drift 2000 no drift 0.800 0.811 0.810 - -
Virt-Drift 2000 sudden virtual drift 0.780 0.798 0.793 - -

Sudd-Drift 2000 sudden real drift 13.540 2.728 2.717 2.592 95.2%
Incr-Drift 2000 incremental real drift 10.200 2.315 2.307 2.220 96.1%

Rec-Drift-Grad 12000 sudden and gradual real drift 8.800 9.118 1.265 1.047 79.2%

Rec-Drift-Mix 12000 sudden, incremental and
reoccurring real drift 8.170 2.486 1.680 1.584 93.9%

TABLE IV
VALIDATION ON SYNTHETIC DATA OF CLASSIFICATION TASKS (ACC AS

THE EVALUATION CRITERION).

Data Streams
Data Description Tested Predictors

instances kNN SlidWin SEGAkNN

SEAs(s1) 10,000 80.95% 81.85% 84.41%
SEAg(g1) 10,000 81.00% 81.79% 84.60%

HYPER(i& r) 10,000 77.38% 78.34% 78.67%
AGRs(s1) 10,000 87.95% 61.66% 61.99%
AGRg(g1) 10,000 87.95% 61.59% 62.49%

RTG 10,000 73.91% 73.85% 65.69%

(s): sudden drift; (i):incremental drift; (g): gradual drift; (r): reoccurring concepts
(0): virtual drift; (1): real drift

with other existing methods in Table IX just for a reference.
In Table III, the column, Data Description, lists the length of
each data and the type of drift it contains. Prediction accuracy
is shown in the Tested Models column. Linear column denotes
a ridge regression predictor that’s trained on the first training
set and is used for all the testing data without retrain. The
SlidWin column presents the prediction results of a sliding
window edition. In the sliding window edition, the training set
will be updated by including the newly arrived instance and
discarding the oldest instance. For each newly arrived instance,
a new predictor will be trained on the current training set,
to predict the label for the next instance. SlidWin can partly
solve the problem of concept drift, as it obtain better prediction
accuracy than Linear on some data streams with real drift. Our
method, displayed in the SEGA-Linear column, uses a drift-
gradient to choose the best segment for prediction to adapt
to new concept. Model Effectiveness column evaluates SEGA
to determine how much SEGA differs from an ideal edition,
where the drift-gradient correctly designates the best segment
for each tested instance. The MAE in the SEGA-Ideal column
is computed as follows:
• Predict the label by the trained predictor on each segment.

As the segment number is 10, there are 10 predicted value
for each test instance.

• Given the true value of the label, choose the best result
from 10 predictions with the minimum absolute error for
the prediction of this instance.

• Compute MAE. This is the minimum MAE that SEGA
could obtain, because it is computed with the true label.

The Effectiveness column is computed by MAE of SEGA-
Linear and SEGA-Ideal that

Effectiveness =
MAESEGA−Linear
MAESEGA−Ideal

. (17)

SEGA-Linear is more applicable on the data with a larger
value of the effectiveness.

The MAE results in Table III shows that:
1) Linear, SlidWin and SEGA-Linear performs the same

when data contains no drift or virtual drift. The synthetic data
in Table III are generated by a linear function with a random
error, and a linear predictor is used during the experiments.
Therefore, the experimental results are less affected by the
cause of an inappropriate predictor. If the data is generated by
a very complex function, and it has to use a powerful predictor
trained on a large size of instances to accurately present the
true hypothesis, the effectiveness of solving concept drift will
highly be impaired by the poor performance of the predictor
trained on a limited size of instances. In the Non-Drift data
stream, it can be seen that the prediction accuracy of Linear,
SlidWin and SEGA-Linear are all close to 0.800, which shows
that for this data stream, if no drift occurs, there is no
difference between learning a predictor on the full training set
and on one of its segments. This is also one of the required
applicable conditions when choosing the appropriate predictor
in SEGA. It has been discussed in [22] that virtual drift has
little influence on the prediction results if the change of p(X)
is independent to p(y|X). Here, the same results show —
Linear, SlidWin and SEGA obtain almost the same accuracy
on the Virt-Drift stream.

2) Simple retraining is not suitable for all types of drift. By
comparing the Linear, SlidWin and SEGA-Linear columns in
Table III. SlidWin is to simply retrain the current predictor
when every new instance arrives, and does not include any
design on how to use drift information to help adaptation.
According to the value of MAE of SlidWin, it performs
well on most data streams and can partly handle the con-
cept drift problem under some conditions. For example, the
MAEs of SlidWin are much smaller than the corresponding
MAEs of Linear on Sudd-Drift, Incr-Drift and Rec-Drift-Mix.
Specifically, SlidWin is as good as SEGA on Sudd-Drift and
Incr-Drift streams. However, SlidWin can not fully solve the
reoccurred concept problem. SlidWin performs worse than
SEGA on two streams containing reoccurred drift, and even
worse than the Linear model on the Rec-Drift-Grad stream.

3) Retraining by segment is an effective way to solve concept
drift problem. Our proposed SEGA method can outperform
other method when any type of drift or mixture of occurs.

4) The proposed SEGA method can accurately identify the
best segment in the training set by drift-gradient. Comparing
the column of SEGA-Linear and SEGA-Ideal, it can be seen

9

TABLE V
VALIDATION ON REAL-WORLD DATA OF REGRESSION TASKS (MAE AS THE EVALUATION CRITERION).

MAE(rank) ORTO FIMT-DD metaAMR AMR Per FUZZ-CARE SlidWinridge SEGAridge

CCPP 4.53E+02(8) 3.57E+00(3) 3.32E+00(1) 3.42E+00(2) 3.65E+00(4) 5.59E+00(7) 3.67E+00(6) 3.67E+00(5)
Sensor3 6.62E-02(8) 7.14E-03(3) 1.58E-02(6) 7.69E-03(4) 6.85E-03(2) 1.55E-02(5) 3.58E-02(7) 6.13E-03(1)
Sensor8 1.69E-01(8) 9.68E-03(5) 7.26E-03(4) 6.57E-03(2) 5.95E-03(1) 1.72E-02(6) 7.57E-02(7) 7.14E-03(3)
Sensor20 9.60E-01(8) 7.95E-01(6) 1.14E-02(4) 8.19E-03(3) 7.92E-01(5) 7.90E-03(2) 8.08E-01(7) 7.35E-03(1)
Sensor46 4.00E-01(7) 1.57E-01(4) 1.74E-01(5) 2.02E-01(6) 1.56E-01(3) 5.25E-02(2) 5.10E-01(8) 5.87E-03(1)
SMEAR 3.39E+01(7) 2.34E+01(5) 1.98E+01(4) 1.44E+01(2) 3.75E+01(8) 1.04E+01(1) 2.94E+01(6) 1.73E+01(3)

Solar 2.25E+02(8) 1.14E+02(5) 9.39E+01(2) 9.52E+01(3) 1.30E+02(6) 8.66E+01(1) 2.17E+02(7) 1.09E+02(4)

AvgRank(no CCPP) 7.67 4.67 4.17 3.33 4.17 2.83 7.00 2.17
AvgRank 7.71 4.43 3.71 3.14 4.14 3.43 6.86 2.57

that when real drift occurs, the prediction accuracy of SEGA-
Linear is very close to the accuracy of SEGA-Ideal. As SEGA-
Ideal predicts the label based on the true value of that label,
it is considered to be the optimal prediction if using one
segment of training set to predict labels. According to the
Model Effectiveness result, our proposed SEGA can obtain
95.2% prediction capability of a prediction where the true label
is known on Sudd-Drift, and a prediction capability of 96.1%,
79.2% and 93.9% on Incr-Drift, Rec-Drift-Grad and Rec-Drift-
Mix respectively. This demonstrates the effectiveness of the
drift-gradient in SEGA.

Analysis of Results on Synthetic Classification Tasks.
Similar to the regression case, we compare SEGA to its non-
adaptation version and sliding window version in classification
case and the results are presented in Table IV. The comparison
of SEGA to other existing methods is presented in Table
X for a reference. In Table IV, these synthetic data contain
various types of drift. In classification tasks, kNN is applied
as the basic predictor. The model effectiveness is not tested
in classification tasks, since the prediction accuracy of SEGA-
Ideal is more likely to be 1. This accuracy of 1 is largely due
to the randomness, rather than the 100% accurate predictor.
Therefore, it is not able to reflect the true capability of SEGA-
Ideal. The prediction results of classification tasks show that:

1) Retrain by segments is better than Retrain by the whole
training set. This is concluded because according to Table IV,
SEGA is no worse than SlidWin on all synthetic classification
data streams with drift (noticing that RTG does not contain
drift).

2) SEGA may not be suitable in cases where low-frequent
and small drift exists. In some data streams such as AGRs,
although it contains drift, the accuracy of SlidWin is much
worse than that of kNN, which denotes that non-adaptation is
a better choice for this drifted data. This is because the drift
in AGR data occurs at a low frequency and the new pattern
has small difference from the previous one.

B. Evaluation on Real-world Data Streams

In this section, SEGA will be evaluated on eight real-world
data streams of regression tasks and seven real-world data
streams of classification tasks. In the previous subsection,
SEGA has been validated to solve concept drift effectively.
The aim of this subsection is to compare it to some state-of-
art regression and classification methods, which are specially
designed for solving concept drift problems.

Data Description. The seven real-world regression data
streams are: CCPP containing 9568 instances with four at-
tributes; Sensor 3, 8, 20 and 46 containing 46,633, 15,808,
28,832 and 52,988 respectively with three attributes; SMEAR
containing 140,576 instances with 43 attributes and Solar
containing 32,686 instances with five attributes. Detailed in-
formation could be found in [22] with the download like in
[38]. Among them, CCPP has been validated not to contain
the concept drift problem [22], [39].

The seven real-world classification data streams are: Elec
(normalized) containing 45,312 instances with eight attributes;
Weather containing 18,159 instances with eight attributes;
Spam containing 9,324 instances with 39,916 attributes; Air-
line containing 539,383 instances with eight attributes; Cover-
type (normalized) containing 45,312 instances with 9 at-
tributes; Usenet1 containing 1,500 instances with 99 attributes;
and and Usenet2 containing 1,500 instances with 99 attributes.
More details of these data streams can be found in [16], [40].

Configuration. In the regression tasks, the predictor in
SEGA is ridge regression with α = 1e − 04 for CCPP,
Sensor3, Sensor20, and Sensor46; α = 1e − 03 for Sensor8;
α = 1e − 02 for SMEAR; and α = 1e − 01 Solar. The
value of α is determined by parameter analysis, which will
be provided in the next section. The length of each segment is
400 for SMEAR and 200 for the other data streams, because
SMEAR has more attributes and a size of 200 is not large
enough for training a predictor in this case. The training set
contains 10 segments, and the ensemble coefficient c = 2.
The k for searching nearing neighbors is half of the length of
the segment. More details of selecting the parameters can be
found in Section IV-D.

In the classification tasks, the predictor in SEGA is a
weighted k-nearest neighbor classifier with k = 5. The length
of each segment is 200 and each training set contains 10
segments for the data streams, except for Usenet1 and Usenet2,
because Usenet1 and Usenet2 only have 1500 instances in
total. For Usenet1 and Usenet2, the training set contains 7
segments. The ensemble coefficient c = 6. The k for searching
nearing neighbors is half of the length of the segment. More
details of selecting the parameters can be found in Section
IV-D.

Analysis of Results on Real-world Regression Tasks.
In the experiments of real-world regression data streams, the
effectiveness of SEGA is presented by comparing it to six
benchmark drift adaptation methods aiming to handle concept

10

TABLE VI
VALIDATION ON REAL-WORLD DATA OF CLASSIFICATION TASKS (ACC AS THE EVALUATION CRITERION).

ADWIN-ARF NN-DVI LevBagkNN SAMkNN OnlineAUE IBLStreamkNN Learn++NSEkNN SlidWinkNN SEGAkNN

Elec 88.17(1) 86.67(3) 81.91(6) 82.78(5) 87.74(2) 77.05(7) 70.52(8) 62.81(9) 83.46(4)
Weather 78.74(2) 74.75(8) 76.19(5) 77.73(3) 75.24(7) 75.69(6) 68.27(9) 77.11(4) 79.29(1)

Spam 95.60(2) 94.65(3) 93.22(5) 95.79(1) 84.29(7) 92.78(6) 70.56(8) 66.90(9) 94.57(4)
Airline 65.24(2) 65.20(3) 65.03(4) 60.35(8) 67.51(1) 63.74(5) 62.35(6) 53.90(9) 61.56(7)

Covertype 92.11(5) 94.04(2) 94.00(3) 91.71(6) 90.01(7) 92.26(4) 64.03(9) 71.88(8) 94.72(1)
Usenet1 68.40(2) 61.40(6) 58.93(7) 65.67(4) 63.47(5) 56.00(8) 48.53(9) 67.00(3) 80.00(1)
Usenet2 71.93(1) 71.40(2) 67.33(8) 71.00(3) 68.87(6) 67.67(7) 66.67(9) 70.00(5) 71.00(3)

AveRank 2.14 3.86 5.43 4.29 5.00 6.14 8.29 6.71 3.00

drift problems in a regression task. The benchmarks are ORTO
[41]; FIMT-DD [42]; AMR and metaAMR [43]; Perceptron
[44]; and FUZZ-CARE [22]. ORTO and FIMT-DD are tree
model based methods, which use linear regression models and
the stochastic gradient descent method in the leaves of the tree.
ORTO and FIMT-DD detect the drift by Page-Hinckley (PH)
test and use the detection result to adjust the tree structure.
AMR and metaAMR are rule models and ensemble rules.
For each rule model, a linear regression model is trained by
an incremental gradient descent method. Perceptron is a Ho-
effding perceptron tree model which replaces the naive Bayes
with perceptron predictor. FUZZ-CARE is implemented by the
code in [38] and all the other benchmarks are implemented by
MOA [40] with their default parameters. SlidWin uses ridge
regression as the basic predictor.

The results of SEGA on real-world regression tasks are
listed in Table V with the following concludes:

1) Using the whole training set is not the best strategy
for drift adaptation. According to the average rank results, it
can be seen that SlidWin is the second worst drift adaptation
method among these benchmarks. This phenomenon denotes
that using the whole training set during the adaptation pro-
cedure is not a wise choice for the real-world data streams,
because the drift situation is very complex in the real world.

2) Our proposed SEGA is able to handle different drift cases
in the real-world data. In [22], the authors have discussed
that among the data streams in Table V, Sensor20, Sensor46,
SMEAR and Solar, are supposed to have significant reoccur-
ring drift according to their experiments. As FUZZ-CARE
is specially designed for reoccurring drift, it obtain better
performance on these five data streams. Our proposed SEGA
does not aim at solving a special type drift but is designed to
be suitable for the occurrence of all types of drift. The highest
average rank of SEGA compared to the other benchmarks
validates the effectiveness of SEGA to solve concept drift
problems in a data stream.

Analysis of Results on Real-world Classification Tasks.
For real-world classification data streams, the benchmarks here
are all designed to specially solve the concept drift problem in
the data stream of classification tasks, including ADWIN-ARF
which uses ADWIN to detect drift and use an adaptive random
forests for classification [45]; NN-DVI, which detects drift
via a density based distance and adapts to a new concept via
competence model [16]; LevBag is ensemble method using an
improved online bagging method to adapt to the changing data
[46]; SAMkNN ensembles two sliding window, with different

window sizes on the kNN classifier [47]; OnlineAUE [26]
ensembles the classifier trained from blocks of training data
which is similar to the segments in SEGA. OnlineAUE learns
the weights of each block but SEGA uses the drift-gradient
to select the best segment; IBLStream uses the instance-
based model to adapt to the new concept by autonomously
optimizing the size of the case base [48]; Learn++NSE is
an ensemble method which use the tie-adjusted accuracy to
determine weights [49]. NN-DVI is implemented with window
size of 200 and default parameters, and the other benchmarks
are implemented with default parameters by MOA. SlidWin
uses the same basic classifier with SEGA, which is the kNN
classifier.

The experimental results of SEGA on real-world classifica-
tion tasks are listed in Table VI.

1) SEGA is also suitable to handle concept drift problems
in classification tasks. Compared to the benchmarks which
are specially designed to solve the concept drift problem in
classification tasks, SEGA has the second highest average rank
which validates the power of SEGA to solve the drift problem.
In addition, the accuracy of SEGA can be further improved
if appropriate predictors are chosen. For example, if decision
tree is applied, the accuracy of SEGA on Elec will be 88.48%.
We encourage users to try different predictor and ensemble
parameters for getting better results of SEGA when they apply
SEGA into a specific case.

2) Combining the prediction results of selective segments
by drift-gradient is an effective way to implement ensemble.
Most of the compared benchmarks are ensemble methods.
Some benchmarks ensemble different classifiers while others
ensemble the results computed on different data chunks which
is similar to the SEGA method. OnlineAUE ensembles the
results of data chunks. Therefore, OnlineAUE can particularly
be compared to our SEGA method. According to the result
table, SEGA obtain an average rank of 3.00, while OnlineAUE
obtain 5.00. It can be seen that SEGA is much better than
OnlineAUE on the average performance of the tested data
streams. In addition, there is no need to train the ensemble
weight in SEGA, which means SEGA is much quicker to
implement ensemble. Therefore, it is not always recommended
to ensemble all the available information. Selecting the most
useful information from the training set is an more important
aspect for drift adaptation.
• Experiment summary

In this paper, the proposed SEGA has been validated and
compared from two aspects: experiments on synthetic data or

11

TABLE VII
FRIEDMAN TEST AND ITS POST-HOC TEST OF ALL THE METHODS OVER REAL-WORLD REGRESSION DATA STREAMS (NO CCPP), WHERE “FRIEDMAN

TEST” IS THE RESULT FOR FRIEDMAN TEST AND “FRIEDMAN - POST-HOC TEST AFTER CONOVER” IS FOR THE PAIRWISE COMPARISON. “+”, “*”, “**”,
AND “***” MEANS THIS VALUE IS SIGNIFICANT AT THE LEVEL OF 0.1, 0.05, 0.01 AND 0.001 RESPECTIVELY. “DF” DENOTES THE FREEDOM DEGREE.

Friedman Test χ2
R P-value of χ2

R df
26.11 4.81e-2*** 7

Post-hoc test after Conover ORTO FIMT-DD metaAMR AMR Per FUZZ-CARE SlidWin
Ri − RSEGA 33 15 12 7 12 4 29
P-value 8.05e-06*** 0.015* 0.0216* 0.1481 0.039* 0.2742 4.94e-05***

TABLE VIII
FRIEDMAN TEST AND ITS POST-HOC TEST OF ALL THE METHODS OVER REAL-WORLD CLASSIFICATION DATA STREAMS, WHERE “FRIEDMAN TEST” IS

THE RESULT FOR THE FRIEDMAN TEST AND “FRIEDMAN - POST-HOC TEST AFTER CONOVER” SHOWS THE PAIRWISE COMPARISON. “+”, “*”, “**”,
“***” AND “DF” HAVE THE SAME MEANING AS THEY ARE IN TABLE VII

Friedman Test χ2
R P-value of χ2

R df
17.600 0.0244* 8

Post-hoc test after Conover ADWIN-ARF NNDVIkNN LevBag SAMkNN OnlineAUE IBLStream Learn++NSE SlidWin
Ri − RSEGA -6 6 16 9 13 21 36 25
P-value 0.264 0.264 0.048* 0.173 0.088+ 0.016* 2.00e-4*** 0.0055**

real-world data and experiments on regression or classification
tasks. Experiments on the synthetic data denotes that SEGA
can improve the prediction accuracy because it can truly
solve the concept drift problem in the data. Although the
predictors in regression and classification are different, SEGA
obtain uniformly good results, which denotes that SEGA is
suitable to predict different kinds of data streams. Besides,
the advanced performance of SEGA compared to the SlidWin
method, demonstrates that it is not always best to use the
whole training set to build the model when drift occurs, and
the drift-gradient mechanism in SEGA can accurately and
effectively select the most appropriate segments in training
set for prediction.

C. Statistical Test of Real-world Data streams

In this section, the results of the statistical test will be given
to validate the significance of SEGA. The Friedman test and
its post-hoc test after Conover are introduced as the testing
method where the Friedman test is used to validate whether
these drift adaptation methods are significantly different in
general. Furthermore, the post-hoc test after Conover is used
to validate the significance of pairwise comparison between
SEGA and other methods. The statistical test includes tests
on MAE of real-world regression data streams and Acc of
real-world classification data streams.

Given M the number of tested drift adaptation methods and
n the number of data streams, the χ2

R statistic in the Friedman
test is computed in (18) where R is the rank computed by
MAE in regression cases and Acc in classification cases.

χ2
R =

12

nM(M + 1)

M∑
m=1

R2
m − 3n(M + 1), (18)

If the Friedman test reject the null hypothesis which means
these drift adaptation methods are different in general, the
post-hoc test will further test whether the difference between
SEGA and other methods denoted by Ri−RSEGA is statisti-

cally significant 1. Ri−RSEGA is significant if the following
condition satisfies, where α is a preassigned significance level.

|Ri −Rj | > t1−α
2
;(n−1)(M−1)×√√√√2M(1− χ2

R
n(M−1)

)(
∑n
i=1

∑M
m=1R

2
i,m −

nM(M+1)2

4
)

(M − 1)(n− 1)
.

(19)

The results of statistical test are shown in Table VII and
Table VIII. According to the statistical test, we can conclude:

1) The Friedman test results are significant on of both
regression and classification cases. The p-value of χ2 in both
cases is small which denotes a significant difference in the
prediction accuracy among the tested adaptation methods.

2) In regression case, SEGAridge is significantly better
than most drift adaptation methods. In Table VII, all the
p-values of the post-hoc test are significant except for the
AMR and FUZZ-CARE column. This means, although SEGA
is superior to AMR by a 7 rank difference and to FUZZ-
CARE by a 4 rank difference, the difference is insignificant.
Similarly, AMR and FUZZ-CARE cannot outperform SEGA,
and this insignificance does not affect the effectiveness of
SEGA handling the concept drift problem.

3) In the case of classification, SEGAkNN is significantly
better than other adaptation methods except for ADWIN-ARF.
In Table VIII, the p-values of Friedman test is significant ex-
cept for the comparison between ADWIn-ARF, NNDVIkNN ,
SAMkNN and SEGAkNN . Similarly to the regression case,
ADWIn-ARF, NNDVIkNN , SAMkNN are not better than
SEGAkNN .

D. Parameter Analysis and Computation Complexity

Fig. 4 and Fig. 5 shows how the accuracy will change when
the size of the segment w and the number of segments in the

1the post-hoc test can test whether the difference between any two of
the methods is significant. We only present the post-hoc test result between
SEGA and other methods because we do not care whether other methods have
significant difference between each other. More details of Friedman test and
its post-hoc test can refer to [50].

12

CCPP(E+00) Sensor3(E-02) Sensor8(E-02) Sensor20(E-02)
Sensor46(E-02) SMEAR(E+01) Solar(E+02)
(a) MAE under different w (b) MAE under different s

M
AE

M
AE

0.5 0.75 1 1.25 1.5
scaling ratio of the segment size

0.5 0.75 1 1.25 1.5
scaling ratio of the number of segments in training set

9

7

5

3

1

9

7

5

3

1

Fig. 4. Parameter analysis for real-world data streams of regression tasks.
Different values of the segment size w and the number of segments in the
training set s are analyzed. The MAE results of all the data streams are put
in the interval [1, 9], and the legend gives the magnitude of each stream. For
example, Sensor3(E-02) means the MAE at a specified parameter for this data
stream is the value on the y-axis×10−2.

Weather Spam Airline CovertypeElec
(a) Acc under different w

0.5 0.75 1 1.25 1.5
scaling ratio of the segment size

Ac
c

(%
)

100

90

80

70

60

(a) Acc under different s

0.5 0.75 1 1.25 1.5
scaling ratio of the number of segments in training set

Ac
c

(%
)

100

90

80

70

60

Fig. 5. Parameter analysis for real-world data streams of classification tasks.
Usenet1 and Usenet2 are not included because they have few instances.

training set s have different values. We tested different w and
s for all the tested real-world data streams by multiplying
a scaling ratio with the current used w and s. For example,
the accuracy of CCPP listed in Table V, is computed with
w = 200 and s = 10. In the subplot (a) in Fig. 4, the first
point in the CCPP line at 0.5 means the MAE is computed
with w = 0.5 × 200 = 100 and s = 10. For SMEAR, since
its accuracy in Table V is computed with w = 400, the first
point of SMEAR of subplot (a) in Fig. 4, means this MAE is
computed with w = 0.5× 400 = 200 and s = 10.

The batch size, which is the segment size w in SEGA, is
a critical parameter for drift detection algorithms. For SEGA,
if w is too small, the predictor trained on this segment may
not be sufficiently trained. If w is too large, it is not necessary
to separate the training set. The value of s determines how
many previous instances is going to be stored to predict the
upcoming instances. A larger s requires more storage. So, for
data streams with a reoccurring concept problem, we suggest
a larger s. In addition, a larger s means we need a larger
storage, so s× w is also limited by the device. If w is large,
it may not be able to choose a large s anymore. In addition, c
determines how many predictors are ensembled. Therefore, for
data streams that are difficult to predict, we suggest a larger c.
The k for kNN search can also be determined by discretization
controlling method [16]

In general, SEGA is robust on these two parameters on
most tested data streams according to the results shown in 4
and 5. For the data streams of Sensor3, Sensor8, Sensor20 and
Sensor46, SEGA obtain better results with smaller w, which
denotes that drift occurs at a relatively high frequency in these

four data streams.
The computation complexity of SEGA is determined by

the size of the segments (w) and the number of segments
in each training set (s). The complexity of computing SSD is
O(s × w2) for every w instances. In each learning process,
the complexity is O((s − 1) × w) when computing the drift
gradient of δQ and is less than O((s−1)2w2) when computing
the drift gradient of δP . Given the size of training data as N ,
in each learning process, the computation complexity is upper
bounded by O(N2) if SEGA updates δP and the complexity
is upper bounded by O(N) if the updates of δP are skipped,
which is competitive SAM kNN(O(NL2

maxlog
Lmax
Lmin

)) and
faster than FUZZ-CARE(

∑K
k=2O(NI + 2k)).

The run time of SEGA implemented in Python is listed in
Table XI and XII. In addition, we also provide the run time
of other baseline methods implemented in Java. These results
are just for a reference rather than for comparison, as most
baseline method’s Java code applies parallel. The execution
time of SEGA could be shortened if parallel computing is
involved to shorten the run time of for-loop. Meanwhile,
although SEGA uses kNN search the neighbors for updating
drift-gradient, and a kNN predictor for classification tasks,
we do these two procedures separately, which has repeated
computation. However, this makes SEGA more flexible when
choosing predictor and computing the distance matrix.

V. CONCLUSION AND FUTURE STUDIES

Concept drift is one of the most challenging problems for
learning data streams, where the data distribution changes over
time. In this paper, the concept drift definition is revised by
adding a constraint, which can distinctly distinguish drift from
outliers.

To solve the concept drift problem, this paper proposed an
online adaptation method, called SEGA, to predict labels for
data streams of both regression and classification tasks. Instead
of using the whole training data to retrain predictors, which is
common in most recent research on concept drift adaptation,
SEGA train and retrain predictors on selected segments of the
training data. In SEGA, we proposed a sequentially updated
statistic, drift-gradient, to select the optimal segments when
every new instance arrives. In this way, SEGA can overcome
the delay of the informed drift adaptation method, as well as
the instability of the blind drift adaptation method. Our SEGA
method is validated by experiments on 30 data including syn-
thetic or real-world data streams of classification or regression
tasks. The consistent performance shows that SEGA is able to
solve various types of drift under different situations.

SEGA implements adaptation based on the value of drift-
gradient. Compared to the exiting statistics in this field, drift-
gradient responds to drift faster. Here, drift-gradient denotes
the value of the increase of distributional discrepancy from
t − 1 to t, rather than the value of distributional discrepancy
at t. An intuitive example of their difference is that we
refer the concept as a force, the distributional discrepancy as
velocity, and drift-gradient as acceleration. If the force changes
(drift occurs), it is reflected immediately in acceleration, while
velocity just starts to change.

13

In SEGA, the segments are simply determined by the time
windows of instances. However, this segment does not comply
with real-world data streams. Therefore, if we can segment
the training set more precisely, it will help further improve
the performance of SEGA. How to choose the best ensemble
predictor, the size and the number of segments in the training
set for different data streams is not discussed in this paper.
They can be selected and optimized by introducing other
techniques, such as cross validation on the original training
set, or adaptive adaptation updating these parameters. To
overcome the above mentioned drawbacks in current version
of SEGA, our future work will add adaptive settings in SEGA
to make it more efficient. Meanwhile, we will try to apply
SEGA in a multiple streams case. When multiple streams have
inner correlations, the drift-gradient needs to include those
correlations. Therefore, the version of drift-gradient and SEGA
for multiple streams is also promising as future research.

ACKNOWLEDGMENTS

The work presented in this paper was supported by the Aus-
tralian Research Council (ARC) under the Discovery Project
DP190101733.

REFERENCES

[1] M. Sayed-Mouchaweh and E. Lughofer, Learning in non-stationary
environments: methods and applications. Springer, New York, NY,
2012.

[2] M. Jaworski, P. Duda, and L. Rutkowski, “New splitting criteria for
decision trees in stationary data streams,” IEEE transactions on neural
networks and learning systems, vol. 29, no. 6, pp. 2516–2529, 2018.

[3] G. S. Gurjar and S. Chhabria, “A review on concept evolution tech-
nique on data stream,” in 2015 International Conference on Pervasive
Computing (ICPC). Pune, India, Jan. 8-10: IEEE, 2015, pp. 1–3.

[4] S. Wang, L. L. Minku, and X. Yao, “A systematic study of online class
imbalance learning with concept drift,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 29, pp. 4802–4821, 2018.

[5] J. C. Schlimmer and R. H. Granger, “Beyond incremental processing:
Tracking concept drift.” in the 5th AAAI Conference on Artificial
Intelligence, Philadelphia Pennsylvania, USA, Aug. 11-15, 1986, pp.
502–507.

[6] I. Khamassi, M. Sayed-Mouchaweh, M. Hammami, and K. Ghédira,
“Discussion and review on evolving data streams and concept drift
adapting,” Evolving systems, vol. 9, no. 1, pp. 1–23, 2018.

[7] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in non-
stationary environments: A survey,” IEEE Computational Intelligence
Magazine, vol. 10, no. 4, pp. 12–25, 2015.

[8] N. Lu, J. Lu, G. Zhang, and R. L. De Mantaras, “A concept drift-tolerant
case-base editing technique,” Artificial Intelligence, vol. 230, pp. 108–
133, 2016.

[9] G. Boracchi, D. Carrera, C. Cervellera, and D. Maccio, “Quanttree: His-
tograms for change detection in multivariate data streams,” in the 35th
International Conference on Machine Learning, Stockholm, Sweden,
Jul.10-15, 2018, pp. 638–647.

[10] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under
concept drift: A review,” IEEE Transactions on Knowledge and Data
Engineering, 2018, doi:10.1109/TKDE.2018.2876857.

[11] G. I. Webb, L. K. Lee, B. Goethals, and F. Petitjean, “Analyzing
concept drift and shift from sample data,” Data Mining and Knowledge
Discovery, vol. 32, no. 5, pp. 1179–1199, 2018.

[12] M. Harel, S. Mannor, R. El-Yaniv, and K. Crammer, “Concept drift
detection through resampling,” in the 31st International Conference on
Machine Learning, Beijing, China, Jun. 21-26, 2014, pp. 1009–1017.

[13] B. S. Parker and L. Khan, “Detecting and tracking concept class drift and
emergence in non-stationary fast data streams,” in 29th AAAI Conference
on Artificial Intelligence, Austin Texas, USA, Jan 25-30, 2015, pp. 2908–
2913.

[14] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM computing surveys, vol. 46,
no. 4, p. 44, 2014.

[15] A. Haque, L. Khan, M. Baron, B. Thuraisingham, and C. Aggarwal,
“Efficient handling of concept drift and concept evolution over stream
data,” in IEEE 32nd International Conference on Data Engineering.
Helsinki, Finland, May. 16-20: IEEE, 2016, pp. 481–492.

[16] A. Liu, J. Lu, F. Liu, and G. Zhang, “Accumulating regional density
dissimilarity for concept drift detection in data streams,” Pattern Recog-
nition, vol. 76, pp. 256–272, 2018.

[17] S. Yu, X. Wang, and J. C. Principe, “Request-and-reverify: Hierarchical
hypothesis testing for concept drift detection with expensive labels,”
arXiv preprint arXiv:1806.10131, 2018.

[18] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Woźniak,
“Ensemble learning for data stream analysis: A survey,” Information
Fusion, vol. 37, pp. 132–156, 2017.

[19] I. Žliobaitė, A. Bifet, B. Pfahringer, and G. Holmes, “Active learning
with drifting streaming data,” IEEE transactions on neural networks and
learning systems, vol. 25, no. 1, pp. 27–39, 2014.

[20] A. Bifet, W. Fan, C. He, Q. Jianfeng, Z. Jianfeng, and G. Holmes,
“Extremely fast decision tree mining for evolving data streams,” in the
23rd SIGKDD Conference on Knowledge Discovery and Data Mining,
Halifax, NS, Canada, Aug. 1317., 2017, pp. 1733–1742.

[21] D. M. dos Reis, P. Flach, S. Matwin, and G. Batista, “Fast unsupervised
online drift detection using incremental kolmogorov-smirnov test,” in
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. San Francisco California, USA, Aug. 13-17: ACM,
2016, pp. 1545–1554.

[22] Y. Song, J. Lu, H. Lu, and G. Zhang, “Fuzzy clustering-based adaptive
regression for drifting data streams,” IEEE Transactions on Fuzzy
Systems, vol. 28, no. 3, pp. 544–557, 2020.

[23] L. L. Minku and X. Yao, “DDD: A new ensemble approach for
dealing with concept drift,” IEEE transactions on knowledge and data
engineering, vol. 24, no. 4, pp. 619–633, 2012.

[24] H. M. Gomes, J. P. Barddal, F. Enembreck, and A. Bifet, “A survey
on ensemble learning for data stream classification,” ACM Computing
Surveys, vol. 50, no. 2, p. 23, 2017.

[25] M. Pratama, J. Lu, E. Lughofer, G. Zhang, and M. J. Er, “An incremental
learning of concept drifts using evolving type-2 recurrent fuzzy neural
networks,” IEEE Transactions on Fuzzy Systems, vol. 25, no. 5, pp.
1175–1192, 2017.

[26] D. Brzezinski and J. Stefanowski, “Reacting to different types of concept
drift: The accuracy updated ensemble algorithm,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 25, no. 1, pp. 81–94, 2014.

[27] Y. Lu, Y.-m. Cheung, and Y. Y. Tang, “Dynamic weighted majority for
incremental learning of imbalanced data streams with concept drift.”
in the 26th International Joint Conference on Artificial Intelligence,
Melbourne, Australia, Aug.19-25, 2017, pp. 2393–2399.

[28] Y. Sun, K. Tang, Z. Zhu, and X. Yao, “Concept drift adaptation by ex-
ploiting historical knowledge,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 29, pp. 4822–4832, 2018.

[29] A. Haque, L. Khan, and M. Baron, “SAND: Semi-supervised adaptive
novel class detection and classification over data stream,” in the 30th
AAAI Conference on Artificial Intelligence, Phoenix Arizona, USA, Feb.
12-17, 2016, pp. 1652–1658.

[30] L. Rutkowski, M. Jaworski, L. Pietruczuk, and P. Duda, “A new method
for data stream mining based on the misclassification error,” IEEE
transactions on neural networks and learning systems, vol. 26, no. 5,
pp. 1048–1059, 2015.

[31] J. Shao, Z. Ahmadi, and S. Kramer, “Prototype-based learning on
concept-drifting data streams,” in the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. New York, USA,
Aug.24-27: ACM, 2014, pp. 412–421.

[32] C. Alippi, G. Boracchi, and M. Roveri, “Hierarchical change-detection
tests,” IEEE transactions on neural networks and learning systems,
vol. 28, no. 2, pp. 246–258, 2017.

[33] L. Bu, C. Alippi, and D. Zhao, “A pdf-free change detection test based
on density difference estimation,” IEEE transactions on neural networks
and learning systems, vol. 29, no. 2, pp. 324–334, 2018.

[34] E. Lughofer, E. Weigl, W. Heidl, C. Eitzinger, and T. Radauer, “Recog-
nizing input space and target concept drifts in data streams with scarcely
labeled and unlabelled instances,” Information Sciences, vol. 355, pp.
127–151, 2016.

[35] A. Shaker and E. Lughofer, “Self-adaptive and local strategies for a
smooth treatment of drifts in data streams,” Evolving Systems, vol. 5,
no. 4, pp. 239–257, 2014.

14

[36] A. Liu, Y. Song, G. Zhang, and J. Lu, “Regional concept drift detection
and density synchronized drift adaptation,” in the 26th International
Joint Conference on Artificial Intelligence, Melbourne, Australia, Aug.
19-25, 2017, pp. 2280–2286.

[37] A. Liu, “Concept drift datasets,” https://github.com/Anjin-
Liu/ConceptDriftDatasets/tree/master/Synthetic, 2019.

[38] Y. Song, “FUZZ-CARE,” https://github.com/songyiliao/FUZZ-CARE,
2019.

[39] K. Yeon, M. S. Song, Y. Kim, H. Choi, and C. Park, “Model Averag-
ing via Penalized Regression for Tracking Concept Drift,” Journal of
Computational and Graphical Statistics, vol. 19, no. 2, pp. 457–473,
2010.

[40] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA: Massive
online analysis,” Journal of Machine Learning Research, vol. 11, no.
May, pp. 1601–1604, 2010.

[41] E. Ikonomovska, J. Gama, B. Z̃enko, and S. Dz̃eroski, “Speeding-up
hoeffding-based regression trees with options,” in the 28th International
Conference on Machine Learning. Bellevue Washington, USA, Jun.
28- Jul. 2: Citeseer, 2011, pp. 537–544.

[42] E. Ikonomovska, J. Gama, and S. Džeroski, “Learning model trees from
evolving data streams,” Data mining and knowledge discovery, vol. 23,
no. 1, pp. 128–168, 2011.

[43] J. Duarte, J. Gama, and A. Bifet, “Adaptive model rules from high-speed
data streams,” ACM Transactions on Knowledge Discovery from Data,
vol. 10, no. 3, p. 30, 2016.

[44] A. Bifet, G. Holmes, B. Pfahringer, and E. Frank, “Fast perceptron
decision tree learning from evolving data streams,” in Pacific-Asia
Conference on Knowledge Discovery and Data Mining, Hyderabad,
India, Jun. 21-24, 2010, pp. 299–310.

[45] H. M. Gomes, A. Bifet, J. Read, J. P. Barddal, F. Enembreck,
B. Pfharinger, G. Holmes, and T. Abdessalem, “Adaptive random forests
for evolving data stream classification,” Machine Learning, vol. 106, no.
9-10, pp. 1469–1495, 2017.

[46] A. Bifet, G. Holmes, and B. Pfahringer, “Leveraging bagging for evolv-
ing data streams,” in Joint European conference on machine learning
and knowledge discovery in databases. Barcelona, Spain, Sep. 19-23:
Springer, 2010, pp. 135–150.

[47] V. Losing, B. Hammer, and H. Wersing, “Knn classifier with self adjust-
ing memory for heterogeneous concept drift,” in IEEE 16th International
Conference on Data Mining (ICDM). Barcelona, Spain, Dec 12-15:
IEEE, 2016, pp. 291–300.

[48] A. Shaker and E. Hüllermeier, “Iblstreams: a system for instance-based
classification and regression on data streams,” Evolving Systems, vol. 3,
no. 4, pp. 235–249, 2012.

[49] R. Elwell and R. Polikar, “Incremental learning of concept drift in
nonstationary environments,” IEEE Transactions on Neural Networks,
vol. 22, no. 10, pp. 1517–1531, 2011.

[50] T. Pohlert, “The pairwise multiple comparison of mean ranks package
(PMCMR),” R package, pp. 2004–2006, 2014.

Yiliao Song (S’17) received a M.S. in probabil-
ity and statistics in mathematics from the School
of Mathematics and Statistics, Lanzhou University,
China, in 2015. She is working toward a Ph.D. with
the Faculty of Engineering and Information Tech-
nology, University of Technology Sydney, Australia.
Her research interests include regression, prediction,
concept drift and data stream mining. She has pub-
lished 17 papers related to concept drift, and data
stream prediction.

Jie Lu (F’18) is a Distinguished Professor and the
Director of Australian Artificial Intelligence Institute
(AAII) at the University of Technology Sydney,
Australia. She is also an IFSA Fellow and Australian
Laureate Fellow. She received a PhD degree from
Curtin University, Australia, in 2000. Her main
research expertise is in transfer learning, concept
drift, decision support systems and recommender
systems. She has been awarded 10 Australian Re-
search Council (ARC) discovery grants and led 15
industry projects. She has published over 450 papers

in IEEE transactions and other journals and conferences, supervised 40
PhD students to completion. She serves as Editor-In-Chief for Knowledge-
Based Systems (Elsevier) and Editor-In-Chief for International Journal on
Computational Intelligence Systems (Atlantis). She has delivered 27 keynote
speeches at IEEE and other international conferences and chaired 15 inter-
national conferences. She has received the UTS Medal for Research and
Teaching Integration (2010), the UTS Medal for research excellence (2019),
the IEEE Transactions on Fuzzy Systems Outstanding Paper Award (2019), the
Computer Journal Wilkes Award (2018), and the Australian Most Innovative
Engineer Award (2019).

Anjin Liu (M’17) is a Postdoctoral Research As-
sociate in the A/DRsch Centre for Artificial In-
telligence, Faculty of Engineering and Information
Technology, University of Technology Sydney, Aus-
tralia. He received the BIT degree (Honour) at the
University of Sydney in 2012. His research interests
include concept drift detection, adaptive data stream
learning, multi-stream learning, machine learning
and big data analytics.

Haiyan (Helen) Lu (SM’15) received the B.Eng.
and M.Eng. degrees in electrical engineering from
the Harbin SEGAtitute of Technology, Harbin,
China, in 1985 and 1988, respectively, and the Ph.D.
degree in engineering from the University of Tech-
nology Sydney, Ultimo, NSW, Australia, in 2002.

She is currently an associate professor with the
School of Computer Science, University of Tech-
nology Sydney, Australia. She is a core member
of the Decision Systems & e-Service Intelligence
Lab in the Centre for Artificial Intelligence. She has

published three book chapters, 53 refereed international journal articles and
80 refereed conference papers. Her research interests include computational
intelligence with focus on evolutionary optimization algorithms, time series
forecasting, ontology, recommendation techniques and their applications in
business and engineering, especially in smart cities. She is a senior member
of IEEE.

Guangquan Zhang is an Australian Research Coun-
cil (ARC) QEII Fellow, Associate Professor and
the Director of the Decision Systems and e-Service
Intelligent (DeSI) Research Laboratory at the Aus-
tralian Artificial Intelligence Institute, University
of Technology Sydney, Australia. He received his
Ph.D in applied mathematics from Curtin University,
Australia, in 2001. From 1993 to 1997, he was a
full Professor in the Department of Mathematics,
Hebei University, China. His main research interests
lie in the area of fuzzy multi-objective, bilevel,

and group decision making, fuzzy measure, and machine learning. He has
published six authored monographs, five edited research books, and over 450
papers including 240 refereed journal articles. Dr. Zhang has won nine ARC
Discovery Project grants and many other research grants, supervised 30 PhD
students to completion. He has served as a Guest Editor for five special issues
of IEEE Transactions and other international journals.

15

APPENDIX A
DERIVATION STEP FROM SYMMETRIC DEGREE (SD) TO SEGMENTED SYMMETRIC DEGREE(SSD)

According to (5), we have

d̄P,Q(k) =
1

NP

∑
u∈P1

(
Nu,P (k)

NP
−
Nu,Q(k)

NQ

)
+

1

NP

∑
u∈P2

(
Nu,P (k)

NP
−
Nu,Q(k)

NQ

)
+

1

NQ

∑
v∈Q

(
Nv,Q(k)

NQ
−
Nv,P (k)

NP

)
. (20)

As Nu,P (k) +Nu,Q(k) = k, the first two terms in d̄P,Q(k) can be written by

1

NP

∑
u∈P1

(
Nu,P (k)

NP
−
Nu,Q(k)

NQ

)
=

1

NP

∑
u∈P1

(
k −Nu,Q(k)

NP
−
Nu,Q(k)

NQ

)
, (21)

1

NP

∑
u∈P2

(
Nu,P (k)

NP
−
Nu,Q(k)

NQ

)
=

1

NP

∑
u∈P2

(
k −Nu,Q(k)

NP
−
Nu,Q(k)

NQ

)
. (22)

The third term in (20) is

1

NQ

∑
v∈Q

(
Nv,Q(k)

NQ
−
Nv,P (k)

NP

)
= 2×

1

2NQ

∑
v∈Q

Nv,Q(k)

NQ
−

1

NQ

∑
v∈Q

Nv,P (k)

NP
. (23)

The term Nv,P (k) represents the number of v’s k nearest neighbors that are from P . As P = P1 ∪ P2 and P1 ∩ P2 = ∅,
Nv,P (k) = Nv,P1

(k) +Nv,P2
(k), we have

1

NQ

∑
v∈Q

(
Nv,Q(k)

NQ
−
Nv,P (k)

NP

)
=

1

2NQ

∑
v∈Q

Nv,Q(k)

NQ
+

1

2NQ

∑
v∈Q

Nv,Q(k)

NQ
−

1

NQ

∑
v∈Q

Nv,P1 (k)

NP
−

1

NQ

∑
v∈Q

Nv,P2 (k)

NP
. (24)

Substituting (21), (22) and (24) into (20), we have d̄P,Q(k) = ssdP1,Q(k) + ssdP2,Q(k).

16

APPENDIX B
SUPPLEMENTARY EXPERIMENTAL RESULTS

TABLE IX
RESULTS OF SYNTHETIC DATA OVER BASELINE METHODS(REGRESSION)

ORTO FIMTDD metaAMR AMR Per FUZZ-CARE Linear SEGA linear

Non-Drift 1.24 2.09 0.82 0.82 3.75 1.18 0.81
Virt-Drift 1.31 6.19 0.80 0.80 7.24 1.30 0.79

Sudd-Drift 3.65 4.69 8.44 8.44 4.86 3.34 2.72
Incre-Drift 2.84 0.82 8.46 8.46 0.81 4.03 2.31

Rec-Drift-Grad 8.24 0.82 8.37 8.37 0.80 2.34 1.27
Rec-Drift-Mix 6.12 2.18 5.91 5.91 3.38 2.13 1.68

TABLE X
RESULTS OF SYNTHETIC DATA OVER BASELINE METHODS(CLASSIFICATION)

kNN LevBag KNN IBLStream KNN SAM kNN Learn++NSE KNN SlidWin kNN SEGA kNN

SEAa 80.95 78.55 79.42 85.39 82.79 81.85 84.41
SEAg 80.95 78.03 79.37 85.04 82.64 81.79 84.60

HYPER 77.38 68.11 77.94 79.89 72.68 78.34 78.67
AGRs 50.51 62.77 64.00 49.12 52.85 61.66 61.99
AGRg 50.51 73.24 69.00 49.15 52.98 61.59 62.49
RTG 73.91 58.65 65.79 59.59 64.10 73.85 65.69

TABLE XI
RUN-TIME ON REGRESSION REAL-WORLD DATA STREAMS (S CPU-TIME)

Data Streams ORTO FIMTDD metaAMR AMR Per SEGA

CCPP 2.11 1.02 29.31 3.03 1.00 58.71
house 1.02 1.02 12.09 1.01 1.02 158.98

sensor3 1.01 1.02 28.30 2.03 1.02 170.47
sensor8 1.02 1.01 8.06 1.01 1.02 50.50
sensor20 1.01 1.02 16.14 2.02 1.02 102.61
sensor46 1.02 1.01 36.31 2.05 1.02 193.75
SMEAR 1.02 1.01 77.68 8.06 2.02 540.83

Solar 1.09 1.00 18.23 2.03 1.02 99.57

SEGA is implemented in Python, while other methods are implemented in Java by MOA

TABLE XII
RUN-TIME ON CLASSIFICATION REAL-WORLD DATA STREAMS (S CPU-TIME)

CPU(s) ADWIN-ARF NN-DVIkNN LevBagkNN OnlineAUE IBLStream Learn++NSE SlidWinkNN SEGAkNN

Elec 11.20 374.13 598.71 4.08 8.98 6.20 2.97 173.50
Weather 4.01 183.64 329.23 1.00 37.09 2.02 6.39 82.58

Spam 6.01 4899.40 11331.10 7.56 1131.02 5.02 33.09 343.20
Airline 355.19 5754.27 7336.86 196.15 1314.86 852.05 213.51 2295.45

Covertype 123.04 86436.71 48499.82 112.04 2344.83 2357.61 333.53 3678.54
Usenet1 1.00 132.66 377.24 1.00 4.59 1.01 0.19 1.23
Usenet2 1.01 124.08 382.16 1.00 5.11 1.01 0.18 1.24

SlidWin, SEGAkNN are implemented in Python, while other methods are implemented in Java by MOA

