
PRX QUANTUM 3, 020364 (2022)

Nearly Optimal Quantum Algorithm for Generating the Ground State of a Free
Quantum Field Theory

Mohsen Bagherimehrab ,1,2,3,* Yuval R. Sanders,4,5 Dominic W. Berry ,4 Gavin K. Brennen ,4,6 and
Barry C. Sanders 1

1
Institute for Quantum Science and Technology, University of Calgary, Alberta, Canada

2
Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Ontario, Canada

3
Department of Computer Science, University of Toronto, Ontario, Canada

4
Department of Physics and Astronomy, Macquarie University, New South Wales, Australia

5
Centre for Quantum Software and Information, University of Technology Sydney, New South Wales, Australia
6
Centre of Excellence in Engineered Quantum Systems, Macquarie University, New South Wales, Australia

 (Received 30 December 2021; accepted 26 May 2022; published 28 June 2022)

We devise a quasilinear quantum algorithm for generating an approximation for the ground state of a
quantum field theory (QFT). Our quantum algorithm delivers a superquadratic speedup over the state-of-
the-art quantum algorithm for ground-state generation, overcomes the ground-state-generation bottleneck
of the prior approach and is optimal up to a polylogarithmic factor. Specifically, we establish two quan-
tum algorithms—Fourier-based and wavelet-based—to generate the ground state of a free massive scalar
bosonic QFT with gate complexity quasilinear in the number of discretized QFT modes. The Fourier-based
algorithm is limited to translationally invariant QFTs. Numerical simulations show that the wavelet-based
algorithm successfully yields the ground state for a QFT with broken translational invariance. Further-
more, the cost of preparing particle excitations in the wavelet approach is independent of the energy scale.
Our algorithms require a routine for generating one-dimensional Gaussian (1DG) states. We replace the
standard method for 1DG-state generation, which requires the quantum computer to perform lots of costly
arithmetic, with a novel method based on inequality testing that significantly reduces the need for arith-
metic. Our method for 1DG-state generation is generic and could be extended to preparing states whose
amplitudes can be computed on the fly by a quantum computer.

DOI: 10.1103/PRXQuantum.3.020364

I. INTRODUCTION

Quantum algorithms for simulating a quantum field the-
ory (QFT) comprise three main steps: generating an initial
state, simulating time evolution, and measuring observ-
ables, with the initial-state generation being the most
expensive step [1,2]. The conventional approach to gener-
ating the initial state for simulating a QFT, particularly for
simulating particle scattering, is first to generate the ground
state of the free (i.e., noninteracting) field theory. Then pre-
pare free wavepackets, which refers to spatially localized
noninteracting particles and, finally, turn on the field inter-
action adiabatically [1–3]. An alternative approach is to

*mohsen.bagherimehrab@utoronto.ca

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

avoid adiabatic evolution in initial-state preparation, which
is used in Ref. [4] to remove the state preparation as the
bottleneck of simulating fermionic QFTs.

Several works have also developed variational [5,6] and
stochastic [7,8] methods for simulating QFTs that avoid
the need to prepare the full quantum state. These meth-
ods, however, are not purely quantum but rather are hybrid
quantum classical, which are more suitable for simulation
on near-term quantum computers. Despite the advances
in simulating QFTs and development of recent algorith-
mic techniques for preparing quantum states [9–11], state
preparation remains the computationally expensive step
for simulating a certain class of bosonic QFTs called
the massive scalar bosonic QFTs. In particular, preparing
the free-field ground state is the most expensive part in
one or two spatial dimensions, and is the second-most-
expensive part for simulating these theories in three spatial
dimensions [1,2].

In this paper, we establish a quasilinear quantum
algorithm for generating an approximation for the ground

2691-3399/22/3(2)/020364(66) 020364-1 Published by the American Physical Society

https://orcid.org/0000-0001-8564-446X
https://orcid.org/0000-0003-3446-1449
https://orcid.org/0000-0002-6019-966X
https://orcid.org/0000-0002-8326-8912
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.3.020364&domain=pdf&date_stamp=2022-06-28
http://dx.doi.org/10.1103/PRXQuantum.3.020364
https://creativecommons.org/licenses/by/4.0/

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

state of a massive scalar-bosonic free QFT. Our algorithm
is optimal, up to a polylogarithmic factor, provides
a superquadratic speedup over the best prior quantum
algorithm for ground-state generation and overcomes the
ground-state-generation bottleneck.

Specifically, we develop two quantum algorithms, one
Fourier-based and the other wavelet-based, to generate
the free-field ground state with gate complexity quasi-
linear in the number of discretized QFT modes. For the
case of broken translational invariance, e.g., due to mass
defects [12], the Fourier-based algorithm is inappropriate.
We show, by numerical simulation, that the wavelet-based
algorithm successfully yields an approximation for the
free-field ground state with a quasilinear gate complex-
ity. Our algorithms require a routine for preparing one-
dimensional Gaussian (1DG) states, which are required for
preparing multidimensional Gaussian states. The standard
method for generating a 1DG state is based on Zalka-
Grover-Rudolph state preparation [13,14], which requires
the quantum computer to perform costly arithmetic opera-
tions. We replace this method with a novel method based
on inequality testing [15] that significantly reduces the
need for arithmetic.

A. Nontechnical background

To simulate a QFT, we first need to discretize it [2]. The
discretization is needed for regulating infinite-dimensional
Hilbert spaces involved in the continuum field theory.
Once discretized, the QFT becomes a many-body quantum
system whose time evolution can be efficiently simulated
on a quantum computer [2,16,17]. The two other steps
of a full quantum simulation, namely initial-state gener-
ation and measurement, strongly depend on which QFT is
being simulated and must be analyzed on a case-by-case
basis [2, p. 1017]. Two approaches are used to discretize a
continuum massive scalar-bosonic QFT: lattice-based and
wavelet-based approaches. The conventional lattice-based
approach is used in the seminal quantum algorithm [1,2],
and the wavelet-based approach is used in the subsequent
quantum algorithm [18]. By discretizing the QFT, the free-
field ground state becomes an N -dimensional Gaussian
(NDG) state, where N is the number of modes in the
discretized QFT.

A method proposed in Ref. [1] to generate a multidi-
mensional Gaussian state is using the Kitaev-Webb method
[19]. This method has three main steps to generate an NDG
state on a quantum computer. The first step is to com-
pute the LDL matrix decomposition of the Gaussian state’s
inverse-covariance matrix (ICM) by a classical computa-
tion; note that any Gaussian state is fully described by a
covariance matrix or its inverse. The second step is to pre-
pare N different 1DG states where the standard deviation
of each 1DG state is obtained from a diagonal element of
the diagonal matrix in the LDL decomposition. The last

step is to perform a basis transformation based on the LDL
matrix decomposition that maps the previously generated
state, a Gaussian state with a diagonal ICM, to a Gaussian
state with the desired ICM.

The Kitaev-Webb method [19] for preparing a 1DG state
is an application of the standard state-preparation method
by Zalka [13], Grover and Rudolph [14]. In this method
for preparing a 1DG state on a quantum register, the con-
tinuous state is approximated by a discrete 1DG state over
a one-dimensional lattice with unit spacing. Then a recur-
sive description of the approximated 1DG state is used to
generate the approximate state that requires the quantum
computer to perform a controlled rotation for each qubit
of the quantum register. For each controlled rotation, the
quantum computer needs to coherently compute the rota-
tion angle by a large amount of coherent arithmetic on the
quantum computer.

The space and time complexities of the Kitaev-Webb
method, both for 1DG- and NDG-state generation, were
not analyzed in the original paper [19]. However, authors
of Ref. [1] state that the method’s time complexity
for NDG-state generation is dominated by the classi-
cal complexity of the LDL matrix decomposition, which
is Õ(N 2.373

)
[20] if we use Coppersmith-Winograd-style

matrix multiplication; here Õ suppresses logarithmic fac-
tors. There is also a quantum complexity of Õ(N 2

)
to per-

form the basis transformation needed to yield the Gaussian
state with the desired ICM. This quantum complexity is
effectively the cost of performing an in-place matrix-vector
multiplication.

B. Overview of methods and results

Our overall approach to reducing the time complexity
for ground-state generation is to exploit known sparsity
properties of the matrices involved. This approach allows
us to reduce both classical and quantum time complexi-
ties by replacing dense matrix operations with sparse ones.
In our wavelet-based approach, for example, we reduce
the classical cost of the LDL matrix decomposition by
approximating the ground-state ICM with a matrix con-
taining O(N log N) nonzero entries. Similarly, we reduce
the quantum cost by replacing the general approach for in-
place matrix-vector multiplication with a sparse approach.
In our Fourier-based approach, we avoid even these sparse-
approach optimizations by exploiting the translational
invariance presumed by Jordan-Lee-Preskill [1,2] to elimi-
nate the need for classical LDL decomposition. We replace
the quantum in-place matrix-vector multiplication with a
coherent fast Fourier transform.

Specifically, in our Fourier-based algorithm, we exploit
the translational invariance of the free QFT to reduce the
cost of ground-state generation from Õ(N 2.373

)
down to

Õ(N). We discretize the continuum QFT in a fixed-scale
basis and utilize the circulant structure of the ground state’s

020364-2

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

ICM to compute its eigenvalues by a discrete Fourier trans-
form (DFT). We then generate a NDG with a diagonal ICM
whose diagonals are the eigenvalues by preparing N dif-
ferent 1DG states. Finally, we transform this state into the
ground state by a basis transformation.

A choice for basis transformation is to execute a DFT
on a quantum computer by reversible arithmetic operations
along the lines of Ref. [21]. The problem with this basis
transformation is that the resulting representation for the
Gaussian state requires us to have complex-valued coor-
dinates. We avoid the complex numbers required by the
DFT and instead use a discrete Hartley transform (DHT)
that involves only real numbers [22, Theorem 1]. The
real, symmetric, and circulant properties of the ground-
state ICM guarantees that by performing a DHT, we obtain
the desired Gaussian state. Analogous to the quantum fast
Fourier transform in Ref. [21], we construct a quantum fast
Hartley transform (QFHT) algorithm with a quasilinear
gate complexity.

In the wavelet-based algorithm, we discretize the con-
tinuum free QFT in a multiscale wavelet basis. The ICM
of the ground state in this basis has many elements that
have an exponentially close-to-zero value. We truncate this
matrix by replacing the near-zero elements with exactly
zero. This truncation introduces a systematic error that dis-
torts the ground state of the discretized theory. We show

that not only the truncated ICM remains a positive-definite
matrix, which is required for the ground state to be a Gaus-
sian state, but also the infidelity between the Gaussian state
with the truncated ICM and the free-field ground state is
within the prespecified error tolerance for preparing the
ground state.

By the truncation, the ICM becomes a sparse matrix
with a particular structure known as the “fingerlike” spar-
sity structure [23]; see Fig. 1. A matrix with this structure
has a number of nonzero elements that is quasilinear in the
dimension of the matrix. In order to exploit the fingerlike
sparse structure, we replace the LDL decomposition in the
Kitaev-Webb method [19] with the UDU decomposition.
By exploiting the sparsity structure, we perform the UDU
matrix decomposition of the truncated ICM in a quasilinear
time.

The ground state in the wavelet-based approach is
generated as follows. First we prepare an NDG state
whose ICM is the diagonal matrix in the UDU decom-
position. We then transform this state into the ground
state by performing a quantum shear transform (QST)
on a quantum computer. The shear-transform matrix has
the same sparse structure as the truncated ICM in our
UDU decomposition. We exploit this sparse structure
and perform the needed QST with a quasilinear gate
complexity.

1

1000

2000

2560

1 1000 2000 2560

–10

0

90

190

280

370

1

1000

2000

2560

1 1000 2000 2560

ro
w

 in
de

x

column index

FIG. 1. Visual representation of the exact (left) and approximate ICM (right) for the ground state of the discretized free QFT in a
multiscale wavelet basis. The column (row) index of the visualized matrix is ordered from left (top) to right (bottom), just as the typical
format of a matrix. The values of matrix elements are represented by different colors with the shown color scale. The number of modes
for the discretized QFT is N = 2560, free mass is m0 = 1, and the Daubechies wavelet with index K = 3 is used. The exact ICM is
a quasisparse matrix, meaning most of its elements are nearly zero. Elements of the exact matrix with a magnitude less than 10−8 are
replaced with zero to obtain the approximate ICM. The approximate ICM has a specific sparsity structure known as the “fingerlike”
sparsity structure.

020364-3

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

Our algorithms require a routine for generating an
approximation to a 1DG state, and we devise two meth-
ods to perform this task. Our first method is based on the
Kitaev-Webb method [19]. In our method, we approximate
the 1DG state over a finite lattice with a nonunit lattice
spacing. We choose the lattice spacing and the number of
lattice points in terms of the 1DG-state standard deviation
and an error tolerance for the generated state. The Kitaev-
Webb method is restricted to 1DG states with extremely
large standard deviations. Our method does not have this
restriction and can generate a 1DG state with any stan-
dard deviation. We show that space and time complexities
for preparing an approximation to each 1DG state required
for generating the ground state are both logarithmic in the
number of modes in the discretized QFT.

A key contributor to gate complexity for the Kitaev-
Webb method is the need to perform a large amount
of coherent arithmetic. Their method requires perform-
ing a sequence of controlled rotations for every qubit
of the quantum register used for preparing a Gaussian
state. For each controlled rotation, the quantum computer
needs to coherently compute the third Jacobi θ function
twice, perform a division, and compute one square root
and one arccosine function. In contrast, we provide a sig-
nificantly improved state-preparation technique based on
inequality testing [15], where the most complicated com-
putation needed is a single exponential. We go beyond the
inequality-testing method in Ref. [15] by showing how to
prepare a state with mostly small amplitudes except for
a peak in a known location. We exploit the known loca-
tion in our method and perform a single step of amplitude
amplification [24] rather than multiple steps of amplitude
amplification required for preparing a general state by
inequality testing [15].

We perform a numerical study to justify why the
wavelet-based approach could be preferred over the
Fourier-based approach for QFTs with broken transla-
tional invariance. We consider a simple case where the
translational invariance is broken due to a mass defect
[12]. The Fourier-based approach is not applicable in
this case because the ground-state ICM cannot be diag-
onalized by a discrete Fourier transform. However, our
numerical experiment demonstrates that the wavelet-based
approach accommodates such QFT with broken transla-
tional invariance. Specifically, the fingerlike sparse struc-
ture of the ground-state ICM is not affected by the mass
defect, thereby the wavelet-based algorithm successfully
yields an approximate ground state with a quasilinear gate
complexity.

We go beyond ground-state generation and construct
procedures for preparing free-field particle states in the
Fourier- and wavelet-based approaches. We show that,
unlike the Fourier approach, the wavelet approach enables
preparing particle states at different energy scales with-
out an additional cost required for the Fourier approach.

Specifically, we show that preparing a free-field single-
particle state at a given scale is more expensive than
preparing the same state in the wavelet approach.

C. Organization

Our paper is organized as follows. We begin, in Sec. II,
by elaborating the key background pertinent to subsequent
sections. In this section, we review wavelet bases, vari-
ous methods for discretizing a continuum QFT, a standard
approach for generating a Gaussian state and a computa-
tion model used for analyzing an algorithm’s time com-
plexity. Next we describe our approach for generating the
free-field ground state in Sec. III where we discuss our
model for describing a scalar QFT, a metric that we use to
analyze our algorithms’ time complexity and our methods
for generating the free-field ground state.

We then present our results in Sec. IV. In this section,
we construct our ground-state-generation algorithms, ana-
lyze their classical and quantum time complexities, and
show that our algorithms are optimal up to polylogarith-
mic factors. Furthermore, we determine the space required
to represent the free-field ground state and compare the
Fourier- and wavelet-based algorithms for a QFT with
broken translational invariance and for generating states
beyond the free-field ground state. We finally discuss our
results in Sec. V and conclude in Sec. VI.

II. BACKGROUND

This section covers the key background pertinent to sub-
sequent sections. We begin by describing wavelet bases
in Sec. II A. Next, in Sec. II B, we discuss different
approaches for discretizing a continuum QFT. Then we
review the Kitaev-Webb method for generating a Gaussian
state in Sec. II C. Finally, in Sec. II D, we review the quan-
tum random-access machine (QRAM) model for compu-
tation (not to be confused with quantum random-access
memory [25]).

A. Wavelet bases

Here we briefly review wavelet bases and define terms
frequently used in this paper. For a detailed description,
we refer to Ref. [26, Sec. 2.1] and Ref. [27,28]. We
begin by explaining salient features of wavelet bases. Then
we describe a fixed-scale wavelet basis followed by a
multiscale wavelet basis.

The wavelet bases constitute an orthonormal basis for
the Hilbert space L 2(R) of square-integrable functions
on R. A wavelet basis is defined in terms of two func-
tions: scaling s(x) and wavelet w(x) functions. Here we
focus on Daubechies K wavelets and refer to them as dbK
wavelets. The index K ∈ Z+ specifies the number of van-
ishing moments of w(x). The scaling and wavelet functions
become smoother and less localized by increasing K; see
Fig. 2.

020364-4

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

FIG. 2. From left to right: scaling s(x) and wavelet w(x) functions for the dbK wavelet with index K = 1, 2, 3; db1 wavelet is
identical to Haar wavelet. The support of these functions is [0, 2K − 1]. The s(x) and w(x) for db3 wavelet have continuous first
derivatives.

The dbK scaling function is the solution of the linear
equation

s(x) =
√

2
2K−1∑
�=0

h� s(2x − �), (1)

where, for a unique solution, s(x) is normalized to have
a unit area. The 2K real coefficients {h0, . . . , h2K−1} are
called the low-pass filter coefficients. These coefficients
uniquely determine a wavelet basis, and several meth-
ods are available to compute their numerical values; see
Appendix B. Given s(x), the wavelet function is

w(x) :=
√

2
2K−1∑
�=0

g� s(2x − �),

g� := (−)�h2K−1−�, (2)

and {g0, . . . , g2K−1} are called the high-pass filter coeffi-
cients. The scaling and wavelet functions at scale k ∈ Z

are defined as

s(k)
� (x) :=

√
2k s

(
2kx− �

)
,

w(k)
� (x) :=

√
2k w

(
2kx− �

)
. (3)

These functions are orthonormal and have support on[
�/2k, (�+ 2K − 1)/2k

]
. For convenience, we henceforth

use the term “scale” to refer to the parameter k, so higher
(lower) scale means larger (smaller) k.

The scaling function at a fixed scale k ∈ Z and its inte-
ger translation span a subspace Sk of L 2(R). We refer to
this subspace as the scale subspace of L 2(R). Note that
L 2(R) ∼= limk→∞ Sk. A fixed-scale wavelet basis is an
orthonormal basis whose basis vectors are comprised of a
scaling function and its integer translations at a fixed scale.

The wavelet function at a fixed scale k and its inte-
ger translations span a subspace Wk of L 2(R), which
we call the wavelet subspace. The wavelet subspace Wk
is the orthogonal complement of Sk in Sk+1, i.e., Sk+1 ∼=
Sk ⊕Wk. This property of the scale and wavelet subspaces

leads to a multiscale decomposition of L 2(R) through the
relation L 2(R) ∼= Ss0

⊕∞
r=s0

Wr [18], where s0 is coars-
est scale. The scaling function and its integer translations
at a fixed scale along with the wavelet function and its
integer translations at all finer scales construct an orthonor-
mal basis for L 2(R), which we call the multiscale wavelet
basis.

B. Discretization of a continuum QFT

In this subsection, we discuss different approaches for
discretizing a continuum QFT. First we explain the com-
mon approach of discretizing space as a regular lattice.
Then we describe the alternative wavelet approach for
discretizing a QFT. For simplicity, we consider quantum
fields in one spatial dimension. These discretizations can
be extended to higher dimensions using known techniques
[18,29].

We begin by describing a massive scalar bosonic free
QFT using a Hamiltonian formalism, which is typical
for quantum simulation of a QFT [2,30]. The time-
independent Hamiltonian for a massive scalar bosonic free
QFT with bare mass m0, confined to one spatial dimension,
is

Ĥfree := 1
2

∫
R

dx
[
�̂2(x)+

(
∇�̂(x)

)2
+ m2

0�̂
2(x)

]
, (4)

with x a position and with field operator �̂(x) and conju-
gate momentum �̂(x) satisfying

[
�̂(x), �̂(y)

]
= iδ(x − y)1,

[
�̂(x), �̂(y)

]
=
[
�̂(x), �̂(y)

]
= 0.

(5)

By QFT conventions, we fix constants c ≡ 1 ≡ �. Dis-
cretizing QFT is achieved by replacing the spatial contin-
uum with a hypercubic lattice of “locations” with finite
lattice spacing a ∈ R+. For a 1D scalar field over R, the
discrete domain is � := aZ, and discrete field operators
over the lattice satisfy

[
�̂(x), �̂(y)

]
= iδx,y1/a, and all

other commutators are zero.

020364-5

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

For lattice QFT [31], the Laplacian in Eq. (4) and
integration measure are

∇2�̂(x)
→ ∇2
a�̂(x) := 1

a2 [�̂(x + a)+ �̂(x− a)− 2�̂(x)],
∫
R

dx
→
∑
x∈�

a, (6)

respectively. Defining �̂� := �̂(�a) and �̂� := �̂(�a) for
each integer �, the discretized version of the free QFT,
Eq. (4), is [32]

Ĥa := a
2

∑
x∈�

[
�̂2(x)− �̂(x)∇2

a�̂(x)+ m2
0�̂

2(x)
]

= a
2

∑
�∈Z

�̂2
� +

a
2

∑
�,�′∈Z

�̂�K��′�̂�′ , (7)

where

K��′ := m2
0δ��′ −

(
δ�,�′+1 + δ�,�′−1 − 2δ��′

)
/a2, (8)

is the coupling between the two localized � and �′ modes.
The field �̂(x) and conjugate �̂(x) operators can be

expressed in a wavelet basis by projections onto the scaling
and wavelet functions as [18,29]

�̂
(k)
s; � :=

∫
R

dx s(k)
� (x)�̂(x),

�̂
(k)
s; � :=

∫
R

dx s(k)
� (x)�̂(x), (9)

�̂
(r)
w; � :=

∫
R

dx w(r)
� (x)�̂(x),

�̂
(r)
w; � :=

∫
R

dx w(r)
� (x)�̂(x) ∀ r ≥ k. (10)

We refer to field operators with subscript “s” and “w” as
scale-field and wavelet-field operators, respectively. These
operators have a compact support, determined by the sup-
port of their associated wavelet or scaling functions, and
satisfy a set of commutation relations analogous to those of
Eq. (5), but with the Dirac δ replaced with the Kronecker δ

[18, p. 3].
To discretize the free QFT in a fixed-scale basis, we

project the continuum Hamiltonian (4) onto a scale sub-
space Sk of L 2(R) for some k ∈ Z+. By Eq. (9), we first
project �̂(x) and �̂(x) onto this subspace. Substituting the
projected field and momentum operators into Eq. (4), we
obtain the expression

Ĥ (k)
s := 1

2

∑
�

�̂
(k)
s;��̂

(k)
s;� +

1
2

∑
��′

�̂
(k)
s;�K (k)

ss;��′�̂
(k)
s;�′ , (11)

for projected Hamiltonian onto a scale subspace Sk. Here

K (k)
ss;��′ := m2

0δ��′ − 4k�
(2)

�′−�
, (12)

are the coupling between different modes and �
(2)

�′−�
are the

coefficients

�
(n)

�−�′ :=
∫

dx s�−�′(x)
dn

dxn xs(x) ∀ n ≥ 1, (13)

with n = 2. We refer to these coefficients as the n-order
derivative overlaps and use �� := �

(2)
� for simplicity.

The multiscale wavelet discretization of the free QFT is
obtained by projecting �̂(x) and �̂(x) onto a multiscale
basis and substituting the projected operators into Eq. (4).
In this case, the projected Hamiltonian is

Ĥw := Ĥ (s0)
s + 1

2

∑
�,r≥s0

�̂
(r)
w;��̂

(r)
w;� +

1
2

∑
��′,rr′

�̂
(r)
w;�K (r,r′)

ww;��′�̂
(r′)
w;�′

+ 1
2

∑
��′,r≥s0

�̂
(s0)

s;� K (s0,r)
sw;��′�̂

(r)
w;�′ , (14)

where K (r,r′)
ww;��′ are coupling between the wavelet fields at

scales r and r′, and K (s0,r)
sw;��′ are coupling between the scale

fields at scale s0 and wavelet fields at scale r. These cou-
plings are systematically computed from the derivative
overlaps, Eq. (13) [29,33].

Wavelet discretization for the momentum operator P̂ :=
− ∫

R
dx �̂(x)∇�̂(x) of the free QFT [29, p. 6] is similar

to wavelet discretization for Hamiltonian. Therefore, we
consider only fixed-scale discretization of P̂. In this dis-
cretization, P̂ is projected onto a scale subspace Sk. The
projected momentum operator is

P̂(k)
s := −

∑
�,�′

�̂
(k)
s;�P(k)

��′�̂
(k)
s;�′ , P(k)

��′ := 2k�
(1)

�′−�
, (15)

where �
(1)

�′−�
are the derivative overlaps in Eq. (13) with

n = 1. We use this expression in Sec. III B 1 to obtain the
number of modes of the discretized free QFT in a fixed-
scale basis.

C. Kitaev-Webb method for Gaussian-state generation

Here we review the Kitaev-Webb method for generating
an approximation of a multidimensional continuous Gaus-
sian pure state on a quantum register [19]. First we define
a continuous Gaussian pure state and set our notations for
particular Gaussian states. Then we explain the main idea
of the Kitaev-Webb method and proceed with describing
details of the method.

We begin by defining a continuous Gaussian pure
state in Definition 1. Throughout this paper, we use this
definition when we refer to a continuous Gaussian pure
state.
Definition 1: (Continuous Gaussian pure state.) Let N be
a positive integer, A be a real-valued N -by-N symmetric

020364-6

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

positive-definite matrix and

pN (A; x) :=
√

det A
(2π)N e−xTAx/2, (16)

be the probability density function of a continuous N -
dimensional Gaussian (NDG) distribution, with the ICM
A, for a random variable x := (x0, x1, . . . , xN−1) ∈ RN .
We define the pure state

|GN (A)〉 :=
∫
RN

dN x
√

pN (A; x) |x〉 , (17)

where

|x〉 := |x0〉 ⊗ · · · ⊗ |xN−1〉 , (18)

is a vector of distributions, as the continuous NDG pure
state with the ICM A.

We use a particular notation for 1DG pure states. If the
Gaussian distribution in Definition 1 is one dimensional
with the standard deviation σ ∈ R+ and the mean value
μ ∈ R+, then we refer to the state

|G(σ , μ)〉 := 1
N
∫
R

dx e−
(x−μ)2

4σ2 |x〉 ,

N 2 :=
∫
R

dx e−
(x−μ)2

2σ2 = σ
√

2π ,

(19)

for |x〉 a continuously parameterized position state, as the
continuous 1DG pure state with standard deviation σ and
mean value μ. For simplicity, we denote |G(σ , 0)〉 by
|G(σ)〉.

We now present a high-level description of Kitaev’s and
Webb’s method for generating a multidimensional Gaus-
sian state. Their method’s main idea is first to prepare a
set of independent 1DG states and then perform a basis
transformation to produce the desired Gaussian state. The
parameters needed for preparing the 1DG states and the
basis transformation are outputs of a classical algorithm
that computes the LDL decomposition of the Gaussian
state’s ICM A. Specifically, the classical algorithm returns
a diagonal matrix D and a lower unit-triangular matrix L
such that A = LDLT. Diagonal of D are parameters needed
for preparing the 1DG states, and off diagonals of L are
parameters needed for the basis transformation.

Their method for generating an NDG state with ICM
A can be described by three main steps: (1) classically
compute L and D in the LDL decomposition of the ICM
A; (2) generate an approximation for |GN (D)〉; and (3)
implement the basis transformation |x〉
→ |Sx〉, where S
is inverse transpose of L and |x〉, Eq. (18), is the basis
state. The basis transformation in the last step is imple-
mented by storing off-diagonal elements of S on ancillary
quantum registers and performing reversible operations on
a quantum computer. The state |GN (D)〉 in the second step

is generated by preparing N independent 1DG states with
standard deviations σ� := 1/

√
D�� for � ∈ {0, . . . , N − 1}.

We now describe the Kitaev-Webb method for gener-
ating 1DG states. To generate the continuous 1DG state
|G(σ , μ)〉, Eq. (19), on a quantum register, it is first
approximated by the discrete 1DG state

∣∣∣G̃KW(σ , μ)
〉

:=
∑
i∈Z

G̃KW(σ , μ; i) |i〉 ,

G̃KW(σ , μ; i) := 1√
fKW(σ ,μ)

e−
(i−μ)2

4σ 2 ,

fKW(σ , μ) :=
∑
i∈Z

e−
(i−μ)2

2σ 2 ,

(20)

over the 1D infinite lattice with unit lattice spacing. This
discrete 1DG state is again approximated by the state

|ξ(σ , μ, m)〉 :=
2m−1∑
i=0

ξ(σ , μ, m; i) |i〉 ,

ξ 2(σ , μ, m; i) :=
∑
j∈Z

G̃2
KW(σ , μ; i+ j 2m).

(21)

This quantum state is used as an approximation for
|G(σ , μ)〉, Eq. (19), in the Kitaev-Webb method to be gen-
erated on a quantum register. The key point of this method
is to employ the recursive decomposition

|ξ(σ , μ, m)〉 =
∣∣∣ξ
(σ

2
,
μ

2
, m− 1

)〉
⊗ cos θ |0〉

+
∣∣∣∣ξ
(

σ

2
,
μ− 1

2
, m− 1

)〉
⊗ sin θ |1〉 ,

θ := arccos

√
fKW(σ/2, μ/2)

fKW(σ , μ)
, (22)

for generating the approximate 1DG state |ξ(σ , μ, m)〉,
Eq. (21).

By the recursive formula (22) and classical inputs σ0 :=
σ , μ0 := μ and m, following recursive procedure is used
to generate the approximate 1DG state: (1) compute θ/2π ,
Eq. (22), and store it on an ancillary quantum register;
(2) perform the single-qubit rotation R(θ) := exp(−iθY)

on the rightmost qubit, where Y is the Pauli-Y gate;
(3) uncompute θ/2π ; (4) compute σ1 := σ0/2 and μ1 :=
(μ0 − q0)/2, where q0 = 0 if the state of the rotated
qubit is |0〉 and q0 = 0 if it is |1〉; and (5) generate the
state |ξ(σ1, μ1, m− 1)〉, Eq. (22), on the remaining m− 1
qubits.

The Kitaev-Webb method is restricted to 1DG states
that possess an extremely large standard deviation. In
Sec. III C 1 and Sec. IV D 1, we describe our methods for
generating an approximation of a continuous 1DG state for
any standard deviation.

020364-7

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

D. Quantum random-access machine model for
computation

An algorithm’s time complexity depends on the model
for computation. Here we review the quantum random-
access machine model for computation introduced by Knill
[34]. We use a variant of this model for analyzing our
algorithms’ time complexity. First we describe the archi-
tecture of the QRAM model. Then we discuss “primitive”
operations for this model. Finally, we describe how an
algorithm’s time complexity is assessed in the QRAM
model and discuss the computational complexity for com-
puting some elementary functions.

The QRAM model is an extension of the classical RAM
model that allows classical and quantum computations. We
describe a simplified architecture of the QRAM model.
For more details, we refer to Refs. [35–37]. In this model,
as schematically illustrated in Fig. 3, a computer has a
classical and a quantum processor that are, respectively,
connected to classical and quantum registers. These pro-
cessors work in a master-slave fashion, where the classical
processor is the master that controls the quantum proces-
sor. A hybrid quantum-classical code is first compiled into
the classical processor. The compiled code contains both
classical and quantum instructions. The classical proces-
sor performs the classical instructions on classical registers
and sends the quantum instructions to be performed by
the quantum processor on quantum registers. The mea-
surement results are sent back to the classical processor
by the quantum processor. This process could be repeated
multiple times depending on the code.

The classical and quantum processors in the QRAM
model can perform only a restricted set of operations
on their associated registers. These operations are called
primitive operations, and a unit cost is assigned to each
primitive in this model. As QRAM is an extension of
the classical RAM, the QRAM’s classical primitives are
considered to be the same as the primitives in the classi-
cal RAM model, which are the following [38]: (1) basic

arithmetic operations, i.e., addition, subtraction, multipli-
cation, and division; (2) data-movement operations such as
writing data from memory to classical registers and read-
ing data from classical registers to memory; (3) Boolean
logic operations such as AND and OR; and (4) flow-control
operations such as calling a function or returning from a
function. The classical primitives, except Boolean logic
operations, are high-level operations. In practice, imple-
menting high-level operations does not have the same cost
in terms of low-level (i.e., bit-wise) operations.

Unlike classical primitives, which are high-level oper-
ations, quantum primitives in the QRAM model are low-
level operations [34]. Specifically, quantum primitives in
the QRAM model are quantum gates from a universal set
of gates. In Sec. III A 3, we describe our alternative for
quantum primitives that are high-level operations, similar
to classical primitives.

The time complexity for a classical algorithm is deter-
mined by counting the number of classical primitives that
need to be executed in the algorithm. Similarly, the com-
mon approach to analyzing a quantum algorithm’s time
complexity in the QRAM model is counting the number of
quantum primitives. As quantum primitives in QRAM are
quantum gates, the algorithm’s gate complexity is typically
used as a standard metric to cost out a quantum algorithm.

Finally, we state the time complexity for computing
four elementary functions with respect to the classical
primitives in the QRAM model: logarithm, square-root,
inverse-square-root, and trigonometric functions. These
functions are used in various subroutines of our ground-
state-generation algorithms described in Sec. IV A. The
time complexity for computing each of these functions was
analyzed in terms of the time complexity for performing
a multiplication in Ref. [39]. Multiplication is a primi-
tive operation in the QRAM model and has a unit cost.
Therefore, we list only time complexities for the elemen-
tary functions with respect to classical primitives in the
QRAM model. The time complexity for computing square
root or inverse square root of a number in this model is

FIG. 3. Schematic description of the QRAM model. A hybrid code is compiled into the classical processor. The compiled code
provides instructions to be performed by classical and quantum processors on their associated registers. The quantum processor sends
the measurement results back to the classical processor.

020364-8

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

O(1) [39, pp. 3–4], and the time complexity for com-
puting a logarithm or trigonometric functions to precision
p is O(log p) [39, pp. 11, 14]. We use these complexi-
ties in Sec. IV E, where we analyze our algorithms’ time
complexity.

III. APPROACH

In this section, we present our approach for generat-
ing an approximate quantum-register representation for the
ground state of a free massive scalar bosonic QFT, such
that the quantum algorithm succeeds deterministically in a
quasilinear time with respect to the number of modes for
the discretized QFT. We begin in Sec. III A by discussing
our model for describing a free massive scalar bosonic
QFT. We introduce a client-server framework for simulat-
ing a QFT and discuss a metric to measure our algorithm’s
time complexity. Next we describe in Sec. III B the math-
ematical approach inherent in generating the free-field
ground state. We explain how the mass, momentum cutoff,
wavelet index, and error tolerance are used to discretize the
continuum free-field Hamiltonian (4) in fixed- and mul-
tiscale wavelet bases from which the covariance-matrix
description of the discretized QFT ground state is obtained.
Finally, in Sec. III C, we describe our Fourier and wavelet-
based method for ground-state generation and also our
methods for generating one-dimensional Gaussian states.

A. Model

In this subsection, we discuss our model for describ-
ing a massive scalar bosonic QFT. We also introduce a
client-server framework for simulating a QFT on a quan-
tum computer and discuss the metric we use to measure
our algorithms’ time complexity. We begin by explain-
ing our model for describing the QFT in Sec. III A 1.
We then explain the framework in Sec. III A 2 followed
by the metric for measuring an algorithm’s runtime in
Sec. III A 3.

1. Discretized quantum field theory

Here we explain our model for describing a massive
scalar bosonic QFT. We describe our approach for dis-
cretizing a one-dimensional scalar bosonic field in fixed-
and multiscale wavelet bases. Furthermore, we compare
these discretizations with the Jordan-Lee-Preskill dis-
cretization, which is based on the conventional lattice
approach [1].

In contrast to the usual approach for discretizing a QFT
over a noncompact domain, such as the infinite real line for
a one-dimensional theory, we discretize for the field on a
finite interval of the real line with periodic boundary con-
ditions. Mathematically, the finite interval with periodic
boundary conditions can be treated as a circle domain. We
denote the bare mass of the field theory by m0, as in Eq. (4).
We consider an ultraviolet momentum cutoff � for the field

theory, meaning we ignore all field configurations with
momentum higher than �. For convenience, we work in
the normalized scale where the compact domain becomes
the unit interval. In this case, the theory is on the unit inter-
val with periodic boundaries, and all involved parameters
such as mass and momentum cutoff become dimensionless
parameters.

In fixed-scale discretization, we partition the unit inter-
val into 2k subintervals of length 1/2k. We choose the
positive integer k such that 2k ≥ 2(2K − 1), where K is
the wavelet index (Sec. II A). This choice is made because
the smallest size admissible with periodic boundaries is
2(2K − 1) to ensure the scale function and its transla-
tions are orthogonal [33, p. 4]. We assign a discrete scale
field, Eq. (9), to each of the 2K − 1 cyclically consecu-
tive subintervals according to the following averaging rule.
Each discrete field is an average of the continuous field
over an interval of length (2K − 1)/2k weighted by the
dbK scaling function at scale k [29, p. 7]. The discrete
fields and their conjugate momenta satisfy the commuta-
tion relations analogous to those of Eq. (5) but with the
Dirac δ replaced by the Kronecker δ. The momentum cut-
off � in this discretization is proportional to the inverse of
the subinterval’s length.

In multiscale wavelet discretization, we partition the
unit interval into 2s subintervals of length 1/2s at each
scale, where s ∈ {s0, s0 + 1, . . . , k − 1}. Here k is an inte-
ger such that 2k ≥ 2(2K − 1) and s0 is the smallest integer
that satisfies this inequality. At the smallest scale s0, we
assign a scale field and a wavelet field, Eq. (9), to each
of the 2K − 1 cyclically consecutive subintervals accord-
ing to the following averaging rule. Each scale (wavelet)
field is an average of the continuous field over an inter-
val of length (2K − 1)/2s0 weighted by the dbK scaling
(wavelet) function at scale s0. At each other scale s > s0,
we assign a wavelet field to each of the 2K − 1 cycli-
cally consecutive subintervals. Each wavelet field is an
average of the continuous field over an interval of length
(2K − 1)/2s weighted by the dbK wavelet function at
scale s. The discrete fields and their conjugate momenta
in a multiscale wavelet basis also satisfy the commutation
relations analogous to those of Eq. (5) but with the Dirac δ

replaced by a Kronecker δ [18, p. 3]. The momentum cutoff
� in this discretization is proportional to the inverse of the
subinterval’s length at scale with the largest scale index s.

In the Jordan-Lee-Preskill approach [1], the conven-
tional lattice discretization is used to discretize the scalar
bosonic quantum field. The unit interval is approximated
by a one-dimensional finite lattice with 2k points and lattice
spacing 1/2k for some positive integer k. A discrete field is
then assigned to each lattice point, where the discrete fields
are samples of the continuous field at lattice points. In con-
trast, the discrete fields in the wavelet approach are an
average of the continuous field over subintervals of the unit
interval. These discrete fields have overlapping domains,

020364-9

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

FIG. 4. A client-server frame-
work for simulating a QFT. Dashed
lines represent classical commu-
nication, and solid lines represent
quantum communication. The
classical inputs to the main and
ground-state-generation servers
are specified in Tables I and II,
respectively, for simulating a mas-
sive scalar bosonic QFT. Output
from the ground-state-generation
server is an approximation for the
free-field ground state.

whereas the domains of the discrete fields in the lattice
approach, i.e., the lattice points, do not overlap.

2. Client-server framework for simulating a QFT

We now describe a framework for simulating a QFT.
To make clear ground-state generation versus other aspects
of a QFT simulation, we employ a framework comprising
three components: a client, a main server, and a ground-
state-generation server; see Fig. 4 for a schematic repre-
sentation of the framework. We define each component of
the framework and elucidate its relative task in simulating
a QFT. Finally, we describe the information flow between
the client and the two servers for simulating a massive
scalar bosonic QFT.

A client is an agent who supplies the needed parame-
ters for solving a computational problem to a server and
accepts the solution. The client in our framework com-
municates only with the main server. She provides the
required inputs for simulating a QFT to this server and
accepts the solution, which is the simulation’s outputs.

A server is a computer that provides a function or service
to one or many clients; a server could also be a client to
another server. The main server’s task in our framework is
to simulate the QFT specified by the client and deliver the
simulation’s output to the client. The main server chooses
a particular basis for simulation to accomplish this task
and delegates the ground-state-generation part of the sim-
ulation to the ground-state-generation server. The main
server is, therefore, a client to the ground-state-generation
server in our framework. The main server supplies the
input parameters needed for generating the ground state
of the QFT and accepts a quantum state, which is an
approximation for the free-field ground state.

The ground-state-generation server in our framework is
an auxiliary server whose task is to generate an approxi-
mation for the QFT ground state, which is represented in
a particular basis by the main server, on a quantum regis-
ter and deliver the generated state to the main server. We
consider this auxiliary server in our framework to elucidate

the input parameters needed for generating the ground state
and separate the ground-state generation part of a QFT
simulation from other parts of the full quantum simula-
tion as ground-state generation is a bottleneck for the entire
simulation. The main server then performs the simulation
using the generated state by the ground-state-generation
server. The main server may wish to perform the simula-
tion on a different basis. In this case, the main server first
executes a basis transformation on the generated state by
the ground-state-generation server and then performs the
simulation on a new basis.

We now discuss the information flow between the client
and the two servers in the QFT-simulation framework.
The client in this framework supplies the input parame-
ters for simulating a QFT to the main server. The required
input parameters are those that specify the Hamiltonian (or
Lagrangian) describing the QFT, an error tolerance for out-
put of simulation and a parameter specifying the energy at
which the simulation is performed. The free mass m0 is
the only parameter that specifies the Hamiltonian of a free
massive scalar bosonic QFT; see Eq. (4). We use an ultra-
violet cutoff on the momentum of the free QFT particles
as the parameter specifying the simulation energy. Table I
specifies the required inputs that need to be supplied by the
client to the main server for simulating a massive scalar
bosonic free QFT.

The main server chooses a wavelet basis by select-
ing a wavelet index K ∈ Z≥3 to perform the simulation.
This server approximates the continuum field theory by
a finite-mode discretized QFT in the dbK wavelet basis
and calculates the sufficient number of modes for the

TABLE I. Inputs from client to the main server.

Parameter Type Description

m0 R+ Free QFT mass
� R+ Ultraviolet cutoff on momentum of the

free QFT particles
εsim (0, 1) Error tolerance for output of simulation

020364-10

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

TABLE II. Inputs from the main server to the ground-state-
generation server.

Parameter Type Description

m0 R+ Free QFT mass
K Z≥3 Wavelet index
N Z≥2(2K−1) Number of modes in the

discretized QFT
εvac (0, 1) Error tolerance for generating the

discretized QFT ground state

discretized theory using the client’s inputs. The main
server then supplies the inputs specified in Table II to the
ground-state-generation server.

The ground-state-generation server uses the inputs sup-
plied by the main server to generate an approximation for
the ground state of the discretized free QFT. This server
then delivers the generated state to the main server for QFT
simulation. Finally, the simulation outputs are provided
to the client by the main server. The flow of information
between the client and two servers is shown in Fig. 4.

3. Measure for time complexity

Here we describe how we assess an algorithm’s time
complexity. We begin by stating the metric that we use
for the time complexity of an algorithm. Then we specify
primitive operations for classical and quantum processors
of the QRAM model described in Sec. II D. The chosen
primitives are high-level operations, and we explain how
to relate these primitives to low-level primitives. Finally,
we discuss how our metric differs from common metrics
for analyzing an algorithm’s time complexity.

We use the number of primitive operations in an
algorithm as a metric to quantify the algorithm’s time com-
plexity. That is to say, the number of classical primitives in
an algorithm determines its classical complexity, and the
number of quantum primitives determines the algorithm’s
quantum complexity. By this metric, the time complexity
depends on the classical and quantum primitives; chang-
ing the set of primitives yields a different time complexity.
Hence the set of primitive operations needs to be specified.

We now specify the classical and quantum prim-
itives. We choose the classical primitives to be the
same as the classical primitive operations in the QRAM
model; see Sec. II D. Except for the flow-control oper-
ations (Sec. II D), we take the quantum primitives to
be a quantum version of the classical primitives. We
exclude the flow-control operations as quantum prim-
itives because the quantum processor in the QRAM
model is controlled by the classical processor. Specif-
ically, we choose the following operations as quantum
primitives in our time-complexity analysis for a quantum
algorithm: (1) basic arithmetic operations on quantum reg-
isters; (2) data-movement operations on quantum registers,
such as writing (preparing) classical data from memory

into quantum registers and reading (measuring) data from
quantum registers to memory; and (3) quantum logic gates
such as the Hadamard, controlled NOT (CNOT), and Toffoli
gates.

With our chosen quantum primitives, similar to the
classical RAM model, the QRAM model encapsulates
computers’ core functionality, not their exact functional-
ities. For instance, addition and multiplication operations
are each considered a single primitive operation for each
processor in this model. In practice, however, a proces-
sor needs to execute more low-level operations—bit-wise
operations for the classical processor and qubit-wise oper-
ations for quantum processor—to perform multiplication
versus addition. By analyzing the cost of performing high-
level primitives in terms of low-level operations, one can
obtain an algorithm’s time complexity with respect to
low-level operations.

We comment that our approach for analyzing a quantum
algorithm’s time complexity is not common in the liter-
ature. As described in Sec. II D, the common approach
to cost out a quantum algorithm is to count the num-
ber of low-level operations, i.e., quantum gates, in the
algorithm [34,40]. In Sec. V, we discuss our algorithms’
time complexity with respect to low-level operations.

B. Mathematics

This subsection describes the mathematical approach for
generating the ground state of a massive scalar bosonic
QFT. We begin in Sec. III B 1 by describing a proce-
dure for approximating the ground state of the contin-
uum QFT, Eq. (4), in a fixed-scale basis. Then we pro-
ceed with approximating the ground state in a multiscale
wavelet basis in Sec. III B 2. Lastly, we explain our pro-
cedure for discretizing a continuous Gaussian pure state in
Sec. III B 3.

1. Free-field ground state in a fixed-scale basis

Here we represent the ground state of the continuum
free QFT, Eq. (4), in a fixed-scale wavelet basis. To this
end, we discretize the continuum theory by projecting its
Hamiltonian onto a fixed-scale subspace of L 2 (S). The
ground state of the discretized QFT represents the free-
field ground state in a fixed-scale basis. We explain how to
select a sufficient number of modes N for the discretized
QFT using the client inputs in Table II. Specifically, we
establish sufficiency for N in terms of the momentum cut-
off �, supplied by the client, such that the magnitude of
mean momentum (expectation value of the momentum
operator) for a single-particle state in the discretized QFT
is no greater than �.

To represent the ground state of the free theory, Eq. (4),
over the unit interval with periodic boundaries in a fixed-
scale wavelet basis, we project the continuum Hamiltonian
onto a scale subspace Sk of L 2 (S) for some integer k

020364-11

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

such that 2k ≥ 2(2K − 1); see Sec. III A 1. The projected
Hamiltonian has the form of the discrete Hamiltonian in
Eq. (11) but with the coupling matrix

K (k)
ss; ��′ := m2

0δ��′ − N 2
(
�

(2)

�′−�
+�

(2)

�′−(�+N)

)
, N := 2k,

(23)

which are matrix elements of K(k)
ss . Here N is the num-

ber of modes for the discretized QFT and �
(2)

�′−�
, Eq. (13),

are the second-order derivative overlaps; the second term
inside the parentheses comes from the periodic boundary
condition. The projected Hamiltonian is quadratic in the
field operators and their conjugate momenta akin to the
discrete Hamiltonian in Eq. (11) and, therefore, its ground
state is a Gaussian state. Specifically, the ground state of
the projected Hamiltonian is

∣∣∣G(k)
scale

〉
:=
(

det A(k)
ss

(2π)N

)1/4 ∫
RN

dNφ e−
1
4 φTA(k)

ss φ |φ〉 ,

A(k)
ss :=

√
K(k)

ss , (24)

where A(k)
ss is the ground state’s ICM as per Definition 1.

We now establish sufficiency for the number of modes
N using the supplied momentum cutoff � by the client to
calculate the sufficient N for the discretized QFT. We first
project the momentum operator (Sec. II B) of the contin-
uum QFT to the same scale subspace Sk that the continuum
Hamiltonian is projected. Then we write an expression
for a single-particle state whose mean momentum has the
maximum magnitude P̄max. Next we bound P̄max from
above by �. The sufficient N saturates this bound. Propo-
sition 2 provides the established sufficiency for N with
respect to � and the largest first-order derivative over-
lap �(1)

max := max�|�(1)
� |, for �

(1)
� , Eq. (13), the first-order

derivative overlaps.

Proposition 2: For � the momentum cutoff and �(1)
max the

largest first-order derivative overlap,

N =
⌊

2�

�
(1)
max

⌋
, (25)

modes suffices to guarantee that the mean momentum of
a single-particle state in the discretized QFT is bounded
from above by �.

Proof. Let a(k)†
� be the creation operator constructed from

the �th scale-field operator (9) and its conjugate momentum
[41]. Acting this operator on the ground state in Eq. (24)
creates a single-particle state with zero-mean momentum
whose wave function is localized in a compact space
of size equal to the support of s(k)

� [18]. Single-particle

states with finite mean momentum can be created from a
superposition of two zero-mean-momentum single-particle
states as ∣∣∣�(k)

��′
〉

:=
(
αa(k)†

� + βa(k)†
�′
) ∣∣∣G(k)

scale

〉
, (26)

with α, β ∈ C such that |α|2 + |β|2 = 1. The expectation
value of the projected momentum operator (15), i.e., the
mean momentum, for this state is

P̄ := 〈�(k)
��′ |P̂(k)|�(k)

��′ 〉 = P(k)
��′ Im

(
αβ∗

)
. (27)

The magnitude of this expression is maximized for α =
±iβ = 1/

√
2. By this equation and the projected momen-

tum operator (15), the maximum magnitude of the mean
momentum for a single-particle state is

P̄max = 2k

2
max

�
|�(1)

� | =
2k

2
�(1)

max. (28)

By bounding this expression from above by the momentum
cutoff �, we obtain

k =
⌊

log2

(
2�

�
(1)
max

)⌋
, (29)

which, by N = 2k, Eq. (23), yields the sufficient number of
modes in Eq. (25). �

The established sufficiency, Eq. (25), for N is used by
the main server to calculate the number of modes for the
discretized QFT.

2. Free-field ground state in a multiscale wavelet basis

We now represent the ground state of the continuum the-
ory, Eq. (4), in a multiscale wavelet basis. In this case,
we project the continuum Hamiltonian onto a subspace
of L 2 (S) that is a multiscale decomposition of the scale
subspace Sk (Sec. II A). The projected Hamiltonian (14)
onto a multiscale subspace is quadratic, similar to the
fixed-scale Hamiltonian (11), but involves both scale- and
wavelet-field operators (9).

The coupling matrix K(k) in the multiscale Hamiltonian
(14) is obtained by a multilevel wavelet transform from
the fixed-scale coupling matrix K(k)

ss , Eq. (23). Let s0 < k
be the scale index for the lowest scale, then K(k) has the
block-matrix structure

K(k) :=

⎡
⎢⎢⎢⎢⎢⎣

K(s0)
ss K(s0, s0)

sw · · · K(s0, k−1)
sw

K(s0, s0)T
sw K(s0, s0)

ww · · · K(s0, k−1)
ww

...
...

. . .
...

K(s0, k−1)T
sw K(s0, k−1)T

ww · · · K(k−1, k−1)
ww

⎤
⎥⎥⎥⎥⎥⎦

,

(30)

imposed by the wavelet transform [18]. We select the level
of wavelet transform so that the number of modes 2s0 in

020364-12

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

the lowest scale s0, i.e., the number of rows or columns
of the top-left block K(s0)

ss , is at least 2(2K − 1) as per
Sec. III A 1. The ground state of the projected Hamiltonian
onto a multiscale wavelet basis is

∣∣∣G(k)
wavelet

〉
:=
(

det A(k)

(2π)N

)1/4 ∫
RN

dNφ e−
1
4 φTA(k)φ |φ〉 ,

(31)

which is a continuous Gaussian pure state akin to the state
in Eq. (24) but with the ICM

A(k) :=

⎡
⎢⎢⎢⎣

A(s0)
ss A(s0, s0)

sw · · · A(s0, k−1)
sw

A(s0, s0)T
sw A(s0, s0)

ww · · · A(s0, k−1)
ww

...
...

. . .
...

A(s0, k−1)T
sw A(s0, k−1)T

ww · · · A(k−1, k−1)
ww

⎤
⎥⎥⎥⎦

=
√

K(k), (32)

which has the same block-matrix structure as the coupling
matrix in Eq. (30). For convenience, we henceforth refer
to the block with subscript “ss” as the ss block. Similarly,
we refer to the blocks with subscript “sw” as the sw blocks
and those with subscript “ww” as the ww blocks.

3. Discretization of continuous Gaussian pure states

Discretization is essential in obtaining a qubit represen-
tation for a continuous quantum state. Here we explain
how we discretize a multidimensional continuous Gaus-
sian pure state. We use the described method to discretize
the ground state of the free field theory represented in both
fixed- and multiscale wavelet bases to generate the ground
state on a quantum register. First we define a discrete 1DG
pure state over a lattice in Definition 3. Then we explain
how to discretize a multidimensional Gaussian pure state.

Definition 3: (Discrete 1DG pure state over a lat-
tice.) For σ , δ ∈ R+ and m ∈ Z+, let L := { j δ | j ∈
[−2m−1, 2m−1) ∩Z} be a one-dimensional lattice with 2m

points and lattice spacing δ, and let σ̃ := σ/δ. We define
the pure state

|Glattice(σ̃ , δ, m)〉 := 1

Ñ
2m−1−1∑

j=−2m−1

δ e−
j 2

4σ̃2 | j δ〉 ,

Ñ 2 := δ2
2m−1−1∑

j=−2m−1

e−j 2/2σ̃ 2
, (33)

for | j δ〉 equally spaced lattice states in one dimension, as
the discrete 1DG pure state with standard deviation σ̃ over
lattice L.

We use the discrete 1DG state in Eq. (33) as a discrete
approximation for the continuous 1DG state, Eq. (19), with
the standard deviation σ . The lattice parameters, i.e., the
lattice spacing and the number of lattice points, are cho-
sen based on two given inputs: the standard deviation and
an error tolerance on the infidelity between the discrete
and continuous 1DG states. In Sec. IV B 1, we describe
how these two inputs are used to calculate the lattice
parameters.

To discretize a continuous multidimensional Gaussian
pure state, Eq. (17), first we decompose the state into a
tensor product of several continuous 1DG pure states by
a basis transformation. Then we discretize each continu-
ous 1DG pure by a discrete 1DG pure state over a lattice
as per Definition 3. Note that a continuous N -dimensional
Gaussian pure state |GN (A)〉, Eq. (17), with the ICM A
is a linear combination of basis states |x〉 := |x0〉 ⊗ · · · ⊗
|xN−1〉, where x is a vector of real numbers. Let O be a
matrix such that OTAO is a diagonal matrix D. Then the
basis transformation |x〉
→ |O−1x〉 yields the continuous
Gaussian state with the diagonal ICM D, which can be
decomposed into a tensor product of N continuous 1DG
states; see Sec. IV B 2.

C. Methods

In this subsection, we present our Fourier- and wavelet-
based methods for generating an approximation for the
free-field ground state on a quantum register. Both meth-
ods are based on a method for generating 1DG states. We
begin in Sec. III C 1 by explaining our method for gener-
ating a discrete approximation for a continuous 1DG state.
Then we describe the Fourier-based method in Sec. III C 2
and the wavelet-based method in Sec. III C 3.

1. One-dimensional Gaussian-state generation

Here we present two methods for generating a discrete
approximation for a continuous 1DG state on a quantum
register. First we specify the inputs along with the task
in generating a 1DG state. Next we describe our discrete
approximation for a 1DG state. Then we explain our first
method for a 1DG-state generation. Our first method is
similar to the Kitaev-Webb method [19]. However, in con-
trast to the Kitaev-Webb method, which is restricted to
1DG states with an extremely large standard deviation, our
method generates 1DG states with any standard deviation.
We finally describe our second method for generating a
1DG state, which is based on a method for performing
inequality testing [15] on a quantum computer.

We begin by specifying the task in a 1DG-state genera-
tion. To generate a continuous 1DG state |G(σ)〉, Eq. (19),
we are given two inputs: (1) the standard deviation σ ∈ R+
of the 1DG state and (2) an error tolerance ε1DG ∈ (0, 1).
The task is to generate an approximate 1DG state |G̃(σ)〉

020364-13

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

such that the infidelity [42]

infid
(
|G(σ)〉 ,

∣∣∣G̃(σ)
〉)

:= 1−
〈
G(σ)

∣∣∣G̃(σ)
〉
∈ [0, 1),

(34)

between the approximate and exact states is no greater than
ε1DG. We consider only continuous 1DG states with means
of zero (μ = 0) as we need only to prepare these states in
order to generate an approximation for the ground state of
the free QFT, Eq. (4).

We approximate |G(σ)〉 by a discrete 1DG pure state
|Glattice(σ̃ , δ, m)〉, Eq. (33), over a lattice with 2m points
and lattice spacing δ as per Definition 3. We select m and
δ based on σ and ε1DG such that the infidelity between the
continuous and discrete 1DG states is at most ε1DG. Our
approximate 1DG state is different from that of the Kitaev-
Webb method. A continuous 1DG in their method is first
approximated by a discrete 1DG state over an infinite lat-
tice with unit spacing as in Eq. (20). The discrete 1DG state
is then again approximated by the state in Eq. (21) to be
generated on a quantum register. Our approximate 1DG
state, however, is a discrete 1DG state over a finite lattice
with a nonunit lattice spacing.

We now explain our strategy for generating |Glattice
(σ̃ , δ, m)〉, Eq. (33), on a quantum register. Our strategy
comprises two steps. In the first step, we generate the state
|Glattice(σ̃ , 1, m)〉. That is to say, we first prepare a discrete
1DG state with the same standard deviation but over a lat-
tice with unit spacing. This state is a linear combination of
basis states | j 〉, where j is an integer; see Eq. (33) with
δ = 1. In the second step, we transform |Glattice(σ̃ , 1, m)〉
to |Glattice(σ̃ , δ, m)〉 by performing the unitary map for
which | j 〉
→ | j δ〉 for all j . Our method for generating
|Glattice(σ̃ , 1, m)〉 is similar to the Kitaev-Webb method for
1DG-state generation. We write a recursive decomposition
for |Glattice(σ̃ , 1, m)〉 analogous to Eq. (22) and employ the
recursive decomposition to design an iterative algorithm
for generating this state. See Sec. IV D 1 for a detailed
description of the algorithm.

We now describe our inequality-testing-based method
for generating the state |Glattice(σ̃ , 1, m)〉, Eq. (33).
To elucidate the method, we write this state as∑

j g(j) | j 〉 with unnormalized amplitude distribution
g(j) := exp

(−j 2/4σ 2
)
. To generate this state by inequal-

ity testing, first we prepare a quantum state with ampli-
tude according to the value of j rounded down to
the nearest power of 2. Specifically, we first prepare
the state

∑
j ground(j) | j 〉 with unnormalized amplitude

distribution ground(j) := exp
(
22�log2 j �/4σ 2

)
for all j �= 0

and ground(0) := 1. The amplitude distributions g(j) and
ground(j) are shown in Fig. 5 by blue and orange points,
respectively; these distributions are shown only for non-
negative j for simplicity.

50 100 150 200 250

0.2

0.4

0.6

0.8

1.0

FIG. 5. Illustration of state-generation steps before perform-
ing an inequality test. First we prepare a state with amplitudes
according to the orange points. Then we test an inequality against
the blue points. The success probability is at least about 70%.

Once the state
∑

j ground(j) | j 〉 is generated, we then
coherently compute an approximation for the ratio of the
amplitudes rj := ground(j)/g(j) into a scratch register and
prepare a reference quantum register in uniform superposi-
tion. Next we perform an inequality test between the value
encoded in the scratch register and the value encoded in
the reference register, and write the result into a flag qubit.
We then erase the reference register and measure the flag
qubit. If the postmeasurement state of the flag qubit is |0〉,
then the state generated on the first register is the desired
1DG state. See Sec. IV D 2 for a detailed description of the
inequality-testing-based algorithm for generating a 1DG
state.

2. Fourier-based method for ground-state generation

We now present our Fourier-based method for gener-
ating a discrete approximation for the free-field ground
state on a quantum register. First we explain the ratio-
nale for specifying the task in this method and describe
the task. Then we explain our strategy for generating the
approximate ground in the Fourier-based method.

In the Fourier-based method, we discretize the contin-
uum QFT in a fixed-scale wavelet basis and use the ground
state of the discretized QFT as an approximation for that
of the continuum theory. The discretized QFT ground state
in this method is a continuous Gaussian state whose ICM
Ass, Eq. (24), is a circulant matrix. The ICM, which fully
describes the discretized QFT ground state, is specified
by three parameters: wavelet index K ∈ Z+, free QFT
mass m0 ∈ R+, and the number of modes N ∈ Z+ of the
discretized QFT.

For the Fourier-based method to generate the ground
state, we are given an error tolerance εvac ∈ (0, 1) along
with the parameters that specify the ground-state ICM. The
task is to generate an approximation for the ground state

020364-14

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

|Gscale〉, Eq. (24), of the discretized QFT in a fixed-scale
basis on a quantum register. The infidelity between the
approximate and exact states is required to be no greater
than the error tolerance εvac.

Our strategy for generating an approximate ground state
for the discretized QFT is as follows. First we construct
a classical algorithm for computing the eigenvalues λ :=
(λ0, . . . , λN−1) of the ground-state ICM; eigenvalues are
diagonals of the diagonal matrix � in the spectral decom-
position of the ICM. In this algorithm, we exploit the
circulant structure of the ICM and compute λ by a dis-
crete Fourier transform [43, p. 100]. Next we use λ as
a classical input to design a quantum circuit for gener-
ating an approximation for the state |GN (�)〉, Eq. (17),
i.e., the continuous Gaussian state whose ICM is the
diagonal matrix �. Finally, we perform a basis trans-
formation by a quantum fast Fourier transform (QFFT)
to map the state |GN (�)〉 to the ground state |GN (Ass)〉.
The state |GN (�)〉 is a linear combination of basis states
|x〉 := |x1〉 ⊗ · · · ⊗ |xN 〉, where x = (x1, . . . , xN) is a vec-
tor of real numbers; see Eq. (17). The QFFT imple-
ments the map |x〉
→ |Fx〉 on a quantum computer, where
F is the transformation matrix for the discrete Fourier
transform.

To design a quantum circuit for preparing an approxima-
tion for a continuous NDG state |GN (D)〉 with a diagonal
inverse-covariance matrix D := diag(d0, . . . , dN−1), first
we decompose the state as |G(σ0)〉 ⊗ · · · ⊗ |G(σN−1)〉,
where |G(σ�)〉, Eq. (19), is a continuous 1DG state with the
standard deviation σ� := 1/

√
d�. By the method described

in Sec. III C 1, we then design a quantum circuit for gen-
erating a discrete approximation for each 1DG state. The
combined output of all these quantum circuits is an approx-
imation for the continuous Gaussian state with the diagonal
ICM D.

3. Wavelet-based method for ground-state generation

Here we present our wavelet-based method for gener-
ating a discrete approximation for the free-field ground
state represented in a multiscale wavelet basis. Similar
to the Fourier-based method, we first provide the ratio-
nale for specifying the task in the wavelet-based method
and describe the task. Then we explain the strategy for
generating the approximate ground state.

In the wavelet-based method, we discretize the contin-
uum QFT in a multiscale wavelet basis and use the ground
state of the discretized QFT as an approximation for that
of the continuum theory. The ground state, Eq. (31), of the
discretized QFT in this method is also a continuous Gaus-
sian state. The same parameters specify the ground-state
ICM here as in the Fourier-based method. For the wavelet-
based method, we are given the same classical inputs as the
Fourier-based method. The task, however, is to generate an
approximation for the ground state |Gwavelet〉, Eq. (31), of

the discretized QFT in a multiscale wavelet basis such that
the infidelity between the approximate and exact states is
no greater than the error tolerance εvac.

The strategy for generating an approximate ground state
in the wavelet-based method is as follows. The ground-
state ICM in a multiscale wavelet basis has many near-
zero elements. We approximate this matrix by replacing
its near-zero elements with exactly zero. Specifically, we
replace all matrix elements whose magnitudes are less than
the threshold value εth = m0εvacN−3/2 with exactly zero.
This approximation enables a fingerlike sparse structure
[44] for the ground-state ICM with a quasilinear number
of nonzero elements; see Fig. 1.

We exploit the fingerlike structure and perform the UDU
matrix decomposition of the approximate ICM in a quasi-
linear time. In the UDU decomposition, we decompose
the fingerlike sparse matrix Ã as the product of an upper
unit-triangular matrix U, a diagonal matrix D and trans-
pose of U. We compute diagonals of D and shear elements,
i.e., nonzero off-diagonal elements, of U by a classical
algorithm, and use them as classical inputs to construct a
quantum circuit for generating an approximation for the
free-field ground state.

To generate an approximate ground state, first we con-
struct a quantum circuit for preparing an approximation
for the NDG state |GN (D)〉 whose ICM is the diagonal
matrix D in the UDU decomposition. The diagonals of
D are used as classical inputs, and the quantum circuit is
constructed by the method described in Sec. III C 2. Then
we transform |GN (D)〉 into the ground state by performing
a quantum shear transform (QST) on a quantum com-
puter; the shear elements of U are classical inputs for the
QST. Akin to the QFFT in the Fourier-based method, the
QST executes a basis transformation. Specifically, the QST
implements the map |x〉
→ |Sx〉 on a quantum computer,
where the shear-transform matrix S is the inverse transpose
of U.

IV. RESULTS

In this section, we present our main results. We first
construct a high-level description of our ground-state-
generation algorithms in Sec. IV A. Next we discuss the
number of required qubits for representing an approxima-
tion for the discretized QFT ground state in the Fourier-
and wavelet-based methods in Sec. IV B. Our algorithms
have classical preprocessing and quantum routine. We
present the classical preprocessing of our algorithms in
Sec. IV C and the quantum routine in Sec. IV D. Then
we analyze the runtime of our algorithms in Sec. IV E. In
Sec. IV F, we establish a lower bound on the gate complex-
ity for ground-state generation. Finally, in Sec. IV G, we
compare the Fourier versus wavelet approach for ground-
state generation.

020364-15

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

A. High-level description of our algorithms for
ground-state generation

We begin with a high-level description of our two
algorithms for ground-state generation. The first of these
algorithms, described in Sec. IV A 1, is based on the use
of a discrete Fourier transform, and we refer to it as the
Fourier-based algorithm. The second algorithm, described
in Sec. IV A 2, is based on the use of a wavelet transform,
and we call it the wavelet-based algorithm.

Both algorithms have a similar structure that we now
explain. The algorithms proceed in two stages: (1) pre-
pare several independent one-dimensional Gaussian states,
and (2) perform a collection of arithmetic operations on
those Gaussian states. Both stages require a certain amount
of classical information, much of which is not provided
directly by the main server (Sec. III A 2) but requires a non-
negligible amount of computation to produce. We therefore
must analyze not only the quantum complexity but also the
classical complexity of our algorithms in order to ensure
that the resulting procedures are indeed quasilinear in the
number of modes of the discretized QFT. We refer to the
classical part of our algorithm as the “classical preprocess-
ing” step, as it must be carried out prior to the execution
of our quantum algorithms. In our descriptions of the
Fourier-based and wavelet-based algorithms, we therefore
distinguish between the classical preprocessing procedure
and the quantum algorithm itself.

1. High-level description of Fourier-based algorithm

Here we construct a high-level description of the
Fourier-based algorithm for ground-state generation. We
begin by explaining this algorithm’s classical prepro-
cessing and then describe the quantum routine. Finally,
we present the algorithm by pseudocode to elucidate
the inputs, output, and procedure of the Fourier-based
algorithm.

The Fourier-based algorithm generates an approxima-
tion for the free-field ground state, Eq. (24), represented
in a fixed-scale basis. To generate this state, first we gen-
erate N discrete 1DG states over a lattice with spacing
δ. The task in the classical preprocessing of the Fourier-
based algorithm is to compute the standard deviations σ̃ :=
(σ̃0, . . . , σ̃N−1) for the discrete 1DG states as per Definition
3, and the lattice spacing δ; these are the needed parameters
for the quantum routine in the Fourier-based algorithm.
To compute σ̃ and δ, first we compute the derivative
overlaps, Eq. (13), for the second-order derivative, i.e.,
Laplace, operator. We then use these derivative overlaps
and the bare mass m0 to compute the eigenvalues λ :=
(λ0, . . . , λN−1) of the ground-state ICM. Having λ, we
compute the lattice spacing as δ = 1/

√
λmax and the 1DG

standard deviations as σ̃ = 1/(δ
√

λ). Figure 6 (top) shows
a schematic description of the classical preprocessing in
the Fourier-based algorithm.

In the quantum routine, we use outputs of the classical
preprocessing to generate an approximation for the ground
state. For each component of σ̃ and the lattice spacing δ,
we generate a discrete 1DG state, Eq. (33), correspond-
ing to these inputs on a quantum register. Then we execute
a quantum fast Fourier transform. The QFFT performs a
discrete Fourier transform by a collection of arithmetic
operations on the 1DG states. The resulting state is an
approximation for the ground state, Eq. (24), represented
in a fixed-scale basis. Figure 6 (bottom) shows a schematic
description of the quantum routine in the Fourier-based
algorithm. For clarity, we present the inputs, outputs, and
procedure of this algorithm as pseudocode in Algorithm 1.

2. High-level description of wavelet-based algorithm

We now present a high-level description of the
wavelet-based algorithm for ground-state generation. This
algorithm, similar to the Fourier-based algorithm, has clas-
sical preprocessing and quantum routine. We begin by
describing the classical preprocessing and proceed with
explaining the quantum routine. We finally present the
wavelet-based algorithm as pseudocode to specify the
algorithm’s inputs, output, and procedure.

In classical preprocessing of the wavelet-based algorithm,
we compute the required inputs for the quantum routine.
These inputs are the lattice spacing δ, the vector σ̃ of
standard deviations for the discrete 1DG states, and shear
elements of the upper unit-triangular matrix U in the UDU
decomposition of the approximate ICM (Sec. III C 3) for
the free-field ground state, Eq. (31), represented in a mul-
tiscale wavelet basis. The first two inputs are needed to
generate the discrete 1DG states, and the last input is
needed to perform the basis transformation.

The needed classical inputs for quantum routine of the
wavelet-based algorithm are computed as follows. First we
compute the second-order derivative overlaps in Eq. (13).
These derivative overlaps are then used to compute the
unique matrix elements of the ground-state ICM. The ICM
in Eq. (32) is a block matrix, and each block is a circulant
matrix. The unique matrix elements are, therefore, the cir-
cuit row of each block in the block matrix. Next we use the
circulant rows, denoted by a, to compute the vector d of
diagonals in the diagonal matrix D and the shear elements
S of the upper unit-triangular matrix U in the UDU decom-
position of the approximate ICM. Having d, we compute
the lattice spacing as δ = 1/

√
dmax and the vector of stan-

dard deviations as σ̃ = 1/(δ
√

d), where dmax is the largest
element of d. Figure 7 (top) shows a schematic descrip-
tion of the classical preprocessing in the wavelet-based
algorithm.

The quantum routine of the wavelet-based algorithm
proceeds as follows. Similar to the quantum routine of
the Fourier-based algorithm, first we generate a discrete
1DG state, Eq. (33), for each component of σ̃ and the

020364-16

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

Algorithm 1. Fourier-based algorithm for ground-state generation

lattice spacing δ. Using the shear elements S as classical
input, we then perform a basis transformation on the dis-
crete 1DG states by executing a quantum shear transform.
The QST performs a collection of arithmetic operations
to map the discrete 1DG states to an approximation for
the ground state, Eq. (31), of the discretized QFT in a
multiscale wavelet basis. A schematic description of the
quantum routine in the wavelet-based algorithm is shown
in Fig. 7 (bottom). The pseudocode in Algorithm 2 speci-
fies the inputs, output, and procedure of the wavelet-based
algorithm.

B. Space requirement to represent the ground state

In this subsection, we determine how the number of
qubits required to represent an approximation for the
free-field ground state in both Fourier- and wavelet-based
methods scales with respect to the basis-independent input
parameters in Table II specified by the main server for
ground-state generation. The wavelet index K in Table II is
basis-dependent and is typically chosen to be a small con-
stant number [18,29,33]. Hence we exclude this parameter
in our analysis.

We begin in Sec. IV B 1 by discussing the number of
required qubits to represent a discrete approximation for
a continuous 1DG state as in Eq. (19). Having deter-
mined the space required to represent a 1DG state, we
then analyze the space required to represent an approxi-
mation for a continuous multidimensional Gaussian state
in Sec. IV B 2. Our result on the space requirement for
representing a multidimensional Gaussian state allows us
to show how the space required to represent the free-field
ground state scales in terms of the inputs specified by the
main server.

1. Space requirement to represent a one-dimensional
Gaussian state

Here we determine the minimal number of qubits
required to represent an approximation for a continuous
1DG state, Eq. (19), in terms of its standard deviation and
an error tolerance on the infidelity, Eq. (34), between the
approximate and continuous states. First we explain how
we approximate a continuous 1DG state. Then we establish
a bound on the infidelity between our approximate 1DG
state and the continuous 1DG state. Having this bound, we
then show that the number of qubits needed to represent
the approximate 1DG state is logarithmic in the ratio of the
standard deviation to the square root of the error tolerance.

We begin by discussing how we approximate a continu-
ous 1DG pure state. We are given the standard deviation
σ ∈ R+ of a continuous 1DG pure state and an error
tolerance ε1DG ∈ (0, 1). We approximate the continuous
1DG pure state by a discrete 1DG pure state over a one-
dimensional lattice with 2m points and lattice spacing δ as
per Definition 3. We determine δ and m in terms of σ and
ε1DG such that the infidelity, Eq. (34), between the discrete
and continuous 1DG states is at most ε1DG. We show, in
Proposition 4, how to determine δ and m in terms of σ and
ε1DG.

Proposition 4: Let |G(σ)〉, Eq. (19), be a continuous
1DG state with the standard deviation σ ∈ R+ and let
|Glattice(σ̃ , δ, m)〉 in Eq. (33), be a discrete 1DG state with
standard deviation σ̃ := σ/δ over a one-dimensional lat-
tice with 2m points and lattice spacing δ ∈ R+. For ε1DG ∈
(0, 1), if

δ ≤ min(1/2, σ) and 2mδ ≥ 2σ/
√

ε1DG, (35)

020364-17

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

FIG. 6. Description of Fourier-based algorithm for ground-state generation. Top: classical preprocessing. Inputs: wavelet index K,
mass m0, number of modes N in the discretized QFT, and error tolerance εvac for the output state. Each box represents a process;
incoming arrows identify the inputs, and outgoing arrows identify the outputs of the process. Outputs: standard deviation σ̃ of the
approximate one-dimensional Gaussian states and lattice spacing δ. Outputs of intermediate processes: working precision p , second-
order derivative overlaps � and eigenvalues λ of the ground-state ICM. Bottom: quantum routine. Double lines indicate classical
inputs to the quantum routine. vac is a quantum register with N cells, and each cell comprises p qubits;̸ represents multiple qubits.
Each ONEDG accepts δ and one component of σ̃ as classical inputs and generates an approximate 1DG state corresponding to these
inputs on once cell of vac. The quantum fast Fourier transform (QFFT) acts collectively on the set of approximate 1DG states and
transforms them into the approximate ground state |G̃〉.

then the infidelity, Eq. (34), between the discrete and
continuous 1DG states is bounded above by ε1DG.

Proof. Let J := 2m. Then the fidelity between the continu-
ous, Eq. (19), and discrete, Eq. (33), 1DG states is

F := 〈Glattice(σ̃ , δ, m)|G(σ)〉

= 1

NÑ
J/2−1∑

j=−J/2

δ e−
j 2

2σ̃2 ≥
∫ J δ/2

−J δ/2
dx ρ(x)

= Pr(|x| ≤ J δ/2) , (36)

where the inequality follows from Proposition 14. Here
ρ(x) := N−2e−x2/(2σ 2) is the probability density func-
tion of a Gaussian distribution and Pr(|x| ≤ J δ/2) is

the probability that x ∈ [−J δ/2, J δ
/

2]. By Eq. (36),
J δ/2 ≥ σ/

√
ε1DG in Eq. (35), and Pr(|x| ≤ J δ/2) = 1−

Pr(|x| > J δ/2), we have

F ≥ 1− Pr
(|x| ≥ σ/

√
ε1DG

)
. (37)

Using Chebyshev’s inequality [42, p. 609],

Pr
(|x| ≥ σ/

√
ε1DG

) ≤ ε1DG, (38)

which together with Eq. (37) yields F ≥ 1− ε1DG. The
infidelity 1− F is therefore bounded from above by
ε1DG. �

020364-18

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

Sec. IV C 3

Algorithm 2. Wavelet-based algorithm for ground-state generation

Proposition 4 allows us to obtain the minimal number of
qubits to represent the discrete 1DG state in Eq. (33). We
provide the result for the minimal number of qubits in the
following proposition and proceed with a proof.

Proposition 5: For σ ∈ R+ the standard deviation of a
continuous 1DG state, Eq. (19), and ε1DG ∈ (0, 1) an error
tolerance, at least

n1DG = �log2
(
σ/
√

ε1DG
)� +max

(
1, �log2(1/σ)�) ,

(39)

qubits are required to represent a discrete approximation
for the continuous state with infidelity, Eq. (34), no greater
than ε1DG.

Proof. The discrete 1DG state, Eq. (33), is a superposi-
tion of lattice states | j δ〉, where j ∈ [−2m−1, 2m−1) ∩Z

and j δ is a real number. Hence the smallest nonzero value
for the real numbers is δ, and the largest value is 2m−1δ.
By virtue of Proposition 4, taking δ = min(1/2, σ) and
2m−1δ = σ/

√
ε1DG ensures that the infidelity between the

approximate and continuous 1DG states is at most ε1DG. As
δ < 1, the number of qubits needed to represent the frac-
tional part of the real numbers is max

(
1, �log2(1/σ)�).

The largest value for the real numbers is σ/
√

ε1DG, so
�log2

(
σ/
√

ε1DG
)� qubits are needed to represent the inte-

ger part of the real numbers. The total number of qubits
needed to represent the approximate 1DG state is obtained

by adding the number of qubits required to represent the
real numbers’ integer and fractional parts. �

Having determined the space requirement for represent-
ing a 1DG state, next we establish a bound on the number
of qubits needed to represent a multidimensional Gaussian
state.

2. Space requirement to represent a multidimensional
Gaussian state

We now determine the minimal number of qubits
needed to represent an approximation for a continuous
N -dimensional Gaussian state in terms of the condition
number of its ICM, N and an error tolerance on the infi-
delity between the approximate and continuous states. We
present the result in Theorem 6 and proceed with a proof.
Then we invoke this theorem to obtain the space require-
ment for representing the free-field ground state in both
Fourier- and wavelet-based methods in terms of the inputs
specified by the main server.

Theorem 6: Let A ∈ RN×N be the ICM for a continuous
N-dimensional Gaussian state |GN (A)〉, Eq. (17), and let
εG ∈ (0, 1) be an error tolerance. Also let κ ∈ R+ be the
condition number of A, quantified as the ratio of the largest
to smallest eigenvalues of A. Then

n ∈ �

(
N log2

(
Nκ

εG

))
, (40)

020364-19

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

FIG. 7. Description of wavelet-based algorithm for ground-state generation. Top: classical preprocessing. Inputs are the same as
the inputs to the Fourier-based algorithm Outputs: shear elements S of the upper unit-triangular matrix in the UDU decomposition
of the approximate ICM, standard deviation σ̃ of the approximate one-dimensional Gaussian states and lattice spacing δ. Outputs of
intermediate processes: working precision p , second-order derivative overlaps �, circulant rows a of the upper-triangular blocks in
the ICM and diagonals d of the diagonal matrix in the UDU decomposition. Bottom: quantum routine. Double lines indicate classical
inputs to the quantum routine. vac is a quantum register with N cells, and each cell comprises p qubits;̸ represents multiple qubits.
Each ONEDG accepts δ and one component of σ̃ as classical inputs and generates an approximate 1DG state corresponding to these
inputs on one cell of vac. The quantum shear transform (QST) acts collectively on the set of approximate 1DG states and transforms
them into the approximate ground state

∣∣∣G̃
〉
.

qubits are required to represent a discrete approximation
for |GN (A)〉 such that the infidelity between the discrete
and continuous states is bounded from above by εG.

Proof. Let D be the diagonal matrix in either the spec-
tral or the UDU decomposition of the ICM A. Then the
space required to represent |GN (A)〉 is the same as the
space required to represent |GN (D)〉 because the former
state is obtained from the latter by a basis transformation.
Therefore, we determine the required space to represent
|GN (D)〉. We decompose this state into a tensor product of

N continuous 1DG states as

|GN (D)〉 =
N−1⊗
�=0

|G(σ�)〉 , σ� := 1/
√

D��, (41)

where σ� is the standard deviation of the �th continu-
ous 1DG state |G(σ�)〉, Eq. (19). We approximate each
1DG state by a discrete 1DG state over a lattice with 2m

points and spacing δ as per Definition 3. The approximate

020364-20

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

Gaussian state is then

∣∣∣G̃N (D)
〉

:=
N−1⊗
�=0

|Glattice(σ̃�, δ, m)〉 , (42)

where σ̃� := σ�/δ is the standard deviation of the �th

discrete 1DG state, Eq. (33). By Proposition 4, if

ε1DG = εG/N , δ ≤ min (1/2, σmin) and

2mδ ≥ 2σmax/
√

ε1DG, (43)

then for each �

〈Glattice(σ̃�, δ, m)|G(σ�)〉 ≥ 1− εG/N . (44)

Equations (41)–(44) yield

〈
G̃N (D)

∣∣∣GN (D)
〉
=

N−1∏
�=0

〈Glattice(σ̃�, δ, m)|G(σ�)〉

≥ (1− εG/N)N ≥ 1− εG. (45)

Each discrete 1DG state, Eq. (33), is a superposition of
lattice states | j δ〉, where j δ is a real number. To ensure
that Eq. (44) holds for each 1DG state, we need at least⌈

log2
(
σmax

√
N/εG

)⌉
qubits to represent the integer part

and at least �log2 (1/σmin)� qubits to represent the frac-
tional part of the real numbers. Thus, the minimal number
of qubits to represent each 1DG state scales as

n1DG ∈ �
(

log2

(
(σmax/σmin)

√
N/εG

))
. (46)

Let dmax and dmin be, respectively, the largest and smallest
diagonal elements of D, then by Eq. (41)

σmax

σmin
=
√

dmax

dmin
, (47)

and by Proposition 15, dmax/dmin ∈ O(κ). The combi-
nation of these equations with Eq. (46) yields n1DG ∈
�[log2(Nκ/εG)]. Therefore, the total number of qubits to
represent an approximation for a N -dimensional Gaussian
state scales as Eq. (40). �

We now determine the space required to represent an
approximation for the ground state in both Fourier- and
wavelet-based methods. To this end, by Theorem 6, we
need only to bound the condition number κ of the ground-
state ICM for each method to obtain the space requirement
in terms of the parameters specified by the main server. By
Proposition 16, the condition number of the ground state’s
ICM for both methods scales as κ ∈ �(N/m0). Therefore,

by Theorem 6, the number of qubits needed to represent
the ground state scales as

n ∈ �
(
N log2

(
N/
√

m0εvac
))

, (48)

with respect to the parameters specified by the main server
in Table II. Notice that n is quasilinear in the number of
modes N . The logarithmic factor here is the number of
qubits required to represent each 1DG state for generating
the free-field ground state. For simplicity, we use

p = �log2
(
N/
√

m0εvac
)�, (49)

in description of our ground-state-generation algorithms
for number of qubits to represent each 1DG state.

C. Classical preprocessing

In this subsection, we construct key subroutines of
the classical preprocessing in the Fourier- and wavelet-
based algorithms for ground-state generation. We begin,
in Sec. IV C 1, by constructing a classical algorithm for
computing the eigenvalues of the ground-state ICM in
a fixed-scale wavelet basis; this algorithm is used as a
subroutine in classical preprocessing of both ground-state-
generation algorithms. Then, in Sec. IV C 2, we present
a classical algorithm for computing the circulant row in
unique blocks of the ground-state ICM in a multiscale
wavelet basis. Finally, in Sec. IV C 3, we construct a clas-
sical algorithm for computing the UDU decomposition of
the ICM in a multiscale wavelet basis. The last two algo-
rithms are subroutines of the classical preprocessing in the
wavelet-based algorithm.

1. Eigenvalues of the ground state’s inverse-covariance
matrix

Here we devise a classical algorithm for computing
the eigenvalues of the ground-state ICM Ass, Eq. (24),
in a fixed-scale wavelet basis. First we state the proper-
ties of this matrix used to compute the eigenvalues and
explain the parameters that specify unique elements of the
matrix. We then provide the rationale for computing the
eigenvalues of Ass by a DHT and present our algorithm
as pseudocode. Finally, we elaborate on the relationship
between the eigenvalues of the ground-state ICM in fixed-
and multiscale wavelet bases.

We begin by stating properties of the fixed-scale ICM,
Eq. (24), used for computing the eigenvalues. This matrix
is the principal square root of the fixed-scale coupling
matrix Kss, Eq. (23), which itself is a circulant, real, and
symmetric matrix. Being the coupling matrix’s principal
square root, the ICM is also a circulant, real, and sym-
metric matrix. A circulant matrix is fully specified by its
first row, which we call the “circulant row” of the circulant
matrix. Four parameters specify the unique elements in the

020364-21

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

Algorithm 3. Classical algorithm for computing eigenvalues of ground-state ICM

circulant row of Kss: the wavelet index K, the second-order
derivative overlaps ��, Eq. (13), the number of modes N
and the free mass m0; see Eq. (23). The same parameters
specify the unique matrix elements of the fixed-scale ICM.

We now provide the rationale for computing the eigen-
values of Ass, Eq. (24), by a DHT. Any circulant matrix is
diagonalizable by a discrete Fourier transform [43, p. 100].
By the real and symmetric properties of the ICM, we
diagonalize this matrix by a DHT. In particular, the eigen-
values of any real, symmetric, and circulant matrix are
obtained by computing the DHT of the matrix’s circu-
lant row [43, p. 100]. As the ICM is the principal square
root of the coupling matrix, first we compute the coupling-
matrix eigenvalues by the DHT of its circulant row. Then
we take the square root of the coupling-matrix eigenvalues
to obtain the eigenvalues of the ICM Ass. Algorithm 3 pro-
vides the procedure for computing the eigenvalues of the
ICM using the parameters that specify unique elements of
the coupling matrix.

The coupling matrix, Eq. (30), in a multiscale wavelet
basis is obtained from the coupling matrix, Eq. (23), in a
fixed-scale wavelet basis by a wavelet transform, which is
a unitary transformation. For each basis, the ground-state
ICM is the principal square root of the coupling matrix.
Consequently, the ICM in a multiscale wavelet basis is
obtained by the same unitary wavelet transform from the
ICM in a fixed-scale basis, and they have identical eigen-
values. Therefore, we use Algorithm 3 as a subroutine
in classical preprocessing of both Fourier- and wavelet-
based algorithms for computing the eigenvalues of the
ground-state ICM.

2. Elements of the ground state’s ICM

We now construct a classical algorithm to compute the
unique matrix elements of the ground-state ICM in a mul-
tiscale wavelet basis. First we state key properties of the
coupling matrix K, Eq. (30), represented in this basis. Then
we explain how we approximate the multiscale ICM and
discuss the classical memory requirement to store unique

elements of the approximate ICM. Next we explain our
algorithm’s procedure for computing the unique matrix
elements, and finally, we present our algorithm as pseu-
docode.

We begin with a few observations about the multiscale
coupling matrix K in Eq. (30). We then extend these obser-
vations to the approximate ICM. The coupling matrix K
has the following key properties:

1. Block structure. The matrix K has a block-matrix
structure imposed by a wavelet transform, with three
types of blocks: ss, sw, and ww; see Eq. (30). We
therefore present entries of K based on their block’s
location in the block matrix.

2. Symmetry. The coupling matrix is symmetric.
Therefore, we consider only the unique blocks,
which are the main and upper-diagonal blocks of K.

3. Banded circulant blocks. The main and upper-
diagonal blocks of K have a circulant structure;
specifically, each block is a banded 2k-circulant
matrix for some non-negative integer k. Each diag-
onal block is a banded 1-circulant matrix with band-
width wd := 2(2K − 2)+ 1. The ww block at entry
(r, c) of the block matrix K, Eq. (30), for any c > r,
is a banded 2c−r-circulant matrix with bandwidth
wd + (2c−r − 1)(2K − 1). The sw block at entry
(s0, c) is a banded 2c−s0 -circulant matrix with the
same bandwidth as the ww block at entry (s0, c).

These observations are also true for the multiscale ICM
A, Eq. (32), except that the blocks are no longer banded.
However, imposing a cutoff condition on elements of A by
some threshold value εth reimposes the banded structure
for blocks of this matrix. To describe the cutoff condition
and how we approximate the ICM, first we define an εth-
approximate ICM as follows.

Definition 7: (εth-approximate ICM). Given any ICM
A ∈ RN×N and any εth > 0, an εth-approximate ICM is a

020364-22

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

symmetric matrix Aεth such that

[
Aεth

]
ij :=

{
0 if |Aij | < εth,
Aij otherwise.

(50)

As per Definition 7, we approximate the ground-state
ICM by replacing its near-zero matrix elements, i.e., the
elements with magnitude less than some close-to-zero
threshold value εth, with exactly zero. This replacement
rule enables a sparse structure for the ICM that we exploit
to perform its UDU decomposition in quasilinear time.

We show, in Proposition 8, that not only the approxi-
mate ICM obtained by imposing the cutoff condition is a
positive-definite matrix but also the infidelity between the
Gaussian state with the approximate ICM and the free-field
ground state is bounded from above by the error tolerance
εvac in Table II.

Proposition 8: Given any εvac ∈ (0, 1) and any ICM A ∈
RN×N , then for any εth satisfying

0 < εth ≤ εvacN−3/2 min specA, (51)

every εth-approximate ICM Aεth is a positive-definite
matrix such that

infid
(|GN (A)〉 ,

∣∣GN (Aεth)
〉) ≤ εvac, (52)

where |GN (A)〉 is a N-dimensional continuous Gaussian
state with the ICM A as per Definition 1.

This proposition is proven in Appendix D 1.
The approximate ICM obtained by imposing the cut-

off condition is sparse because most elements of the exact
ICM A, Eq. (32), have an exponentially close-to-zero
value. In particular, we show in Proposition 9 that diagonal
blocks of A decay exponentially away from the diagonal
elements. A corollary of the exponential decay, shown in
Corollary 10, is that the diagonal blocks are banded circu-
lant matrices with a bandwidth that is logarithmic in the
number of modes N ; here we refer to the number of cycli-
cally nonzero elements in any row of a circulant matrix as
“bandwidth” of the matrix.

Proposition 9: (Exponentially decaying diagonal blocks).
Let m0 ∈ R+ be the free mass and A ∈ RN×N , Eq. (32),
be the ground-state ICM in a multiscale wavelet basis
with the wavelet index K ∈ Z≥3. Also let {A(r,r)

ww :⌈
log2(4K − 2)

⌉ ≤ r < log2 N } be the diagonal ww blocks
of A as in Eq. (32). Then for any r and j ≥ 2K − 1

|A(r,r)
ww; 0,j | ≤ 16Km0κ

(r+1)2−|j |/ξ
(r+1)

,

ξ (r) := (2K − 1)2r+1/m0, (53)

where κ(r) > 1 is the spectral condition number of K(r)
ss in

Eq. (23).

This proposition is proven in Appendix D 2.

Corollary 10: (Banded circulant blocks). The diagonal
blocks of the approximate ICM in a multiscale wavelet
basis are banded matrices with the upper bandwidth

w =
⌈

2(2K − 1)

m0
log N log2

(
4KN
m0εvac

)⌉
, (54)

where all parameters are specified in Table II.

By this corollary, proven in Appendix D 3, each diag-
onal ww block of the approximate ICM Ã is a banded
1-circulant matrix with bandwidth 2w+ 1. The wavelet
transform implies that the off-diagonal ww blocks are also
banded matrices. Specifically, the off-diagonal ww block at
entry (r, c) of the block matrix Ã is a banded 2c−r-circulant
matrix (∀ c > r) with bandwidth

WIDTH(r, c) := 2w+ 1+ (2c−r − 1)(2K − 1). (55)

However, the ss and sw blocks of Ã are not necessarily
banded matrices. We therefore treat these blocks as dense
matrices.

We now describe a data structure for representing the
block matrix in a multiscale wavelet basis. The date struc-
ture that we describe here takes advantage of the matrix’s
block and circulant structures for efficient storage. In par-
ticular, we use the data structure for storing the multiscale
ICM A, Eq. (32). We store the block matrix in a multiscale
wavelet basis by an associative array, i.e., by a collection
of (key, value) pairs. Each key is a tuple (z, r, c), where
z ∈ {ss, sw, ww} specifies if the block belongs to the ss,
sw, or ww part of the block matrix. The positive integers
r and c, respectively, specify the row and column indices
of the block matrix; these integers also specify the scales to
which the block belongs. The value of the associative array
specifies the block at entry (z, r, c) of the block matrix.
Each block, being a circulant matrix, is specified by a vec-
tor, which is the first row of the block, and two additional
parameters: the block’s size and the amount by which the
vector is shifted when moving from one row to the next.
For our application, each key specifies the block’s size and
the amount by which the vector is shifted. Therefore, the
values are vectors that specify blocks of the block matrix.

The memory requirement for storing a symmetric block
matrix with circulant blocks using the described data stric-
ture is quasilinear in the matrix’s dimension. The fact that
each block matrix is circulant means that we need only to
store one row of each circulant block; the other rows are
shifted versions of the stored row. Assuming unit cost for
storing each element, the cost of storing a block matrix
with circulant blocks is equal to the sum of the row size for
each block, which is altogether quasilinear in the matrix’s
dimension. The symmetry of the matrix reduces this cost

020364-23

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

by a factor of 2. The memory cost can be further reduced
by noting that most of the entries in the vector specify-
ing the circulant blocks are equal to zero. We do not use
this technique because we are only concerned with pro-
ducing a quasilinear algorithm for ground-state generation.
The memory-cost reduction delivers only a constant-factor
improvement and makes the algorithm much more com-
plicated. However, it is an obvious way to improve the
classical preprocessing of the wavelet-based algorithm
further.

We now describe our algorithm’s procedure for comput-
ing the circulant row in unique blocks of the multiscale
ICM A, Eq. (32). To elucidate the algorithm’s procedure,
first we state recursive relations for blocks of the multiscale
ICM. The ICM in a multiscale wavelet basis is obtained by
a wavelet transform from the ICM in a fixed-scale wavelet
basis. Specifically, for d := k − s0,

A(k) = W(k)
d A(k)

ss W(k)T
d , (56)

where W(k)
d , Eq. (A7), is the d-level wavelet-transform

matrix at scale k. By this equation, for scales r and c
with s0 ≤ r ≤ c < k, the wavelet transform imposes the
recursive relations

A(c)
ss = HA(c+1)

ss HT, (57)

A(r,c)
sw = Hc−r+1A(c+1)

ss GT, (58)

A(r,c)
ww = GHc−rA(c+1)

ss GT, (59)

for blocks of the multiscale ICM A and the fixed-scale
ICM A(c+1)

ss , where H and G are the upper and lower half
of W(k)

d , Eq. (A7), respectively. We use these recursive for-
mulae to compute the circulant in unique blocks of the
multiscale ICM A.

We start by computing the circulant row of the bottom-
right block in A and proceed to compute the circulant row
of the top-left block column by column. For each column
c of the block matrix, first we compute the circulant row
of A(c)

ss by Eq. (57). Next we compute circulant row of
the diagonal block in column c using Eq. (59) with r = c.
For each ww block above the diagonal block, i.e., for ww
blocks with row index r form c− 1 to s0, we then iter-
atively update A(c+1)

ss as A(c+1)
ss ← HA(c+1)

ss and compute
circulant row of A(r,c)

ww by A(r,c)
ww = GA(c+1)

ss GT. Finally, we
compute the circulant row of the sw block in column c by
A(s0,c)

sw = A(c+1)
ss GT because A(c+1)

ss in Eq. (58) is updated
c− s0 + 1 times while computing the circulant row of the
ww blocks in column c. The explicit procedure of our
algorithm for computing the circulant rows is presented in
Algorithm 4.

3. UDU decomposition of the ground state’s ICM

Here we present our classical algorithm for computing
the UDU decomposition of the approximate ICM in a mul-
tiscale wavelet basis. First we describe a block variant of
the UDU decomposition for a real-symmetric matrix. Next
we explain how we approximate the UDU decomposition
of the approximate ICM. We then specify the inputs and
outputs for our UDU-decomposition algorithm for a sparse
matrix and explain an efficient method for storing the out-
puts. Finally, we describe our algorithm’s procedure and
present the algorithm as pseudocode.

We begin by describing a block variant for the UDU
decomposition of a dense real-symmetric matrix A that has
a block structure as the matrix in Eq. (32); see Appendix F
for the standard UDU decomposition of A. By Eq. (F1),
we write the UDU decomposition of the block matrix A,
Eq. (32), as

A = UDUT := UVT

=

⎡
⎢⎢⎢⎣

U(s0)
ss U(s0, s0)

sw · · · U(s0, k−1)
sw

U(s0, s0)
ww · · · U(s0, k−1)

ww
. . .

...
U(k−1, k−1)

ww

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

V(s0)
ss V(s0, s0)

sw · · · V(s0, k−1)
sw

V(s0, s0)
ww · · · V(s0, k−1)

ww
. . .

...
V(k−1, k−1)

ww

⎤
⎥⎥⎥⎦

T

, (60)

where

D := D(s0)
ss

k−1⊕
s=s0

D(s)
ww, (61)

is a block-diagonal matrix and

V(s0)
ss := U(s0)

ss D(s0)
ss , V(s0,c)

sw := U(s0,c)
sw D(c)

ww,

V(r,c)
ww := U(r,c)

ww D(c)
ww (s0 ≤ r ≤ c < k), (62)

are blocks of the block matrix V, which has the same block
structure as U. Diagonal elements of D and shear elements
of U are computed in the UDU matrix decomposition. By
Eq. (60), the ith diagonal elements of D(c)

ww and D(s0)
ss are

d(c)
ww; i = a(c,c)

ww; i,i −
k−1∑
s=c

u(c,s)
ww; i,(i+1)δsc:2s−1 · v(c,s)

ww; i,(i+1)δsc:2s−1,

(63)

d(s0)

ss; i = a(s0)

ss; i,i − u(s0)

ss; i,i+1:2s0−1 · v
(s0)

ss; i,i+1:2s0−1

−
k−1∑

s=s0+1

u(s0,s)
sw; i,0:2s−1 · v(s0,s)

sw; i,0:2s−1, (64)

respectively; see also Eq. (F4).

020364-24

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

Algorithm 4. Classical algorithm for computing circulant row in blocks of the ICM, Eq. (32), in multiscale wavelet basis

We now establish formulae to compute shear elements in various blocks of U. For 0 < i < 2s0 , the shear elements in
the ith column of U are the same as the shear elements in the ith column of U(s0)

ss . By Eq. (F5), these elements are

u(s0)

ss; 0:i−1,i =
1

d(s0)

ss; i

⎡
⎣A(s0)

ss; 0:i−1,i − u(s0)

ss; 0:i−1,i+1:2s0−1 · v
(s0)

ss; i,i+1:2s0−1 −
k−1∑

s=s0+1

u(s0,s)
sw; 0:i−1,0:2s−1 · v(s0,s)

sw; i,0:2s−1

⎤
⎦ ∀i �= 0. (65)

For c ≥ s0 and 0 ≤ i < 2c, the shear elements in the (2c + i)th column of U are the elements in the ith column of U(s0,c)
sw

and U(r,c)
ww for s0 ≤ r < c, and the elements above the diagonal entries of U(c,c)

ww . By Eq. (F5), these elements are

u(s0,c)
sw; 0:2s0−1,i =

1

d(c)
ww; i

[
A(s0,c)

sw; 0:2s0−1,i −
k−1∑
s=c

u(s0,s)
sw; 0:2s0−1,(i+1)δsc:2s−1 · v(c,s)

ww; i,(i+1)δsc:2s−1

]
, (66)

u(r,c)
ww; 0:2r−1,i =

1

d(c)
ww; i

[
A(r,c)

ww; 0:2r−1,i −
k−1∑
s=c

u(r,s)
ww; 0:2r−1,(i+1)δsc:2s−1 · v(c,s)

ww; i,(i+1)δsc:2s−1

]
, (67)

u(c,c)
ww; 0:i−1,i =

1

d(c)
ww; i

[
A(c,c)

ww; 0:i−1,i −
k−1∑
s=c

u(c,s)
ww; 0:i−1,(i+1)δsc:2s−1 · v(c,s)

ww; i,(i+1)δsc:2s−1

]
∀i �= 0, (68)

020364-25

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

FIG. 8. Visualization of two ww blocks of the approximate ICM. The left block is a 2-circulant matrix and the right block is a
4-circulant matrix. Each ww block has nonzero elements in the top-right, bottom-left, and main part. The parameter h is the NNZ
elements in the last column at the top-right part of the block; W is the bandwidth and H is the vertical bandwidth of the block. These
parameters specify the location of nonzero entries in the block.

respectively. We use these formulae in our UDU-
decomposition algorithm to compute the nonzero shear
elements of the upper unit-triangular matrix U in the UDU
decomposition of the approximate ICM in a multiscale
wavelet basis.

In our algorithm for the UDU decomposition of Ã, we
compute an approximation of the upper unit-triangular
matrix U. We take the above-diagonal nonzero elements
of U to be in the same position as the above-diagonal
nonzero elements of Ã; we set any entry of U to zero if
the corresponding entry in Ã is also zero. We refer to this
decomposition as the incomplete UDU decomposition by
position.

We specify the location of nonzero entries of the approx-
imate ICM by helper functions. The helper functions return
various parameters that specify nonzero entries in each ww
block of the approximate ICM. As shown in Fig. 8, each

Library 1. Helper functions for location of nonzero elements in blocks of the approximate ICM in multiscale wavelet basis

ww block has nonzero elements in three parts: top-right
part (TRP), bottom-left part (BLP), and main part (MP).
For each block, we compute the following parameters by
the five helper functions in Library 1: (1) the number of
nonzero (NNZ) entries in the last column at the TRP of
the block; (2) bandwidth of the block, which is the num-
ber of cyclically consecutive nonzero entries in each row
of the block; (3) vertical bandwidth of the block, which
is the number of cyclically consecutive nonzero entries in
each column of the block; (4) the column index of the
first and last nonzero entries in the block’s main part for
a given row index; and (5) the row index of the first and
last nonzero entries in the block’s main part for a given
column index. These parameters fully specify the location
of nonzero entries in each ww block.

We now specify inputs and outputs of our UDU-
decomposition algorithm. The algorithm’s inputs are

020364-26

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

parameters that specify unique elements of the approxi-
mate ICM Ã: the wavelet index K, the number of modes N
in the discretized QFT, the upper bandwidth w for diagonal
blocks of Ã, and the circulant row in unique blocks of Ã.
Outputs are shear elements of the approximate upper unit-
triangular matrix Ũ and diagonals of the diagonal matrix D
in the incomplete UDU decomposition of Ã.

The approximate upper unit-triangular Ũ matrix in the
incomplete UDU decomposition has the same sparse and
block-matrix structure as the matrix Ã. We exploit these
structures and store the shear elements of Ũ by a sparse
representation. Similar to sparse representation of Ã, we
represent shear elements in blocks of Ũ by an associa-
tive array, i.e., a collection of (key, value) pairs. Each key
is a tuple (z, r, c), where z ∈ {ss, sw, ww} specifies if the
block belongs to the ss, sw, or ww part of the block matrix.
The positive integers r and c specify the row and column
indices of the block matrix, respectively. The associative
array’s value specifies the shear elements of the block at
entry (z, r, c) of the block matrix. Unlike blocks of Ã,

blocks of Ũ are not circulant matrices, so we cannot spec-
ify each block by a single row of the block. Therefore, each
value in the associative array is a matrix that specifies the
shear elements of a block in the block matrix.

The ss block of Ũ is a unit-triangular matrix. As illus-
trated in Fig. 9(b), we store this block’s shear elements as
a vector of size 2s0(2s0 − 1)/2 by concatenating the shear
elements from top-left to bottom-right corner sequentially
row by row; note that the ss block is a matrix of size
2s0 × 2s0 . Similar to the sw blocks of Ã, the sw blocks of
Ũ are not sparse matrices. Therefore, we store the shear
elements in these blocks by a matrix of the same size.
The diagonal ww blocks are each an upper unit-triangular
matrix. The shear element of Ũ(r,r)

ww are in the same posi-
tion of the above-diagonal nonzero elements of Ã(r,r)

ww ; see
Fig. 9(c). As illustrated in Fig. 9(d), we store the shear ele-
ments of Ũ(r,r)

ww by a matrix of size 2r × w, where w is the
upper bandwidth of the diagonal ww blocks of Ã. The off-
diagonal ww blocks of Ũ are sparse with the same sparse
structure as the off-diagonal ww blocks of Ã. Specifically,

(a) (b) (c) (d)

(e) (f)

FIG. 9. Schematic illustration of our method for storing shear elements in the ss and ww blocks of the upper unit-triangular matrix
in the incomplete UDU decomposition of the approximate ICM in a multiscale wavelet basis. To elucidate how we store the shear
elements, we use gray color with different scales to show the location of nonzero elements in different parts of a block; gray color’s
scale here does not represent the relative magnitude of the elements (a) Visualization of the ss block. This block is an upper unit-
triangular matrix. (b) Visualization of the vector storing the ss block’s shear elements. (c) Visualization of a diagonal ww block. This
block is also an upper unit-triangular matrix. (d) Visualization of the matrix storing shear elements of the diagonal ww block. (e)
Visualization of an off-diagonal ww block. (f) Visualization of the matrix storing the shear elements of the off-diagonal ww block.

020364-27

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

the block Ũ(r,c)
ww with c > r is a banded matrix with band-

width WIDTH(r, c), Eq. (55). We store shear element of
this block by a matrix of size 2r ×WIDTH(r, c), which is
illustrated in Fig. 9(f). For convenience, we use the helper
functions in Library 2 for storing the shear elements in the
ss and ww blocks of Ũ.

We now describe the procedure of our UDU-
decomposition algorithm. We employ the block variant for
the UDU decomposition in our algorithm, but we compute
only the nonzero shear elements in each column of U. The
ss and sw blocks of U are dense matrices, so we compute
all elements of these blocks. The ww blocks, however, are
sparse matrices similar to the ww blocks of Ã. We therefore
use the helper functions in Library 1 to specify the location
of nonzero elements in the ww blocks. We start from the
top-right block of U and proceed to compute the nonzero
shear elements in each block of U column by column. For
each column c of the block matrix U, we compute diago-
nals d(c)

ww; i of D(c)
ww, all elements of U(s0,c)

sw and nonzero shear
elements of U(r,c)

ww for r ∈ {s0, . . . , c}.
To compute the diagonal element d(c)

ww; i, first we com-
pute nonzero elements in the ith row of V(c,s)

ww , Eq. (62), for
s ∈ {c, . . . , k − 1}. Then we multiply each nonzero element
in the ith row of V(c,s)

ww to its corresponding nonzero element
in the ith row of U(c,s) and add the results. Next we negate
the result and add a(c,c)

ww; i,i to obtain d(c)
ww; i. The ith diagonal

element in the ss block of D is computed by a similar pro-
cedure. In this case, we compute all elements in the ith row
of the ss and sw blocks of V, Eq. (62), because these blocks
are dense matrices.

To compute the nonzero shear element at entry (i, j) of a
ww block at entry (r, c) of the block matrix U, we multiply
nonzero elements in the j th row of V(c,s) by their corre-
sponding entries in the ith row of U(c,s) for s ∈ {c, . . . , k −
1}, as per Eq. (67); note that off-diagonal elements of diag-
onal blocks and all elements of off-diagonal blocks are
shear elements. We then add them all and negate the result.
Next we add a(r,c)

ww; i,j to the obtained value and divide the
result by d(c)

ww; i. The final result is the shear element at the
(i, j) entry of (r, c) block of U. The shear elements in the
ss and sw blocks are computed by a similar procedure, but
being dense matrices, all elements in these blocks must be
computed.

D. Quantum algorithms

In this subsection, we construct the quantum routine
of our Fourier- and wavelet-based algorithms for ground-
state generation. The quantum routine of our algorithms
has two subroutines. The first subroutine generates an
approximation for a continuous 1DG state, and the second
subroutine executes a basis transformation.

We have two quantum algorithms for generating a 1DG
state. The first algorithm is presented in Sec. IV D 1, and

the second algorithm, which is based on inequality test-
ing, is described in Sec. IV D 2. We present our algorithm
for quantum fast Fourier transform in Sec. IV D 3, and
the algorithm for quantum shear transform in Sec. IV D 4.
The QFFT and QST algorithms serve as the basis-
transformation subroutine in the Fourier- and wavelet-
based algorithms, respectively.

1. One-dimensional Gaussian-state generation

Here we present our first quantum algorithm for gener-
ating a discrete approximation for a continuous 1DG state,
Eq. (19), on a quantum register. We begin by explain-
ing the inputs and output of the algorithm. We then
describe the involved quantum registers in our algorithm
and explain the algorithm’s procedure. Finally, we present
our algorithm as pseudocode.

The output of our 1DG-state-generation algorithm is a
discrete 1DG state with the standard deviation σ̃ over a
lattice with 2m points and lattice spacing δ; see Sec. III C 1
for a description of our method for approximating a con-
tinuous 1DG state. The discrete 1DG state, Eq. (33), is a
linear combination of basis states | j δ〉, where δ is a real
number. Therefore, the discrete 1DG state can be regarded
as a superposition of real numbers.

For convenience, we use the fixed-point number rep-
resentation [45, p. 255] to treat the real numbers in our
algorithm. Specifically, we consider each real number as a
p-bit number in this representation. The positive integer p
is the working precision in our main algorithms for ground-
state generation. As the largest value for the real numbers
is 2m, we use lattice parameter m to be the radix-point posi-
tion, i.e. the number of bits to the left of the radix point
in the fixed-point number representation. Therefore, the
following parameters are taken as classical inputs to our
1DG-state-generation algorithm: the working precision p ,
the radix-point position m, and the p-bit numbers σ̃ and δ.

To elucidate the procedure of our quantum algorithm,
we now describe various quantum registers involved in the
algorithm. Our algorithm involves the following quantum
registers; all registers start in the all-zero state and have p
qubits unless otherwise specified. (1) out, a register that is
to be prepared in the discrete 1DG state, Eq. (33); (2) std,
a register that stores the value of σ̃ ; (3) spc, a register that
stores the value of δ; (4) mean, a register that stores a mean
value μ; (5) ang, a register that stores a single-qubit rota-
tion angle; and (6) scratch, a O(p)-qubit register used
to assist in various operations throughout the algorithm.
We index the qubits of each register from 0 to p − 1, where
the 0th qubit is the rightmost qubit. The first p − m qubits
in each p-qubit register represent the fractional part of a
number, and the last m qubits represent its integer part in
the fixed-point number representation.

The main strategy to generate the discrete 1DG state,
Eq. (33), is as follows. First we prepare the state

020364-28

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

Algorithm 5. Classical algorithm for UDU decomposition of the approximate ICM in multiscale wavelet basis

020364-29

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

Library 2. Helper functions for storing shear elements of the upper unit-triangular matrix in UDU decomposition

|�(σ̃ , μ, m)〉 := 1√
f (σ̃ , μ, m)

2m−1−1∑
j=−2m−1

e−
(j+μ)2

4σ̃ 2 | j 〉 ,

f (σ̃ , μ, m) :=
2m−1−1∑

j=−2m−1

e−
(j+μ)2

2σ̃ 2 , (69)

with the initial value μ = 0 on the leftmost m qubits of
the p-qubit out register, i.e., the qubits that represent the
integer part of a number. This state is a discrete 1DG
state with the mean value μ over a lattice with unit spac-
ing. The parameter μ is used here because our algorithm
for generating the state in Eq. (69) is iterative, and the
value of μ changes in each iteration. Having prepared the
|�(σ̃ , 0, m)〉, we then transform it into the discrete 1DG
state |Glattice(σ̃ , δ, m)〉 by multiplying j to δ. To this end, we
write the classical input δ into the spc register and imple-
ment the transformation | j 〉out |δ〉spc
→ | j δ〉out |δ〉spc.

The state prepared on the out register is then
|G(σ̃ , δ, m)〉.

We now proceed with a detailed description of the pro-
cedure for generating |�(σ̃ , μ, m)〉. This state is a linear
combination of basis states | j 〉 where j is a signed integer.
Using two’s complement to represent signed integers [45,
p. 16], we recursively decompose the state as

|�(σ̃�, μ�, m�)〉
= |�(σ̃�/2, μ�/2, m� − 1〉 ⊗ cos θ� |0〉
+ |�(σ̃�/2, (μ� + 1)/2, m� − 1)〉 ⊗ sin θ� |1〉 , (70)

where we define the four terms σ̃0 := σ̃ , μ0 := μ, m� :=
m− � and ∀� ∈ {0, . . . , m− 1}

θ� := arccos

√
f (σ̃�/2, μ�/2, m� − 1)

f (σ̃�, μ�, m�)
. (71)

020364-30

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

Library 3. Helper functions for computing shear elements

We use the recursive formula (70) to devise an itera-
tive algorithm for generating |�(σ̃ , μ, m)〉. We start by
writing σ̃ into the std register and μ into the mean

register. For � from 0 to m− 1, we iteratively per-
form the following operations; see the quantum circuit in
Fig. 10.

020364-31

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

 Sec. IV D 1

Library 4. Helper function for 1DG-state generation in Algorithm 6

1. Compute a p-bit approximation for η� := θ�/2π ,
Eq. (71), and store the result in the ang register. We
perform this operation by

ANGLE : |σ̃ 〉std |μ〉mean |0〉ang

→ |σ̃ 〉std |μ〉mean |η〉ang , (72)

which we describe by by ANGLE(std,mean,ang)

in our quantum algorithm.
2. Perform a single-qubit rotation on out[�], the �th

qubit of out, where the angle of rotation is read
from the ang register. The rotation is performed by
implementing the operation

ROT : |η〉ang |0〉out[�]
→ |η〉ang
(
cos(2πη) |0〉out[�]

+ sin(2πη) |1〉out[�]
)

,
(73)

which we describe by ROT (ang,out[�]) in our
algorithm.

3. Erase ang by uncomputing η�. We uncompute η� by
performing the ANGLE, Eq. (72), operation.

4. Divide the numbers stored in std and mean by
two. To divide the number stored in std by two, we

cyclically shift the qubits of this register one qubit to
the right by performing

SHIFT :
∣∣bp−1 . . . b1b0

〉
out

→ ∣∣b0bp−1 . . . b1
〉
out

,
(74)

and then flip the leftmost qubit of std if the �th bit
of the classical input σ̃ is 1. As we start by the initial
value μ = 0, the rightmost qubit of mean remains
in the zero state throughout the computation. There-
fore, to divide the number stored in mean by two,
we perform only SHIFT, Eq. (74), on this register.

5. Add 1/2 to mean if the state of out[�] is |1〉. As we
start by μ = 0, after dividing the value encoded in
mean by two in the previous step, the (p − m− 1)th

qubit of this register is |0〉. Therefore, we add 1/2 to
mean by flipping the state of this qubit from |0〉 to
|1〉.

To simplify the readability of our 1DG-state-generation
algorithm, we describe these iterative operations by a
helper function in Library 4.

By performing the described iterative operations, the
quantum state |�(σ̃ , 0, m)〉, Eq. (69), is prepared on the
first m qubits of the out register. To transform this state
into the integer part of out, we swap the first m qubits

FIG. 10. Quantum circuit for implementing the iterative steps for 1DG-state generation. Positive integers p and m are, respectively,
the total number of bits and position of the radix point in the fixed-point number representation;̸ represents p qubits. ANGLE, Eq. (72),
computes a rotation angle, Eq. (71), into the ang register, ROT, Eq. (73), rotates the �th qubit of out, out[�], by the rotation angle
stored in ang and SHIFT, Eq. (74), cyclically shifts qubits of a register one qubit to the right. The Pauli-X gate X b

i acts on ith qubit of
a register if the binary b is 1. Intermediate results are uncomputed by running the appropriate operations in reverse order.

020364-32

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

Algorithm 6. Quantum algorithm for generating a one-dimensional Gaussian state

with the last m qubits of out. Specifically, we swap the
�th qubit of out with the (p − m+ �)th qubit for � ∈
{0, . . . , m− 1}.

The last step is to transform |�(σ̃ , 0, m)〉 to the desired
discrete 1DG state |Glattice(σ̃ , δ, m)〉, Eq. (33). To this end,
we write the classical input δ into the spc register and
perform the operation

MUL : | j 〉out |δ〉spc |0〉tmp
→ | j 〉out |δ〉spc | j δ〉tmp ,
(75)

which we describe by MUL(out,spc,tmp) in our
algorithm. This operation is an out-of-place multiplication
and, therefore, we need to uncompute the out register. To
uncompute out, we perform the operations that generates
|�(σ̃ , 0, m)〉 in the reverse order. We then swap qubits of
tmp with qubits of out. By this swapping, tmp is erased
and |G(σ̃ , δ, m)〉 is transformed into out.

Finally, we erase the spc and std registers. Note that
the values stored in these registers do not change through-
out the computation. Therefore, we erase spc and std by
writing the classical inputs δ and σ̃ into them, respectively.
The full description of our 1DG-state-generation algorithm
is presented as pseudocode in Algorithm 6.

2. One-dimensional Gaussian-state generation by
inequality testing

We now construct our alternative quantum algorithm for
generating a 1DG state. Our algorithm is based on testing
an inequality on a quantum computer. We begin with a

high-level description for state generation by inequality
testing and our algorithm for 1DG-state generation. Then
we proceed with a detailed description of the algorithm,
and finally, we present our algorithm as pseudocode.

The general principle to prepare a state of the form∑
j f (j) | j 〉 by inequality testing is as follows [15]. First

prepare an equal superposition over | j 〉. Then, for each j ,
compute f (j) into a new quantum register. Next perform
an inequality test between the value encoded in this regis-
ter and the value encoded in an ancillary register prepared
in an equal superposition over all possible values of the
function. Then erase the ancillary register and measure the
qubit storing result of the inequality test. The prepared state
by this method is the desired state with certain probability.
The success probability can then be boosted by ampli-
tude amplification [24]. The complexity of this approach
could be large in the case where the distribution of ampli-
tudes has a sharp peak in an unknown location because the
amplitude amplification would then essentially be solving
a Grover search, which has a square-root speed limit [24].

The amplitude distribution for a Gaussian state has a
single peak but in a known location, and we take advan-
tage of the known location in preparing a Gaussian state.
Our approach for using the known location is similar to
that used for preparing a state with amplitudes 1/‖kν‖ in
Ref. [46]. Instead of initially preparing a state with an
equal superposition over j , we prepare a state with approx-
imate amplitudes upper bounding the amplitudes to be
prepared, as shown by the orange points in Fig. 5. Instead
of computing f (j), we compute the ratio between f (j) and

020364-33

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

the initial upper bound on f (j) and perform an inequal-
ity test with that ratio. The inequality test corrects the
amplitudes and results in a much larger amplitude for suc-
cess. Hence only a single step of amplitude amplification
can be used, which significantly reduces the algorithm’s
complexity.

We now proceed with a detailed description of the
inequality-testing-based algorithm for Gaussian-state gen-
eration. The state that we aim to prepare by inequality
testing is

|�(σ , m)〉 := 1√N (σ , m)

2m−1−1∑
j=−(2m−1−1)

e−
j 2

4σ2 | j 〉 ,

N (σ , m) := 1+ 2
2m−1−1∑

j=1

e−
j 2

2σ2 , (76)

with classical inputs m ∈ Z+ and σ ∈ R+.
Having prepared this state on a quantum register, labeled

out, we then incorporate a lattice spacing δ ∈ R+ by
implementing | j 〉out
→ | j δ〉out as per Eq. (75). Thereby
an approximation for the desired 1DG state, Eq. (33), is
prepared on out. Considering the range of the index j in
Eq. (76) and Eq. (33), the infidelity between the approxi-
mate and the desired 1DG states is exponentially close to
zero.

Our strategy to prepare the state in Eq. (76) by inequality
testing is as follows. First we prepare the state

|�+(σ , m)〉 = 1√N (σ , m)

⎛
⎝|0〉 + √2

2m−1−1∑
j=1

e−
j 2

4σ2 | j 〉
⎞
⎠ ,

(77)

on m qubits. Controlled on j �= 0, we then perform a
Hadamard on the leftmost qubit. The controlled operation
gives a sign bit for j being a signed integer with positive
and negative values. Then we convert from signed integer
to two’s complement representation [45, p. 16] to obtain
the state in Eq. (76).

To prepare the state in Eq. (77), we use an initial ampli-
tude according to the value of j rounded down to the
nearest power of 2; the initial amplitude is illustrated by
orange points in Fig. 5. Specifically, the initial state that
we prepare is
∣∣∣�̃+(σ , m)

〉

= 1√
Ñ (σ , m)

⎛
⎝|0〉 +√2

2m−1−1∑
j=1

e−22�log2 j �/4σ 2 | j 〉
⎞
⎠,

Ñ (σ , m) := 1+ 2
2m−1−1∑

j=1

e−22�log2 j �/2σ 2
, (78)

where Ñ (σ , m) is the state’s normalization factor. Having
prepared this initial state, we then transform it to the state
in Eq. (77) by inequality testing. To prepare the initial state,
first we prepare the state

1√M(σ , m)

⎛
⎝|0〉⊗m +

m−1∑
j=1

2j /2e−22(j−1)/4σ 2 |0〉⊗(m−j) |1〉⊗j

⎞
⎠,

M(σ , m) := 1+
m−1∑
j=1

2j e−22(j−1)/2σ 2
, (79)

on an m-qubit register G. Then we sequentially perform
a CNOT followed by a controlled Hadamard (CHAD) from
G[�] to G[�− 1] for � from 1 to m− 1; note that quits
are ordered from right to left, so the rightmost qubit is 0th

qubit. Upon performing these operations, the initial state,
Eq. (78), is generated on register G.

We now describe how to transform the initial state,
Eq. (78), into the state in Eq. (77) by inequality testing.
Let us define r0 := 1,

rj := exp
(

22�log2 j � − j 2

4σ 2

)
∀j ∈ {j = 1, . . . , 2m − 1},

(80)

for the ratio of the unnormalized amplitudes from Eq. (77)
to the unnormalized amplitudes from Eq. (78). For some
positive integer t, we compute a t-bit approximation of
rj into a t-qubit temporary register, labeled tmp, by an
operation defined as

RATIO : | j 〉out |σ 〉std |0〉tmp
→ | j 〉out |σ 〉std
∣∣rj
〉
tmp

,
(81)

which we describe by RATIO(out,std,tmp) in our quan-
tum algorithm. As the ratio rj ≤ 1 for each j , the encoded
t-bit string in tmp represents the value of rj , Eq. (80),
with an implied division by 2t. Next we prepare a t-qubit
reference register, labeled ref, in the uniform superpo-
sition state 2−t/2∑2t−1

z=0 |z〉 using t Hadamard gates. With
an implied division of the encoded value by 2t, the reg-
ister ref can be viewed as being prepared in a uniform
superposition of all possible values from 0 to 1. Finally, we
test an inequality between the value encoded in tmp and
the value encoded in ref with the result of the inequality
test written to a fresh qubit labeled ineq. Specifically, we
perform a comparison operation defined as

COMP : |r〉tmp |z〉ref |0〉ineq

→
{
|r〉tmp |z〉ref |0〉ineq if r < z,
|r〉tmp |z〉ref |1〉ineq if r ≥ z,

(82)

where r and z are t-bit numbers; this operation is described
by COMP(tmp,ref,ineq) in our quantum algorithm. The

020364-34

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

state after inequality testing is

∣∣�comp
〉

:= 1√
Ñ (σ , m)2t

2m−1−1∑
j=0

g(j) | j 〉out
∣∣rj
〉
tmp

×

⎛
⎜⎝

r(t)j −1∑
z=0

|z〉ref |0〉ineq +
2t−1−1∑

z=r(t)j

|z〉ref |1〉ineq

⎞
⎟⎠,

(83)

where Ñ (σ , m) is the normalization factor in Eq. (78),
r(t) := �2trj � and

g(0) := 1, g(j) :=
√

2 exp
(
−22�log2 j �

4σ 2

)

∀ j ∈ {1, . . . , 2m − 1},
(84)

are the unnormalized amplitudes in Eq. (78). Next we
unprepare the uniform superposition on ref with t
Hadamard gates. Then projecting the single qubit ineq
onto the success state |0〉ineq yields

|�out〉 := 1√
Ñ (σ , m)2t

∑
j

g(j)r(t)
j | j 〉 , (85)

with success probability

Psuccess := 1

Ñ (σ , m)22t

∑
j

(
g(j)

⌊
2trj

⌋)2 . (86)

Figure 11 shows the success probability for a wide range
of the standard deviation, and realistic size (number of
qubits m) for the quantum register encoding the 1DG state.

0.01 0.10 1 10 100 1000

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Standard deviation

Su
cc

es
s

pr
ob

ab
ili

ty

m = 3
m = 4
m = 5
m = 6
m = 7
m = 8
m = 9
m = 10
m = 11
m = 12
m = 13
m = 14
m = 15

FIG. 11. The success probability for preparing a 1DG state
by inequality testing for a wide range of standard deviation and
number of qubits m; see Eq. (76). The success probability is at
least about 70%.

The success probability is greater than 0.67 ≈ 2/3 for any
realistic example. Therefore, one step of amplitude ampli-
fication is sufficient to achieve a high success probability.
However, as 1DG-state preparation is at the beginning of
the main algorithm for ground-state generation, it would be
sufficient to prepare the state probabilistically and repeat
until success. As the probability of success is at least about
70%, the repeat-until-success procedure is more efficient
on average than amplitude amplification.

The state in Eq. (79) is a unary state, which can be pre-
pared by rotations and controlled rotations [47, pp. 7–8].
We now describe how to prepare this state on an m-qubit
register out by these operations. To this end, first we
compute the rotation angles θ� in

sin(θ�) =
√

22�/2e−
22�

4σ2

√M(σ , �+ 2)
∀� ∈ {0, . . . , m− 2}, (87)

with M(σ , �) given in Eq. (79), by a classical algorithm.
Then we perform the following operations:

1. Perform a single-qubit rotation with angle θm−2 on
out[m− 2]; out[i] denotes the ith qubit of out.

2. For � from m− 3 to zero, perform a CNOT from
out[�+ 1] to out[�], and a single-qubit rotation
with angle θ� on out[�] if state of out[�+ 1] is
|0〉. We perform the controlled rotation by

CROT : |b〉out[�+1] |η〉ang |0〉out[�]

→ |b〉out[�+1] ROT1−b |η〉ang |0〉out[�] , (88)

where ROT1 := ROT, Eq. (73), and ROT0 := 1.
This operation is described by CROT(out[�+
1],ang,out[�]) in our algorithm.

3. If j �= 0, perform a Hadamard on out[m− 1], i.e.,
the leftmost qubit of out. To do this, we test an
inequality between the value j encoded in out reg-
ister and the value 0 encoded in ref register, and
write the result of inequality test to a fresh qubit
labeled flag. Then we perform a CHAD from flag
to out[m− 1]. That is, we perform a Hadamard on
out[m− 1] if state of flag is |1〉. Finally, we erase
flag.

4. Convert the signed integer encoded in out to its
two’s complement representation.

The classical algorithm for computing the rotation angles
is formally described by the helper function in Library 7.
The purpose of this helper function is only to distinguish
the classical versus quantum parts of the state-generation
algorithm by inequality testing presented as pseudocode in
Algorithm 7.

020364-35

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

Library 5. Helper functions for 1DG-state generation in Algorithm 7

3. Quantum fast Fourier transform

Here we present our quantum algorithm for perform-
ing a discrete Fourier transform on a quantum com-
puter. We begin by specifying the task here and distin-
guishing it from the standard quantum Fourier transform
[42, Chap. 5]. We then explain how a classical fast Fourier
transform algorithm can be modified for execution on a
quantum computer. We next explain that, for our purposes,
the usual complex-valued DFT can be replaced with the
DHT. Finally, we present a detailed description of our
quantum algorithm for performing a DHT on a quantum
computer.

For a given positive integer N and a complex-valued
vector x = (x0, x1, . . . , xN−1), the DFT of x is a complex-
valued vector x̃ = (x̃0, x̃1, . . . , x̃N−1) with components

x̃� := 1√
N

N−1∑
�′=0

x�′e−2π i��′/N . (89)

A quantum fast Fourier transform is then a quantum circuit
QFFT designed so that

QFFT : |x0〉 |x1〉 · · · |xN−1〉
→ |x̃0〉 |x̃1〉 · · · |x̃N−1〉 , (90)

where x̃�, Eq. (89), are components of the transformed vec-
tor x̃. Note that QFFT is distinct from the standard quantum
Fourier transform [42, p. 217], which is defined as

QFT : |�〉
→ 1√
N

N−1∑
�′=0

e−2π i��′/N
∣∣�′〉

∀� ∈ {0, 1, . . . , N − 1}, (91)

for any N -dimensional qudit. Specifically, in contrast to the
standard quantum Fourier transform, the QFFT requires
the quantum computer to perform arithmetic operations.

There are well-known techniques to execute the DFT
on a classical computer using O(N log2 N) arithmetic
operations, rather than the O(N 2) required by a naive
implementation. Such techniques are called “fast Fourier
transforms.” Fast Fourier transforms can be straight-
forwardly ported to quantum algorithms by execut-
ing the prescribed arithmetic operations reversibly [21].
These arithmetic operations always take the form of an

in-place transformation (a, b)
→ (a+ ωb, a− ωb), called
“butterfly” operation, for a, b ∈ C read from the input array
and ω ∈ C some precomputed constant. As per the cost
model in Sec. III A 3, we assign a unit cost for each butter-
fly operation, as the overall operation is roughly as com-
putationally expensive as multiplication. Hence we can
execute any fast Fourier transform on a quantum computer
and report the same complexity of O(N log2 N).

The problem with the QFFT is that the resulting rep-
resentation for the Gaussian state requires us to have
complex-valued position states, Eq. (19). As all opera-
tions for ground-state generation require only real num-
bers, we avoid the complex numbers required by the
DFT and instead use a discrete Hartley transform, which
requires only real numbers [43, p. 100]. The DHT is valid
because the ground-state ICM in the Fourier-based method
(Sec. III C 2) is a real, symmetric, and circulant matrix,
and hence is diagonalizable by a DHT [22, Theorem 1].
The fast Hartley transform has a similar structure to the
fast Fourier transform but with a different butterfly opera-
tion [48]. The number of butterfly operations is the same.
Hence, by porting these operations to quantum algorithms,
we achieve the same quantum complexity of O(N log2 N)

for executing a fast Hartley transform on a quantum
computer.

We replace the discrete Fourier transform circuit QFFT,
Eq. (90), by a new circuit QFHT defined so that

QFHT : |x0〉 |x1〉 · · · |xN−1〉
→ |x0〉 |x1〉 · · · |xN−1〉 ,

x� := 1√
N

N−1∑
�′=0

x�′ cas(2π��′/N), (92)

where the cas function is defined as cas(θ) := cos(θ)+
sin(θ) and x� are components of the vector x, the DHT of x.
Analogous to the distinction between QFFT and the stan-
dard quantum Fourier transform, the QFFT is distinct from
the standard quantum Hartley transform [49,50], which is
defined as

QHT : |�〉
→ 1√
N

N−1∑
�′=0

cas(2π��′/N)
∣∣�′〉

∀ � ∈ {0, 1, . . . , N − 1}, (93)

for any N -dimensional qudit.

020364-36

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

Algorithm 7. Quantum algorithm for generating a one-dimensional Gaussian state by inequality testing

To elucidate our QFHT algorithm, first we describe a
recursive decomposition for the DHT. Let xE and xO be
vectors comprised of the even- and odd-indexed compo-
nents of x, Eq. (92), respectively, and let xL and xR be
the left half and the right half of x, respectively. Then the
Hartley-transformed vector x, Eq. (92), is written as [51,
Chap. 25]

xL = xE + CHS (xO) , xR = xE − CHS (xO) , (94)

where CHS is the classical Hartley-shift operation with
action

CHS : (x0, x1, . . . , xN−1)
→ (xs
0, xs

1, . . . , xs
N−1),

xs
� := x� cos(π�/N)+ xN−� sin(π�/N). (95)

The decomposition in Eq. (94) enables a recursive
algorithm for the DHT. The recursive algorithm requires
a temporary workspace for writing the results of interme-
diate computations. We avoid the need for a temporary
workspace by writing the algorithm in a nonrecursive
way and performing in-place operations. Our in-place
algorithm requires a quantum-data reordering, similar to
the data-reordering operation known as “bit reversal” in
the classical FHT algorithm. The bit reversal reorders the
input data vector x such that the data xi at an index i is
swapped with the data xREV(i) at index REV(i), where REV(i)
is an integer obtained from i by reversing its binary digits.

Our QFHT algorithm is based on three key quantum
operations that we define here. The first operation is a
quantum version of the classical bit-reversal operation and

020364-37

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

is defined as

QREV : |x0〉vac[0] |x1〉vac[1] · · · |xN−1〉vac[N−1]

→ ∣∣xREV(0)

〉
vac[0]

∣∣xREV(1)

〉
vac[1] · · ·

∣∣xREV(N−1)

〉
vac[N−1] ,

(96)

where REV is the classical bit reversal. This operation
swaps the values encoded in the registers vac[i] and
vac[REV(i)] by swapping qubits of these registers; see the
helper function QREV in line (1) of Library 6. The second
key operation in our algorithm is a quantum Hartley shift
defined as

QHS : |x0〉 |x1〉 · · · |xN−1〉
→
∣∣xs

0

〉 ∣∣xs
1

〉 · · · ∣∣xs
N−1

〉
, (97)

where xs
� is given in Eq. (95). Notice that this operation is

a quantum version of the classical Hartley shift, Eq. (95).
We implement QHS by N/2 applications of a primitive
quantum Hartley-shift operation defined as

HS : |c〉cos |s〉sin |x〉vac[i] |y〉vac[j]

→ |c〉cos |s〉sin |xc+ ys〉vac[i] |xs− yc〉vac[j] , (98)

where the values encoded in the quantum registers labeled
cos and sin are, respectively, the cosine and sine in
Eq. (95); see the helper function QHS in line (6) of
Library 6. The third key operation used in the QFHT
algorithm is a quantum butterfly operation defined as

QBF : |x〉vac[i] |y〉vac[j]
→ |x + y〉vac[i] |x − y〉vac[j] ,
(99)

which we describe by QBF(vac[i],vac[j]) in our quantum
algorithm. All of these operations can be implemented by
quantum arithmetic, specifically the quantum multiplica-
tion MUL, Eq. (75); see Sec. IV E 4.

The QFHT algorithm proceeds as follows; see Fig. 12
for a schematic description of the algorithm. First we
reorder the size-N input state vector to the algorithm

by implementing the QREV, Eq. (96), operation. Then
the algorithm has log2 N stages. For each stage s ∈
{1, . . . , log2 N }, we group the reordered state vector into
N/2s blocks of size-2s state vectors and perform the QHS,
Eq. (97), on the right half of the state vector in each block.
Then, for � ∈ {0, . . . , 2s/2− 1}, we perform QBF, Eq. (99),
on the �th component of the left and right halves of the state
vector in each block. Figure 12 shows a schematic repre-
sentation of the QFHT algorithm for N = 8. Components
of the input state vector in this figure is represented from
top to bottom. Hence the top and bottom halves of the state
vector in each block represented in Fig. 12 corresponds to
the left and right halves of the state vector in the block
when the state vector is represented from left to right as in
Eq. (97).

4. Quantum shear transform

We now present a quantum algorithm for performing
a shear transform on a quantum computer. We begin by
specifying the task in a shear transform and describe the
quantum shear transform. Next we explain how a sequence
of shear transforms with exactly one shear element can
implement a general shear transform. We then discuss the
shear transform required for the basis transformation in the
wavelet-based algorithm. We specify the inputs and out-
puts of our QST algorithm and proceed with explaining
the procedure. Finally, we present the QST algorithm as
pseudocode.

For a shear transform, we are given a scalar N ∈ Z+,
a vector x = (x0, x1, . . . , xN−1) ∈ RN and a shear matrix
S ∈ RN×N , where the shear matrix is either a lower or
an upper unit-triangular matrix. The shear transform x̃ =
(x̃0, x̃1, . . . , x̃N−1) of x specified by the shear matrix S is
defined so that x̃ = Sx. For our application, we consider
only a shear transform with an upper unit-triangular shear
matrix. In this case,

x̃i = xi +
N−1∑

j=i+1

Sij xj , (100)

Library 6. Helper functions for quantum fast Hartley transform in Algorithm 8

020364-38

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

FIG. 12. Schematic description of our quantum fast Hartley-transform algorithm for N = 8; see Eq. (92). Here vac is a quantum
register with eight cells, and each cell comprises p qubits encoding a p-bit number. QREV, Eq. (96), reorders the values encoded in the
input state-vector by swapping qubits of vac[i] and vac[REV(i)], where REV(i) is an integer obtained from i by reversing its binary
digits. The algorithm has log2 N stages after QREV, each of which comprises N/2 QBF, Eq. (99), operations represented by crossed
lines; there are N/2s blocks of QBF operations at stage s ∈ {1, . . . , log2 N } and each block comprises 2s/2 QBF. QHS performs the
Hartley-shift operation on its input state vector as per Eq. (97).

is the shear transform x̃ of x.
The quantum shear transform is similar to the quantum

fast Fourier transform. Specifically, the QST specified by
S is a quantum circuit QST designed so that

QST : |x0〉 |x1〉 · · · |xN−1〉
→ |x̃0〉 |x̃1〉 · · · |x̃N−1〉 , (101)

where x̃i are components of the shear-transformed vec-
tor. A shear matrix S is not unitary, so the map |x〉
→
|Sx〉 cannot be directly implemented by a quantum circuit.
However, by storing the shear elements of S on an ancil-
lary quantum register and performing quantum arithmetic,
this map can be implemented by a quantum circuit.

To elucidate implementation of QST, Eq. (101), by a
quantum circuit, first we describe how to decompose a

dense shear matrix as a product of shear matrices with
exactly one shear element. Let U be an N -by-N upper
unit-triangular matrix and let S(i, j , s) be a N -by-N upper
unit-triangular shear matrix with one shear element s ∈ R

at entry (i, j) with i < j . We decompose U into a product
of shear matrices with exactly one shear element as

U =
0∏

i=N−2

i+1∏
j=N−1

S
(
i, j , uij

)
, (102)

where uij are elements of the matrix U. This decomposition
implies that a general shear transform can be implemented
by performing a sequence of shear transforms with exactly

Algorithm 8. Quantum fast Hartley transform

020364-39

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

one shear element. Therefore, we consider only a shear
transform with one nonzero shear element.

The required shear transform for basis transformation in
the wavelet-based algorithm is the inverse transpose of the
upper unit-triangular matrix U in the UDU decomposition
for the ground-state ICM in a multiscale wavelet basis. By
Eq. (102), we decompose this matrix as

(
UT)−1 =

0∏
i=N−2

i+1∏
j=N−1

ST (i, j ,−uij
)

, (103)

where we use the fact that the inverse of a shear matrix with
one shear element is a shear matrix with the shear element
negated. To implement the shear transform specified by the
shear matrix ST(i, j ,−uij) by a quantum circuit, we write
the shear element s = −uij into a p-qubit register labeled
shear and implement

|s〉shear |x〉vac[i] |y〉vac[j]

→ |s〉shear |x〉vac[i] |y + sx〉vac[j] , (104)

where vac[i] and vac[j] are two p-qubit quantum regis-
ters that store the two p-bit numbers x and y, respectively.
Notice that this map is identical to the quantum multipli-
cation MUL in Eq. (75). Hence we implement the map by
performing one MUL, Eq. (75), operation and describe it by
MUL(shear,vac[i],vac[j]) in our quantum algorithm.

We now discuss the inputs and output of our quantum
algorithm for performing the required shear transform for
ground-state generation. Inputs to the algorithm are N p-
qubit quantum states and the parameters that specify the
shear matrix U in the UDU decomposition of the approx-
imate ICM: wavelet index K, number of modes N , the
upper bandwidth w, Eq. (54), and shear elements of U. The
algorithm’s output is an (N × p)-qubit quantum state that
represents an approximation for the ground state, Eq. (31),
of the discretized QFT in a multiscale wavelet basis.

We now describe the procedure of our quantum
algorithm for performing the shear transform specified by
the shear matrix in Eq. (103). To perform this shear trans-
form, we need to perform a sequence of shear transforms
with one shear element; order of the shear transforms is
imposed by Eq. (103). We start by performing the right-
most shear transform in Eq. (103) and proceed to perform
the leftmost shear transform. That is, we start by i = 0 and
proceed to i = N − 1, and for each i we perform the shear
transform defined by ST(i, j ,−uij) for j > i.

The inputs, output, and explicit procedure of our quan-
tum algorithm for performing the needed shear transform
for ground-state generation is presented by the pseudocode
in Algorithm 9. In this algorithm, we use the helper func-
tions in Library 7 and our method for storing the nonzero
shear elements—described in Sec. IV C 3 and illustrated in
Fig. 9—to find the location of the nonzero shear element

in the shear matrix and perform only the shear transform
induced by these elements.

E. Complexity analysis

In this subsection, we analyze time complexity for our
two ground-state-generation algorithms with respect to the
primitive operations discussed in Sec. III A 3. We begin,
in Sec. IV E 1, by analyzing time complexity for classical
preprocessing of the Fourier-based algorithm and present
time complexity for the wavelet-based algorithm’s classi-
cal preprocessing in Sec. IV E 2. The time complexity for
our quantum algorithm for generating a one-dimensional
Gaussian state is discussed in Sec. IV E 3. We analyze
time complexity for the quantum fast Fourier-transform
algorithm and the quantum shear-transform algorithm in
Sec. IV E 4 and Sec. IV E 5, respectively. Finally, we put
all complexities together in Sec. IV E 6 and discuss the
overall time complexity for the Fourier- and wavelet-based
algorithms.

1. Classical preprocessing in Fourier-based algorithm

Here we analyze time complexity for classical pre-
processing in the Fourier-based algorithm. Following
Algorithm 1, classical preprocessing involves comput-
ing various elementary functions, such as logarithm and
trigonometric functions, and has two key subroutines:
computing the second-order derivative overlaps, Eq. (13),
and eigenvalues of the ground state’s ICM. First we
discuss time complexity for computing the elementary
functions and then analyze the key subroutines’ time com-
plexity. Finally, we build on these complexities and discuss
the overall complexity of classical preprocessing.

The elementary functions used in various subroutines of
the classical preprocessing in Algorithm 1 are logarithm,
square-root, inverse-square-root, and trigonometric func-
tions. The time complexity for computing these functions
is analyzed with respect to time complexity for performing
multiplication [39]. Multiplication is a primitive operation
in our cost model and has a unit cost. Therefore, as per
Sec. II D, the time complexity for computing square root
or inverse square root of a number in our cost model is
O(1), and the time complexity for computing logarithm or
trigonometric functions to precision p are each O(log p).

We now proceed with analyzing time complexity for
computing the second-order derivative overlaps, Eq. (13).
We compute these overlaps by Algorithm 11 using
Beylkin’s method [44]. The derivative overlaps in this
method are elements of the unique solution vector for
a system of 2K linear algebraic equations with 2K −
1 unknowns; see Appendix C. The standard algorithm
for solving the system of linear equations is based on
Gaussian elimination that requires O(K3) basic arithmetic
operations. Hence the time complexity for computing the

020364-40

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

Library 7. Helper functions for quantum shear transform in Algorithm 9

020364-41

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

Algorithm 9. Quantum algorithm for a shear transform

derivative overlaps is cubic with respect to the wavelet
index K.

We compute eigenvalues of the ground state’s ICM by
Algorithm 3. By the lines (3)–(4) of this algorithm, com-
puting each eigenvalue requires performing O(K) basic
arithmetic operations and computing two elementary func-
tions: square root and cosine. The square-root function is
computed once, and cosine is computed O(K) times. By
time complexity for computing these functions, comput-
ing each eigenvalue requires O(K log p) basic arithmetic
operations. Therefore, time complexity for computing the
eigenvalues is

Teigens ∈ O(NK log p), (105)

because N eigenvalues are computed.
We lastly put all complexities together to achieve

the overall time complexity for classical preprocessing
in the Fourier-based algorithm. Following Algorithm 1,
classical preprocessing requires computing the working
precision p , the second-order derivative overlaps �, eigen-
values λ of the ICM, lattice spacing δ and the standard
deviation σ̃ for the discrete 1DG states. Computing p
requires computing one inverse-square-root function and
one logarithm function. Computing δ and σ̃ , respectively,
require computing one and N inverse-square-root func-
tions. Therefore, by the time complexities for computing
logarithm and inverse-square-root functions, the time com-
plexity for computing p , δ, and σ̃ are O(log p),O(1), and

O(N), respectively. The combination of these complexi-
ties with the complexity for computing � and λ yields
O(K3 + NK log p). As p , Eq. (49), is logarithmic in N ,
the overall time complexity for classical preprocessing is
quasilinear in the number of modes N .

2. Classical preprocessing in wavelet-based algorithm

We now analyze time complexity for classical prepro-
cessing in the wavelet-based algorithm. In contrast to
Algorithm 1, classical preprocessing in the wavelet-based
algorithm, Algorithm 2, has two unique subroutines: com-
puting the circulant row in unique blocks of the ground
state’s ICM and the UDU decomposition for the approx-
imate ICM. First we elaborate on the time complexity
for these unique subroutines and then discuss the over-
all time complexity for classical preprocessing in the
wavelet-based algorithm.

We begin by analyzing time complexity for Algorithm 4,
which computes the circulant row in unique blocks of
the approximate ICM. This algorithm involves computing
eigenvalues of the ground-state ICM, the low-pass filters,
Eq. (1), and the circulant row of the fixed-scale ICM A(c)

ss ,
Eq. (24), at scale c for c ∈ {s0, . . . , k}. The time complexity
to compute the low-pass filters for Daubechies K wavelets
with precision p is

Tlowpass ∈ O(K log5 K log (3K + p)), (106)

see Appendix B. As per lines (3)–(4) of Algorithm 4,
computing circulant row of A(k)

ss requires performing one

020364-42

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

division, �(N) multiplications, N additions, and comput-
ing N cosine functions. Computing trigonometric func-
tions with precision p require O(log p) basic arithmetic
operations; see Sec. II D. Therefore, time complexity to
compute circulant row of A(k)

ss is O(N log p). Computing
circulant row of A(c)

ss by circulant row of A(c+1)
ss requires

�(K2c) basic arithmetic operations. Therefore, the overall
time complexity to compute the circulant rows of A(c)

ss for
c ∈ {s0, . . . , k − 1} is

Tss
circ ∈ �(K2k) = �(KN), (107)

where we use k = log2 N . By a similar analysis, following
lines (8)–(18) of Algorithm 4, we obtain

Tsw
circ ∈ �(KN log2 N), Tww

circ ∈ �(KN log2 N), (108)

for time complexity to compute circulant rows in the
sw and ww blocks of the ground-state ICM. The time
complexity to perform the rest of computation is

Thighpass ∈ O(K), (109)

the high-pass filters in lines (6)–(7) of Algorithm 4. Alto-
gether, Eqs. (105) to (109) and the fact that p is logarithmic
in the numbers of modes N , yield

Tcirc = Teigens + Tlowpass + Tss
circ + Tsw

circ + Tww
circ + Thighpass

∈ O(KN log2 N), (110)

for the overall time complexity to compute the circulant
rows.

We now proceed with analyzing time complexity for our
UDU-decomposition algorithm presented in Algorithm 5.
This algorithm computes diagonal elements of the diagonal
matrix D and shear elements of the upper unit-triangular
matrix U in the UDU decomposition of the approximate
ICM Ã. We separately analyze time complexity for com-
puting the diagonal elements and time complexity for com-
puting the shear elements. The sum of these complexities
then yields the UDU decomposition’s time complexity.

First we analyze time complexity for computing diag-
onal elements of D, which, as per Eq. (61), is a block-
diagonal matrix whose blocks are diagonal matrices D(s0)

ss
and D(c)

ww for s0 ≤ c < k. Computing ith diagonal element
d(c)

ww; i of D(c)
ww according to Eq. (63) requires computing

nonzero elements in ith row of V(c,s)
ww , Eq. (62), for each

s ∈ {c, . . . , k − 1}, multiplying each nonzero element in ith

row of U(c,s)
ww , Eq. (60), by its corresponding element in ith

row of V(c,s)
ww and adding them all. The number of nonzero

elements in each row of V(c,s)
ww is at most WIDTH(c, s),

where WIDTH(c, s), Eq. (55), is bandwidth of the block
Ã(c,s)

ww and, by Eq. (62), computing each nonzero element
of V(c,s)

ww requires one multiplication. Therefore, comput-
ing each of the 2c diagonal elements of D(c)

ww requires at

most 3
∑

s WIDTH(c, s) basic arithmetic operations. Conse-
quently, time complexity to compute all diagonal elements
in the ww blocks of D is

Tww
diags =

k−1∑
c=s0

2c ×
(

3
k−1∑
s=c

WIDTH(c, s)

)
∈ O(KN log2 N),

(111)

where we use k = log2 N .
By a similar analysis, we obtain time complexity to

compute diagonal elements in the ss block of D. To com-
pute ith diagonal element in this block, we compute all
elements in the ith row of the ss and sw blocks of V because
these blocks are dense matrices. Being dense blocks, the
sum of nonzero elements in any row of the ss and sw blocks
is at most N , the number of columns of V. Therefore, com-
puting each diagonal element requires at most 3N basic
arithmetic operations, so we have Tss

diags = 2s0 × (3N) for
time complexity to compute diagonal elements in the ss
block of D. This equation together with Eq. (111) yields

Tdiags = Tss
diags + Tww

diags ∈ O(KN log2 N), (112)

for the time complexity to compute all diagonal elements
of D.

We now analyze time complexity for computing shear
elements of U in the UDU decomposition. As per Eq. (60),
U is a block matrix with three types of blocks: ss, sw,
and ww blocks. By Eq. (66), computing the shear element
at entry (m, i) of the sw block U(s0,c)

sw requires multiply-
ing each nonzero element in mth row of U(s0,s)

sw by its
corresponding element in mth row of V(c,s)

ww , Eq. (62), for
s ∈ {c, . . . , k − 1} and adding them all. The NNZ elements
in each row of V(c,s)

ww is at most WIDTH(c, s), Eq. (55),
hence computing each shear element of U(s0,c)

sw requires at
most 2

∑
s WIDTH(c, s) basic arithmetic operations. Being

a dense matrix, U(s0,c)
sw has 2s0 × 2c shear elements and,

therefore, we have

Tsw
shear =

s0∑
c=k−1

[(
2s0 × 2c)×

(
2

k−1∑
s=c

WIDTH(c, s)

)]

∈ O(KN log2 N), (113)

for time complexity to compute all shear elements in the
sw blocks of U. Likewise, by Eq. (67), computing each
shear element of the ww block U(r,c)

ww requires at most
2
∑

s WIDTH(c, s) basic arithmetic operations. This block
is a sparse matrix with at most 2r ×WIDTH(r, c) shear

020364-43

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

elements. We therefore achieve

Tww
shear =

s0∑
c=k−1

⎡
⎣
⎛
⎝

c∑
r=s0

2r ×WIDTH(r, c)

⎞
⎠

×
(

2
k−1∑
s=c

WIDTH(c, s)

)⎤
⎦ ∈ O(KN log2 N),

(114)

for time complexity to compute all shear elements in the
ww blocks of U.

A similar analysis yields the time complexity Tss
shear to

computing all shear elements in the ss bock of U. By
Eq. (65), computing the shear element at entry (m, i) of
the ss block requires multiplying each nonzero element in
mth row of this block by its corresponding element in mth

row of the ss block of V, multiplying each nonzero ele-
ment in mth row of U(s0,s)

sw by its corresponding element in
mth row of V(s0,s)

sw for every s ∈ {s0, . . . , k − 1} and adding
them all. As the ss and sw blocks of U are dense matri-
ces, computing each shear element in the ss block requires
at most 2N basic arithmetic operations and because the ss
block has 2s0 × (2s0 − 1)/2 ∈ �(K2) shear elements, we
have Tss

shear ∈ O(K2N). The sum of this time complexity
by the time complexities in Eq. (113) and Eq. (114) yields

Tshear = Tss
shear + Tsw

shear + Tww
shear ∈ O(K2N log2 N), (115)

for time complexity to computing all shear elements of
U. Finally, by the time complexities for computing the
diagonal, Eq. (112), and shear elements, Eq. (115), we
obtain

TUDU = Tdiags + Tshear ∈ O(K2N log2 N), (116)

for the UDU decomposition’s time complexity.
We finally discuss the overall time complexity for

classical preprocessing in the wavelet-based algorithm.
Classical preprocessing in Algorithms 1 and 2 have four
identical subroutines: computing (1) working precision p;
(2) second-order derivative overlaps �; (3) lattice spac-
ing δ; and (4) the vector σ̃ of standard deviations for
the approximate 1DG states. As per the discussion in
Sec. IV E 1, the overall time complexity for these subrou-
tines is O(N). By the combination of this time complexity
with the time complexities for the two unique subroutines,
Tcirc, Eq. (110), and TUDU, Eq. (116), we conclude that the
time complexity for classical preprocessing in the wavelet-
based algorithm is quasilinear in the number of modes
N .

3. One-dimensional Gaussian-state generation

Here we analyze time complexity for the quantum
algorithm presented in Algorithm 6 that generates an

approximation for a 1DG state on a quantum computer.
We begin with analyzing time complexity for executing
the quantum circuit in Fig. 10, which represents the itera-
tive part of Algorithm 6. Then we discuss the algorithm’s
overall time complexity.

The quantum circuit in Fig. 10 involves performing
two ANGLE, Eq. (72), operations, one ROT, Eq. (73), two
SHIFT, Eq. (74), one Pauli-X , and one CNOT operation. The
circuit’s time complexity Titer is therefore

Titer = 2TANGLE + TROT + 2TSHIFT + 2, (117)

where TANGLE, TROT, and TSHIFT are time complexities to
implement ANGLE, ROT, and SHIFT operations, respectively.
The ROT and SHIFT operations operate on quantum regis-
ters with p qubits, where p is logarithmic in the number
of modes. As illustrated in Fig. 13, implementing ROT,
Eq. (73), requires performing at most p standard rota-
tions and SHIFT, Eq. (74), is implemented by performing
p SWAP gates. Therefore, TROT ∈ O(p) and TSHIFT = p . Our
analysis in Appendix E shows that TANGLE ∈ O(p2). The
combination of these complexities yields

Titer ∈ O(p2), (118)

for time complexity of the quantum circuit in Fig. 10,
which implements the iterative part of Algorithm 6.

The quantum algorithm in Algorithm 6 performs the
operations of the quantum circuit in Fig. 10 m times. The
algorithm also involves performing m SWAP operations,
lines (6)–(7) of the algorithm, and one MUL, Eq. (75),
operation in line (8). All of these operations are also used
in the uncomputation part of Algorithm 6. Therefore, by
Eq. (118) and m < p , the overall time complexity T1DG for
generating a 1DG state by Algorithm 6 is

T1DG = (2m)× Titer + 2× (m+ 1) ∈ O(p3). (119)

As p , Eq. (49), is logarithmic in the number of modes
N , the overall complexity for generating a 1DG state is
logarithmic in N .

4. Quantum fast Hartley transform

We now analyze time complexity for our quantum fast
Hartley-transform algorithm presented in Algorithm 8. Our
algorithm is based on three key quantum operations: QREV,
Eq. (96), QBF, Eq. (99), and HS, Eq. (98); see Sec. IV D 3.
First we analyze time complexity for performing these key
operations with respect to the primitive operations in our
cost model (Sec. III A 3). Then we build on these complex-
ities and discuss the overall time complexity for the QFHT
algorithm.

We begin with analyzing time complexity to perform
the quantum data-reordering QREV, Eq. (96). This opera-
tion reorders the values encoded in the size-N input state

020364-44

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

FIG. 13. Implementation of ROT, Eq. (73), and SHIFT, Eq. (74), by primitive operations. Left: implementing ROT using bits of a p-bit
number b requires at most p standard rotations R� := exp(−2π i/2�). Right: implementing SHIFT requires p SWAP gates.

vector vac by swapping qubits of vac[i] and vac[REV(i)]
for each i ∈ {1, . . . , N/2− 1}, where REV(i) is an inte-
ger obtained form i by reversing its binary digits. Hence,
we have TQREV ∈ O(N) for time complexity to perform
QREV, Eq. (96). Next we analyze time complexity TQBF

for performing the quantum butterfly QBF, Eq. (99). This
operation can be implemented as

|x〉vac[i] |y〉vac[j]
→ |x + y〉vac[i] |y〉vac[j]

→ |x + y〉vac[i] |2y〉vac[j]

→ |x + y〉vac[i] |(x + y)− 2y〉vac[j] ,
(120)

on two quantum registers vac[i] and vac[j] by two addi-
tions and one multiplication. The quantum addition and
multiplication here are in-place operations, and no uncom-
putation is required. Therefore, TQBF ∈ O(1) with respect
to the quantum primitive operations. We use the LDU
decomposition

[
c s
s −c

]
=
[

1 0
s/c 1

] [
c 0
0 −1/c

] [
1 s/c
0 1

]
, (121)

to implement the primitive Hartley shift HS, Eq. (98), by
in-place quantum arithmetic operations; note here s2 +
c2 = 1. Assuming that the values of c and s are stored
into two ancillary quantum registers, HS, Eq. (98), can be
implemented by in-place operations as

|x〉vac[i] |y〉vac[j]
→ |x + ys/c〉vac[i] |y〉vac[j]

→ |cx + sy〉vac[i] |−y/c〉vac[j]

→ |cx + sy〉vac[i] |xs− yc〉vac[j] , (122)

on two quantum registers vac[i] and vac[j] by perform-
ing six basic arithmetic operations. We therefore have
THS ∈ O(1) for time complexity to perform HS.

We now discuss the overall time complexity for the
QFHT algorithm. This algorithms starts with reordering
the size-N input state vector and proceeds with log2(N)

stages. Each stage requires performing N/2 quantum but-
terfly operations and N/4 primitive quantum Hartley-
shift operations; see Fig. 12 and implementation of QHS,
Eq. (97), by HS, Eq. (98), in Library 6. Thus, by the time
complexities for the key quantum operations, we have

TQFHT = TQREV +
(
(N/2)TQBF + (N/4)THS

)
log2 N

∈ O(N log2 N), (123)

for time complexity to perform the quantum fast Hartley
transform, Eq. (92).

5. Quantum shear transform

Here we analyze time complexity for performing a
shear transform on a quantum computer. First we discuss
time complexity to perform shear transform with a dense
shear matrix. Then we analyze time complexity for our
QST algorithm presented in Algorithm 9, which performs
the shear transform required for generating the free-field
ground state on a quantum register.

We use the decomposition in Eq. (102) to analyze time
complexity for performing a QST with a dense shear
matrix. As per this decomposition, performing a general
shear transform is accomplished by performing a sequence
of shear transforms with exactly one shear element. The
number of terms in the sequence is equal to the NNZ shear
elements in the shear matrix, and the sequence’s order is
specified by Eq. (102).

To perform the shear transform specified by each term of
the sequence, we write the shear element into an ancillary
quantum register denoted shear and perform a multipli-
cation as per Eq. (104). Then we erase the shear register
by rewriting the shear element. Therefore, performing a
shear transform with exactly one shear element requires
three primitive operations: writing into a quantum register,
performing one multiplication, and erasing the quantum
register. Consequently, the time complexity for perform-
ing a shear transform scales linearly with the NNZ shear
elements in the shear-transform matrix. The NNZ shear
elements for a dense N -by-N shear matrix is N (N − 1)/2,

020364-45

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

so we have �(N 2) for time complexity to perform a shear
transform with a dense shear matrix.

We now specify the time complexity to perform the
required quantum shear transform for ground-state gener-
ation. The shear matrix for the required shear transform
is sparse. We use the identified relationship between the
time complexity to perform a shear transform and the
NNZ shear elements to obtain the time complexity for per-
forming a shear transform with a sparse shear matrix. In
particular, the complexity for performing a sparse shear
transform is achieved by counting the NNZ shear elements
in the shear-transform matrix. The NNZ shear elements for
the sparse shear matrix U in the UDU decomposition of
the approximate ICM scales as O(Nw), where w, Eq. (54),
is logarithmic in the number of modes N . Therefore, time
complexity for Algorithm 9, which performs the QST with
the sparse shear matrix U, is quasilinear in the number of
modes.

6. Overall complexity for Fourier- and wavelet-based
algorithms

We now determine the overall time complexity for the
Fourier- and wavelet-based algorithms for ground-state
generation. Both algorithms have a classical preprocessing
and quantum routine. We begin by discussing the overall
time complexity for each algorithm’s quantum routine. We
then put together the overall time complexities for classical
preprocessing and quantum routine to establish the overall
time complexity for each of the two algorithms.

The quantum routine for each of the two state-
generation algorithms comprises two subroutines: gen-
erating N different 1DG states and performing a basis
transformation to transform the 1DG states to the free-field
ground state. The basis transformation in the Fourier-based
algorithm is performed by executing a quantum Hartley
transform, and the basis transformation in the wavelet-
based algorithm is performed by executing a quantum
shear transform.

The time complexity for generating each 1DG state is
logarithmic in the number modes N as per Sec. IV E 3, so
time complexity for the first subroutine in each algorithm’s
quantum routine is quasilinear in N . The time complexities
for performing the quantum Hartley transform and the
quantum shear transform are also quasilinear in N , as
discussed in Sec. IV D 3 and Sec. IV E 5, respectively.
Specifically, the time complexity for quantum routine of
the Fourier-based algorithm (FBA) and the wavelet-based
algorithm (WBA) is

T(quantum)

FBA ∈ O(N log2 N + N log3
2 (N/

√
m0εvac)),

T(quantum)

WBA ∈ O(Nw+ N log3
2 (N/

√
m0εvac)), (124)

respectively, where w is given in Eq. (54). Therefore,
the overall time complexity for the quantum routine of

each ground-state-generation algorithm is quasilinear in
the number of modes N .

The sum of overall time complexities for each
algorithm’s classical preprocessing and quantum rou-
tine yields the algorithm’s overall time complexity. By
the complexity analysis in Sec. IV E 1 and Sec. IV E 2,
the overall time complexity for classical preprocessing
of the Fourier- and wavelet-based algorithms is

T(classical)
FBA ∈ O(K3 +KN log2 log2(N/

√
m0εvac)),

T(classical)
WBA ∈ O(K3 +K2N log2 N), (125)

respectively. By combining overall time complexities for
each algorithm’s classical preprocessing and quantum rou-
tine, we conclude that the overall time complexity for each
of the two state-generation algorithms is quasilinear in the
number of modes.

F. Lower bound for ground-state generation

In this subsection, we discuss a lower bound on the gate
complexity for generating the free-field ground state with
respect to the number of modes in the discretized QFT. We
show that one cannot generate a good approximation for
the ground state in a sublinear time. In particular, we argue
that any sublinear algorithm results in an exponentially bad
approximation for the free-field ground state regarding the
number of modes.

The free-field ground state for an infinite-mass (m0 →
∞) theory is the tensor product of the all-zero state for
every mode. The infinite-mass theory, however, is not a
physical theory. For a physical field theory with a finite
but very large mass, the free-field ground state is a ten-
sor product of one-dimensional Gaussian states with small
variances; the variance of each Gaussian is σ 2 = 1/m0,
which is small due to the large mass m0. Now suppose
a sublinear algorithm exists that generates an approxima-
tion for the ground state of a large-mass theory; i.e., let
us assume that the algorithm’s gate complexity scales as
Nα for 0 < α < 1. In this case, the algorithm must leave
the state of N 1−α modes untouched in order to have sub-
linear gate complexity, meaning that the Gaussian states
for the untouched modes are approximated by the all-zero
state. The fidelity between the qubit representation of a
one-dimensional Gaussian state with variance σ 2, i.e., the
discrete 1DG, Eq. (33), state over a lattice with spacing δ

and 2m points, and the all-zero state is

F1DG := 〈0 · · · 0|Glattice(σ̃ , δ, m)〉

= δ

Ñ =
⎛
⎝∑

j

e−
j 2

2σ̃2

⎞
⎠
−1/2

, (126)

where σ̃ = σ/δ and Ñ is the normalization in Eq. (33).
For fixed δ, if σ 2 = 1/m0 ≥ δ, then σ̃ 2 = σ 2/δ2 ≥ 1/σ 2 =

020364-46

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

m0. We therefore have

F1DG ≤
⎛
⎝∑

j

e−j 2/2m0

⎞
⎠
−1/2

≤ (1+ 2e−1/(2m0)
)−1/2

≤ e−1/(4m0), (127)

where the last inequality follows from 1+ 2 exp(−x/2) ≥
exp(x/2) for any x ∈ (0, 1). In this case, the fidelity
between the ground state and the generated state falls off
exponentially with respect to the number of modes that
are untouched. Specifically, the fidelity between the ground
state |G〉 and the generated state

∣∣∣G̃
〉

is
〈
G
∣∣∣G̃
〉
= FN 1−α

1DG ≤
exp
[−N 1−α/(4m0)

]
, which falls off exponentially with

respect to N .
For all other finite-mass field theories, including the

zero-mass (m0 → 0) theory, generating the free-field
ground state requires a nontrivial operation on every mode
because the ground state, in this case, is a superposition of
computational states with Gaussian amplitudes. Therefore,
generating a good approximation for the free-field ground
state requires a number of gates that scales at least lin-
early with respect to the number of modes; any sublinear
algorithm results in an exponentially bad approximation
for the ground state.

G. Fourier versus wavelet approach

In this subsection, we compare the Fourier and wavelet
approaches for ground-state generation. We consider two
cases where the wavelet approach could be advantageous
over the Fourier approach: (1) QFTs with broken trans-
lational invariance and (2) generating states beyond the
free-field ground state. In Sec. IV G 1, we consider a sim-
ple case of inhomogeneous-mass QFT and explain why the
wavelet approach could be advantageous. We then follow
in Sec. IV G 2 by comparing particle-state generation in
both Fourier and wavelet approaches.

1. Inhomogeneous-mass QFT

Here we perform a numerical study to justify why
the wavelet-based approach could be preferred over the
Fourier-based approach for QFTs with broken translational
invariance. We consider a simple case where the free-field
Hamiltonian (4) has a position-dependent mass. In partic-
ular, we consider a point defect in the QFT where the mass
is m0 plus a δ-function term. The inhomogeneous mass can
be seen as a space-dependent source term for a massive
scalar QFT in one spatial dimension, a case for which esti-
mating the vacuum-to-vacuum transition amplitude was
shown to be a BQP-complete problem [52].

We model the point defect by adding to the fixed-scale
coupling matrix, Eq. (23), a matrix containing all zeros

except for one nonzero diagonal element that is signif-
icantly larger than the free QFT mass m0. In this case,
the Fourier-based approach is not appropriate because a
discrete Fourier transform cannot diagonalize the modi-
fied coupling matrix. However, our numerical experiment
demonstrates that the wavelet approach accommodates
such a modification.

In our numerical experiment, we take the nonzero diag-
onal element to be 100× m0 and compute the ground-state
ICM, Eq. (32), for a wide range of m0. Figure 14 (left)
shows a visualization of the approximate ICM, Eq. (50),
derived from the modified coupling matrix and Fig. 14
(right) shows the bandwidth of the approximate ICM’s
diagonal blocks with and without the point defect for a
wide range of m0. As per these figures, the fingerlike sparse
structure of the ground-state ICM in a multiscale wavelet
basis is not affected by the point defect. Consequently, the
wavelet-based algorithm is not affected by the point defect
and successfully yields an approximation for the free-field
ground state with a quasilinear gate complexity.

2. Particle-state generation for the free QFT

Here we describe a procedure used by the main server
(Sec. III A 2) for generating a free QFT particle state in
the Fourier and wavelet approaches. First we explain how
to prepare a free wavepacket, i.e. a spatially localized
free particle, in the Fourier approach. Then we describe
wavepacket preparation in the wavelet approach. Finally,
we compare time complexity for particle-state generation
in the two approaches.

We begin with particle-state generation in the Fourier
approach. For simplicity, we consider preparing a free
particle whose position-space wavefunction is the scaling
function s(k)

� (x) at scale k. Specifically, we aim to prepare
the wavepacket state

∣∣∣s(k)
�

〉
:= â(k)†

s;�

∣∣∣G(k)
scale

〉
, (128)

where
∣∣∣G(k)

scale

〉
, Eq. (24), is the free-field ground state in

the Fourier approach and â(k)†
s;� is the creation operator con-

structed from the scale-field operator �̂
(k)
s;� , Eq. (9), and

its conjugate momentum [41]. Following the Jordan-Lee-
Preskill approach for preparing a free-particle state [2, p.
1027], we introduce one ancillary qubit denoted anc, and
construct the Hamiltonian

Ĥ (k)
s;� := â(k)†

s;� ⊗ (|1〉anc〈0|)+ â(k)
s;� ⊗ (|0〉anc〈1|). (129)

The time evolution generated by this Hamiltonian for time
t = π/2 is

e−iĤ (k)
s;� π/2

∣∣∣G(k)
scale

〉
|0〉anc = −i

∣∣∣s(k)
�

〉
|1〉anc , (130)

020364-47

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

1

1000

2000

2560

1 1000 2000 2560

–10

0

90

190

280

370

FIG. 14. Effect of a mass defect on the ground-state ICM, Eq. (32), represented in a multiscale wavelet basis. Left: visual repre-
sentation for approximation of the modified ICM, Eq. (50), in a multiscale wavelet basis where elements with a magnitude less than
10−8 are replaced with exactly zero; rows and columns of the matrix are ordered as the matrix in Fig. 1. Right: bandwidth for diagonal
blocks of the approximate ICM with mass defect (orange dashed line) and without mass defect (blue line) for a wide range of mass:
m0 ∈ [10−6, 106].

and we obtain the desired wavepacket state, Eq. (128),
up to a global phase with no entanglement between the
wavepacket and ancilla-qubit states. By expressing the
constructed Hamiltonian (129) in terms of the scale-field
operator �̂

(k)
s;� , Eq. (9), and its conjugate momentum, we

obtain a local Hamiltonian that can be simulated by a
technique described in Sec. 2.2.4 of Ref. [2] with gate
complexity that is logarithmic in the numbers of modes.

For particle-state generation in the wavelet approach, we
consider a free particle whose position-space wavefunction
is the wavelet function w(r)

� (x) at scale r for some inte-
ger r < k. In this case, the wavepacket state we wish to
prepare is

∣∣∣w(r)
�

〉
:= â(r)†

s;�

∣∣∣G(k)
wavelet

〉
, (131)

where
∣∣∣G(k)

wavelet

〉
, Eq. (31), is the free-field ground state

in the wavelet approach and â(r)†
w; � is the creation operator

constructed from the wavelet-field operator �̂
(r)
w; �, Eq. (9),

and its conjugate momentum at scale r. Analogous to par-
ticle creation in the Fourier approach, we construct the
Hamiltonian

Ĥ (r)
w;� := â(r)†

w;� ⊗ (|1〉anc〈0|)+ â(r)
w;� ⊗ (|0〉anc〈1|), (132)

and simulate time evolution according to this Hamiltonian
for time t = π/2. By the time evolution, we obtain the
wavepacket state in Eq. (131), up to a global phase, and
an ancilla-qubit state that can be discarded.

We now compare time complexity for generating a
single-particle state in the Fourier and wavelet approaches.

For comparison, we assign a unit cost to simulating time
evolution for a constant time induced by a local Hamil-
tonian in these two approaches. Specifically, we assign a
unit cost to simulating time evolution induced by Ĥ (k)

s;� ,
Eq. (129), in the Fourier approach and time evolution
induced by Ĥ (r)

w;�, Eq. (132), in the wavelet approach for
a constant time.

Without loss of generality, we discuss time complex-
ity for preparing the wavepacket state in Eq. (131) for
both approaches. As described, preparing this state in the
wavelet approach requires simulating time evolution gen-
erated by Ĥ (r)

w;�, Eq. (132), for constant time t = π/2. To
prepare the same wavepacket state in the Fourier approach,
we express time evolution generated by Ĥ (r)

w;�, Eq. (132), in
terms of time evolution generated by Ĥ (k)

s;�′ , Eq. (129), for
various �′. To this end, first we write the creation opera-
tion â(r)†

w; � as a linear combination of the creation operators
â(k)†

s; � . Let d := k − s0, where s0 ≤ k is the scale index for
the lowest scale, and let

â(k)†
s :=

(
â(k)†

s;0 , . . . , â(k)†
s;2k−1

)T
,

â(k)† :=
(

â(s0)†
s;0 , . . . , â(s0)†

s;2s0−1, â(s0)†
w;0 , . . . , â(s0)†

w;2s0−1,

â(s0+1)†
w;0 , . . . , â(k−1)†

w;2k−1
,
)T

, (133)

be the vector of creation operators in the fixed- and
multiscale wavelet bases, respectively. Then

â(k)† = W(k)
d â(k)†

s , (134)

020364-48

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

FIG. 15. From left to right: visualization of the d-level wavelet-transform matrix (WTM) with level d ∈ {1, 2, 3} at scale k = 6 for
the Daubechies wavelet with index K = 3; size of matrix is 2k × 2k. The number of nonzero elements in each row of the one-level
WTM is 2K. The NNZ elements in those rows of the two-level WTM that pertain to the first level, i.e., the bottom half rows, is 2K,
and the NNZ elements in the rows pertaining to the second level, the top half rows, is 4K. For the three-level wavelet transform, the
NNZ elements in those rows pertaining to the third level is 2 times the NNZ elements in the rows pertaining to the second level, which
itself is two times the NNZ on the rows pertaining to the first level. The NNZ elements increases by a factor of 2 when we increase the
level of wavelet transform by one.

where W(k)
d is the d-level wavelet-transform matrix at scale

k; see Appendix A. This equation yields

â(r)†
w;� =

∑
�′

W(k)
d;��′ â

(k)†
s;�′ , (135)

for any s0 ≤ r < k.
The NNZ coefficients in this summation depends on two

parameters: the wavelet index K and the difference (k − r)
between the finest scale k and the scale r. Specifically,
the NNZ coefficients is 2k−rK for any r < k. This rela-
tion follows from the recursive relation for the scaling and
wavelets function at different scales described by Eqs. (1)
and (2), respectively. By Eq. (2), each wavelet function at
a particular scale r is a linear combination of 2K scaling
functions at one higher scale r+ 1. Similarly, by Eq. (1),
each scaling function at a given scale can be written as a
linear combination of 2K scaling functions at one higher
scale. Therefore, a wavelet function at scale r is a linear
combination of 2k−rK scaling functions at scale k > r. See
Fig. 15 for a visual insight into the relationship between
the NNZ coefficients, (k − r) and K.

By the combination of Eqs. (135), (132), and (129), we
have

Ĥ (r)
w; � =

∑
�′

W(k)
d;��′Ĥ

(k)
s;�′ , (136)

hence the time evolution induced by this Hamiltonian for
time t = π/2 in the Fourier approach yields

e−iĤ (r)
w;�π/2

∣∣∣G(k)
scale

〉
|0〉anc = −i

∣∣∣w(r)
�

〉
|1〉anc , (137)

and, therefore, we obtain the wavepacket state in Eq. (131)
up to a global phase. Because of the bosonic commutation
relations between the bosonic creation and annihilation
operators in Eq. (129), any term in the right-hand side of
Eq. (136) commutes with other terms. Consequently, we
have the decomposition

e−iĤ (r)
w; �

π/2 =
∏
�′

e−iĤ (k)
s; �′W

(k)
d; ��′π/2, (138)

for the time evolution induced by the wavelet Hamiltonian
(136). By this decomposition, simulating time evolution
induced by the wavelet Hamiltonian for constant time
π/2 in the Fourier approach is achieved by simulating
time evolution induced by the scale Hamiltonian (129)
with 2k−rK different �′ for constant time t�′ := W(k)

d; ��′π/2.
Therefore, generating a single-particle state at scale r in the
Fourier approach is �(2k−rK) times more expansive than
generating the same state in the wavelet approach.

V. DISCUSSION

We have established two quasilinear quantum algo-
rithms, one Fourier-based and the other wavelet-based,
to generate an approximation for the ground state of a
massive scalar bosonic free QFT. Specifically, each of
the two algorithms’ time complexity is quasilinear with
respect to the number of modes in the discretized QFT.
Our algorithms deliver a superquadratic speedup over the
state-of-the-art quantum algorithm for ground-state gener-
ation and are optimal up to polylogarithmic factors. The
Fourier-based algorithm is limited to translationally invari-
ant QFTs. By numerical simulations, we have shown that

020364-49

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

the wavelet-based algorithm successfully yields the ground
state for a QFT with a broken translational invariance.

We have also developed two quantum algorithms for
generating one-dimensional Gaussian states. Our first
algorithm is based on the Kitaev-Webb method [19] for
preparing a 1DG state, which itself is an application of the
standard state-preparation method by Zalka [13], Grover
and Rudolph [14]. The Kitaev-Webb method, however, is
restricted to 1DG states that possess an extremely large
standard deviation, whereas our algorithm generates a
1DG state with any standard deviation. Our second quan-
tum algorithm for generating a 1DG state is based on
inequality testing [15] that mitigates the number of arith-
metic operations required by the standard state-preparation
method.

Methodologically, in the Fourier-based algorithm, we
discretize the continuum free QFT in a fixed-scale basis.
The ground-state ICM for the discretized QFT has a cir-
culant structure, and we utilize this structure to establish
a quasilinear quantum algorithm for ground-state gener-
ation. In the wavelet-based algorithm, we discretize the
continuum-free QFT in a multiscale wavelet basis. In this
case, the ground-state ICM is a quasisparse matrix. Specif-
ically, most elements of this matrix are nearly zero, and
we replace these values with exactly zero. This replace-
ment enables a fingerlike sparse structure for the ground-
state ICM that we exploit to achieve a quasilinear time
complexity for the wavelet-based algorithm.

We went beyond ground-state generation and con-
structed procedures for preparing free-field wavepack-
ets in the Fourier- and wavelet-based approaches. We
showed that, unlike the Fourier approach, the wavelet
approach enables preparing particle states at different
energy scales without an additional cost required for the
Fourier approach. Specifically, we showed that preparing
a free-field single-particle state at scale with index r is
�(2k−rK) times more expensive than preparing the same
state in the wavelet approach, where K is the wavelet
index and k > r is the finest scale’s index. The wavelet
approach’s cheaper cost to preparing states beyond the
free-field ground state suggests that this approach is advan-
tageous over the Fourier approach in other aspects of
simulating a QFT. Moreover, as shown by the numeri-
cal simulations, the wavelet-based approach is applicable
to field theories with broken translational invariance due
to inhomogeneous mass, suggesting the wavelet-based
approach allows simulating more general quantum field
theories [12].

Our Fourier-based algorithm’s key point is utilizing the
circulant structure of the ground state’s ICM due to the
translational invariance of the free QFT. We note that
the ground-state ICM in the Jordan-Lee-Preskill approach
[1,2] has the same structure as the ICM in our Fourier-
based approach. Hence our Fourier-based algorithm can
be used for generating the ground state of the lattice QFT

in the Jordan-Lee-Preskill approach and accelerate their
algorithm for ground-state generation. However, in con-
trast to their approach, the coupling-matrix elements in our
Fourier approach are exact. The discretization error, due
to approximating the derivative operator in the free-field
Hamiltonian by a discretized derivative operator, results
in a nonexact coupling matrix in the Jordan-Lee-Preskill
approach [1,2]. Consequently, the Fourier approach could
be preferred over the lattice approach for generating the
free-field ground state.

In developing our ground-state-generation algorithms,
we cared only about producing quasilinear algorithms and
opted to focus on their readability rather than optimizing
their performance. Therefore, our algorithms’ time com-
plexity could be improved, but any improvement will not
change the quasilinear scaling of the algorithms’ complex-
ities.

Our Fourier- and wavelet-based algorithms have clas-
sical preprocessing and quantum routine. The classical
preprocessing of each algorithm produces a certain amount
of classical information required for executing the quan-
tum routine of the algorithm. We analyzed not only the
quantum complexity but also the classical complexity of
our state-generation algorithms in order to ensure that the
resulting procedures are indeed quasilinear in the num-
ber of modes of the discretized QFT. We established the
classical time complexities

T(C)

FBA ∈ O
(
K3 +KN log2 log2

(
N√

m0εvac

))
,

T(C)

WBA ∈ O(K3 +K2N log2 N), (139)

for classical preprocessing of the Fourier- and wavelet-
based algorithms, respectively, and the quantum time
complexities

T(Q)

FBA ∈ O
(

N log2 N + N log3
2

(
N√

m0εvac

))
,

T(Q)

WBA ∈ O
((

NK
m0

)
log2

2

(
NK

m0εvac

)
+N log3

2

(
N√

m0εvac

))
,

(140)

for their quantum routine; all parameters are specified in
Table II.

In contrast to the usual approach of using gate com-
plexity, i.e., the number of low-level quantum operations
in an algorithm, as a metric to analyze time complexity
for a quantum algorithm, we have analyzed our quan-
tum algorithm’s time complexity with respect to high-level
operations. The high-level quantum operations in our com-
plexity analysis are similar to the high-level operations
in the classical random-access machine model. In par-
ticular, we have assigned a unit cost to basic arithmetic

020364-50

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

operations such as multiplication and addition on a quan-
tum computer. By the high-level operations, we avoid the
implementation details of these operations in the compi-
lation step. Nevertheless, our algorithm’s gate complexity
remains quasilinear with respect to the number of modes,
as the high-level operations are executed on quantum
registers with size logarithmic in the number of modes.
However, the power of logarithmic factors in our algo-
rithms’ gate complexity depends on implementations of
the high-level operations, specifically quantum multipli-
cation, as other basic arithmetic operations are cheaper
to implement than multiplication. Whether to use school-
book multiplication á la Häner, Roettler, and Svore [53]
or Karatsuba multiplication á la Gidney [54] or even as-
yet-undeveloped quantum multiplication algorithms based
on asymptotically efficient classical multiplication algo-
rithms such as the Schönhage-Strassen algorithm [55, Sec.
4.3], our algorithms’ gate complexity stay quasilinear in
the number of discretized QFT modes.

VI. CONCLUSIONS

Free-field ground-state generation is a bottleneck for the
prior approaches to simulating a massive scalar bosonic
QFT on a quantum computer. In this paper, we have
established two quantum algorithms for generating an
approximation for the free-field ground state with a quasi-
linear gate complexity in the discretized QFT number of
modes. Our algorithms provide a superquadratic speedup
over the prior approaches and overcome the ground-
state-generation bottleneck in simulating a massive scalar
bosonic QFT. We have shown that our ground-state-
generation algorithms are optimal up to polylogarithmic
factors. In particular, we have proved that any state-
generation algorithm with a sublinear time complexity will
result in an exponentially bad approximation, with respect
to the number of modes, for the free-field ground state.

We have compared the Fourier- and wavelet-based algo-
rithms and shown that the wavelet-based algorithm is
advantageous over the alternative Fourier-based algorithm
for two cases where we go beyond ground-state genera-
tion and translationally invariant QFTs. Specifically, for
beyond ground-state generation, we have shown that the
wavelet-based algorithm enables generating particle states
at different energy scales directly, whereas the Fourier-
based algorithm allows only direct preparation for particle
states at a fixed energy scale. Preparing a particle state
at different scales by the Fourier-based algorithm requires
further transformations that add to the cost of initial-
state generation for simulating the QFT. The Fourier-based
algorithm is limited to translationally invariant QFTs. We
have shown by numerical simulation that our wavelet-
based algorithm is applicable to field theories with bro-
ken translational invariance due to inhomogeneous mass,

suggesting the wavelet-based approach allows simulating
more general quantum field theories.

We have also developed two quantum algorithms for
generating a one-dimensional Gaussian state, which is
required for preparing the free-field ground state—a mul-
tidimensional Gaussian state. Our first algorithm for 1DG-
state generation is based on the standard state-preparation
method [13,14], and the second algorithm is based on
inequality testing [15] that mitigates the number of arith-
metic operations required in the standard method for gen-
erating a 1DG state. Our inequality-testing-based method
is more practical than the Zalka-Grover-Rudolph method
[13,14], i.e., the standard state-preparation method, and
can be used broadly in the state-preparation subroutine of
quantum-simulation algorithms.

The key point of our ground-state-generation algorithms
is to utilize the circulant structure and the fingerlike
sparse structure for a differential operator represented in a
fixed- and multiscale wavelet basis, respectively. Our tech-
niques for exploiting these structures could be used more
broadly in the quantum simulation of continuous classical
or quantum systems whose Hamiltonian involves differ-
ential operators, including fermionic QFT [3], as well as
quantum-chemistry simulations [56]. Our methods, par-
ticularly the wavelet-based method, could be replaced
with finite-difference or finite-element methods to improve
quantum algorithms for partial differential equations
[57–59].

We have focused on ground-state generation here, but
our methods could be employed to improve other aspects
of simulating a QFT, namely time evolution and mea-
surement. In particular, akin to particle-state generation
at different energy scales, the wavelet approach could be
advantageous over the Fourier approach for measuring
mean momentum of a particle state at the final step of a
QFT simulation.

We have particularly used Daubechies wavelets in
developing our state-generation algorithms. These algo-
rithms, however, work for any compactly supported
wavelets that are differentiable. A future direction is to
see how other types of compactly supported wavelets
could improve the state-generation algorithms. In partic-
ular, least-asymmetric wavelets [28, pp. 254–257] also
known as symlets [60, p. 27], a variant of Daubechies
wavelets with nearly symmetrical basis functions, could
result in a more sparse ground-state ICM for a given
threshold value, Eq. (50), and improve the wavelet-based
algorithm.

ACKNOWLEDGMENTS

This project is supported by the Government of Alberta
and by the Natural Sciences and Engineering Research
Council of Canada (NSERC). M.B. and B.C.S. acknowl-
edge the traditional owners of the land on which some

020364-51

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

of this work was undertaken at the University of Cal-
gary: the Treaty 7 First Nations. Y.R.S., D.W.B., and
G.K.B. acknowledge the Wallamattagal people of the
Dharug nation, whose cultures and customs have nur-
tured, and continue to nurture, the land on which some of
this work was undertaken: Macquarie University. Y.R.S.
acknowledges the Gadigal and Guring-gai people of the
Eora Nation upon whose ancestral lands the University
of Technology Sydney now stands. M.B. thanks Mehdi
Ahmadi for many helpful discussions. Y.R.S. is supported
by Australian Research Council Grant No. DP200100950.
D.W.B. worked on this project under a sponsored research
agreement with Google Quantum AI. D.W.B. is also sup-
ported by Australian Research Council Discovery Projects
DP190102633 and DP210101367. G.K.B. acknowledges
support from the ARC from Grant No. DP200102152.

APPENDIX A: WAVELET TRANSFORM

In this Appendix, we review a family of basis trans-
forms called “the” discrete wavelet transform. The specific
member of that family of transforms will be clear from
the context. Here we focus only on the one-dimensional
wavelet transforms.

Two parameters specify a one-dimensional wavelet
transform. The first parameter is a choice k of scale for
L 2(R). The second parameter is a choice of decompo-
sition level d ≥ 1. The d-level wavelet transform at scale
k is recursively defined as follows. The one-level wavelet
transform at any scale k is defined to be the canonical
isomorphism

W(k) : Sk → Sk−1 ⊕Wk−1, W(k)
1 := W(k), (A1)

where Sk and Wk are the scale and wavelet subspaces,
respectively, defined in Sec. II A. The d-level wavelet
transform, for d > 1, is defined as

W(k)
d :=

(
W(k−d+1) ⊕ 1S⊥k−d+1

)
·W(k)

d−1, (A2)

where S⊥k−d :=Wk−d+1 ⊕Wk−d+2 ⊕ · · · ⊕Wk−1 is the
orthogonal complement of Sk−d considered as a subspace
of Sk. Thus W(k)

d executes the sequence of transformations

Sk
W(k)−−→ Sk−1 ⊕Wk−1

W(k−1)⊕1S⊥k−1−−−−−−−−→ Sk−2 ⊕Wk−2 ⊕Wk−1

W(k−2)⊕1S⊥k−2−−−−−−−−→ Sk−3 ⊕Wk−3 ⊕Wk−2 ⊕Wk−1

...

W(k−d+1)⊕1S⊥k−d+1−−−−−−−−−−−→ Sk−d ⊕Wk−d ⊕ · · · ⊕Wk−1. (A3)

The action of the canonical isomorphism W(k) can be
expressed in terms of two infinite matrices

H =

⎡
⎢⎢⎢⎢⎢⎣

...
...

...
...

...
· · · h0 h1 h2 h3 h4 · · ·
· · · h−2 h−1 h0 h1 h2 · · ·
· · · h−4 h−3 h−2 h−1 h0 · · ·

...
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎦

,

G =

⎡
⎢⎢⎢⎢⎢⎣

...
...

...
...

...
· · · g0 g1 g2 g3 g4 · · ·
· · · g−2 g−1 g0 g1 g2 · · ·
· · · g−4 g−3 g−2 g−1 g0 · · ·

...
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎦

, (A4)

called the low-pass and high-pass filter matrix, respec-
tively. These infinite matrices are to be multiplied to vec-
tors c(k) ∈ Sk expressed in the basis

{
s(k)
�

}
, meaning that

these vectors take the form

c(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

c(k)
−1

c(k)
0

c(k)
1
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, c(k)
� :=

〈
s(k)
�

∣∣∣f
〉

. (A5)

The infinite matrix H is then defined so that H · c(k) =
c(k−1). Note that the form of H and G do not depend on
k. Also note that H and G are both row-sparse operators if
the wavelet is compactly supported, as only a finite number
of h and g coefficients are nonzero. With these definitions,
we have W(k) · c(k) = (H · c(k)

)⊕ (G · c(k)
)
.

We do not work with an infinite matrix representation in
this paper and instead restrict attention to finite-sized sys-
tems. Specifically, we restrict attention to subset L 2 (S)

of L 2(R) that has support only on unit interval S := {x ∈
R|0 ≤ x ≤ 1}. In this restricted space, the scale coefficient
c(k)
� :=

〈
s(k)
�

∣∣∣f
〉

for the function f ∈ L 2 (S) is guaranteed
to be equal to zero for all but a finite number of values of
�. Specifically, the fact that

supp
(

s(k)
�

)
⊆ {x ∈ R|0 < 2kx − � < 2K − 1}, (A6)

where supp(•) refers to support of a function, implies that
c(k)
� = 0 if � < 1− 2K or � ≥ 2k. That is to say, only 2k +

2K + 1 scale coefficients c(k)
� could be nonzero. We thus

treat the infinite-dimensional vector c(k) as though it were
finite-dimensional with dimension 2k + 2K + 1. Similarly,
we treat H and G as though they were (2k−1 + 2K + 1)×

020364-52

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

(2k + 2K + 1) matrices and hence W(k) as though it were
a (2k + 4K + 2)× (2k + 2K + 1) matrix. Applying W(k)

to a vector is described as calculating the “discrete wavelet
transform” of the vector.

The treatment described here leaves W(k) as a non-
square matrix, which cannot be an automorphism of Sk ⊂
L 2 (S). We deal with this issue in two ways. In the first
way, which we refer to as the “open boundaries” case,
we discard the negative index values � < 0. Although this
leaves us with a square (2k × 2k) matrix, the result is
not invertible and hence is not an automorphism of Sk ⊂

L 2 (S) as desired. Despite its weaknesses, this approach
is good enough for numerical studies. The second way
we deal with the nonsquare W(k) is what we call the
“(anti)periodic boundaries” case. In this approach, we treat
the signal f as though it depicts a periodic (antiperiodic)
system, so the problematic negative index values � < 0
would be identical to (the negative of) the index val-
ues 2k − �. In this case, we apply the same condition to
the derivative overlap coefficients, Eq. (13). By putting
these two approaches together, the matrix W(k) for the db3
wavelets becomes the 2k × 2k matrix

W(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 h1 h2 h3 h4 h5 0 0 · · ·
0 0 h0 h1 h2 h3 h4 h5 · · ·
0 0 0 0 h0 h1 h2 h3 · · ·
...

...
...

...
...

...
...

...
. . .

bh4 bh5 0 0 0 0 0 0 · · ·
bh2 bh3 bh4 bh5 0 0 0 0 · · ·
g0 g1 g2 g3 g4 g5 0 0 · · ·
0 0 g0 g1 g2 g3 g4 g5 · · ·
0 0 0 0 g0 g1 g2 g3 · · ·
...

...
...

...
...

...
...

...
. . .

bg4 bg5 0 0 0 0 0 0 · · ·
bg2 bg3 bg4 bg5 0 0 0 0 · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

H
G

]
, (A7)

where b = 0,+1,−1 depending on whether the boundaries
are open, periodic, or antiperiodic.

APPENDIX B: LOW-PASS FILTER FOR
DAUBECHIES WAVELETS

This Appendix describes a method for computing the
low-pass filter coefficients h�, Eq. (1), for Daubechies
wavelets. We begin with describing the method and then
construct a classical algorithm for computing the low-pass
filter coefficients using the described method. Finally, we
discuss the algorithm’s time complexity with respect to the
classical primitive operations described in Sec. III A 3.

Several methods are used to compute the numerical val-
ues of the low-pass filters h�, Eq. (1). A direct method is to
solve the system of nonlinear equations [29, p. 3]

∑
�

h� =
√

2,
∑

�

h�h�−2�′ = δ0,�′ ,

∑
�

(−1)���′h2K−1−� = 0 ∀�′ < K, (B1)

which are derived from various properties of the
Daubechies wavelets, such as orthonormality. This non-
linear system can be solved analytically for K ≤ 3 and
numerically otherwise. However, the numerical methods
for solving the nonlinear system become increasingly inef-
ficient as K increases. We use an alternative method pro-
posed by Daubechies to compute the numerical values of
the filter coefficients [28]; also see Ref. [61, p. 81]. The fil-
ter coefficients in Daubechies’ method are obtained by first
computing the 2K − 2 roots of the polynomial

f (z) := zK−1P
(

1
2
− 1

4z
− z

4
, K

)
,

P(y,K) :=
K−1∑
�=0

(K − 1+ �

�

)
y�, (B2)

where P(y,K) is a polynomial of degree K − 1. Next those
roots z� with |z�| < 1 are selected. The filter coefficients are
then obtained by identifying the coefficients H� in

(1+ z)K
K−1∏
�=0

(z − z�) =
2K−1∑
�=0

H�z2K−1−l, (B3)

020364-53

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

for selected roots and normalizing the coefficients as h� =
H�/

√
H ·H, where H is a vector with elements H�.

The pseudocode in Algorithm 10 describes a for-
mal algorithm for computing the low-pass filters using
Daubechies’ method. This algorithm is used in classical
preprocessing of the wavelet-based algorithm (Sec. IV A),
specifically as a subroutine in Algorithm 4, which requires
the low-pass filters to compute unique elements of the
ground-state ICM in a multiscale wavelet basis.

The time complexity of this algorithm is dominated
by the time complexity for computing roots of f (z) in
Eq. (B2) because the root-finding subroutine in line (4)
is the computationally expensive part of the algorithm.
The coefficients of f (z), a polynomial of degree 2K −
2, have a magnitude less than 23K. By these properties,
the arithmetic complexity for finding roots of f (z) with
precision p is O(K log5 K log(3K + p)) using a known
root-finding algorithm [62]. The classical primitive oper-
ations in the cost model described in Sec. III A 3 include
basic arithmetic operations. Therefore, with respect to the
classical primitives, the time complexity for computing
the low-pass filter coefficients is quasilinear in the wavelet
index.

APPENDIX C: DERIVATIVE OVERLAP
COEFFICIENTS

In this Appendix, we describe Beylkin’s method [44]
for computing the derivative overlap coefficients, Eq. (13),
for the Daubechies wavelet with the wavelet index K.
For our application, we restrict the method to comput-
ing the overlaps coefficients for the second-order deriva-
tive operator. Beylkin’s method, however, is general

and could be used to compute derivative overlaps for
derivative operators with any integer or fractional order.
Having described the method, we then present a for-
mal algorithm for computing the second-order derivative
overlaps.

The explicit expression for the Daubechies scaling func-
tion and its derivatives are unknown. Therefore, the numer-
ical value of the derivative overlaps cannot be directly
computed from Eq. (13). Beylkin’s method is an indi-
rect way to compute these coefficients. The second-order
derivative overlaps in this method satisfy the system of
linear algebraic equations [44, Proposition 2]

∑
�∈Z

�2x� = 2,

x� = 4x2� + 2
K∑

k=1

a2k−1
(
x2�−(2k+1) + x2�+2k+1

) ∀� ∈ Z,

(C1)

where the coefficients

a2k−1 := (−1)k−1C
(K− k)!(K+ k− 1)!(2k− 1)

∀k ∈ {1, . . . ,K},

C :=
[

(2K − 1)!
(K − 1)!4K−1

]2

, (C2)

are autocorrelation of the low-pass filter h�, Eq. (1). If
K ≥ 2, then the system of linear equations has a unique
solution with x� �= 0 for 2K − 2 ≤ � ≤ 2K − 2, and x� =
x−�. Using these properties, we write the linear system in

Algorithm 10. Classical algorithm for computing the low-pass filter for Daubechies wavelets

020364-54

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

the matrix-vector form as Mx = b, where M is a (2K −
1)-by-(2K − 1) matrix with elements

Mmn = n2 + 4δ2m,n − δm,n

+ 2
K∑

k=1

a2k−1
(
δn,|2m−(2k+1)| + δn,2m+2k+1

)
, (C3)

the solution vector is x := (x0, . . . , x2K−2)
T and b is the

vector of all 1’s, i.e. b := (1, . . . , 1).
The pseudocode in Algorithm 11 describes a for-

mal algorithm for computing the derivative overlaps by
Beylkin’s method. The formal algorithm presented here is
only used to simplify the description of our ground-state-
generation algorithms (Sec. IV A).

APPENDIX D: PROOFS

This Appendix contains the statement and proofs of
several propositions used in this paper.

Proposition 11: Let N be a positive integer, {sn(x) | n ∈
{0, . . . , N − 1}} be a set of orthonormal, real-valued, dif-
ferentiable, and compactly supported functions that span a
subspace of L 2(R), and let � ∈ RN×N be a matrix whose
elements are

�nm :=
∫

dx
d
dx

sn(x)
d
dx

sm(x) ∀ n, m ∈ {0, . . . , N − 1}.
(D1)

Then � is a symmetric and positive-semidefinite matrix.

Proof. The symmetry of � is immediate from the
definition of its elements. By definition, an N -by-N sym-
metric real matrix A is positive semidefinite if vTAv ≥ 0
for all nonzero v ∈ RN . We use this definition to prove

that � is a positive-semidefinite matrix. Let v be a nonzero
vector in RN and let f (x) :=∑N−1

n=0 vnsn(x), then

vT�v =
N−1∑

n,m=0

vn�nmvm

=
∫

dx
d
dx

(
N−1∑
n=0

vnsn(x)

)
d
dx

(
N−1∑
n=0

vmsm(x)

)

=
∫

dx
(

d
dx

f (x)
)2

≥ 0. (D2)

Thus, by definition, � is a positive-semidefinite matrix.
�

Proposition 12: Let m0 ∈ R+ be the free mass and A ∈
RN×N be the ground-state ICM in a wavelet basis. Then
the smallest eigenvalue of A is m0.

Proof. The spectrum of the ground-state ICM in a fixed-
and multiscale wavelet basis are identical because they are
unitarily equivalent. Therefore, we prove only this propo-
sition for a fixed-scale ICM A(k)

ss , Eq. (24). This matrix is
the principal square root of the fixed-scale coupling matrix
in Eq. (23). The fixed-scale coupling matrix can be written
as

K(k)
ss = m2

01− 4k�(2) = m2
01+ 4k�, (D3)

where �(2) is a matrix whose elements are the second-
order derivative overlaps �(2)

mn, Eq. (13), and the second
identity in Eq. (D3) follows from Eq. (D1) and Eq. (13).
Eigenvalues of K(k)

ss are

λ
(k)
j := m2

0 − 4k�
(2)

0 − 2
2K−1∑
�=1

4k�
(2)
� cos

(
2π�

N
j
)

, (D4)

Algorithm 11. Classical algorithm for computing the second-order derivative overlaps in Eq. (13)

020364-55

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

which yields

λ
(k)
0 = m2

0 − 4k�
(2)

0 − 2
2K−1∑
�=1

4k�
(2)
� = m2

0, (D5)

where the second identity follows from properties of the
second-order derivative overlaps [33, Appendix A]. By
Eqs. (D3), (D5), and Proposition 11, m2

0 is the smallest
eigenvalue of the coupling matrix and therefore m0 is the
smallest eigenvalue of the ground-state ICM in both fixed-
and multiscale wavelet basis. �

Proposition 13: (Bound on determinant of near-identity
matrices [63].) Let N ∈ Z+, ε ∈ [0, 1) and A = 1− E ∈
RN×N such that |Eij | ≤ ε for all i, j ∈ {0, . . . , N − 1}. If
Nε ≤ 1, then

1− Nε ≤ det(A) ≤ (1− Nε)−1. (D6)

Proposition 14: Let J ∈ 2Z+, σ ∈ R+ and δ ≤ min
(1/2, σ). Define r := δ/(σ

√
2) and

N 2 :=
∫
R

dx e−x2/2σ 2 = σ
√

2π , Ñ 2 := δ2
J/2−1∑

j=−J/2

e−j 2r2
.

(D7)

Then

1

NÑ
J/2−1∑

j=−J/2

δ e−j 2r2 ≥ 1
N 2

∫ J δ/2

−J δ/2
dx e−

x2

2σ2 . (D8)

Proof. Let

p := 1+ eπ−2π2
(

π1/4

�(3/4)
− 1

)
, (D9)

where � is the � function. We first prove that

Ñ ≤
√

pδN , (D10)

√
δ/p

J/2−1∑
j=−J/2

e−j 2r2 ≥
∫ J δ/2

−J δ/2
dx e−x2/2σ 2

. (D11)

Proposition 14 follows from Eqs. (D10) and (D11);
Eq. (D10) implies that

√
pδ/(ÑN) ≥ 1/N 2 and multiply-

ing each side of this inequality by each side of Eq. (D11)
yields Eq. (D8). We now prove Eq. (D10). Note that

J/2−1∑
j=−J/2

e−j 2r2 ≤
∑
j∈Z

e−j 2r2 =
√

π

r

∑
k∈Z

e−k2π2/r2
, (D12)

where the equality follows from the Poisson summation
formula [64, p. 385]. We now find an upper bound for

the right-hand side of Eq. (D12). Note that r2 ≤ 1/2 so
e−k2π2/r2 ≤ e−2k2π2

, also e−2k2π2 ≤ eπ−2π2
e−πk2

for each
k ∈ Z/{0}, therefore,

∑
k∈Z

e−k2π2/r2 ≤
∑
k∈Z

e−2k2π2 ≤ 1+ eπ−2π2 ∑
k∈Z/{0}

e−πk2

= 1+ eπ−2π2
(

π1/4

�(3/4)
− 1

)
= p , (D13)

where we use
∑

k∈Z e−πk2 = π1/4/�(3/4) [65, p. 103].
By Eqs. (D7), (D12), and (D13)

Ñ 2 = δ2
J/2−1∑

j=−J/2

e−j 2r2 ≤ pδN 2, (D14)

which yields Eq. (D10). We now prove Eq. (D11). Note
that

√
δ/p

J/2−1∑
j=−J/2

e−j 2r2 =
√

δ/p

⎛
⎝1+ e−J 2r2/4+ 2

J/2−1∑
j=1

e−j 2r2

⎞
⎠,

(D15)

and, as e−x2/(2σ 2) is a convex function for |x| ≥ σ ,

∫ J δ/2

−J δ/2
dx e−x2/2σ 2

= 2
∫ δ

0
dx e−x2/2σ 2 + 2

J/2−1∑
j=1

∫ (j+1)δ

j δ
dx e−x2/2σ 2

≤ 2δ + 2δ

J/2−1∑
j=1

e−j 2r2 − 2(1/2)δ
(
(1/
√

e)− e−J 2r2/4
)

= δ

⎛
⎝(2− 1/

√
e)+ e−J 2r2/4 + 2

J/2−1∑
j=1

e−j 2r2

⎞
⎠ .

(D16)

Note that if δ ≤ (2− 1/
√

e)−2/p = 0.514 998 then δ2(2−
1/
√

e)2 ≤ δ/p and therefore,

δ(2− 1/
√

e) ≤
√

δ/p . (D17)

This inequality implies that the right-hand side of
Eq. (D15) is greater than or equal to the right-hand side
of Eq. (D16). Therefore, Eqs. (D15), (D16), (D17), and
δ ≤ 1/2 yields Eq. (D11). �

Proposition 15: Let dmax ∈ R+ and dmin ∈ R+ be, respec-
tively, the largest and the smallest diagonal elements of

020364-56

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

the diagonal matrix D in either the spectral or the UDU
decomposition of a symmetric positive-definite matrix A ∈
RN×N , with N ∈ Z+. Also let κ ∈ R+ be the condition
number of A, quantified as the ratio of the largest to the
smallest eigenvalues of A. Then

dmax

dmin
∈ O(κ). (D18)

Proof. If D is the diagonal matrix in the spectral decompo-
sition of A, then dmax and dmax are, respectively, the largest
and the smallest eigenvalue of A. Therefore, by definition,

dmax

dmin
= κ . (D19)

If D is the diagonal matrix in the UDU decomposition of
A, then

dmax

dmin
≤ κ . (D20)

The proof of this inequality is as follows. Let λmax(A) and
λmin(A) be, respectively, the largest and the smallest eigen-
values of A and let ei be the ith column of the N -by-N
identity matrix. Then

λmax(A) = max
‖x‖=1

xTAx ≥ max
i

eT
i Aei = max

i

(
UDUT)

ii

= max
i

⎛
⎝di +

∑
j >i

dj U2
ij

⎞
⎠ ≥ max

i
di = dmax,

(D21)

λ−1
min(A) = λmax

(
A−1) ≥ max

i

(
UDUT)−1

ii

= max
i

⎛
⎝d−1

i +
∑
j >i

d−1
j

(
U−1)2

ij

⎞
⎠ ≥ max d−1

i

= d−1
min. (D22)

The second equality in Eq. (D22) follows from the fact
that the inverse of an upper unit-triangular matrix is an
upper unit-triangular matrix [43, p. 220]. The last inequal-
ity in Eqs. (D21) and (D22) holds because di > 0 for the
positive-definite matrix A. Proposition 15 follows from
Eqs. (D19) and (D20). �

Proposition 16: Let κ ∈ R+ be the condition number of
the ICM for the ground state of a N-mode massive real
scalar bosonic free QFT with mass m0 ∈ R+ in a fixed- or
multiscale wavelet basis. Then

κ ∈ �(N/m0). (D23)

Proof. Note that the ICM A in a multiscale wavelet has
the same condition number as the ICM Ass in a fixed-scale
wavelet basis because A is obtained from Ass by a wavelet
transform. We therefore consider the condition number of
Ass. Now using Ass =

√
Kss, where Kss, Eq. (23), is the

coupling matrix in a fixed-scale wavelet basis, we have

κ =
√

λmax(Kss)

λmin(Kss)
. (D24)

We prove that

λmin(Kss) = m2
0, (D25)

λmax(Kss) ∈ �(m2
0 + N 2). (D26)

Proposition 16 follows from Eqs. (D24) to (D26). To prove
Eq. (D26), we find a lower and an upper bound for the
largest eigenvalue of Kss. We use the Gershgorin circle
theorem to find the upper bound [43, p. 388]. This theorem
implies that

λmax(Kss) ≤ max
i

(
Kss;ii + Ri

)
, Ri :=

∑
j �=i

|Kss;ij |. (D27)

Note that for any positive-definite matrix Kss [43, p. 434]

|Kss;ij |2 ≤ Kss;iiKss;jj , (D28)

and by Eq. (23)

Kss; ii = m2
0 + N 2�0. (D29)

Therefore,

|Kss;ij | ≤ m2
0 + N 2�0. (D30)

Furthermore, Kss is a banded circulant matrix with
the lower and upper bandwidth 2K − 2. Thus, using
Eq. (D30),

Ri ≤ 2(2K − 2)(m2
0 + N 2�0). (D31)

Equations (D27), (D29), and (D31) yield

λmax(Kss) ≤ (4K − 3)(m2
0 + N 2�0). (D32)

We now find a lower bound for the largest eigenvalue. Note
that

λmax(Kss) = max
‖x‖=1

xTKssx ≥ max
i

eT
i Kssei = m2

0 + N 2�0,

(D33)

where ei is the ith column of 1N×N and in the last equal-
ity we use Eq. (D29). Equations (D32) and (D33) yield
Eq. (D26). �

020364-57

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

Proposition 17: (Exponentially decaying ICM at a fixed
scale.) Let m0 ∈ R+ be the free mass, K ∈ Z≥3 be the
wavelet index, and r ∈ Z≥0 be the scale index. Let A(r)

ss ∈
RL2r×L2r

, Eq. (24), with L ∈ Z≥2(2K−1) be the ground-state
ICM at scale r. Then, for any j

|A(r)
ss; 0,j | ≤ 4m0κ

(r)2−|j |/ξ
(r)

, ξ (r) := (2K − 1)2r+1/m0,
(D34)

where κ(r) > 1 is the spectral condition number of K(r)
ss ,

Eq. (23).

Proof. We employ the Benzi-Golub theorem [66, Theorem
2.2] to bound off-diagonal entries of ICM A(r)

ss ; see [67, p.
243] for an alternative statement of this theorem. Let α > 1
and β > 0, with α > β, be the half axes of an ellipse in the
complex plane with foci in ±1. This ellipse is specified
by the sum of its half axes χ := α + β > 1, so we denote
the ellipse by Eχ . Let f (z) be an analytic function in the
interior of Eχ and continuous on Eχ for any 1 < χ < χ̄ ,
and let

M (χ) := max
z∈Eχ

|f (z)| and K := 2χM (χ)

χ − 1
. (D35)

Also let B be a symmetric and banded matrix whose spec-
trum specB is contained in [−1, 1] and let B the upper
bandwidth of B. Then by the Benzi-Golub theorem [66,
Theorem 2.2]

|[f (B)]i,j | ≤ K2−γ |i−j |, γ := log2 χ

B + 1
. (D36)

The ICM matrix A(r)
ss is the principal square root of the cou-

pling matrix K(r)
ss , Eq. (23), and K(r)

ss is a symmetric and
banded matrix with the upper bandwidth 2K − 2. How-
ever, specK(r)

ss is not contained in [−1, 1], so we cannot
directly apply the Benzi-Golub theorem to this matrix.
Let [a, b] ⊂ R+ be the interval containing specK(r)

ss . To
apply the Benzi-Golub theorem, by shifting and scaling the
coupling matrix, we construct the matrix

B := 2K(r)
ss − (b+ a)1

b− a
, (D37)

whose spectrum is contained in [−1, 1]. Then the function

f (z) :=
√

b− a
2

z + b+ a
2

, (D38)

maps B to the ICM; that is A(r)
ss = f (B). By the Benzi-

Golub theorem, we then have

|A(r)
ss; 0,j | ≤ K2−γ |j |, (D39)

with

γ = log2 χ

2K − 1
. (D40)

We now obtain a lower bound for γ . The function f (z) in
Eq. (D38) is analytic in the interior of any ellipse Eχ with
χ less than

χ̄ = b+ a
b− a

+
√(

b+ a
b− a

)2

− 1. (D41)

Using the spectral condition number κ(r) := b/a of K(r)
ss ,

we have

χ̄ =
√

κ(r) + 1√
κ(r) − 1

= 1+ 2√
κ(r) − 1

≥ 1+ 2√
κ(r) − 1

,

(D42)

where the inequality holds because κ(r) ≥ 1. Setting

χ = 1+ 2/
√

κ(r) − 1 ≤ χ̄ , (D43)

we obtain

log2(χ)= log2

(
1+ 2/

√
κ(r) − 1

)
≥
√

2/κ(r)≥m0/2r+1,

(D44)

where the first inequality holds because κ(r) ≥ 1 and the
second inequality holds because

κ(r) ≤ 1+ 4r+2/m2
0 ≤ 2× 4r+2/m2

0, (D45)

as per Proposition 16. The combination of Eq. (D40) and
Eq. (D44) yields

γ ≥ 1/ξ (r), (D46)

where ξ (r) is given in Eq. (D34). We now find an upper
bound for K in Eq. (D39). By Eq. (D43) and κ(r) ≥ 1

2χ

χ − 1
= χ

√
κ(r) − 1 =

√
κ(r) − 1+ 2 ≤ 2

√
2κ(r).

(D47)

The function f (z) in Eq. (D38) attains its maximum at
the point z0 := α, where α is the greater half axis of the
ellipse Eχ . The combination of χ = α + β, α2 − β2 = 1

020364-58

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

and Eq. (D43) yields

z0 := χ2 + 1
2χ

= 1+ (χ − 1)2

2χ
≤ 1+ 1

2
(χ − 1)2

= 1+ 2
κ(r) − 1

, (D48)

and

M (χ) = max
z∈Eχ

|f (z)| = f (z0) =
√

b− a
2

χ2 + 1
2χ

+ b+ a
2

≤
√

a/2
√

2κ(r) + 2 ≤
√

2aκ(r) = m0

√
2κ(r),

(D49)

where the last equality follows because the smallest eigen-
value of K(r)

ss is a = m2
0. Equations (D35), (D47), and (D49)

yield

K ≤ 4m0κ
(r). (D50)

Proposition 17 follows from Eqs. (D39), (D46), and (D50).
�

1. Proof of Proposition 8

To prove Proposition 8, first we show that the εth-
approximate ICM Aεth , Eq. (50), is a positive-definite
matrix. Then we prove that the infidelity between |GN (A)〉
and

∣∣GN (Aεth)
〉

is no greater than ε.
We use the Bauer-Fike theorem [43, p. 405] to show that

Aεth is a positive-definite matrix. Let Q be a nonsingular
matrix such that Q−1AQ = � is a diagonal matrix and let
E := A− Aεth . According to the Bauer-Fike theorem, for
any eigenvalue λ(Aεth) of Aεth , there is an eigenvalue λ(A)

of A such that

|λ(Aεth)− λ(A)| ≤ κp(Q)‖E‖p , (D51)

where ‖•‖p is the matrix norm induced by any p-norm on
CN and κp(•) is the condition number of a matrix with
respect to this norm. As A is a real-symmetric matrix,
Q can be chosen to be an orthogonal matrix for which
‖Q‖2 = 1 and κ2(Q) = 1. Therefore, using Eq. (D51) with
p = 2, we obtain

|λmin(Aεth)− λ(A)| ≤ ‖E‖2 ≤ Nεth, (D52)

for the smallest eigenvalue λmin(Aεth) of Aεth . The last
inequality here comes from |Eij | ≤ εth by the definition of
E and using the matrix-norm inequalities ‖E‖2 ≤ ‖E‖F ≤
N maxi,j |Eij |, where ‖•‖F is the Frobenius norm of a
matrix. If λmin(Aεth) ≥ λmin(A), then Aεth is already a
positive-definite matrix. Otherwise, using Eq. (D52)

|λmin(Aεth)− λmin(A)| ≤ Nεth ≤ εγ /
√

N , (D53)

which implies that the Aεth is a positive-definite matrix.

We now prove Eq. (52). Let T := EA−1, then
〈
GN (A)

∣∣GN (Aεth)
〉

=
(

det Adet Aεth

(2π)2N

)1/4 ∫
RN

dN xe−
1
4 xT(A+Aεth)x

= [det(1− T)]1/4

[det(1− T/2)]1/2 , (D54)

where we use det Aεth = det Adet (1− T) by employing
the multiplicative property of the determinant function [43,
p. 11], and the Gaussian integral

∫
RN

dN xe−
1
2 xTAx =

(
(2π)N

det A

)1/2

, (D55)

for a symmetric and positive-definite matrix A ∈ RN×N .
We now use Proposition 13 to obtain a lower and an upper
bound for determinant of the near-identity matrix 1− T.
Let us first find an upper bound for |Tij |. Note that

|Tij | = |
N−1∑
k=0

Eik
(
A−1)

kj | ≤ εth max
j

N−1∑
k=0

|(A−1)
kj |

= εth‖A−1‖1 ≤ εthγ
−1
√

N , (D56)

where the last inequality follows from the matrix-norm
relations

‖A‖1 ≤
√

N‖A‖2, ‖A‖2 = λmax(A), (D57)

for a real-symmetric matrix A [43, pp. 346, 363], and
λmax(A−1) = λ−1

min(A) ≤ γ−1; note that γ > 0 is a lower
bound for the eigenvalues of A. By Proposition 13 and
Eq. (D56), if εthγ

−1N 3/2 ≤ ε, then

det(1− T) ≥ 1− ε, det (1− T/2) ≤ (1− ε/2)−1.
(D58)

Combination of Eq. (D54) and Eq. (D58) yields
〈
GN (A)

∣∣GN (Aεth)
〉 ≥ (1− ε)1/4(1− ε/2)1/2 ≥ 1− ε,

(D59)

where, in the last inequality, we use (1− ε/2)1/2 ≥ (1−
ε)1/2 and (1− ε)3/4 ≥ 1− ε for any ε ∈ (0, 1). Therefore,
the infidelity between |GN (A)〉 and

∣∣GN (Aεth)
〉
is at most ε.

2. Proof of Proposition 9

This Appendix presents a proof for Proposition 9. Fol-
lowing Eq. (59) with r = c, we have

A(r,r)
ww = GA(r+1)

ss GT, (D60)

where G is the lower half of the wavelet-transform matrix
at scale r, see Eq. (A7), with entries Gnm = gn−2m. Using

020364-59

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

Eq. (D60) and circulant property of A(r+1)
ss , we have

A(r,r)
ww; 0,j =

2K−1∑
m,n=0

gngmA(r+1)

ss; 0,(2j+m−n). (D61)

By virtue of Proposition 17, |A(r+1)

ss; 0,j | decreases as j
increases. For any m, n, and j ≥ 2K − 1, we have 2j +
m− n ≥ j , so

|A(r+1)

ss; 0,(2j+m−n)| ≤ |A(r+1)

ss; 0,j | ∀j ≥ 2K − 1. (D62)

Eq. (D61) and Eq. (D62) yield

|A(r,r)
ww; 0,j | ≤ |A(r+1)

ss; 0,j |
2K−1∑
m,n=0

|gngm|, (D63)

and because
∑

g2
n = 1, we have |gn| ≤ 1. Therefore,

2K−1∑
m,n=0

|gngm| ≤
(

2K−1∑
m=0

|gm|
)(

2K−1∑
n=0

|gn|
)

< 4K2. (D64)

Proposition 9 follows from Eqs. (D34), (D63), and (D64).

3. Proof of Corollary 10

Here we prove Corollary 10. By virtue of Proposition
9, the off-diagonal entries in diagonal blocks of the mul-
tiscale ICM decay slower as the scale index r increases.
Therefore, for a given threshold value εth, the bottom-right
block of the approximate ICM Eq. (50) has the largest
bandwidth among the diagonal blocks. Plugging r = k − 1
into Eq. (53) we obtain

|A(k−1,k−1)

ww; 0,j | ≤ εth, (D65)

for

|j | ≥ ξ (k) log2

(
16Km0κ

(k)

εth

)
. (D66)

We now use Proposition 8 and 2k+1 ≤ log N to express
the upper bandwidth in terms of K, m0, εvac, and N . By
Eq. (53)

ξ (k) = (2K − 1)2k+1/m0 ≤ (2K − 1) (log N) /m0.
(D67)

The smallest eigenvalue of the ICM is m0, so by Proposi-
tion 8 we take εth = m0εvacN−3/2. Therefore,

16K2m0κ
(k)

εth
= 16K2N 3/2κ(k)

εvac
≤ 32K2N 3/24k+2

m2
0εvac

≤ 32K2N 3/2 log2 N
m2

0εvac
≤ 16K2N 2

m2
0ε

2
vac

, (D68)

where we use Eq. (D45) in the first inequality. In the last
two inequalities we use

2k+1 ≤ log N , εvac ≥ ε2
vac, and 32N 3/2 log2 N ≤ 16N 2,

(D69)

for εvac ∈ (0, 1) and N ∈ Z+. Equation (54) follows from
Eqs. (D66)–(D68).

APPENDIX E: COMPUTING ROTATION ANGLE
FOR 1DG-STATE GENERATION

In this Appendix, we analyze the time complexity for
computing the rotation angle θ� in Eq. (71) on a quantum
computer. We first simplify computing θ� using the double-
angle identity as

θ� = 1
2

arccos(u�) = π

4
− 1

4
arcsin(u�), (E1)

where

u� := 2
f (σ̃�/2, μ�/2, m� − 1)

f (σ̃�, μ�, m�)
− 1, (E2)

and f (σ̃�, μ�, m�) is defined in Eq. (69). Using Eq. (E1),
computing θ� requires computing u� and arcsin(u�), and
performing one multiplication and one addition. There-
fore, time complexity for computing the rotation angle θ�,
denoted by TANGLE, is

TANGLE = Tu + Tarcsin + 2, (E3)

where Tu and Tarcsin are time complexities for comput-
ing u� and arcsin(u�), respectively. By Eq. (E2), com-
puting u� requires computing f (σ̃�/2, μ�/2, m� − 1) and
f (σ̃�, μ�, m�), and performing one division, one multipli-
cation, and one addition. Therefore,

Tu = 2Tf + 3, (E4)

where Tf is time complexity for computing f (σ̃�, μ�, m�).
By Eq. (E3) and Eq. (E4), we need only Tf and Tarcsin to
obtain TANGLE. First we provide a high-level description of
how to obtain Tf and Tarcsin. We show, in Proposition 18,
that computing f (σ̃�, μ�, m�) to t bit of precision requires
computing at most 4t− 1 exponentials and adding them
all. The argument of each exponential needs performing
one addition, one multiplication, one division and calculat-
ing the square of two numbers. Calculating the square of a
number can be performed by one multiplication [53, p. 7].
Altogether, time complexity for computing f (σ̃�, μ�, m�)

is at most (4t− 1)Texp + (4t− 2)+ 5, and therefore

Tf ∈ O(tTexp), (E5)

where Texp is time complexity for computing an exponen-
tial. We use Proposition 19 to show Texp scales linearly

020364-60

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

with t. By this proposition, to compute e−x with t bits of
precision, first the polynomial

P(x) := a0 + a1x + a2x2, (E6)

with a0 = 1, a1 = 1/4t and a2 = 1/42t is evaluated at x and
then the result is iteratively squared 2t times. Computing
square of a number needs one multiplication, so Texp =
TP + 2t, where TP is time complexity for computing P(x)
in Eq. (E6).

We use Horner’s method to compute a polynomial on
a quantum computer [53], and to obtain TP. To evaluate
the polynomial in Eq. (E6) at x, we store the coefficients
a0, a1, and a2 on a ancillary quantum register and imple-
ment the operation a2x + a1
→ (a2x + a1)x + a0. Imple-
menting this operation needs two multiplications and two
additions before uncomputing the intermediate results, so
TP is a constant and

Texp ∈ �(t). (E7)

We use Proposition 20 and Proposition 21 to obtain Tarcsin.
In Proposition 20, we show that the argument x of arcsin(x)
is a positive number less than 1/2 and, in Proposition 21,
we show a polynomial of degree t suffices to approximate
arcsin(x) with t bits of precision. As described, computing
a polynomial of degree t by Horner’s method requires �(t)
multiplications and additions, so

Tarcsin = �(t), (E8)

The combination of Eqs. (E3)–(E5) and (E7)–(E8) yields

TANGLE ∈ O(t2). (E9)

We now state and prove the propositions that we use to
obtain TANGLE.

Proposition 18: Let m ∈ Z+, t ∈ Z+, � ∈ {0, . . . , m− 1},
μ� ∈ [0, 1), m� := m− �, σ̃� ∈ (0, 2m�/2) and

f (σ̃�, μ�, m�) :=
2m�−1−1∑

j=−2m�−1

exp
(
− (j+μ�)

2

2σ̃ 2
�

)
, (E10)

g(σ̃�, μ�) :=
2t∑

j=−2t−1

exp
(
− (j+μ�)

2

2σ̃ 2
�

)
. (E11)

For 2m� > 8(t+ 3), if σ̃ 2
� > t then

|f (σ̃�, μ�, m�)− σ̃�

√
2π | ≤ 1

2t+1 , (E12)

else

|f (σ̃�, μ�, m�)− g(σ̃ , μ�)| ≤ 1
2t+1 . (E13)

Proof. We first prove the first part of Proposition 18. Using
the triangle inequality,

∣∣∣f (σ̃�, μ�, m�)− σ�

√
2π

∣∣∣

≤
∣∣∣∣∣∣f (σ̃�, μ�, m�)−

∑
j∈Z

exp
(
− (j+μ�)

2

2σ̃ 2
�

)∣∣∣∣∣∣

+
∣∣∣∣∣∣
∑
j∈Z

exp
(
− (j+μ�)

2

2σ̃ 2
�

)
− σ̃�

√
2π

∣∣∣∣∣∣ . (E14)

Let us now find and upper bound for the first term in the
right-hand side of Eq. (E14). By Eq. (E10),

∣∣∣∣∣∣f (σ̃�, μ�, m�)−
∑
j∈Z

exp
(
− (j+μ�)

2

2σ̃ 2
�

)∣∣∣∣∣∣

=
∞∑

2m�−1

(
exp

(
− (j+μ�)

2

2σ̃ 2
�

)
+ exp

(
− (j+1−μ�)

2

2σ̃ 2
�

))

≤ 2
∞∑

2m�−1

exp
(
− j 2

2σ̃ 2
�

)
≤ 2

∞∑
2m�−1

e−j /4 = 2e−2m�−3

1− e−1/4

≤ 1
2

e−t. (E15)

The first inequality here holds because μ� ∈ [0, 1). The
second inequality is obtained using

∞∑
2m�−1

exp
(
− j 2

2σ̃ 2
�

)
≤

∞∑
2m�−1

exp
(
− 2m�−1

2σ̃ 2
�

j
)

, (E16)

and σ̃ 2
� ≤ 2m� . The last inequality is obtained using 2m� >

8(t+ 3) and 2e−3/(1− e−1/4) < 1/2.
We now establish an upper bound for the second term in

the right-hand side of Eq. (E14). By Poisson’s summation
formula [64, p. 385],

∑
j∈Z

exp
(
− (j+μ�)

2

2σ̃ 2
�

)

= σ̃�

√
2π
∑
j∈Z

e−2π2σ̃ 2
�

j 2−2π iμ�j

= σ̃�

√
2π

⎛
⎝1+ 2

∞∑
j=1

e−2π2σ̃ 2
�

j 2
cos(2πμ�j)

⎞
⎠ .

(E17)

020364-61

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

Therefore,
∣∣∣∣∣∣
∑
j∈Z

exp
(
− (j+μ�)

2

2σ̃ 2
�

)
− σ̃�

√
2π

∣∣∣∣∣∣

= 2
√

2πσ̃�

∣∣∣∣∣∣
∞∑

j=1

e−2π2σ̃ 2
�

j 2
cos(2πμ�j)

∣∣∣∣∣∣

≤ 2
√

2πσ̃�

∞∑
j=1

e−2π2σ̃ 2
�

j 2

≤ 2
√

2πσ̃�

∞∑
j=1

e−2π2σ̃ 2
�

j = 2
√

2πσ̃�

e−2π2σ̃ 2
�

1− e−2π2σ̃ 2
�

≤ e−π2σ̃ 2
� ≤ e−π2t. (E18)

Here we use the triangle inequality and |cos(2πμ�j)| ≤
1 to obtain the first inequality. The second inequality is
obtained by

∞∑
j=1

e−2π2σ̃ 2
�

j 2 ≤
∞∑

j=1

e−2π2σ̃ 2
�

j . (E19)

The third inequality is obtained using 1− e−2π2σ̃ 2
� ≥ e−σ̃ 2

�

for σ̃ 2
� ≥ t ≥ 1, and 2

√
2πxe−(π2−1)x2 ≤ 1 for any x ∈ R+.

The last inequality holds because σ̃ 2
� ≥ t. The first part of

Proposition 18 follows from Eqs. (E14), (E15), (E18), and

1
2

e−t + e−π2t ≤ 1
2t+1 ∀t ∈ Z+. (E20)

We now prove the second part of Proposition 18. By
Eqs. (E10) and (E11),

|f (σ̃�, μ�, m�)− g(σ̃ , μ�)|

=
2m�−1−1∑
j=2t+1

(
exp

(
− (j+μ�)

2

2σ̃ 2
�

)
+ exp

(
− (j+1−μ�)

2

2σ̃ 2
�

))

≤ 2
2m�−1−1∑
j=2t+1

exp
(
− j 2

2σ̃ 2
�

)
≤ 2

∞∑
j=2t+1

e−j = 2
e−(2t+1)

1− e−1

≤ 1
2t+1 . (E21)

The first inequality here is obtained using μ� ∈ [0, 1); the
second inequality is obtained using

2m�−1−1∑
j=2t+1

exp
(
− j 2

2σ̃ 2
�

)
≤

∞∑
j=2t+1

exp
(
− 2t+1

2σ̃ 2
�

j
)

, (E22)

and σ̃ 2
� ≤ t. The last inequality is valid for any t ∈ Z+. �

Proposition 19: Let t ∈ Z+, x ∈ [0, t] and P(x/�) := 1−
x/�+ x2/�2. Then, for any � ≥ 4t,

|e−x − P�(x/�)| ≤ 1/4t. (E23)

Proof. Note that

e−x = (e−x/�)� = [P(x/�)+ E(x/�)]� ,

E(x/�) :=
∑
n≥3

(−)n

n!
(x/�)n. (E24)

Using binomial expansion

e−x = P�(x/�)+
�∑

n=1

(
�

n

)
P�−n(x/�)En(x/�). (E25)

Therefore,

|e−x − P�(x/�)| ≤
�∑

n=1

(
�

n

)
|P(x/�)|�−n|E(x/�)|n

≤
�∑

n=1

(
�

n

)
|P(x/�)|�−n|E(x/�)|n, (E26)

where, in the last inequality, we use P(x/�) ≤ 1 for x/� ≤
1. Let us now find an upper bound for |E(x/�)|. Using
Eq. (E24) and the triangle inequality,

|E(x/�)| ≤
∑
n≥3

1
n!

(x/�)n = (x/�)3
∑
n≥0

1
(n+ 3)!

(x/�)n

≤ 1
6
(x/�)3ex/� ≤ 1

2
(x/�)3, (E27)

the last inequality holds because ex/�/3 ≤ 1 for x/� ≤ 1.
Using Eqs. (E26) and (E27)

|e−x − P�(x/�)| ≤
�∑

n=1

(
�

n

)
1
2n (x/�)3n ≤

�∑
n=1

�n

2n (x/�)3n

= x3

2�2 +
�∑

n=2

x3n

2n�2n ≤
x3

2�2

(
1+ x3

2�2

)
≤ 1

�
≤ 1

4t .

(E28)

Here we use x3/� ≤ 1/2 for x ∈ [0, t] and � > 4t. �

020364-62

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

Proposition 20: Let σ̃ ∈ [1,∞), μ ∈ [0, 1), m ∈ Z+ and

f (σ̃ , μ, m) =
2m−1−1∑

j=−2m−1

e−(j+μ)2/2σ̃ 2
. (E29)

Then
∣∣∣∣2

f (σ̃ /2, μ/2, m− 1)

f (σ̃ , μ, m)
− 1

∣∣∣∣ ≤ 1/2. (E30)

Proof. Let feven := f (σ̃ /2, μ/2, m− 1) and fodd = f (σ̃ /2,
(μ+ 1)/2, m− 1). Then f (σ̃ , μ, m) = feven + fodd, and
Eq. (E30) becomes

∣∣∣∣
feven − fodd

feven + fodd

∣∣∣∣ ≤ 1/2. (E31)

We show 3feven ≥ fodd and 3fodd ≥ feven. These two inequal-
ities yield Eq. (E31), which proves Proposition 20. Notice
that

feven =
2m−2−1∑

j=0

e−(2j+μ)2/2σ̃ 2 +
2m−2∑
j=1

e−(2j−μ)2/2σ̃ 2

=
2m−2−1∑

j=0

e−(2j+μ)2/2σ̃ 2 +
2m−2+1∑

j=2

e−(2j−2−μ)2/2σ̃ 2
,

(E32)

fodd =
2m−2−1∑

j=0

e−(2j+1+μ)2/2σ̃ 2 +
2m−2∑
j=1

e−(2j−1−μ)2/2σ̃ 2

=
2m−2∑
j=1

(
e−(2j−1+μ)2/2σ̃ 2 + e−(2j−1−μ)2/2σ̃ 2

)
. (E33)

Using these equations

feven − fodd =
2m−2−1∑

j=0

(
e−(2j+μ)2/2σ̃ 2 − e−(2j+μ+1)2/2σ̃ 2

)

+
2m−2∑
j=2

(
e−(2j−2−μ)2/2σ̃ 2 − e−(2j−1−μ)2/2σ̃ 2

)

+ e−(2m−1−μ)2/2σ̃ 2 − e−(1−μ)2/2σ̃ 2
(E34)

fodd − feven =
2m−2∑
j=1

(
e−(2j−μ−1)2/2σ̃ 2 − e−(2j−μ)2/2σ̃ 2

)

+
2m−2−1∑

j=1

(
e−(2j−1+μ)2/2σ̃ 2 − e−(2j+μ)2/2σ̃ 2

)

+ e−(2m−1−1+μ)2/2σ̃ 2 − e−μ2/2σ̃ 2
. (E35)

The first three terms in the right-hand side of these equa-
tions are non-negative, so we have

feven − fodd ≥ −e−(1−μ)2/2σ̃ 2
, fodd − feven ≥ −e−μ2/2σ̃ 2

.
(E36)

By these inequalities, Eq. (E32) and Eq. (E33)

3feven − fodd ≥ 2feven − e−(1−μ)2/2σ̃ 2

≥ 2
(

e−μ2/2σ̃ 2 + e−(2−μ)2/2σ̃ 2
)

− e−(1−μ)2/2σ̃ 2 ≥ 0, (E37)

3fodd − feven ≥ 2fodd − e−μ2/2σ̃ 2

≥ 2
(

e−(1+μ)2/2σ̃ 2 + e−(1−μ)2/2σ̃ 2
)

− e−μ2/2σ̃ 2 ≥ 0, (E38)

for all σ̃ ≥ 1 and μ ∈ [0, 1). These inequalities yield
3feven ≥ fodd and 3fodd ≥ feven, and hence Eq. (E31). �

Proposition 21: Let t ∈ Z+, |x| ≤ 1/2 and

P(x) :=
t−1∑
�=0

a2�+1x2�+1, a2�+1 := (2�− 1)!!
(2�)!!

1
2�+ 1

.

(E39)

Then |arcsin(x)− P(x)| ≤ 1/22t+1.

Proof. Using the binomial series of (1− x2)−1/2,

arcsin(x) =
∫ x

0

dx√
1− x2

= P(x)+
∫ x

0
dx

∞∑
�=t

(2�− 1)!!
(2�)!!

x2�. (E40)

By this equation and (2�− 1)!!/(2�)!! < 1 we have

|arcsin(x)− P(x)| <
∫ x

0
dx

∞∑
�=t

x2� =
∫ x

0
dxx2t

∞∑
�=0

x2�

≤ 4
3

x2t+1

2t+ 1
≤ 1

22t+1 , (E41)

where we use |x| ≤ 1/2 and t ≥ 1 in the last two
inequalities. �

020364-63

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

Algorithm 12. Classical algorithm for UDU decomposition of a dense real-symmetric matrix

APPENDIX F: UDU DECOMPOSITION

In this Appendix, we present a classical algorithm
for computing the UDU decomposition of a dense real-
symmetric matrix. The algorithm presented here elucidates
our classical UDU-decomposition algorithm for a matrix
with a fingerlike sparse structure. First we describe the
UDU matrix decomposition and then present the algorithm
for a dense matrix as pseudocode.

In the UDU matrix decomposition, a symmetric matrix
A is decomposed into the product of an upper unit-
triangular matrix U, a diagonal matrix D and transpose of
the upper unit-triangular matrix. The UDU decomposition
is closely related to the LDL decomposition, where a sym-
metric matrix is decomposed into the product of a lower
unit-triangular matrix L, a diagonal matrix, and transpose
of the lower unit-triangular matrix. The LDL decomposi-
tion algorithm starts from the top-left corner of the matrix
L and proceeds to compute entries of this matrix row
by row [68]. The UDU-decomposition algorithm, how-
ever, starts from the top-right corner of U and proceeds
to compute its entries column by column.

To elucidate the algorithm, we write the UDU decom-
position of a real-symmetric matrix A as

A = UDUT = UVT, V := UD, (F1)

where V is an upper triangular matrix. By definition, the
nonzero elements in the ith row of V are

vi, i:N−1 = ui, i:N−1 ! di:N−1, (F2)

where ! denotes the Hadamard product. By Eq. (F1), ele-
ments of the ith column in the upper-triangular part of A
are

A0:i, i = u0:i, i:N−1 · vi, i:N−1. (F3)

This equation along with uii = 1 and vii = di yield

di = aii − ui, i+1:N−1 · vi, i+1:N−1, (F4)

u0:i−1, i =
[
A0:i−1,i − u0:i−1, i+1:N−1 · vi, i+1:N−1

]
/di

∀ i �= 0, (F5)

for the diagonal di and shear elements in the ith column of
U, respectively.

The procedure of the UDU-decomposition algorithm is
as follows. We start from the last column i = N − 1 and
proceed to the first column i = 0. For each index i, first we
compute vi, i:N−1, i.e., the nonzero elements in the ith row
of V by Eq. (F3). Then we compute the ith diagonal di of
D by Eq. (F4) and the shear elements in the ith column of
U by Eq. (F5). The inputs, outputs, and explicit procedure
of the algorithm is presented in Algorithm 12.

[1] S. P. Jordan, K. S. M. Lee, and J. Preskill, Quantum
algorithms for quantum field theories, Science 336, 1130
(2012).

[2] S. P. Jordan, K. S. M. Lee, and J. Preskill, Quantum
computation of scattering in scalar quantum field theories,
Quantum Inf. Comput. 14, 1014 (2014).

[3] S. P. Jordan, K. S. M. Lee, and J. Preskill, Quantum
algorithms for fermionic quantum field theories, (2014),
arXiv:1404.7115.

[4] A. Hamed Moosavian and S. Jordan, Faster quantum
algorithm to simulate fermionic quantum field theory, Phys.
Rev. A 98, 012332 (2018).

[5] A. Roggero, A. C. Y. Li, J. Carlson, R. Gupta, and G. N.
Perdue, Quantum computing for neutrino-nucleus scatter-
ing, Phys. Rev. D 101, 074038 (2020).

[6] E. F. Dumitrescu, A. J. McCaskey, G. Hagen, G. R.
Jansen, T. D. Morris, T. Papenbrock, R. C. Pooser, D.
J. Dean, and P. Lougovski, Cloud Quantum Computing
of an Atomic Nucleus, Phys. Rev. Lett. 120, 210501
(2018).

020364-64

https://doi.org/10.1126/science.1217069
https://doi.org/10.26421/QIC14.11-12-8
https://arxiv.org/abs/1404.7115
https://doi.org/10.1103/PhysRevA.98.012332
https://doi.org/10.1103/PhysRevD.101.074038
https://doi.org/10.1103/PhysRevLett.120.210501

NEARLY OPTIMAL QUANTUM ALGORITHM... PRX QUANTUM 3, 020364 (2022)

[7] S. Harmalkar, H. Lamm, and S. Lawrence, Quantum sim-
ulation of field theories without state preparation, (2020),
arXiv:2001.11490.

[8] E. J. Gustafson and H. Lamm, Toward quantum simulations
of Z2 gauge theory without state preparation, Phys. Rev. D
103, 054507 (2021).

[9] K. Choi, D. Lee, J. Bonitati, Z. Qian, and J. Watkins, Rodeo
Algorithm for Quantum Computing, Phys. Rev. Lett. 127,
040505 (2021).

[10] D. Lee, J. Bonitati, G. Given, C. Hicks, N. Li, B.-N.
Lu, A. Rai, A. Sarkar, and J. Watkins, Projected cooling
algorithm for quantum computation, Phys. Lett. B 807,
135536 (2020).

[11] E. J. Gustafson, Projective cooling for the transverse Ising
model, Phys. Rev. D 101, 071504 (2020).

[12] M. Blasone, P. Jizba, and G. Vitiello, Quantum Field The-
ory and Its Macroscopic Manifestations (Imperial College
Press, London, 2011).

[13] C. Zalka, Simulating quantum systems on a quantum com-
puter, Proc. Math. Phys. Eng. Sci. 454, 313 (1998).

[14] L. Grover and T. Rudolph, Creating superpositions that cor-
respond to efficiently integrable probability distributions,
(2002), arXiv:quant-ph/0208112.

[15] Y. R. Sanders, G. H. Low, A. Scherer, and D. W. Berry,
Black-Box Quantum State Preparation without Arithmetic,
Phys. Rev. Lett. 122, 020502 (2019).

[16] S. Lloyd, Universal quantum simulators, Science 273, 1073
(1996).

[17] T. Byrnes and Y. Yamamoto, Simulating lattice gauge the-
ories on a quantum computer, Phys. Rev. A 73, 022328
(2006).

[18] G. K. Brennen, P. Rohde, B. C. Sanders, and S. Singh, Mul-
tiscale quantum simulation of quantum field theory using
wavelets, Phys. Rev. A 92, 032315 (2015).

[19] A. Kitaev and W. A. Webb, Wavefunction prepara-
tion and resampling using a quantum computer, (2009),
arXiv:0801.0342v2.

[20] J. Alman and V. V. Williams, in Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms (SODA)
(SIAM, Alexandria, 2021), p. 522.

[21] R. Asaka, K. Sakai, and R. Yahagi, Quantum circuit for
the fast Fourier transform, Quantum Inf. Process. 19, 277
(2020).

[22] D. Bini and P. Favati, On a matrix algebra related to the
discrete Hartley transform, SIAM J. Matrix Anal. Appl. 14,
500 (1993).

[23] G. Beylkin, R. Coifman, and V. Rokhlin, Fast wavelet trans-
forms and numerical algorithms I, Commun. Pure Appl.
Math. 44, 141 (1991).

[24] G. Brassard, P. Høyer, M. Mosca, and A. Tapp, in Quantum
Computation and Information, Contemporary Mathemat-
ics, Vol. 305 (American Mathematical Society, Washington
DC, 2002).

[25] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum
Random Access Memory, Phys. Rev. Lett. 100, 160501
(2008).

[26] M. Bagherimehrab, Algorithmic quantum-state generation
for simulating quantum field theories on a quantum com-
puter, Ph.D. thesis, University of Calgary, Calgary, AB
(2022), http://hdl.handle.net/1880/114333.

[27] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse
Way (Academic Press, Orlando, 2009), 3rd ed.

[28] I. Daubechies, Ten Lectures on Wavelets (Society for Indus-
trial and Applied Mathematics, Philadelphia, 1992).

[29] F. Bulut and W. N. Polyzou, Wavelets in field theory, Phys.
Rev. D 87, 116011 (2013).

[30] T. Farrelly and J. Streich, Discretizing quantum field theo-
ries for quantum simulation, (2020), arXiv:2002.02643.

[31] H. J. Rothe, Lattice Gauge Theories: An Introduction, 3rd
ed., World Scientific Lecture Notes in Physics, Vol. 74
(World Scientific, Singapore, 2005).

[32] N. Klco and M. J. Savage, Digitization of scalar fields for
quantum computing, Phys. Rev. A 99, 052335 (2019).

[33] S. Singh and G. K. Brennen, Holographic construc-
tion of quantum field theory using wavelets, (2016),
arXiv:1606.05068.

[34] E. Knill, Conventions for Quantum Pseudocode, Techni-
cal Report LA-UR-96-2724 (Los Alamos National Lab,
1996).

[35] M. Lanzagorta and J. Uhlmann, Quantum Computer Sci-
ence, Synthesis Lectures on Quantum Computing, Vol. 2
(Morgan & Claypool, 2008). p. 28.

[36] J. A. Miszczak, High-level Structures for Quantum Com-
puting, Synthesis Lectures on Quantum Computing, Vol. 6
(Morgan & Claypool, 2012), p. 45.

[37] Q. Wang and M. Ying, Quantum random access stored-
program machines, (2020), arXiv:2003.03514.

[38] M. T. Goodrich and R. Tamassia, Algorithm Design
and Applications (Wiley, Hoboken, 2014), 1st ed,
https://dl.acm.org/doi/10.5555/2755032.

[39] R. P. Brent, Multiple-precision zero-finding methods and
the complexity of elementary function evaluation, (2010),
arXiv:004.3412v2.

[40] A. Montanaro, Quantum algorithms: An overview, npj
Quantum Inf. 2, 15023 (2016).

[41] Similar to the procedure of constructing creation and anni-
hilation operators from the position and momentum oper-
ators of a quantum harmonic oscillator, a set of discrete
creation and annihilation operators can be constructed from
the discrete field operators and their conjugate momenta in
Eq. (9); see Ref. [29, p. 7].

[42] M. A. Nielsen and I. L. Chuang, Quantum Computa-
tion and Quantum Information: 10th Anniversary Edition
(Cambridge University Press, New York, 2011).

[43] R. A. Horn and C. Johnson, Matrix Analysis (Cambridge
University Press, New York, 2012), 2nd ed.

[44] G. Beylkin, On the representation of operators in bases of
compactly supported wavelets, SIAM J. Numer. Anal. 29,
1716 (1992).

[45] S. Harris and D. Harris, Digital Design and Computer
Architecture (Morgan Kaufmann, Boston, 2016).

[46] R. Babbush, D. W. Berry, J. R. McClean, and H. Neven,
Quantum simulation of chemistry with sublinear scaling in
basis size, npj Quantum Inf. 5, 92 (2019).

[47] R. Babbush, D. W. Berry, I. D. Kivlichan, A. Y. Wei, P.
J. Love, and A. Aspuru-Guzik, Exponentially more precise
quantum simulation of fermions in second quantization,
New J. Phys. 18, 033032 (2016).

[48] R. Bracewell, The fast Hartley transform, Proc. IEEE 72,
1010 (1984).

020364-65

https://arxiv.org/abs/2001.11490
https://doi.org/10.1103/PhysRevD.103.054507
https://doi.org/10.1103/PhysRevLett.127.040505
https://doi.org/10.1016/j.physletb.2020.135536
https://doi.org/10.1103/PhysRevD.101.071504
https://doi.org/10.1142/p592
https://doi.org/10.1098/rspa.1998.0162
https://arxiv.org/abs/quant-ph/0208112
https://doi.org/10.1103/PhysRevLett.122.020502
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1103/PhysRevA.73.022328
https://doi.org/10.1103/PhysRevA.92.032315
https://arxiv.org/abs/0801.0342v2
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1007/s11128-020-02776-5
https://doi.org/10.1137/0614035
https://doi.org/10.1002/cpa.3160440202
https://doi.org/10.1090/conm/305
https://doi.org/10.1103/PhysRevLett.100.160501
http://hdl.handle.net/1880/114333
https://doi.org/10.1016/B978-0-12-374370-1.X0001-8
https://doi.org/10.1137/1.9781611970104
https://doi.org/10.1103/PhysRevD.87.116011
https://arxiv.org/abs/2002.02643
https://doi.org/10.1142/5674
https://doi.org/10.1103/PhysRevA.99.052335
https://arxiv.org/abs/1606.05068
https://doi.org/10.2172/366453
https://doi.org/10.2200/S00159ED1V01Y200810QMC002
https://doi.org/10.2200/S00422ED1V01Y201205QMC006
https://arxiv.org/abs/2003.03514
https://dl.acm.org/doi/10.5555/2755032
https://arxiv.org/abs/004.3412v2
https://doi.org/10.1038/npjqi.2015.23
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/9781139020411
https://doi.org/10.1137/0729097
https://doi.org/10.1016/C2013-0-14352-8
https://doi.org/10.1038/s41534-019-0199-y
https://doi.org/10.1088/1367-2630/18/3/033032
https://doi.org/10.1109/PROC.1984.12968

MOHSEN BAGHERIMEHRAB et al. PRX QUANTUM 3, 020364 (2022)

[49] A. Klappenecker and M. Roetteler, Quantum software
reusability, Int. J. Found. Comput. Sci. 14, 777 (2003).

[50] C.-C. Tseng and T.-M. Hwang, in 2005 IEEE Int. Symp.
Circuits Syst., Vol. 1 (IEEE, Kobe, 2005), p. 824.

[51] J. Arndt, Matters Computational: Ideas, Algorithms,
Source Code (Springer-Verlag, Berlin, 2011).

[52] S. P. Jordan, H. Krovi, K. S. M. Lee, and J. Preskill, BQP-
completeness of scattering in scalar quantum field theory,
Quantum 2, 44 (2018).

[53] T. Häner, M. Roetteler, and K. M. Svore, Optimizing
quantum circuits for arithmetic, (2018), arXiv:1805.12445.

[54] C. Gidney, Asymptotically efficient quantum Karatsuba
multiplication, (2019), arXiv:1904.07356.

[55] D. E. Knuth, The Art of Computer Programming Vol. 2
(Addison-Wesley, Boston, 1997), 3rd ed, https://dl.acm.org/
doi/10.5555/270146.

[56] D. W. Berry, C. Gidney, M. Motta, J. R. McClean, and R.
Babbush, Qubitization of arbitrary basis quantum chemistry
leveraging sparsity and low rank factorization, Quantum 3,
208 (2019).

[57] A. M. Childs, J.-P. Liu, and A. Ostrander, High-precision
quantum algorithms for partial differential equations,
(2020), arXiv:2002.07868.

[58] P. C. S. Costa, S. Jordan, and A. Ostrander, Quantum
algorithm for simulating the wave equation, Phys. Rev. A
99, 012323 (2019).

[59] A. Montanaro and S. Pallister, Quantum algorithms and the
finite element method, Phys. Rev. A 93, 032324 (2016).

[60] S. Arfaoui, A. B. Mabrouk, and C. Cattani, Wavelet Anal-
ysis: Basic Concepts and Applications (CRC Press, Boca
Raton, 2021).

[61] C. K. Chui, Wavelets: A Mathematical Tool for Signal
Analysis (Society for Industrial and Applied Mathematics,
Philadelphia, 1997).

[62] C. A. Neff and J. H. Reif, An efficient algorithm for the
complex roots problem, J. Complex. 12, 81 (1996).

[63] R. P. Brent, J.-a. H. Osborn, and W. D. Smith, Note on best
possible bounds for determinants of matrices close to the
identity matrix, Linear Algebra Appl. 466, 21 (2015).

[64] A. Altland and J. von Delft, Mathematics for Physicists:
Introductory Concepts and Methods (Cambridge Univer-
sity Press, Cambridge, 2019).

[65] B. C. Berndt, Ramanujan’s Notebooks. Part III (Springer-
Verlag, New York, 1991).

[66] M. Benzi and G. H. Golub, Bounds for the entries of matrix
functions with applications to preconditioning, BIT Numer.
Math. 39, 417 (1999).

[67] M. Benzi, in Exploiting Hidden Structure in Matrix Com-
putations: Algorithms and Applications (Springer, Cham,
2016), p. 211.

[68] N. J. Higham, Cholesky factorization, WIREs Comput.
Stat. 1, 251 (2009).

020364-66

https://doi.org/10.1142/S0129054103002023
https://doi.org/10.1109/ISCAS.2005.1464715
https://doi.org/10.1007/978-3-642-14764-7
https://doi.org/10.22331/q-2018-01-08-44
https://arxiv.org/abs/1805.12445
https://arxiv.org/abs/1904.07356
https://dl.acm.org/doi/10.5555/270146
https://doi.org/10.22331/q-2019-12-02-208
https://arxiv.org/abs/2002.07868
https://doi.org/10.1103/PhysRevA.99.012323
https://doi.org/10.1103/PhysRevA.93.032324
https://doi.org/10.1201/9781003096924
https://doi.org/10.1137/1.9780898719727
https://doi.org/10.1006/jcom.1996.0008
https://doi.org/10.1016/j.laa.2014.09.041
https://doi.org/10.1017/9781108557917
https://doi.org/10.1007/978-1-4612-0965-2
https://doi.org/10.1023/A:1022362401426
https://doi.org/10.1007/978-3-319-49887-4
https://doi.org/10.1002/wics.18

	I.. INTRODUCTION
	A.. Nontechnical background
	B.. Overview of methods and results
	C.. Organization

	II.. BACKGROUND
	A.. Wavelet bases
	B.. Discretization of a continuum QFT
	C.. Kitaev-Webb method for Gaussian-state generation
	D.. Quantum random-access machine model for computation

	III.. APPROACH
	A.. Model
	1.. Discretized quantum field theory
	2.. Client-server framework for simulating a QFT
	3.. Measure for time complexity

	B.. Mathematics
	1.. Free-field ground state in a fixed-scale basis
	2.. Free-field ground state in a multiscale wavelet basis
	3.. Discretization of continuous Gaussian pure states

	C.. Methods
	1.. One-dimensional Gaussian-state generation
	2.. Fourier-based method for ground-state generation
	3.. Wavelet-based method for ground-state generation

	IV.. RESULTS
	A.. High-level description of our algorithms for ground-state generation
	1.. High-level description of Fourier-based algorithm
	2.. High-level description of wavelet-based algorithm

	B.. Space requirement to represent the ground state
	1.. Space requirement to represent a one-dimensional Gaussian state
	2.. Space requirement to represent a multidimensional Gaussian state

	C.. Classical preprocessing
	1.. Eigenvalues of the ground state's inverse-covariance matrix
	2.. Elements of the ground state's ICM
	3.. UDU decomposition of the ground state's ICM

	D.. Quantum algorithms
	1.. One-dimensional Gaussian-state generation
	2.. One-dimensional Gaussian-state generation by inequality testing
	3.. Quantum fast Fourier transform
	4.. Quantum shear transform

	E.. Complexity analysis
	1.. Classical preprocessing in Fourier-based algorithm
	2.. Classical preprocessing in wavelet-based algorithm
	3.. One-dimensional Gaussian-state generation
	4.. Quantum fast Hartley transform
	5.. Quantum shear transform
	6.. Overall complexity for Fourier- and wavelet-based algorithms

	F.. Lower bound for ground-state generation
	G.. Fourier versus wavelet approach
	1.. Inhomogeneous-mass QFT
	2.. Particle-state generation for the free QFT

	V.. DISCUSSION
	VI.. CONCLUSIONS
	. ACKNOWLEDGMENTS
	. APPENDIX A: WAVELET TRANSFORM
	. APPENDIX B: LOW-PASS FILTER FOR DAUBECHIES WAVELETS
	. APPENDIX C: DERIVATIVE OVERLAP COEFFICIENTS
	. APPENDIX D: PROOFS
	1.. Proof of Proposition 8
	2.. Proof of Proposition 9
	3.. Proof of Corollary 10

	. APPENDIX E: COMPUTING ROTATION ANGLE FOR 1DG-STATE GENERATION
	. APPENDIX F: UDU DECOMPOSITION
	. REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

