
“© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.”

1

Learning data streams with changing distributions
and temporal dependency

Yiliao Song Member, IEEE, Jie Lu Fellow, IEEE, Haiyan Lu Senior Member, IEEE, Guangquan Zhang

Abstract—In a data stream, concept drift refers to unpre-
dictable distribution changes over time, which violates the
identical-distribution assumption required by conventional ma-
chine learning methods. Current concept drift adaptation tech-
niques mostly focus on a data stream with changing distributions.
However, since each variable of a data stream is a time series,
these variables normally have temporal dependency problems
in the real world. How to solve concept drift and temporal
dependency problems at the same time is rarely discussed in the
concept-drift literature. To solve this situation, this paper proves
and validates that, the testing error decreases faster if a predictor
is trained on a temporally reconstructed space when drift occurs.
Based on this theory, a novel drift adaptation regression (DAR)
framework is designed to predict the label variable for data
streams with concept drift and temporal dependency. A new
statistic called LDD+ is proposed and used as a drift adaptation
technique in the DAR framework to discard outdated instances
in a timely way, thereby guaranteeing that the most relevant
instances will be selected during the training process. The
performance of DAR is demonstrated by a set of experimental
evaluations on both synthetic data and real-world data streams.

Index Terms—concept drift, drift adaptation, non-stationary
environment, data stream

I. INTRODUCTION

A data stream is potentially infinite amounts of data that
arrive in a sequential way from a variety of sources such
as economics, industrial monitoring, ecosystems, and so on
[1], [2]. New challenges have appeared in data stream mining,
one of which relates to data distribution changes [3]. Standard
machine learning approaches are built on a static assumption
of independent and identically distributed (i.i.d) data and
therefore are not suitable for learning data streams once the
data distribution has experienced unpredictable changes [4],
[5].

Concept drift refers to these unpredictable distribution
changes over time, and concept drift adaptation aims to solve
the concept drift problem by continuously updating the trained
predictors [6]. However, existing adaptation methods assume
that the data stream only contains the concept drift problem. In
fact, data streams may also have other uncertain characteristics
[7]. In a data stream, each variable is now a time series process
that is probably autocorrelated, which leads to the temporal
dependency problem. Dealing with the problems of temporal

Y. Song, J. Lu, H. Lu and G. Zhang are with the Decision Sys-
tems and e-Service Intelligence Laboratory, Australian Artificial Intelli-
gence Institute, Faculty of Engineering and Information Technology, Uni-
versity of Technology Sydney, Ultimo, NSW 2007, Australia (e-mail:
Yiliao.Song@student.uts.edu.au; Jie.Lu@uts.edu.au; Haiyan.Lu@uts.edu.au;
Guangquan.Zhang@uts.edu.au.) All the data and codes are available via
https://github.com/songyiliao/DAR.

TABLE I
DIFFERENCE AMONG INCREMENTAL LEARNING, CONCEPT DRIFT

ADAPTATION, AND OUR SETTING.

Stationary
data stream

Data stream with
changing distributions

Data stream with
changing distributions
and temporal dependency

Incremental learning 3 7 7
Drift adaptation 3 3 7
Our setting 3 3 3

dependency and concept drift simultaneously is a big challenge
[8].

This paper discusses the concept drift problem in a more
realistic scenario where data streams have concept drift and
temporal dependency problems at the same time. Classic
incremental learning discusses the problem of how to learn
a predictor when the training data is available one by one or
batch by batch, and thus it is widely used for predicting data
streams. Concept drift adaptation discusses how to continu-
ously learn predictors when future data follow different data
distributions. This paper discusses how to continuously learn
predictors when the data instances are temporally dependent
and the data distribution may change at the same time. The
difference between incremental learning, drift adaptation, and
our setting is presented in Table I.

To handle this kind of data stream, a novel drift-adapted
framework named DAR is proposed in regression cases. In
DAR, we propose to train the predictor on a reconstructed
feature space to solve the temporal dependency problem.
In addition, we formally propose a new way to embed the
drift detection techniques into an informed adaption method.
Compared to a general informed drift adaption method which
only uses detection information when drift occurs, our drift
adaptation method is able to extract more statistical informa-
tion from the drift detection process and achieves an accurate
and robust online prediction performance.

The novelty and main contributions of this paper are as
follows:

1) It fills the research gap of handling a data stream with
concept drift and the temporal dependency problem from
the aspect of time series processes;

2) It proves that testing errors decrease faster in a linear
predictor trained on the reconstructed space for data
streams with concept drift and temporal dependency. We
compare the error decreasing speed of linear predictors
trained on the original and reconstructed feature spaces;

3) The conclusion in 2) is generalized to non-linear cases
by introducing locally weighted regression so that we

2

can use this conclusion for a general regression task for
predicting data streams with concept drift and temporal
dependency;

4) We develop a new statistic called LDD+ to measure the
distance from a data instance to a high-dimensional data
distribution. Instead of using LDD+ to detect whether
drift occurs, we implement drift adaptation based on the
value of LDD+ when every new instance arrives;

5) Combining the above aspects, a drift-adapted regression
framework (DAR) is proposed for data streams with
concept drift and temporal dependency.

The paper is organized as follows. Section II discusses
related works in the concept drift area. Section IV explains
the proposed DAR framework in detail. Section V outlines
the results of the synthetic and real experimental evaluation.
Section VI concludes the study and discusses future work.

II. RELATED WORK

Concept drift adaptation aims to design a blind or an
informed strategy to update predictors for obtaining accurate
real-time prediction results [9]. A blind adaptation refers to
drift adaptation without drift detection techniques, which is to
passively update the predictor [10], [11], [12]. Many ensemble
learning techniques in the concept drift area use a blind
adaptation strategy [13], [7]. An informed adaptation denotes
that drift adaptation is based on drift detection analysis [14],
which is to actively update the predictor [15], [16]. So far,
most informed adaptation updates the predictor when the drift
detection method identifies the occurrence of drift [17]. For
example, in [18], the predictor is updated when an alarm is
triggered—the designed estimator is larger than a threshold.
Similar studies are presented in [19], [20]. Instead of only
using information on when drift occurs to update predictors, a
recent survey pointed out that an understanding of where and
how drift occurs is also important for informed adaptation[17],
especially for data-driven decision support [3]. A few methods
in recent research discuss where drift occurs, such as [21],
[22].

Both the blind and informed drift adaptation methods have
been validated to effectively handle the concept drift problem
in a data stream [23], [24]. As blind adaptation methods do
not discuss whether drift truly exists[25], these methods are
very similar to incremental/online learning from a technical
aspect [26]. The learner error may accumulate when a data
stream contains mixed types of drift, as discussed in [27].
Compared to blind adaptation, informed adaptation is more
robust because the detection process is able to avoid the
old/bad information presented in the predictor [22].

In recent years, research on concept drift has focused
on more realistic problems. For example, concept drift with
imbalanced data involves the situation where the learning
boundary changes for classification data that at least one class
only has limited samples of data [28], [29], [30]. Another
situation is that concept drift appears in noisy data [31], [32].
In such situations, it is very difficult to identify whether the
decrease in learner accuracy is caused by concept drift or
noise. In particular, as the data streams are obtained from

different sources at the same time, concept drift in multiple
streams [33], [34], [35] has also gained increasing attention in
academic research and practical applications.

As the concept drift problem is always discussed in a data
stream, one of the important characteristics of data streams has
been neglected in existing solutions: temporal dependency. In
fact, each variable of a data stream is a time series process that
is temporal dependent. Therefore, a good prediction method
for real-time data streams should be able to handle the concept
drift problem and temporal dependency at the same time. This
paper provides a comprehensive study for such a situation from
both theoretical and practical aspects.

III. PRELIMINARIES

In this paper, we consider the data stream from the aspect
of time series analysis. We refer to [36] for the definitions and
characteristics of a time series and list them in this section.
All the required preliminaries are presented in this section.

Definition 1 (Time Series [36]). A time series process St is
a sequence taken at successive equally spaced points in time.

Definition 2 (Autocovariance [36]). Autocovariance is an
important property of a time series process St, which is

γτ = E [(St − µt)(St+τ − µt+τ)] . (1)

where µt and µt+τ are the expectations of St and St+τ .
The autocovariance is the covariance if St and St+τ are two
random variables.

If the time series process is autoregressive, γ depends on
τ rather than being a fixed constant [36]. This means that
another basic assumption in conventional machine learning,
independence, is also invalid.

Definition 3 (Covariance-stationary and Ergodic for the Mean
[36]). A time series process St is covariance-stationary and
ergodic for the mean if

E(St) = µ for all t
E [(St − µ)(St−τ − µ)] = γτ for all t and τ
(1/T)

∑T
t=1 St

p→ E(St) as T →∞.
(2)

Remark 1. The first two equations denote that neither the
mean µt nor the autocovariance γτ depends on time t1. The
third equation guarantees that the time average will eventually
converge to the expectation E(St).

Definition 4 (pth-order Autoregressive Process [36]). A pth-
order autoregressive process St satisfies

St = c+ φ1St−1 + φ2St−2 + ...+ φpSt−p + εt, (3)

where St−1,..., St−p are lag orders (earlier observations) of St
and εt is the white noise sequence (Definition 5).

Definition 5 (White Noise Sequence [36]). A white noise
sequence is a sequence {εt}∞t=−∞ satisfying:

E(εt) = 0, E(ε
2
t) = σ

2 and E(εt, ετ) = 0 for t 6= τ. (4)

1This does not conflict with (2), γτ depends on τ but is independent on t

3

Remark 2. Definition 4 can be simply rewritten by∑p
i=0 L(i)St by introducing the Lag operator L that for any

integer k, LkSt = St−k [36].

IV. THE DRIFT-ADAPTED REGRESSION FRAMEWORK FOR
TEMPORAL DEPENDENT DATA STREAMS

This paper discusses the concept drift problem in a more
realistic scenario where the data stream also contains temporal
discrepancy. In this scenario, the i.i.d assumption is invalid
as the data instances are neither independent nor identically
distributed. A drift-adapted regression (DAR) framework is
proposed to predict the data stream with both concept drift
and temporal dependency problems. We propose a new statistic
LDD+ to implement an informed drift adaptation procedure in
DAR. Instead of using LDD+ to identify whether drift occurs,
LDD+ is designed to rank the importance of each instance.
The information of instance importance can help to update the
training data when every new instance arrives and thus solve
the adaptation delay problem in most informed adaptation
methods.

In this section, details of the proposed DAR framework are
introduced. Section IV-A gives the assumptions and definitions
of a data stream that has concept drift and temporal depen-
dency problems; based on these assumptions and definitions,
Section IV-B describes the learning task in data streams with
concept drift and temporal dependency. In the end of Section
IV-B, we give a brief summary of the proposed definitions in
Section IV-A and Section IV-B and their relationship. Section
IV-C gives the theoretical foundations of the basic idea of
our proposed DAR framework, and Section IV-D explains
the adaptation procedure and how to implement the DAR
framework.

A. Assumptions and definitions

We consider the data stream from an aspect of time series
analysis. A data stream consists of d+1 time series processes.
This section starts with the definition of a data stream, and
then the concept drift definition is introduced and expanded.
Based on these definitions and definitions of time series, the
definition of a data stream with concept drift and temporal
dependency is presented and explained.

Definition 6 (Data Stream). A data stream Dt =
{(Xt, yt) |t = 1, ...∞}, is generated from distribution Pt with
pt (X, y) its probability function or probability density func-
tion (pdf), where

{
Xt ∈ Rd

}
is the attribute variable (or the

input) consisting of d time series, for some d, and
{
yt ∈ R1

}
is the label variable (or the scalar output).

So far, concept drift is defined in Definition. 7. This
widely accepted definition of concept drift highlights the
characteristics of drift, but it does not explain the meaning
of “concept”. When studying the problem of concept drift,
the term “concept” is used to represent hidden data patterns
such as the probability distributions and relationships between
Xt and yt. Concept drift is caused by the hidden context
[37], rather than stochastic disturbances. Unlike outliers, a
concept will last for a period after it shows, rather than existing

momentarily. To present this characteristics of concept, a
constraint is added to the current definition of concept drift
as presented in Definition 8.

Definition 7 (Concept Drift (short version)). Concept drift
is defined if the underlying distribution changes, i.e., ∃t that
pt+1 (X, y) 6= pt (X, y).

Definition 8 (Concept Drift (full version)). Concept drift
occurs in a data stream if ∃td(i) thatpt+1(X, y) 6= pt(X, y), for t = td(i)

pt+1(X, y) = pt(X, y), for t ∈
[
td(i)+τi , td(i+1)

) (5)

where ∀i, td(i+1) − td(i) > 1, t ∈ Z+ presents the time step,
d(i) is an order statistics denoting the ith drifted time point,
and τi = 1 is for the sudden drift while 1 < τi < td(i+1)−td(i)
is specifically for the occurrence of incremental drift.

Remark 3. In the full version definition, a data stream
contains concept drift if the data pattern changes at least once,
namely {td(i)} 6= ∅ that pt+1(X, y) 6= pt(X, y), for t = td(i) ;
in addition, the changed pattern is not ephemeral, but will
last for a period (at least last for two time steps), which is
manifested by ∀i, td(i+1) − td(i) > 1. The pattern stays the
same in this period that pt+1(X, y) = pt(X, y), for t ∈[
td(i)+τi , td(i+1)

]
; here τi = 1 when the drift occurs suddenly

while τi > 1 when the drift occurs incrementally in the period
of
[
td(i)+1, td(i)+τi

]
. All drift adaptation methods are at least

one-instance delayed. Without the constraint that a new
pattern will be retained for a period, any adaptation is invalid
in principle.

The definition of a data stream contains (Xt, yt), but does
not give the temporal details of X and y. Next, (Xt, yt) is
explained from a time series aspect to present the temporal
dependency. We assume that a data stream consists of time
series processes, and these time series contain certain charac-
teristics as well as unknown characteristics. We separate the
certain characteristics from the unknown characteristics so that
the effectiveness of these certain characteristics on modelling
can be analyzed.

In this paper, we use decomposing and mixing to separate
the certain characteristics from the unknown characteristics
for each variable in a data stream. Next, we first define the
decomposed time series and mixed time series. Based on
these two definitions, a data stream with drift and temporal-
dependency is defined.

Definition 9 (Decomposed Time Series). Each time series
process in the data stream, Tt, is decomposed as the weighted
sum of two time series process, Vt and St.

Tt = (1− s)Vt + sSt, s ∈ [0, 1] (6)

where Vt is a time series process with unknown characteristics
which represents the uncertainty aspect of this variable, and
St process is covariance-stationary and ergodic for the mean
(Definition 3) which represents the certain temporal depen-
dency. Vt and St are assumed to be independent.

Definition 10 (Mixed Time Series). Given that T 1
t , T

2
t , ..., T

n
t

are n time series processes (Definition 9), and ωt is the

4

weighting vector satisfying
∑n
i=1 ω

(i)
t = 1, |ωt| ≤ 1, a mixed

time series MTt is defined as

MTt =

n∑
i=1

ω
(i)
t × T

(i)
t

= (1− s)
n∑
i=1

ω
(i)
t V

(i)
t + s

n∑
i=1

ω
(i)
t S

(i)
t

= (1− s)MVt + sMSt.

(7)

To describe data streams with drift and temporal-
dependence, the data stream is considered to consist of d+ 1
time series processes, and each variable’s values between two
consecutive drift points (Definition 9) are considered to be a
realization of special case of MTt.

Definition 11 (Drift Point). Drift point is defined as the time
point when a new concept starts. Namely the td(i) in Definition
8.

Definition 12 (Data Stream with Drift and Temporal-depen-
dence). The data stream with drift and temporal-dependence
is defined as m+ 1 mixed time series.

DS
(X,y)
t =

{
MT

1
t , ...,MT

m
t ,MT

y
t |s,ω, V, S

}
(8)

For example, a data stream contains two different patterns in
which yt = β1Xt before time point td and yt = β2Xt after
td, where Xt is a time series. Given T x,1t = T x,2t = Xt,
T y,1t = β1T

x,1
t , T y,2t = β2T

x,1
t four time series, ωx,1t , ωy,1t

equals 1 when t < td while 0 when t ≥ td, and ωx,2t , ωy,2t
equals 0 when t < td while 1 when t ≥ td. Given MT xt =
ωx,1t T x,1t + ωx,2t T x,2t and MT yt = ωy,1t T y,1t + ωy,2t T y,2t , this
data stream is {MT xt ,MT yt }.

Remark 4. Clearly, in the above example, Xt and yt them-
selves are time series but here we use a linear combination
of time series—i.e.,(1 − s)MVt + sMSt—to represent them
because if they are considered as a single time series, their
statistical properties are completely unknown. The definition of
a mixed time series helps to abstract the regular components
in Xt and yt as MSt and leave the chaos components as
MVt.

So far, we have given the definition of a data stream with
temporal dependency and concept drift. The drift is presented
in a data stream DS

(X,y)
t if ωt 6= ωt+1 for some t, and

the temporal dependency is presented by the time series Tt.
In this paper, we provide a solution to find the unbiased
estimation for MSt. However, the estimation on MVt will not
be discussed, because the characteristics of MVt are unknown
in our assumption. Therefore, for an arbitrary data stream
DS

(X,y)
t (s, ·), a bigger s means a better estimation by our

method. This claim will also be validated in the experiments
on synthetic data (Section V-B3). In the following discussion,
the problem will be simplified to a special case of s = 1,
namely MT

(X,y)
t = MS

(X,y)
t .

For a data stream with drift and temporal dependency,
each time series process MS

(i)
t is assumed to be a pth-order

autoregressive process denoted by AR(p).

B. Problem description

According to Definition 8, a concept will exist for at least
a time period of τ once it appears, and the occurrence of
concept drift at td means the end of one concept. During the
time period of one specific concept, the learning aim is to
obtain a predictor ht for pt (X, y).

Definition 13 (Learning Objective at t-step). To predict the
value of the label variable for a data stream at time step t, the
learning aim is to obtain a predictor ht for pt (X, y), which
can be denoted as

ht = arg min
h∈H

` (h,X, y| (X, y) ∈ pt (X, y)), (9)

where H is the hypothesis set, ` : R1 ×R1 → R+ is the loss
function used to measure the magnitude of error.

In the regression task, the loss function is normally the
squared loss, i.e., ` (h,X, y) = ‖h (X)− y‖22.

Definition 14 (Learning Objective for a Data Stream (Xt, yt)).
The aim of the whole learning process for a data stream
(Xt, yt) is to find ht for each concept.

arg min
h1,h2,...,ht,...

∑
t

` (ht,Xt, yt| (Xt, yt) ∈ pt (X, y)). (10)

Referring to Definition 14, the learning process of the data
stream DS

(X,y)
t will be as in Definition 15. The lag operator

L (Remark 2) is used for a concise format.

Definition 15 (Learning Objective for Data Streams with Drift
and Temporal-dependence DS(X,y)

t).

arg min
h1,h2,...,ht,...

∑
t

` (ht,X, y,L| (X, y) ∼ pt (X, y)). (11)

Remark 5. Compared to the previous learning task for data
streams, the new loss function in (11) contains L, which
denotes the temporal dependency.

Brief summary of Section IV-A and IV-B. Although it is
common sense that the data stream consists of time series, the
characteristics of these time series are unknown. The idea of
decomposed time series (Definition 9) is to separate the certain
temporal dependency from other uncertain characteristics so
that we can further study data streams from the time series
aspect. If the data stream does not have the problem of concept
drift, Definition 9 is enough for further study. The occurrence
of concept drift in a data stream breaches the first condition
in Definition 3, which makes Definition 9 useless. Therefore,
mixed time series (Definition 10) is proposed. The definition
of mixed time series converts the problem of concept drift
into the problem of changing weights so that the occurrence
of concept drift does not breach the conditions in Definition
3 and the lag operator L could be added in Definition 15. Al-
though Definitions 1-14 are not directly presented in the final
algorithm, they are the theoretical foundations to guarantee the
feasibility of the designed algorithm as well as the possible
foundations for future studies on non-i.i.d problems.

C. Analysis of testing error when real drift exists

In this section, we discuss how to find a better solution to
each ht in (11) step by step. We start from the linear case

5

(Section IV-C1) and then expand the conclusion of the linear
case into a general case (Section IV-C2).

In this section, virtual drift is not considered because when
the learning objective is to obtain less error and a squared loss
is considered in the regression task, the concept drift problem
focuses on real drift. To prove this, we introduce Theorem 1.

Theorem 1. The estimation with smallest squared loss is the
expectation of y conditional on X: ŷ = h(X) = E(y|X)
where h = arg min

h∈Hreg
` (h,X, y) .

Proof. The proof is given in Appendix A.

Assuming the hypothesis set contains the optimal predictor
E(y|X), if p(X) (virtual drift) changes but p(y|X) (real
drift) stays the same, the current predictor can be the same
as the previous predictor because E(y|X) has not changed.
Therefore, virtual drift is omitted in the following discussion.
Next, we discuss how to effectively build and update the
predictor when real drift (E(y|X) changes) occurs.

1) The linear case: We first consider the simplest case
where there is only one attribute variable in the feature space,
denoted by Xt, and yt is the label variable; yt and Xt

are linearly correlated, and Xt is a first-order autoregressive
process. The sudden drift occurs at time point td.

In this linear case, Xt = β0 + β1Xt−1 + εt, |β1| < 1, and
yt = θ0 + θ1Xt + εt (concept 1) before time point td, yt =
θ′0 + θ′1Xt + εt (concept 2) after td where θ′0 6= θ0 and θ′1 6=
θ1. Clearly, {Xt, yt} is a data stream with drift and temporal
dependency in which a real drift occurring at td, and Xt is a
first-order autoregressive process. According to Definition 12,
this data stream can be written as DS(X,y)

t =
{
MTXt ,MT yt

}
,

where MT xt is:

MT xt = Sxt

Sxt : Xt = β0 + β1Xt−1 + εt
(12)

and MT yt is:

MT yt = ω1
tS

y,1
t + ω2

tS
y,2
t + ω3

tS
y,3
t

Sy,1t : yt = θ0 + θ1β0 − θ0β1 + β1yt−1 + εt

Sy,2t : yt = θ′0 + θ′1β0 − θ′0β1 −
θ′0θ
′
1β1

θ1
yt−1 + εt

Sy,3t : yt = θ′0 + θ′1β0 − θ′0β1 + β1yt−1 + εt

ω
(1,2,3)
t =

(1, 0, 0) t < td
(0, 1, 0) t = td
(0, 0, 1) t > td

(13)

For concise notation, we use X, y to present the data stream.
The component in X, y at different t is the same as in (12)
and (13).

There are two ways to estimate yt: a) The traditional
approach is to find the optimal predictor in the hypothesis
set H : X → Y; b) the optimal hypothesis can also be found
in the hypothesis set H : (L,Y) → Y to estimate yt. Next,
we will discuss the difference between these two approaches
when drift occurs.

The estimations of θ or β and yt computed by a) and b)
before td are unbiased, consistent, and efficient estimations if

the ordinary least squares (OLS) method is used. Similarly,
the observations after viewing enough instances of the new
pattern comprise the new training set, and the estimations of
θ′ or β and yt by a) or b) are also unbiased, consistent, and
efficient.

The difference between a) and b) is represented when the
training set mixes data from the old pattern (old concept)
and the new pattern (new concept). Assume that the training
set contains n observations of (Xt, yt), where n1 = n − n2

of them are from the old concept, and n2 of them are from
the new concept. A predictor is trained with this training set
to estimate future yt which follows the new pattern.

Theorem 2. Given a data stream DS
(X,y)
t =

{
MTXt ,MT yt

}
where MTXt and MT yt are as presented in (12) and (13)
separately, the testing error linearly decreases to 0 as n2/n
increases (the training data contains more instances of new
concept) if using H : X → Y as the hypothesis set.

Proof. The proof is given in Appendix B.

Theorem 3. Given a data stream DS
(X,y)
t = MS

(X,y)
t , the

testing error exponentially decreases to 0 as n2/n increases
if using H : (L,Y)→ Y as the hypothesis set.

Proof. The proof is given in Appendix D.

As the new instances arrive and are included in the training
set, the n2/n finally increases to 1. Clearly, the error de-
creases faster under the condition of Theorem 3 (exponentially
decreases to 0) than that under the condition of Theorem 2
(linearly decreases to 0).

The conclusion of the unary case above is also suitable in
the multiple linear case. If no collinearity exists in the multiple
case, θi for X(i) (ith dimension of X) is similarly computed
to (23) but Xy needs to subtract Xy of other dimensions.
The yt process still converges to a constant by constraint
(2). Therefore, after drift occurs, as the training set contains
more instances of the new pattern, the testing error of the
predictor trained with the training set on the reconstructed
space (L,Y) decreases faster than that of the predictor trained
on the original space (X ,Y).

2) A general case: The conclusion of the linear case can
be applied in a general case by introducing locally weighted
regression that the predictor trained on the reconstructed space
is better than the predictor trained on the original space even
when X and y have a non-linear correlation. The locally
weighted regression is an existing method, which is not the
contribution in this paper. However, it helps us to widen the
conclusion in the linear case to a general case.

The learning objective of locally weighted regression at each
target point Xu is represented as follows:

arg min
θ(Xu)

N∑
t=1

Kk(Xu,Xt)(yt − θTXu)
2
, (14)

where
Kk(Xu,Xt) = D

(|Xt −Xu|
bk(Xu)

)
. (15)

6

Kk(Xu,Xt) is the weight determined by the distance from
Xu to the k-nearest neighborhoods of Xu, bk(Xu), and in
this paper, D is defined as:

D(d) =

1 d ≤ bk(X0)
0 d < bk(X0)

(16)

To build a predictor based on the current training set (Xt, yt)
to estimate yu, we first find the k-nearest neighborhoods of
(Xu, yu), and learn a linear predictor on these neighborhoods.
yu is estimated by this local predictor. This converts the
general case to a sum of linear cases which is discussed in
Section IV-C1.

Remark 6. For a data stream with concept drift and tempo-
ral dependency DS(X,y)

t , this subsection gives a theoretical
conclusion that when the training set mixes data from two
patterns, the error of a predictor built on the reconstructed
space (L,Y) decreases faster than that of a predictor built on
the original space (X ,Y) as the training set contains more
instances from the new pattern.

D. Drift adaptation procedure in DAR

Section IV-C concludes that the predictor built on the
reconstructed space is better than the predictor built on the
original space for a data stream with concept drift and temporal
dependency. Once the space is reconstructed, the next problem
is how to build and update the predictor on the reconstructed
space to adapt to the newest pattern. This section discusses this
drift adaptation procedure used in DAR. The drift adaptation
is based on a proposed statistic LDD+. In this section, we first
introduce LDD+ and then the adaptation procedure.

1) The local drift degree (LDD+): When the training set
mixes with instances of different patterns, we consider the
pattern of the upcoming future instances to be the new concept.
According to Theorem 3, the more new concept instances are
included, the more accurate it is to use a predictor built on this
training set to estimate future instances. Therefore, updating
the training set to include more new concept instances is also
an important process for data streams with concept drift. If
none of the instances in the training set follows the new
pattern, it is impossible for any method to train an effective
predictor to estimate future values. In this paper, we propose
to update the training set based on the local drift degree
(LDD+).

The original edition of LDD, proposed by Liu et al., is
a statistic to quantify regional discrepancies between two
different sample sets, and this discrepancy is compared to two
thresholds to determine the drift area [38]. In this paper, LDD
is improved from three aspects: 1) we redesign this statistic so
that the limitation of sample size can be removed; 2) LDD is
applicable to classification tasks while LDD+ is to regression
tasks; 3) we do not need thresholds to implement adaptation.

Given ∆1 and ∆2 two m + 1-dimension populations from
space Rm+1, two samples of ∆1 and ∆2, δ1 and δ2, consist
of instances from ∆1 and ∆2 respectively. As it is impossible
to acquire all instances in ∆1 and ∆2, δ1 and δ2 are used
to infer by statistical theories whether ∆1 and ∆2 have the
same distribution. If ∆1 and ∆2 have the same distribution,

the number of instances belonging to δ1 and δ2 in any arbitrary
subspace $ ⊂ Rm+1 are theoretically the same, which
leads to an insignificant discrepancy between the number of
instances belonging to δ1 and δ2. If ∆1 and ∆2 have different
distributions, uneven density exists in at least one subspace.
Based on the above idea, the original version of LDD is
defined in (17) [38]:

d$ =
|δ$2

|/nδ2
|δ$1 |/nδ1

− 1 (17)

where |δ$1
| and |δ$2

| represent the number of instances in
$ belonging to δ1 and δ2, and nδ1 and nδ2 are the sample
size of δ1 and δ2 respectively.

When δ1 is the current training set, and δ2 is the newly
arrived data instances, LDD can be used to measure the
distribution difference of the training set and the newly arrived
batch. If LDD is larger than a statistical threshold, the newly
arrived instances are considered to have a different distribution
from the training set, which denotes a drift. The original LDD
assumes that |δ$1 |/nδ1 is a constant. However, this is not
always true. To overcome this drawback, we propose LDD+

as follows:
d
+
$ =

|δ$1 |
nδ1

−
|δ$2 |
nδ2

(18)

where |δ$1
|, |δ$2

|, nδ1 and nδ2 have the same meaning as
in (17).

Theorem 4. Given δ1 and δ2 have the same distribution, d+
$ ∼

N(0, S2
δ1
/nδ1 + S2

δ2
/nδ2), where S2

δ1
are S2

δ2
are the sample

variances, and nδ1 and nδ2 are the sample size.

Proof. The proof is given in Appendix E.

Remark 7. It is true that the value of (18) equals the value
of (17) times a scalar, if we neglect assumptions required by
(17). However, they are completely different if we consider
their distributions. In (17), the denominator is assumed to be
a constant. Only if this denominator (|δ$1 |/nδ1) is a constant,
the statistic d$ could be normal by the central limit theorem.
However, this assumption is not true in real applications. As
a result, LDD is sensitive to different nδ1 . (18) considers
|δ$1
|/nδ1 as a random variable, allowing the variation of

nδ1 and thus is more robust. In principle, (17) is a statistic
for one-sample test, but (18) is for two-sample test.

We conduct three groups of experiments to validate the
impact of sample size on LDD and LDD+ when they are
applied to test distribution changes. The comparison results
are shown in Table II. S0 is a 200-length-sample of data from
N(0, 1). S1 is a 2000-length-sample and S2 is a 200-length-
sample. In the experiments of no-drift, S1 and S2 are from
N(0, 1). In the experiments of mean drift, S1 and S2 are from
N(1, 1). In the experiments of variance drift, S1 and S2 are
from N(0, 2).

In the no-drift case, LDD and LDD+ achieves consistent
results of not rejecting the null hypothesis of H0 : S0 = S1

and H0 : S0 = S2. In the drift cases, LDD+ shows consistent
testing results of rejecting the null hypothesis. However, LDD
obtains inconsistent testing results given different sample sizes.
This validates our claim that LDD+ is more robust to the
sample size.

7

TABLE II
COMPARISON EXPERIMENTS BETWEEN LDD AND LDD+ : AVERAGE

P-VALUE OVER 100-TRIALS

Avg.p-value LDD LDD+

S0 = S1 S0 = S2 S0 = S1 S0 = S2

no-drift 0.2138 0.1343 0.1388 0.1185
mean drift 0.0893+ 0.1483 0.000* 0.000*
variance drift 0.4323 0.0002* 0.0012* 0.0229*

Algorithm 1: Computation of LDD+

Input : DS: the current training set
DSw: the newly arrived batch of data
k: the number of nearest neighbors

Output: ldd+
1 for t = 1 to |DSw| do
2 B = [DS,DSw];
3 (knn1, ..., knnk+1) = knnsearch(DSw, B, k + 1); %find

k + 1 nearest neighbors of DSw , | · | computes the cardinality
4 n0 = |ni∈(1,k+1) ∈ DS|; %the number of neighbors in DS
5 n1 = |ni∈(1,k+1) /∈ DS|; %the number of neighbors in DSw
6 ldd+(t) = n0/|DS| − n1/|DSw|
7 end
8 return ldd+

The original version of LDD is applied to a classification
task where |δω| is computed based on the L2 norm of feature
vectors given the same label that is d(k) = ||Xk − X0||22
when yk = y0 and d(k) =∞ when yk 6= y0. In the regression
task, |δω| is computed based on the distance of ||Zk −Z0||22
where Z = (X, y) in this paper2. The computation process
of LDD+ is given in Algorithm 1. The returned LDD+ values
represent the relevance of instances in DS to the distribution
of DSw. A larger LDD+ denotes that this instance is less
similar/important to the new concept.

Clearly, LDD+ could be used to detect whether drift occurs
if we compare LDD+ with a pre-assigned threshold. However,
in this paper, we use LDD+ to select the most important
instances in the updated training set, and update the predictor
on this training set. In this way, we do not need to involve the
threshold parameter and guarantee the adaptation is informed
at the same time.

2) The general procedure and pseudocode of DAR: Ac-
cording to the conclusion in Section IV-C, training a predictor
on the reconstructed space is more effective than training it on
the original space. One key problem is how to reconstruct the
feature space, namely how to identify the p in (4). A larger p
means more lag orders are involved in the predictor. If a large
p is applied, the predictor will be complex and may induce the
sparsity problem. However, valuable information is ignored if
p is too small. The principle of p identification is to include
orders that strongly affect the current state under the condition
that the predictor will not be too complex.
p could be a pre-assigned parameter if there is prior in-

formation. In this paper, we do not assume there is available
prior information. We use the Akaike information criterion
(AIC) [39] to identify the lag order p. For each data stream,
the identification of p is conducted on the historical data at

2Z can also be in other forms of combinations of X and y such as a kernel
function, which may improve the prediction accuracy.

Algorithm 2: The drift-adapted regression framework
(DAR framework)

Input : DS0: the historical data, the initial training set
DSw: the newly arrived batch of data
k: the number of nearest neighbors
θ: required parameters in LWR
w: w = |DSw|

Output: ŷt, t = T + 1, ...T + w %the estimated value
1 Process 1 begin
2 for i = 1 : d+ 1 do
3 for j=1:3 % the max lag order is 3 do
4 compute AIC(j,DS0)
5 end
6 p(i) = argmin

j
AIC(j,DS0) % determine the best lag order

7 end
8 end
9 % now the input contains the lag orders

10 Process 3 begin
11 X = []; y = []
12 for i = T : T + w do
13 learnset = DS0

14 if isempty(ldd+) 6= True then
15 DeleteIndex = ldd+(ldd+(1 : w) > w)
16 learnset(DeleteIndex) = []
17 end
18 Process 2 begin
19 ŷi = LWR(learnset,Xi,θ, k)
20 X = [X;Xi];y = [y; yi]
21 end
22 end
23 driftinsts = [X, y]
24 driftbase = DS0

25 ldd+ = LDD+(driftinsts, driftbase) %Here, LDD+ is for the
function of this statistic, and ldd+ is for its computed value.

26 DS0 = [DS0(w : end); (X, y)]
27 end
28 return ŷt, t = T + 1, ...T + w

the beginning. After this, the determined p will be used for
this data stream without change.

The AIC of a p-th autoregressive predictor trained on a N -
size data sample is computed as:

AIC(p) = 2k − 2ln(ˆ̀(p)), (19)

where k is the number of free parameters to be estimated (for
example, here it is p+1), and ` is the likelihood function to
estimate the parameter vector φ = (c, φ1, ..., φp) in (4).

`(p) = fYp,...,Y1 (yp, ...y1;φ)×
N∏

t=p+1

f(yt|yt−1, ..., yt−p;φ). (20)

For an autoregressive process as in (4) where p is unknown
but assumed to be less than a pre-assigned value P , using AIC
to determine p is to find p ∈ (1, P) with minimum AIC from
a collection of predictor AR(1),...,AR(P).

p̃ = arg min
p∈(1,P)

AIC(p) (21)

The time series identification of each feature is conducted on
the historical data. Once the value of p is determined, it will
not change. The maximum p is 3 in this paper. We reconstruct
the original space to (X ,Y,L) using this process.

Combining the process of reconstructing space and LDD+-
based adaptation, we have the DAR framework as is shown
in Figure 1. The pseudo code of the DAR framework is given
in Algorithm 2. Before a new batch of instances arrives, the

8

historical data {DS(X,y)
t |t = 1, ..., T} is the initial training

set. During Process 1, the lag orders, Xt−p, yt−p are added to
the system as new attributes. Process 2 conducts the locally
weighted regression algorithm as given in Algorithm 3 in
Appendix F. The rules for adaptation are as follows: 1. The
newly arrived batch of w instances represents the newest
pattern, so they will be added to the input set during updating
and the oldest w instances in the input set will be deleted; 2.
The relevance of old instances to the new pattern is measured
by ldd+. 3. If the remaining (T −w) old instances in the input
set have larger ldd+ than the wth largest ldd+, they will also
be deleted from the training set. This process is realized in
Process 3 in the DAR algorithm.

𝑿𝑦

𝑡 𝑦

ℒ(𝑿, 𝑦)

data stream: 𝐷𝑆𝑡
(𝑿,𝑦)

𝐿𝐷𝐷+ module: drift adaptation

prediction

new features

argmin
𝑝

𝐴𝐼𝐶(𝑝)

𝐷𝑆1

𝐷𝑆2
…
𝐷𝑆𝑇

𝐷𝑆2

…
𝐷𝑆𝑇

𝐷𝑆𝑇+𝑤

module: temporally reconstruct spaceℒ

Fig. 1. The flowchart of the DAR framework. DAR have two modules: the
L module aims to handle the temporal dependency, and the LDD+ module
handles concept drift. The data stream is mapped into a reconstructed space.
After that, we conduct LDD+-based adaptation on this space, and obtain
real-time prediction results.

V. EXPERIMENT EVALUATION

In this section, the effectiveness of the proposed DAR will
be proved on both synthetic data and real data. In Section V-A,
we explained the experimental design. The experiments for
synthetic data are detailed in Section V-B, and the experiments
for real data are detailed in Section V-C. Corresponding
statistical tests are detailed in Section V-D.

A. Experiment design

We validate the effectiveness of DAR in terms of three
aspects: 1) DAR on 1-dimensional linear case. This corre-
sponds to the theoretical conclusion in Section IV-C1. As
the 1-dimensional case is available for graphic presentation,
the error will be given for every tested instance to show
that the error decreases faster on the reconstructed space
and therefore improves the adaptation performance; 2) DAR
on multi-dimensional non-linear cases. This corresponds to
the theoretical conclusion in Section IV-C2. It also validates
our assumption that DAR performs better if the data stream
DS

(X,y)
t (Definition 12) has larger s; 3) DAR is compared to

other drift adaptation methods. DAR uses different parameters
for synthetic data and real-world data, which will be specified
in each subsection. The organization of the experiments is
detailed in Table III. Two criteria are used for evaluation,
mean absolute error (MAE) and mean absolute percentage
error (MAPE).

B. Experiments on synthetic data

In this paper, we test our method on synthetic data contain-
ing sudden drift and incremental drift. There are two kinds

of synthetic data: 1-dimensional linear data (contain sudden
and incremental drift), and multi-dimensional non-linear data
(only contains sudden drift).

1) Generation of the synthetic data:

• Simple linear data (the feature variable is 1-
dimensional)

Three data were generated by several parameter-changing
linear models, in a similar way to the generation procedure of
synthetic data in [27], [40]: Non-Drift is a data stream with no
drift; Sudd-Drift contains a real sudden drift; Incr-Drift means
that real incremental drift occurs over a period. The generated
data are presented in Figure 2. The data were generated as
follows:

Fig. 2. Generated 1-dimensional linear data. The data with real sudden drift
and real incremental drift are generated.

Non-Drift. Two random samples x1 and x2 were drawn from
a normal distribution N

(
µ, σ2

)
where µ = 10, σ2 = 100 as

the first two values for the input. The rest of the input was
generated by xt = β1xt−1 + β2xt−2 + ηt where {ηt} is a
random error series. We create 2002 values of x (including
x1 and x2) with β1 = 0.5, β2 = −0.2 and delete x1 and
x2 from the data. These 2000 samples are denoted by Xt =
{x3, x4, . . . , x2002}. The output series was generated by Yt =
θ0 + θ1Xt + εt where {εt} is a random error series, and θ0 =
10, θ1 = 1. The data is evidently time-dependent.

Sudd-Drift The first 998 data samples were generated in
the same way as is in the Non-Drift samples. The subsequent
1002 samples were generated in the same way as the Non-
Drift samples but with the parameters θ0 = −10, θ1 = −1.
Real sudden drift occurred at the 999th sample.

Incr-Drift The first 998 data samples were generated in
the same way as is in the Non-Drift samples. The input of
the subsequent 1002 samples were the same as the Non-
Drift samples. The output of the 999th to 1498th samples
was generated by {θ0 + f0 (t)}+ {θ1 + f1 (t)}Xt + εt where
fi (t) = (θ′i − θi)× t−1000

500 . The output of the last 500 samples
were generated by Yt = θ′0 + θ′1Xt + εt. The parameters were
θ0 = 10, θ′0 = −10, θ1 = 1 and θ′1 = −1. An incremental
drift occurred from the 999th to 1498th samples, and the new
pattern proceeded after the 1499th sample.

It should be noted that, although Non-Drift, Sudd-Drift,
and Incr-Drift have a similar generating process, they have
different samples. This is because x1 and x2 are randomly
drawn for each data, and ηt and εt have different values for
each data.

• Multi-dimensional non-linear data (only considering
sudden drift)

9

TABLE III
EXPERIMENT DESIGN

Section Data Experimental aim Main Results

Section V-B3 d1 Validate that the error decreases faster on a restructured space on
simple

Table V, Figure 3

linear cases (corresponding to Section IV-C1)
Section V-B3 d2 Validate DAR on multi-dimensional non-linear cases (corresponding Table VI,Table VII, Figure 4

to Section IV-C2)
Section V-C d3 Compare DAR with the-state-of-the-art drift adaptation methods Table VIII
Section V-D d3 Statistical test for comparison between methods Table IX

d1 contains three data generated in Section V-B1: 1-dimensional linear data
d2 contains six data generated in Section V-B1: multi-dimensional non-linear data
d3 real-world data

We generate the multi-dimensional non-linear data by referring
to the Python package [41] and paper [42]. The original data is
not used to validate the concept drift problem. In this paper,
we use similar mapping functions to the mapping functions
used in [41]. Drift is added by using a negative label variable
after the drift point, and the time dependency is added by
using autoregressive feature variables instead of the temporally
independent feature variables in the original version. Six data
streams are generated, and the details of the generation process
are explained as follows:

Step 1: Generate five feature variables X1,t, X2,t, . . . , X5,t,
and each of the feature variables is generated in the same way
as Xt in Non-Drift. Namely, we have five AR(2) time series.

Step 2: Normalize each feature variable generated in Step
1. This is because the mapping function in [41] requires the
feature variables on the interval [0, 1].

Step 3: Generate the label variable using the mapping
function in (22). Six groups of parameters are used to generate
six data. They are listed in Table IV.

yt = θ1 sin(πX1,tX2,t) + θ2(X3,t − 0.5)
2

+ θ3X4,t + θ4X5,t + θ5εt (22)

Step 4: Drift is added by letting yt>1000 = −yt>1000. Clearly,
a sudden drift occurs at t = 1001 for all these six data.

TABLE IV
PARAMETERS FOR GENERATING DATA IN (22)

θ1 θ2 θ3 θ4 θ5

Para0 10 20 10 5 1
Para1 10 10 15 10 40/35
Para2 5 10 15 15 40/35
Para3 1 2 15 15 32/35
Para-1 10 20 2 1 23/35
Para-2 10 20 0 0 20/35

Remark. This mapping function presents a non-linear re-
lationship of polynomial and sine transforms where θ1 and
θ2 control their weights separately. In addition, it contains
linear relationships where θ3 and θ4 control their weights
separately. Para0 is the parameters used in [41]. Compared
to Para0, Para1, Para2 and Para3 have more weights on the
linear relationship while Para1 and Para2 have less weights
on the linear relationship. Para2 does not have the term of a
regular temporally dependency as θ3 and θ4 are 0. We design
these parameters to validate the claim that our method will
perform better with a larger s in DS

(X,y)
t in Definition 12.

The value of θ5 is not 1 except for Para0. This is because the

max absolute values of y in other data are not the same as
those in Para0, which is 35. Therefore, θ5 changes to alleviate
the difference caused by the disturbance when the estimation
results on these six data are compared.

2) Preassigned parameters: In the experiments of synthetic
data, the first 500 instances were set as the historical data for
the first training, namely N = 500. The max lag order P is
3, the length of the windows (w) is 100, and the number of
neighbors (K) is 50. The parameters of SVR and tree models
are the default in MATLAB (listed in Appendix G).

3) Results of the synthetic data:
• Simple linear cases (Xt is 1-dimensional)
We conduct the ablation study to validate the effectiveness

of each module in DAR. The results are shown in Table V.
The models tested are

- DAR w/o LDD+&L is DAR without L and LDD+

modules i.e., a plain locally weighted regression model;
- DAR w/o LDD+ is DAR without LDD+ module.

Namely, DAR w/o LDD+ can only handle temporal
dependency;

- DAR w/o L is DAR without L module. DAR w/o L only
handle concept drift;

- DAR-linear is our framework with a linear base learner.
- DAR-SVR is with a SVR base learner;
- DAR-tree is with a tree base learner.
The accuracy results in Table V indicate that: 1) LDD+-

based adaptation can solve the drift problem in data streams;
2) Reconstructed space helps to improve the drift adaptation
process. The accuracy of DAR w/o LDD+&L is as the same
bad as DAR w/o LDD+ but the MAE of DAR-linear is 1.7392
for SuddDrift and 1.4387 for IncrDrift which is much less than
the MAE of DAR w/o L. This verifies the discussion in Section
IV-C that reconstructed space improves drift adaptation for
time-dependent data when the training set mixes samples from
different patterns. The final results are not much different from
the linear case, indicating DAR’s robustness to base learners.

Next, we verify that reconstructed space improves drift
adaptation because the error decreases faster. Figure 3 shows
the complete estimation process of DAR w/o L and DAR-
linear. In general, DAR-linear chases the various trends faster
than DAR w/o L. Subplot A is drawn before drift occurs,
where the estimation of both methods is accurate. In contrast,
when drift starts to appear in subplot B, DAR-linear gradually
chases the new trend while DAR w/o L remains in the old

10

TABLE V
MAE RESULTS OF ABLATION STUDY ON DIFFERENT MODULES OF DAR (SIMPLE LINEAR CASES).

Data Streams DAR w/o LDD+&L DAR w/o LDD+ DAR w/o L DAR-linear DAR-SVR DAR-tree

NonDrift 0.8017 0.8029 0.8055 0.8079 0.8231 1.0638
SuddDrift 13.0991 13.2057 4.7669 1.7392 1.9061 1.8015
IncrDrift 9.542 9.315 4.5388 1.4387 1.2346 1.8967

Fig. 3. Error decreasing process. The circles represent the scatter plots of inputs and outputs before drift occurs, while the dots show the results after drift
has occurred. Colors denote the different estimation results: blue is for real values, red is for DAR w/o L, and black is for DAR-linear. The testing errors of
950th-1150th instances are given in subplot E, where the gray shadow represents DAR w/o LDD+&L, the red dotted line represents DAR w/o L and the
black line represents DAR-linear.

pattern, as all the black dots are still near to the circles
denoting the old pattern. In subplot C, DAR-linear has already
adapted to the new concept after the 1101st point, but DAR
w/o L has only just started to adapt to the new concept.
Subplot D shows that DAR w/o L finally chases the new
concept after the 1501st instance which has 400 points delay
than DAR-linear.

The testing error of each instance from 950th to 1150th
is given in subplot E. As the 950th-1000th instances are
estimated by the predictor trained by instances before the
950th instance, there is no instance from the new pattern in
the training set, and the testing error for the 999th and 1000th
instance is very high. After the arrival of the 1000th instance,
the training set is updated and contains two instances from
the new pattern, namely the 999th and 1000th instance. The
training set is now a mixture of instances from the old and
new patterns. If DAR w/o L is applied, the effectiveness of the
adaptation is subtle and the testing error of the 1001st-1100th
instances is still as high as in the non-adaptation predictor.
However, when DAR-linear is applied, the testing error clearly
decreases. After the 1100th instance has been obtained, the
training set is updated again. The testing error of DAR-linear
is now as low as it was before the drift occurred, which means
that DAR-linear has already adapted to the new pattern. In
contrast,DAR w/o L has only just started to adapt.

So far, we have validated DAR on a simple linear regression
for data stream with drift and temporal dependence. We have
shown the estimated value of the label variable at each time

point before and after drift occurs because the simple linear
regression is suitable for the graphic presentation. In the next
section, a general case of multi-dimensional non-linear data is
presented, where the average accuracy is used for validation.

• Multi-dimensional non-linear cases
In this section, DAR is validated in six multi-dimensional non-
linear cases. The results of the ablation study are listed in
Table VI (MAE) and Table VII (MAPE). According to Table
VI and Table VII, the performance of each module in DAR
shows consistent effectiveness to that in a simple linear case.
These results strengthen the conclusion in a simple linear case
that DAR can handle data streams with drift and temporal
dependency. In addition, we found that replacing the linear
predictor with other non-linear predictors such as SVR and
tree in DAR may have better prediction results for the data
with large weights on the non-linear terms. For example, in
Table VI, the MAE of DAR-tree is much smaller than the
MAE of DAR-linear on data Para2 which only contains non-
linear terms.

We also found that compared to adaptation on the original
feature space, the improvement of DAR increases if the data is
generated with larger weights of the linear term. This validates
our claim that ‘for an arbitrary data stream DS

(X,y)
t (s, ·)

(Definition 12), a bigger s means a better estimation by
DAR’. To clearly present this, we compute the improvement
percentage of DAR-linear compared to DAR w/o L, and
present the results in Figure 4. The x-axis starts from Para2
and ends with Para3 which is arranged in an increased order

11

TABLE VI
MAE RESULTS OF ABLATION STUDY ON DIFFERENT MODULES OF DAR (MULTI-DIMENSIONAL NON-LINEAR CASES).

Data Streams DAR w/o LDD+&L DAR w/o LDD+ DAR w/o L DAR-linear DAR-SVR DAR-tree

Para0 20.1489 18.4213 8.2653 5.3583 4.7753 3.5539
Para1 24.2418 24.606 9.0504 5.66 5.2406 4.7441
Para2 25.1195 24.6822 8.7878 4.3891 4.6255 4.3482
Para3 20.8337 19.5359 6.8099 2.8586 3.9276 2.8313
Para-1 11.9175 11.8405 5.5357 4.4129 3.9263 2.5419
Para-2 10.2588 10.5276 4.8849 4.1026 3.6865 2.2622

TABLE VII
MAPE RESULTS OF ABLATION STUDY ON DIFFERENT MODULES OF DAR (MULTI-DIMENSIONAL NON-LINEAR CASES).

MAPE DAR w/o LDD+&L DAR w/o LDD+ DAR w/o L DAR-linear DAR-SVR DAR-tree

Para0 142.53% 129.45% 61.41% 42.68% 36.85% 25.98%
Para1 138.59% 140.90% 52.96% 35.55% 32.16% 29.03%
Para2 133.36% 130.66% 48.71% 25.41% 26.13% 25.30%
Para3 130.28% 119.73% 43.77% 24.73% 28.08% 19.01%
Para-1 175.37% 173.89% 88.64% 77.18% 62.29% 34.93%
Para-2 312.37% 323.73% 205.97% 215.42% 161.17% 42.14%

of s. Each dot in Figure 4 is computed by subtracting the
accuracy of DAR-linear from that of DAR w/o L and then
divided by the accuracy of DAR w/o L. For example, the value
of the first blue dot is computed as (4.8849−4.1026)/4.8849,
which is 16.01%.

It should be noted that both DAR w/o L and DAR-linear
use linear predictors. Therefore, the difference between these
two methods is not caused by the increased linear relationship
between X and y. The improvement clearly exists because
there is a larger proportion of regular temporal dependency
in the data stream. During the process of generating these six
data, the temporal dependency on X disappears when this
term involves non-linear transforms. Therefore, using larger
weights on the linear terms in (22) corresponds to the case of
bigger s in Definition 12. These experimental results explain
why we define the mixed time series for data streams.

-10%

0%

10%

20%

30%

40%

50%

60%

70%

Para-2 Para-1 Para0 Para1 Para2 Para3

improved percentage of MAE/MAPE

MAE MAPE

(larger s)

Fig. 4. The improved percentage of MAE/MAPE of DAR-linear from DAR
w/o L. Both methods have the drift adaptation process. The difference is that
DAR-linear is implemented on the reconstructed space.

Discussion: According to the synthetic data experiments,
we conclude that: 1) feature space reconstruction will not
obtain a worse estimation when there is no drift in the
data; 2) the predictor trained on reconstructed feature space
ties with the predictor on the original space if the training
set only contains a single pattern; 3) when the data has
drift and temporal dependency, and the training set mixes
data examples from different patterns, space reconstruction

enables faster adaptation to the new pattern; 4) adaptation by
LDD+ is effective for data streams with concept drift; 5) the
effectiveness of reconstruction and adaptation by LDD+ is not
affected by the type of predictors; 6) DAR performs better for
the data streams with strong temporal dependency.

C. Experiments on real-world data streams

In this subsection, we test the DAR framework on seven
real-world data streams. Seven techniques to tackle regression
drift are introduced as baselines. One baseline is DAR w/o
LDD+&L which is the non adaptation version of DAR-linear,
and the other six are: FIMT-DD [43], ORTO [44], AMR
and its ensemble version, metaAMR [15], Perceptron [45]
and FUZZ-CARE [27]. The previous five baselines are
implemented by MOA [46](https://moa.cms.waikato.ac.nz/)
and FUZZ-CARE is implemented by the code in
(https://github.com/songyiliao/FUZZ-CARE). The following
three subsections present the data description, preassigned
parameters, and experiment results of the data streams.

1) Data description: There are seven data streams, taken
from five data sources, listed below.

CCPP: The data contains 47, 840 data points collected from
a Combined Cycle Power Plant over six years (2006-2011),
when the power plant was set to work at full load. Features
consist of the hourly average ambient variables temperature
(T), ambient pressure (AP), relative humidity (RH) and ex-
haust vacuum (V) to predict the net hourly electrical energy
output (EP) of the plant. It is available from the UCI machine
learning repository (http://archive.ics.uci.edu/ml).

Sensor: The data contains 2,219,803 consecutive records of
temperature, humidity, light and sensor voltage collected from
54 sensors deployed in the Intel Berkeley Research Lab over
a two-month period. To make it a regression task, we selected
the records of four sensors—sensors 3, 8, 20, 46–located in
different parts of the Lab, and used temperature, humidity,
and light as features, and sensor voltage as the dependent
variable. The light during working hours is generally stronger

12

than during the night, and the temperature of specific sensors
may rise regularly during meetings. This is available in [47].

SMEAR: This is a 30-minute interval environment obser-
vation dataset collected from the SMEAR II station which
contains 140,576 instances of 43 variables from 0:15 on 15th
April 2005 to 23:45 on 14th April 2013. The regression
task based on this data is to predict solar radiation using 37
variables, as six variables are time labels which will not be
considered as prediction features in the model. The remaining
environmental features have been introduced in [48].There are
many missing values in this dataset. In this paper, we eliminate
the missing values in the same way as [48].

Solar is provided by NASA and contains 32,686 records of
meteorological data from the HI-SEAS weather station from
23:55:26 29 September 2016 to 00:00:02 1 December 2016
(Hawaii time) in the period between Mission IV and Mission
V. The data interval is roughly 5 minutes. The input features
are temperature (unit: degrees Fahrenheit), humidity (unit:
percent), barometric pressure (unit: Hg), wind direction (unit:
degree), wind speed (unit: miles per hour) and the label vari-
able is solar radiation (unit: watts per meter2). The dataset is
available at https://www.kaggle.com/dronio/SolarEnergy/data.

2) Preassigned parameters: There are four preassigned
parameters: length of training set, max lag order, length of
windows, and the number of neighbors. All the experiments
use a parameter combination as follows: the length of the
training set (N) is 2000, the max lag order (P) is 3, the length
of the windows (w) is 200, and the number of neighbors (K)
is 50. The parameters of SVR and tree models are the default
in MATLAB (listed in Appendix G).

3) Results of real data streams: The MAE and correspond-
ing rank of the DAR framework and other methods are listed in
Table VIII, where a lower rank means better performance. The
accuracy rank of each method shows that DAR-based methods
perform better than the other methods. The variables are
very likely to exhibit the temporal dependency problem, and
the overwhelming good performance of DAR-based methods
demonstrates that our proposed DAR framework is an effective
adaptation framework for data streams with drift and temporal
dependency.

D. Friedman Test and Post-hoc Test after Conover on Data
Streams

In this section, we use the Friedman test and its Post-hoc test
after Conover [49] to validate whether our proposed method
is significantly better than the baselines. These two statistical
tests are conducted on the average MAE of different methods
among all the data streams. We conduct Friedman test and the
post-hoc test among methods based on their performance listed
in Table VIII. The test results are shown in Table IX(only the
results of the DAR-linear in the post-hoc test part). Ri−RDAR
is the difference between the rank sums of other baselines
and DAR-linear, and the p-value tests the significance of this
difference.

The test results show that the prediction accuracy of the
various methods is different and DAR-linear is significantly
better than the other baselines.

VI. CONCLUSION AND FUTURE STUDIES

Learning in a non-stationary environment is a big challenge
for current machine learning methods. Existing related studies
mainly focus on data streams with concept drift problems,
breaking the assumption of identical distribution. However,
few studies have discussed the problem of temporal depen-
dency, which makes the independence assumption invalid.

To fill this gap, this paper conducted a theoretical study for
the regression of data streams with concept drift and temporal
dependency, and based on this study proposed a drift-adapted
regression (DAR) framework, to predict non-stationary data
streams. The DAR framework is able to deal with drift and the
temporal dependency problem simultaneously. The experiment
evaluation on synthetic data verifies the theoretical conclusion,
and the experiments on real data streams illustrate several
advantages of the proposed DAR framework.

Based on the findings in this paper, we suggest that future
studies in this field should include 1) multi-output regression
of data streams with concept drift and temporal dependency;
2) consideration of a more complex time series than an
autoregressive process.

ACKNOWLEDGMENTS

The work presented in this paper was supported by the
Australian Research Council (ARC) under Discovery Grant
DP190101733 and FL190100149.

REFERENCES

[1] A. Haque, L. Khan, M. Baron, B. Thuraisingham, and C. Aggarwal,
“Efficient handling of concept drift and concept evolution over stream
data,” in IEEE 32nd International Conference on Data Engineering.
Helsinki, Finland, May. 16-20: IEEE, 2016, pp. 481–492.

[2] Z. Yang, S. Al-Dahidi, P. Baraldi, E. Zio, and L. Montelatici, “A novel
concept drift detection method for incremental learning in nonstationary
environments,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 31, no. 1, pp. 309–320, 2020.

[3] J. Lu, A. Liu, Y. Song, and G. Zhang, “Data-driven decision support
under concept drift in streamed big data,” Complex & Intelligent Systems,
vol. 6, no. 1, pp. 157–163, 2020.

[4] K. Malialis, C. G. Panayiotou, and M. M. Polycarpou, “Online learning
with adaptive rebalancing in nonstationary environments,” IEEE Trans-
actions on Neural Networks and Learning Systems, pp. 1–15, 2020.

[5] J. Gama, R. Sebastião, and P. P. Rodrigues, “On evaluating stream
learning algorithms,” Machine learning, vol. 90, no. 3, pp. 317–346,
2013.

[6] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM computing surveys, vol. 46,
no. 4, p. 44, 2014.

[7] H. M. Gomes, J. P. Barddal, F. Enembreck, and A. Bifet, “A survey
on ensemble learning for data stream classification,” ACM Computing
Surveys, vol. 50, no. 2, p. 23, 2017.

[8] I. Žliobaitė, A. Bifet, J. Read, B. Pfahringer, and G. Holmes, “Evaluation
methods and decision theory for classification of streaming data with
temporal dependence,” Machine Learning, vol. 98, no. 3, pp. 455–482,
2015.

[9] Y. Song, J. Lu, A. Liu, H. Lu, and G. Zhang, “A segment-based
drift adaptation method for data streams,” IEEE transactions on neural
networks and learning systems, 2021.

[10] Y. Sun, K. Tang, Z. Zhu, and X. Yao, “Concept drift adaptation by ex-
ploiting historical knowledge,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 29, pp. 4822–4832, 2018.

[11] M. Pratama, J. Lu, E. Lughofer, G. Zhang, and M. J. Er, “An incremental
learning of concept drifts using evolving type-2 recurrent fuzzy neural
networks,” IEEE Transactions on Fuzzy Systems, vol. 25, no. 5, pp.
1175–1192, 2017.

13

TABLE VIII
MAE COMPARISONS BETWEEN DIFFERENT METHODS ON REAL-WORLD DATA STREAMS. THE DAR METHODS OUTPERFORM THE COMPARED METHODS

ON DATA STREAMS WHERE CONCEPT DRIFT OCCURS.

MAE/Rank CCPP Sensor3 Sensor8 Sensor20 Sensor46 SMEAR Solar Avg.
Rank

DAR w/o LDD+&L 3.6E+00 2.9E-01 6.5E-02 1.9E-01 2.2E-01 1.8E+01 1.9E+02
5 10 9 7 9 6 9 7.86

FIMT-DD 3.6E+00 7.1E-03 9.7E-03 8.0E-01 1.6E-01 2.3E+01 1.1E+02
4 4 7 9 6 8 7 6.43

ORTO 4.5E+02 6.6E-02 1.7E-01 9.6E-01 4.0E-01 3.4E+01 2.3E+02
10 9 10 10 10 9 10 9.71

AMR 3.4E+00 7.7E-03 6.6E-03 8.2E-03 2.0E-01 1.4E+01 9.5E+01
3 5 3 5 8 5 6 5.00

metaAMR 3.3E+00 1.6E-02 7.3E-03 1.1E-02 1.7E-01 2.0E+01 9.4E+01
1 8 4 6 7 7 5 5.43

Perceptron 3.7E+00 6.9E-03 6.0E-03 7.9E-01 1.6E-01 3.8E+01 1.3E+02
7 3 1 8 5 10 8 6.00

FUZZ-CARE 5.6E+00 1.6E-02 1.7E-02 7.9E-03 5.3E-02 1.0E+01 8.7E+01
9 7 8 4 4 3 4 5.57

DAR-linear 3.6E+00 5.1E-03 6.4E-03 3.9E-03 5.0E-03 9.9E+00 4.0E+01
6 1 2 1 1 2 2 2.14

DAR-SVR 3.3E+00 5.9E-03 7.8E-03 4.6E-03 5.8E-03 8.9E+00 3.1E+01
2 2 5 2 2 1 1 2.14

DAR-tree 4.7E+00 7.7E-03 9.4E-03 6.9E-03 7.7E-03 1.1E+01 4.6E+01
8 6 6 3 3 4 3 4.71

TABLE IX
FRIEDMAN TEST AND ITS POST-HOC TEST OF ALL THE METHODS OVER ALL SEVEN DATA STREAMS, WHERE “FRIEDMAN TEST” IS THE RESULT FOR

FRIEDMAN TEST AND “FRIEDMAN - POST-HOC TEST AFTER CONOVER” IS FOR THE PAIRWISE COMPARISON. “*”, “**”, AND “***” MEANS THIS VALUE
IS SIGNIFICANT AT THE LEVEL OF 0.05, 0.01 AND 0.001 RESPECTIVELY. “DF” DENOTES THE FREEDOM DEGREE.

Friedman Test χ2
R χ2

pvalue df
36.5376 3.18E-05*** 7

Friedman - post-hoc test after Conover
DAR-linear DAR w/o LDD+&L FIMTDD ORTO AMR metaAMR Perceptron FUZZ-CARE
Ri−RDAR 40 30 53 20 23 27 24
diffpvalue 0.000*** 0.0013** 0.000*** 0.020* 0.009** 0.003** 0.007**

[12] L.-Y. Wang, C. Park, K. Yeon, and H. Choi, “Tracking concept drift
using a constrained penalized regression combiner,” Computational
Statistics & Data Analysis, vol. 108, pp. 52–69, 2017.

[13] R. Bakirov, B. Gabrys, and D. Fay, “On sequences of different adaptive
mechanisms in non-stationary regression problems,” in 28th Interna-
tional Joint Conference on Neural Networks. Killarney, Ireland, Jul.12-
17: IEEE, 2015, pp. 1–8.

[14] F. Dong, J. Lu, Y. Song, F. Liu, and G. Zhang, “A drift region-based
data sample filtering method,” IEEE Transactions on Cybernetics, pp.
1–14, 2021.

[15] J. Duarte, J. Gama, and A. Bifet, “Adaptive model rules from high-speed
data streams,” ACM Transactions on Knowledge Discovery from Data,
vol. 10, no. 3, p. 30, 2016.

[16] B. Krawczyk and A. Cano, “Adaptive ensemble active learning for
drifting data stream mining,” in International Joint Conference on
Artificial Intelligence, Macao, China, Aug. 10-16, 2019, pp. 2763–2771.

[17] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under
concept drift: A review,” IEEE Transactions on Knowledge and Data
Engineering, 2018, doi:10.1109/TKDE.2018.2876857.

[18] L. Bu, C. Alippi, and D. Zhao, “A pdf-free change detection test based
on density difference estimation,” IEEE transactions on neural networks
and learning systems, vol. 29, no. 2, pp. 324–334, 2018.

[19] A. Haque, L. Khan, and M. Baron, “SAND: Semi-supervised adaptive
novel class detection and classification over data stream,” in the 30th
AAAI Conference on Artificial Intelligence, Phoenix Arizona, USA, Feb.
12-17, 2016, pp. 1652–1658.

[20] L. Rutkowski, M. Jaworski, L. Pietruczuk, and P. Duda, “A new method
for data stream mining based on the misclassification error,” IEEE
transactions on neural networks and learning systems, vol. 26, no. 5,
pp. 1048–1059, 2015.

[21] J. Carmona and R. Gavaldà, “Online techniques for dealing with concept
drift in process mining,” in the 11th International Symposium on
Intelligent Data Analysis, vol. 7619 LNCS, Helsinki, Finland, Oct. 25-
27, 2012, pp. 90–102.

[22] A. Liu, J. Lu, and G. Zhang, “Concept drift detection via equal intensity
k-means space partitioning,” IEEE Transactions on Cybernetics, 2020.

[23] D. M. dos Reis, P. Flach, S. Matwin, and G. Batista, “Fast unsupervised
online drift detection using incremental kolmogorov-smirnov test,” in
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. San Francisco California, USA, Aug. 13-17: ACM,
2016, pp. 1545–1554.

[24] H. Yu, J. Lu, and G. Zhang, “Topology learning-based fuzzy random
neural network for streaming data regression,” IEEE Transactions on
Fuzzy Systems, 2020.

[25] ——, “An online robust support vector regression for data streams,”
IEEE Transactions on Knowledge and Data Engineering, pp. 1–1, 2020.

[26] ——, “Continuous support vector regression for nonstationary streaming
data,” IEEE Transactions on Cybernetics, pp. 1–14, 2020.

[27] Y. Song, J. Lu, H. Lu, and G. Zhang, “Fuzzy clustering-based adaptive
regression for drifting data streams,” IEEE Transactions on Fuzzy
Systems, vol. 28, no. 3, pp. 544–557, 2019.

[28] G. Ditzler and R. Polikar, “Incremental learning of concept drift from
streaming imbalanced data,” IEEE transactions on knowledge and data
engineering, vol. 25, no. 10, pp. 2283–2301, 2013.

[29] S. Wang, L. L. Minku, and X. Yao, “A systematic study of online class
imbalance learning with concept drift,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 29, pp. 4802–4821, 2018.

[30] Y. Lu, Y.-m. Cheung, and Y. Y. Tang, “Dynamic weighted majority for
incremental learning of imbalanced data streams with concept drift.”
in the 26th International Joint Conference on Artificial Intelligence,
Melbourne, Australia, Aug.19-25, 2017, pp. 2393–2399.

[31] N. Lu, J. Lu, G. Zhang, and R. L. De Mantaras, “A concept drift-tolerant
case-base editing technique,” Artificial Intelligence, vol. 230, pp. 108–
133, 2016.

[32] Y. Song, G. Zhang, H. Lu, and J. Lu, “A noise-tolerant fuzzy c-means
based drift adaptation method for data stream regression,” in 2019
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). New
Orleans, Louisiana, USA, Jun. 23-26: IEEE, 2019, pp. 1–6.

14

[33] B. Dong, Y. Li, Y. Gao, A. Haque, L. Khan, and M. M. Masud,
“Multistream regression with asynchronous concept drift detection,” in
2017 IEEE International Conference on Big Data (Big Data). Boston,
MA, USA, Dec. 11-14: IEEE, 2017, pp. 596–605.

[34] Y.-F. Li, Y. Gao, G. Ayoade, H. Tao, L. Khan, and B. Thuraisingham,
“Multistream classification for cyber threat data with heterogeneous
feature space,” in The World Wide Web Conference, San Francisco, CA,
USA, May. 13-17, 2019, pp. 2992–2998.

[35] Y. Song, G. Zhang, H. Lu, and J. Lu, “A fuzzy drift correlation matrix for
multiple data stream regression,” in 2020 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE). Glasgow, UK, Jul. 19-24: IEEE, 2020,
pp. 1–6.

[36] J. D. Hamilton, Time series analysis. Princeton university press
Princeton, NJ, 1994, vol. 2.

[37] G. Widmer and M. Kubat, “Learning in the presence of concept drift and
hidden contexts,” Machine learning, vol. 23, no. 1, pp. 69–101, 1996.

[38] A. Liu, Y. Song, G. Zhang, and J. Lu, “Regional concept drift detection
and density synchronized drift adaptation,” in the 26th International
Joint Conference on Artificial Intelligence, Melbourne, Australia, Aug.
19-25, 2017, pp. 2280–2286.

[39] Y. Sakamoto, M. Ishiguro, and G. Kitagawa, Akaike information cri-
terion statistics. KTK Scientific, Tokyo, with D. Reidel, Dordrecht,
Holland, 1986.

[40] C. Li, F. Wei, W. Dong, X. Wang, Q. Liu, and X. Zhang, “Dynamic
structure embedded online multiple-output regression for streaming
data,” IEEE Transactions on Pattern Analysis and Machine Intelligence. ,
2018.

[41] P. scikit-learn package, “sklearn.datasets.make friedman1,”
2007. [Online]. Available: https://scikit-learn.org/stable/modules/
generated/sklearn.datasets.make friedman1.html#sklearn.datasets.
make friedman1

[42] J. H. Friedman, “Multivariate adaptive regression splines,” The annals
of statistics, pp. 1–67, 1991.

[43] E. Ikonomovska, J. Gama, and S. Džeroski, “Learning model trees from
evolving data streams,” Data mining and knowledge discovery, vol. 23,
no. 1, pp. 128–168, 2011.

[44] E. Ikonomovska, J. Gama, B. Z̃enko, and S. Dz̃eroski, “Speeding-up
hoeffding-based regression trees with options,” in the 28th International
Conference on Machine Learning. Bellevue Washington, USA, Jun.
28- Jul. 2: Citeseer, 2011, pp. 537–544.

[45] A. Bifet, G. Holmes, B. Pfahringer, and E. Frank, “Fast perceptron
decision tree learning from evolving data streams,” in Pacific-Asia
Conference on Knowledge Discovery and Data Mining, Hyderabad,
India, Jun. 21-24, 2010, pp. 299–310.

[46] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA: Massive
online analysis,” Journal of Machine Learning Research, vol. 11, no.
May, pp. 1601–1604, 2010.

[47] X. Zhu, “Stream data mining repository,
http://www.cse.fau.edu/ xqzhu/stream.html,” 2010.

[48] I. Žliobaitė, J. Hollmén, and H. Junninen, “Regression models tolerant
to massively missing data: a case study in solar-radiation nowcasting,”
Atmospheric Measurement Techniques, vol. 7, no. 12, pp. 4387–4399,
2014.

[49] T. Pohlert, “The pairwise multiple comparison of mean ranks package
(PMCMR),” R package, pp. 2004–2006, 2014.

Yiliao Song (S’17) received a M.S. in probabil-
ity and statistics in mathematics from the School
of Mathematics and Statistics, Lanzhou University,
China, in 2015. She is working toward a Ph.D. with
the Faculty of Engineering and Information Tech-
nology, University of Technology Sydney, Australia.
Her research interests include regression, prediction,
concept drift and data stream mining. She has pub-
lished 17 papers related to concept drift, and data
stream prediction.

Jie Lu (F’18) is a Distinguished Professor and the
Director of Australian Artificial Intelligence Institute
(AAII) at the University of Technology Sydney,
Australia. She is also an IFSA Fellow and Australian
Laureate Fellow. She received a PhD degree from
Curtin University, Australia, in 2000. Her main
research expertise is in transfer learning, concept
drift, decision support systems and recommender
systems. She has been awarded 10 Australian Re-
search Council (ARC) discovery grants and led 15
industry projects. She has published over 450 papers

in IEEE transactions and other journals and conferences, supervised 40
PhD students to completion. She serves as Editor-In-Chief for Knowledge-
Based Systems (Elsevier) and Editor-In-Chief for International Journal on
Computational Intelligence Systems (Atlantis). She has delivered 27 keynote
speeches at IEEE and other international conferences and chaired 15 inter-
national conferences. She has received the UTS Medal for Research and
Teaching Integration (2010), the UTS Medal for research excellence (2019),
the IEEE Transactions on Fuzzy Systems Outstanding Paper Award (2019), the
Computer Journal Wilkes Award (2018), and the Australian Most Innovative
Engineer Award (2019).

Haiyan (Helen) Lu (SM’15) is an Associate Profes-
sor and a core member of the Decision Systems and
e-Service Intelligent (DeSI) Research Laboratory
with the Australian Artificial Intelligence Institute,
University of Technology Sydney, Australia. She
received a Ph.D. degree in Electrical Engineering
from University of Technology Sydney, Australia,
in 2002. Her main research interests are heuristic
optimization techniques, forecasting and prediction
of time series, ontology-based knowledge represen-
tation, recommendation systems and causal relation-

ship, inference and reasoning in data streams. She has authored/co-authored
three book chapters, 77 refereed journal papers and 86 refereed international
conference papers.

Guangquan Zhang is an Australian Research Coun-
cil (ARC) QEII Fellow, Associate Professor and
the Director of the Decision Systems and e-Service
Intelligent (DeSI) Research Laboratory at the Aus-
tralian Artificial Intelligence Institute, University
of Technology Sydney, Australia. He received his
Ph.D in applied mathematics from Curtin University,
Australia, in 2001. From 1993 to 1997, he was a
full Professor in the Department of Mathematics,
Hebei University, China. His main research interests
lie in the area of fuzzy multi-objective, bilevel,

and group decision making, fuzzy measure, and machine learning. He has
published six authored monographs, five edited research books, and over 450
papers including 240 refereed journal articles. Dr. Zhang has won nine ARC
Discovery Project grants and many other research grants, supervised 30 PhD
students to completion. He has served as a Guest Editor for five special issues
of IEEE Transactions and other international journals.

15

APPENDIX

A. Proof for Theorem 1

Proof. The data stream DS
(X,y)
t consists of the attribute

variable X and the label variable y. Consider basing the
estimated y (denoted by ŷ) on any predictor in the hypothesis
set is h(X) other than the conditional expectation, the loss
would be

E [y − h(X)]
2

= E [y − E(y|X) + E(y|X)− h (X)]
2

= E [y − E(y|X)]
2

+ E [E(y|x)− h(X)]
2

+ 2E {[y − E(y|X)][E(y|X)− h(X)]} .

Let η ≡ [y−E(y|X)][E(y|X)−h(X)]. As the terms E(y|X)
and h(X) are known constants under the condition of X ,
E([E(y|X)−h(X)]|X) = E(y|X)−h(X). The expectation
of η conditional on X can be written into:

E(η|X) = [E(y|X)− h(X)]E([y − E(y|X))] |X)

= [E(y|X)− h(X)]× 0 = 0.

According to the law of iterated expectations, E[η] =
E(E[η|X]) = 0. Substituting E[η] back into E [y − h(X)]

2

gives

E [y − h(X)]
2

= E [y − E(y|X)]
2

+E([E(y|x)− h(X)]
2
).

On the right side of the above equation, the first term does not
depend on h(X), and the second term cannot be made smaller
than 0. Therefore the predictor that makes E [y − h(X)]

2 as
small as possible satisfies E([E(y|x)− h(X)]

2
) = 0, namely

h(X) = E(y|X).

B. Proof for Theorem 2

Proof. According to OLS, the estimation of θ′ by the n-size
training set is as follows: θ̂′1 =

(1− r)Xy1 + rXy2

X2

θ̂′0 = (1− r)y1 + ry2 − θ̂′1X
(23)

where Xy1 = 1
n1

∑
t<td

Xy, Xy2 = 1
n2

∑
t≥td Xy and r =

n2/n (the inference of estimating θ′ is given in Appendix C).
Based on θ̂′, the estimation of an unknown yu is:

ŷu = θ̂′0 + θ̂′1Xu (24)

An unbiased estimation of θ is obtained by n2 observations
from the new pattern, that is:

θ̃′1 =
Xy2

X2
, θ̃′0 = y2 − θ̃1X (25)

Based on θ̃, the unbiased estimation of an unknown yu is:

ỹu = θ̃′0 + θ̃′1Xu, and E(ỹu − yu) = 0 (26)

Therefore, the testing error of ŷu is:

eu = ŷu − ỹu

= (1− r)(y1 − y2) +
(1− r)(Xy1 −Xy2)

X2
(Xu −X)

= (1− r)
[
(y1 − y2) +

Xy1 −Xy2

X2
(Xu −X)

]
= (1− r)

[
(θ̃0 − θ̃′0) + (θ̃1 − θ̃′1)Xu

]
(27)

EX,y(eu) = (1− r)E
[
(θ̃0 − θ̃′0) + (θ̃1 − θ̃′1)Xu

]
(28)

As the coefficient of 1 − r is considered to be constant,
limr→1E(eu) = 0, and E(eu) linearly decreases to 0 as more
instances from the new pattern are included in the training set
(r goes to 1).

C. Estimation of model parameters for the mixed training set

The estimation of θ1 by OLS is:

θ̂1 =

∑n
t=1Xtyt∑n
t=1X

2
t

=

∑n1

t=1Xtyt +
∑n2

t=1Xtyt∑n
t=1X

2
t

=
n1Xy1 + n2Xy2

nX2
=

(1− r)Xy1 + rXy2

X2

θ̂0 =

∑n
t=1 yt
n

− θ̂1X =

∑n1

t=1 yt +
∑n
t=n1+1 yt

n
− θ̂1X

=
n1y1 + n2y2

n
− θ̂1X̄ = (1− r)y1 + ry2 − θ̂1X

X needs not to split because the distribution of X is un-
changed.

D. Proof for Theorem 3

Proof. The relationship between Yt−1 and Yt given t ∈ (td, n]
can be rewritten by the following difference equation:

yt = c+ φyt−1 + εt, (29)

where εt is a white noise sequence (Definition 5). As yt is
covariance-stationary, |φ| < 1, and the stable solution to (29)
is:

yt = c
1− φ∞

1− φ
+

t∑
τ=0

φt−τ εt−τ + φ∞y−∞. (30)

Similarly, yt−1 = c 1−φ∞
1−φ +

∑t
τ=0 φ

t−1−τ εt−1−τ + φ∞y−∞,
and yt − yt−1 = φtεt. Given eu = yt − yt−1 = φnrεnr, it
exponentially decreases to 0 as r increases.

E. Proof for Theorem 4

Proof. Define δ(i)
1 as (31), and define δ(i)

2 , ∆
(i)
1 and ∆

(i)
2 in

the same way.

δ
(i)
1 =

{
1 ith point of δ1 is in $
0 otherwise (31)

d+
$ can be written as d+

$ =
∑
i δ

(i)
1 −

∑
j δ

(j)
2 = δ1 − δ2. In

[38], it has been proved that E(δ1) = ∆1 and E(δ2) = ∆2.
Therefore, when no drift occurs, E(d+

$) = 0. As data points

16

from δ1 and points from δ2 are independent, var(d+
$) =

var(δ1) + var(δ2). To compute var(δ1) and var(δ2), we
introduce a random variable Ii,

Ii =

{
1 ∆

(i)
1 ∈ δ1

0 otherwise
. (32)

var(δ1) can be rewritten as:

var(δ1) = var

(
1

nδ1

∑
i

Ii∆
(i)
1

)

=
1

n2
δ1

∑
i

(∆
(i)
1)2var(Ii) + 2

∑
i 6=j

∆
(i)
1 ∆

(j)
1 cov(Ii, Ij)

(33)

Considering select n units from N units, the probability that
each unit will be selected in n draws is C(N−1)(n−1)/CnN =
n/N and the probability that two units will be selected in n
draws is n(n−1)/N(N−1). Under this condition, Ii satisfies
the following equations:

E(Ii) =
n

N
= f,

var(Ii) =
n

N

N − n
N

= f(1− f),

cov(Ii, Ij) = E(IiIj)− E(Ii)E(Ij) = −f(1− f)

N − 1
.

(34)

Based on this, var(δ1) is computed as:

var(δ1) =
f(1− f)

n2
δ1

[∑
i

(∆
(i)
1)2 −

2
∑
i 6=j ∆

(i)
1 ∆

(j)
1

n∆1
− 1

]

=
f(1− f)

n2
δ1

∑
i

(∆
(i)
1)2 +

∑
i(∆

(i)
1)2

n∆1
− 1

−

(∑
i ∆

(i)
1

)2

n∆1
− 1

=

1− f
nδ1n∆1

 n∆1

n∆1 − 1

∑
i

(∆
(i)
1)2 −

(∑
i ∆

(i)
1

)2

n∆1 − 1

=

1− f
nδ1(n∆1−1)

∑
i

(∆
(i)
1 −∆1)2

=
S2

∆1

nδ1
(1− f) =

S2
δ1

nδ1
.

(35)
So far, the expectation and variance of d+

$ has been obtained.
As $ is an arbitrary subset in Rm+1, each d+

$ can be seen as
an element from a simple random sample. Therefore, var(d+

$)
obeys a normal distribution based on the central limit theorem.

F. The locally weighted regression

Details of the locally weighted regression algorithm can be
found in Algorithm 3

G. Parameters in SVR and tree models

Parameters in SVR model: svm type : 4 (nu-SVR), ker-
nel type : radial basis function: exp(-gamma*|u − v|2),
degree in kernel function: 3, gamma in kernel function:

1/num features, coef0 in kernel function: 0, parameter C of
nu-SVR: 1, parameter nu of nu-SVR: 0.5, cache memory size
in MB: 100, tolerance of termination criterion: 0.001, whether
to use the shrinking heuristics: 1, whether to train a SVC or
SVR model for probability estimates: 0.

Parameters in regression tree model: MinParentSize: 10,
QuadraticErrorTolerance: 1e-6, Weights: ones(size(X,1),1),
Holdout: 0, KFold: 10, MaxNumSplits: num features, Min-
LeafSize: 1.

Algorithm 3: The locally weighted regression
Input : learnset: data used to train the model, it

contains learninput and learnoutput;
Xq: the value of features for the query point;
k: the number of neighbors;
model: it can be linear, SVR or Tree model;
θ: the other parameters needed in model.

Output: ŷq: the estimation of the label variable.
1 Distance = knn(Xq, learnsetinput)
2 I = sort(Distance, ‘ascend′)
3 index = I(1 : k) % find the index of Xq’s k nearest

neighbors in learnset (X, y) = learnset(index)
4 ŷq = model(X, y,θ)
5 return ŷq

	2021 IEEE
	Learning data streams with changing distributions and temporal dependency.pdf

