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Abstract—Temporal knowledge graph (TKG) extrapolation
aims to predict future unknown events (facts) based on historical
information, and has attracted considerable attention due to
its great practical significance. Accurate representations (embed-
dings) of entities and relations form the basis of TKG extrapola-
tion. Recent work has been devoted to improving the rationality
of entity representations. However, on the one hand, ignoring
relation modeling results in incomplete relation representations;
therefore, some approaches aggregate only immediately adjacent
entities of relations, but this can lead to the "message islands"
problem of relation modeling. On the other hand, ignoring the
association constraints between entities and relations can make
the embeddings of both entities and relations prone to overfitting.
To address these challenges, we propose a novel method, namely,
RETIA. For the former issue, we generate twin hyperrelation
subgraphs for each historical subgraph and then aggregate
both the adjacent entities and relations in the hyperrelation
subgraphs through a graph convolutional network (GCN). For
the latter concern, we propose a twin-interact module (TIM),
which provides communication channels for relation aggregation
and entity aggregation during the evolution of the historical
sequence. Experiments conducted on five benchmark datasets
demonstrate the substantial improvements achieved by RETIA
in terms of multiple evaluation metrics. Our released code is
available at https://github.com/CGCL-codes/RETIA.

Index Terms—Temporal knowledge graph extrapolation, Twin-
interact aggregation, Graph convolutional network

I. INTRODUCTION

Temporal knowledge graphs (TKGs) represent facts as
quadruples (subject, relation, object, time) and are actually
sequences of temporal subgraphs divided by the time (times-
tamp) dimension. TKG extrapolation involves the prediction
of incomplete facts in future subgraphs, including missing
entities and missing relations, by modeling the subgraphs of
historical timestamps. Due to its great practical significance,
TKG extrapolation is widely used in scenarios such as stock
forecasting [1] and crisis forewarning [2].

TKG extrapolation has recently become a research hotspot.
A great deal of work [3]–[7] has been done regarding entity
forecasting research, which has improved remarkably. For
example, RE-NET [3] models the evolution of an entity repre-
sentation over time through a recurrent neural network (RNN),
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Fig. 1. An illustration of relation embedding and adjacent information
aggregation for entities and relations.

and CEN [7] follows RE-GCN [8] to model the temporal
evolution processes of entities via a recurrent relational GCN
(R-GCN). However, few studies have modeled relation repre-
sentations. As shown in Figure 1(a), the common approaches
are codec-based architectures. Using encoders, we obtain the
embeddings of entities and relations; then, through decoders,
incomplete facts at a future timestamp t can be forecast. On the
one hand, for future relation forecast (s, ?, o, t), we need not
only the embeddings of entities s and o at future timestamp t
but also the representations of all the relations in a score func-
tion of the quadruples to calculate the forecasting scores; thus,
inappropriate relation embeddings directly cause the model to
confuse the relations in the candidate set and be unable to
forecast the missing relations. On the other hand, for future
entity forecast (s, r, ?, t) or (?, r, o, t), relation embeddings
also act as the inputs of the decoders, in turn affecting the
accuracy of the calculated entity scores. Therefore, it is critical
to obtain appropriate representations of entities and relations
through encoders.

A series of studies [7]–[11] has shown that aggregating
adjacent structure information is essential for the process of
learning embeddings. As shown in Figure 1(b), according
to the research on GCNs [9], [10], [12] for relational data,
to obtain an accurate representation of entity s, we need
to aggregate the relation-connected adjacent entities {r1 :
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{o1, o3, o4}, r2 : o2} of entity s. Despite the maturity of entity
aggregation approaches, little work thus far has focused on
aggregating adjacent information for relations in the scenarios
of temporal dynamics. RE-GCN [8] only tries to model the
embeddings of a relation r1 via the immediately adjacent
entity information {o1, o3, o4}; it ignores the more important
adjacent relation information {r′

2, r
′

1, r
′

4}. On the one hand,
from the expression of a specific relation, the adjacent relation
information is located at the same representation level as the
modeled relation r1, so its importance in relation aggregation
is no less than that of the adjacent entity information in entity
aggregation. On the other hand, it is difficult to simultaneously
consider the adjacent information integrity of relation aggre-
gation with the traditional entity-centric modeling strategy. As
shown in Figure 1(b), in the relation modeling of temporal
dynamic scenarios, if the update of relation r1 is taken as an
example, when the adjacent relation r

′

1 of relation r1 passes
messages by entity o3, o3 should be updated. At this time,
entity o3 acts as not only the message receiver of relation
r
′

1 but also the message sender of relation r1. Therefore, the
update of o3 implies a bridge for message passing between the
two relations r1 and r

′

1. In contrast, some of the latest works,
such as RE-GCN [8] and TiRGN [12], aggregate only the
immediately adjacent entity information of relations. Under
these circumstances, as Figure 1(b) shows, the relations r1
and r

′

1 both require the aggregation of the adjacent entity
o3; then, as the aggregated object, o3 is always the sender
of the message-passing process and thus cannot receive a
new message and update the embeddings. Therefore, messages
from relations (e.g., r1 or r

′

1) can never cross the immediately
adjacent entities and propagate to outer relations (e.g., r

′

1 or
r1), which we call the "message islands" problem in relation
modeling. The message islands in the subgraphs are centered
on different relations and bounded by the entities immediately
adjacent to them, thereby aggravating the incompleteness of
the relation representations.

As Figure 1(b) shows, to obtain an accurate representation
of the relation r1 and the entity s, the entity-connected adjacent
relations {o1 : r

′

2, o3 : r
′

1, o4 : r
′

4} of relation r1 and the
relation-connected adjacent entities {r1 : {o1, o3, o4}, r2 : o2}
should be aggregated. In contrast to focusing on only a particu-
lar static subgraph, the association constraints refer to the fact
that the embeddings of entities o1, o3, and o4 at the previous
timestamp need to be involved in the update of the relation
embedding r1 at the next timestamp, and the relation embed-
dings r1 and r2 at the previous timestamp need to be involved
in the update of the entity embedding s at the next timestamp.
If the embeddings of entities and relations are considered only
in parallel without consideration of the temporal interactions
between them, the resulting representation becomes unreason-
able due to an overfitting tendency. In TKGs, the modeling
of the association constraints between entities and relations
is closely related to the evolution of historical sequences.
For example, following RE-GCN [8], TiRGN [12] updates
the relation embeddings of the next historical subgraph with
the mean-pooled one-hop entity embeddings of the previous

historical subgraph and models the evolutionary constraints
between entities and relations through a gated recurrent unit
(GRU) [13]. However, both approaches ignore the relative
positional associations between edges (relations) and nodes
(entities). As shown in Figure 1(b), entity o1 acts both as
an in-degree node for the relations r1 and r

′

1; nevertheless,
entity o4 acts as an in-degree node for relation r

′

4 but as
an out-degree node for relation r1. Therefore, the message
interactions between entities and relations are constrained by
the positional structure between them.

In this paper, we propose a novel representation learning
method for TKG extrapolation, namely, Relation-Entity Twin-
Interact Aggregation (RETIA). To prevent message islands, we
need to aggregate the complete adjacency information of the
relations as entities; thus, we propose a relation aggregation
module (RAM). As shown in Figure 2(a), we first map the
relations in the original historical subgraph to those in a twin
hyperrelation subgraph and then generate hyperrelations be-
tween the relations based on their entity-connected positional
neighborhood. Then, we aggregate the complete adjacent
information of the relations in the sequential hyperrelation
subgraphs based on the relation-aggregating R-GCN [9] and a
residual GRU [13] (R-GRU). On the other hand, to account for
the association constraints between entities and relations, we
propose a twin-interact module (TIM). As Figure 2(b) shows,
we continuously transmit the entity embeddings of the pre-
vious historical subgraph from the entity aggregation module
(EAM) to the RAM and participate in updating the relation and
hyperrelation embeddings in the next historical hyperrelation
subgraph. The relation embeddings in the previous historical
hyperrelation subgraph are passed from the RAM to the EAM
and participate in the aggregation of the entity embeddings
in the next historical subgraph. In particular, we aggregate
the relation embeddings to update the associated hyperrelation
embeddings via hyper mean pooling and use hyper long short-
term memory (LSTM) [14] to model the temporal evolution
of the hyperrelations, which present the positional association
constraints between the relations and entities.

Our contributions are summarized as follows:

• To overcome the "message islands" problem and obtain
accurate relation embeddings, we propose a RAM, that
aggregates not only the immediately adjacent entities
but also the adjacent relations of the relations in the
hyperrelation subgraph.

• To capture the association constraints between the entities
and relations in TKGs, especially the positional associa-
tion constraints, we propose a TIM, which evolutionally
models the interactions of the vector flows between the
RAM and EAM.

• Extensive experiments are conducted on five public TKG
datasets. The improvement achieved in terms of almost
all the evaluation metrics demonstrates the effectiveness
of our proposed method for TKG extrapolation.

The remainder of this paper is organized as follows. Re-
lated work, including that on existing static and dynamic
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Fig. 2. The framework of our RETIA model. The blue, orange, and green bar lines indicate the transmission of the relation, entity, and hyperrelation
embeddings, respectively. The leftmost dashed lines represent the mapping of the relations from the original subgraphs to the hyperrelation subgraphs.

extrapolation methods for TKGs, is introduced in Section II.
The proposed model is detailed in Section III. In addition,
the experiments and analyses are presented in Section IV,
followed by the conclusion in Section V.

II. RELATED WORK

Existing approaches to event forecasting over TKGs can be
divided into two categories according to their data modeling
techniques: static strategies and dynamic strategies.

1) Static Modeling: Static modeling methods do not take
temporal dynamics into consideration. Translation-based meth-
ods include TransE [15] and TransH [16]; they map enti-
ties and relations onto a low-dimensional space. The matrix
decomposition-based methods include DistMult [17] and Com-
plEx [18]. DistMult [17] models a relation as a matrix of linear
transformations in a vector space. ComlpEx [18] extends the
original representation learning paradigm to a complex space.
ConvE [19] introduces 2D convolution for knowledge embed-
dings. Conv-TransE [20] preserves the translational property of
embeddings based on ConvE. Rotation-based methods include
RotatE [21], which models relations as rotations from subject
entities to object entities. Traditional static methods learn
the embeddings of entities and relations simultaneously in
a unified low-dimensional space. However, some early GCN-
based methods conduct information aggregation for only entity
representations. R-GCN [9] adopts the concept of relation
basis to assist in aggregating the neighborhood information for
entities. Then, some advanced work modeled relation represen-
tations. Comp-GCN [10] leverages entity-relation composition
operations to jointly embed both nodes and relations in a graph.

StarE [22] (an improved version of Comp-GCN) introduces a
representation learning method for hyperrelational graphs.

Compared with previous work on relation aggregation, our
proposed RETIA features the following major differences.
1) Comp-GCN is an aggregation model for static graphs.
However, RETIA is an extrapolation framework for a sequence
of static graphs (i.e., TKG) considering temporal dynamics.
2) StarE associates additional information (tuples of key-
value pairs, called statement qualifiers) with main triples to
disambiguate or constrain the validity of a triple fact under
different circumstances. The hyperrelational KGs it can model
consist of facts with high-dimensional representations, such
as (s, r, o, (qr1, qv1), (qr2, qv2), ...), where the tuple (qri, qvi)
refers to qualifier pairs. It is generally used for representation
learning of high-dimensional KGs but does not exactly fit
temporal scenarios. For example, real-world facts (s, r, o) are
generally valid for a certain timestamp range [t0, t2], then the
representation of (s, r, o, (time, t0), (time, t1), (time, t2)) is
still essentially a compression of temporal information into a
static graph for message passing. Thus, neither the evolution
of the temporal information {t0, t1, t2} nor the structural
dependencies between timestamps can be taken into account.
3) RETIA depicts each timestamp as a separate static subgraph,
in which case the facts (s, r, o, t0), (s, r, o, t1), (s, r, o, t2) are
on the subgraphs Gt0 , Gt1 , and Gt2 , respectively. The hyper-
relation subgraphs generated in the RAM consist of relation
nodes and hyperrelations that express the relative positions
between entities and relations. In summary, it aims to solve
the problems of relation aggregation integrity and positional
association constraint in temporal dynamic scenarios.
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2) Dynamic Modeling: With dynamic methods, time in-
formation is modeled in two scenarios: interpolation and
extrapolation. The methods that operate under the interpolation
setting use global resources (past and future) to make pre-
dictions about current facts; examples include TTransE [23],
HyTE [24], and TA-DistMult [25]. TTransE [23] and TA-
DistMult [25] integrate time information into the relation
embeddings of the corresponding occurring facts. HyTE [24]
projects relations and entities to time-specific hyperplanes. In
the extrapolation setting, the forecast facts correspond to a
future timestamp, and only historical information is available;
i.e., unknown future events are forecast. RE-NET [3] models
historical information as conditional probabilities. CyGNet [4]
uses a copy mechanism to extract one-hop repetitive enti-
ties from historical data. xERTE [5] constructs an inference
graph for a query subgraph. TITer [6] extracts candidate
paths through reinforcement learning. CluSTeR [26] also ex-
tracts query-related subgraphs through reinforcement learning
and then models candidate entity embeddings with a GCN.
TLogic [27] generates query paths based on temporal logic
rules. CEN [7] addresses time-variability issues through on-
line learning strategies. Nevertheless, these approaches fail to
model relation representations for the following two reasons.
First, different from a static modeling strategy, in dynamic
modeling, the timestamps separate TKGs into independent
subgraph spaces; thus, temporal models cannot learn the em-
beddings of entities and relations simultaneously in a unified
space. Second, the connections between different subgraph
spaces require explicit temporal evolution modeling. However,
the abovementioned methods lack loss designs and thus cannot
explicitly model relations.

RE-GCN [8] and TiRGN [12] both model relation repre-
sentations and the association constraints between only rela-
tions and the entities immediately adjacent to them via mean
pooling and a GRU [13], respectively. Therefore, they still
fail to aggregate outer adjacent relation information, resulting
in "message islands" and positional association constraints
between the relations and entities. Our proposed RETIA is an
extrapolation method that aggregates the complete adjacent
information of relation nodes in hyperrelation subgraphs to
overcome the problem of message islands in the context of the
relation modeling of temporal dynamics and models positional
association constraints on the basis of common association.

III. THE RETIA MODEL

In this section, we introduce the proposed RETIA model.

A. Notations and Definitions

Table I provides the set of notations and the corresponding
descriptions used in our RETIA model. Note that for the
hyperrelation facts (rs, hyper-r, ro, t) in HGt, the relations rs
and ro are mapped from the original subgraph Gt, and hyper-
r is generated according to the relative positions among the
entities and relations. Formally, for a future subgraph Gt+1 at a
specific timestamp t+1 ∈ [0, T -1], TKG interpolation involves
predicting incomplete facts given the global information of

TABLE I
SET OF NOTATIONS USED IN THE RETIA MODEL.

Notations Descriptions
G A TKG
E Set of entities in G
R Set of relations in G
HR Set of hyperrelations in G
T Set of timestamps in G
N Number of entities (Size of E)
M Number of relations (Size of R)
H Number of hyperrelations (Size of HR)
T Number of timestamps (t ∈ {0, ..., T -1})
Gt A temporal subgraph composed of facts (s, r, o, t)
HGt Twin hyperrelation subgraph of Gt composed of

hyperrelation facts (rs, hyper-r, ro, t)
d Embedding dimensionality
k Length of the historical subgraph sequence

Et Embedding matrix of all the entities in Gt

Rt Embedding matrix of all the relations in Gt and HGt

HRt Embedding matrix of all the hyperrelations in HGt

E0 Input embedding matrix of all the entities for the first
historical timestamp

R0 Input embedding matrix of all the relations for the first
historical timestamp

HR0 Input embedding matrix of all the hyperrelations for
the first historical timestamp

all the temporal subgraphs {Gτ |0 ≤ τ ≤ T -1}. In contrast,
TKG extrapolation involves forecasting a missing object en-
tity (s, r, ?, t+1), a missing subject entity (?, r, o, t+1), or a
missing relation (s, ?, o, t+1) according to previous historical
k-length temporal subgraphs {Gτ |t-k+1 ≤ τ ≤ t}. For the
original quadruples (s, r, o, t) and hyperrelation quadruples
(rs, hyper-r, ro, t) at any timestamp t, we add the inverse
relation facts (o, r−1, s, t) and the inverse hyperrelation facts
(ro, hyper-r−1, rs, t) to the tth subgraph and hyperrelation
subgraph, respectively; thus, only the in-degree edges need
to be considered, and the actual numbers of modeled relations
and hyperrelations are 2M and 2H .

B. Architecture Overview

As shown in Figure 2, our proposed RETIA model is
composed of the RAM, EAM, and TIM. For an entity or
relation forecasting task at a future timestamp t+1, as Fig-
ure 2(a) shows, to solve the relation aggregation integrity
and positional association constraint of temporal dynamics,
we need to first determine the hyperrelations according to
their relative positions between relations and entities. In the
RAM, to address message islands in relation aggregation for
temporal scenarios, we aggregate both the neighboring entity
and relation information of the relations, rather than merely
the immediately adjacent entities of the relations. Instead of
limiting ourselves to the original entity-centric subgraphs, we
use relation-aggregation R-GCN [9] in the k relation-centric
hyperrelation subgraphs to solve this problem. The TIM is
responsible for modeling the association constraints between
the RAM and EAM in the historical sequence, especially the
positional association constraints. Mean pooling is used to
establish a common association between the entity embeddings
of the previous timestamp and the relation embeddings of the
next timestamp, and then LSTM [14] is used to model the
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TABLE II
ILLUSTRATIONS OF THE HYPERRELATIONS.

Hyperrelations Positional association constraints

o-s The object of relation rs is the subject of relation ro
s-o The subject of relation rs is the object of relation ro
o-o The relations rs and ro have the common object
s-s The relations rs and ro have the common subject

evolution of this common association. Hyper mean pooling
is used to further establish the positional association between
relation embeddings and hyperrelation embeddings, and then
hyper LSTM [14] is used to model the evolution of the
positional association.

C. Relation Aggregation Module (RAM)

As the left part of Figure 2 shows, for each subgraph
Gt of the k-length historical sequence, we generate a twin
hyperrelation subgraph HGt. According to previous work [28],
we define HR = {o-s,s-o,o-o,s-s}. Each hyperrelation demon-
strates the entity-connected relative position between the two
specific relations rs and ro. We present illustrations of the four
types of hyperrelations in Table II. Specifically, as shown in Al-
gorithm 1, for historical subgraph Gt at a specific timestamp t,
we first traverse all the quadruples of the subgraph to obtain the
relation-object adjacency matrix ROt and the relation-subject
adjacency matrix RSt. Then, taking the hyperrelation o-s as
an example, in the original subgraph Gt, if the object entity
o of the relation rs of the fact (s

′
, rs, o) is the subject entity

s of the relation ro of the fact (s, ro, o
′
), the hyperrelation

between the relations rs and ro is o-s in the corresponding
twin hyperrelation subgraph. We obtain the adjacency matrix
OSt of the hyperrelation o-s through ROt×RSt. By analogy,
we obtain the adjacency matrices SOt, OOt, and SSt of
the hyperrelations s-o, o-o, and s-s through RSt × ROt,
ROt×ROt, and RSt×RSt, respectively. Specifically, we set
the diagonal elements of OOt and SSt to zero to prevent the
repeated generation of self-loop relation nodes. Finally, we
generate HGt through the hyperrelation adjacency matrices
OSt, SOt, OOt, and SSt.

Next, we aggregate the neighborhood information of the
relations in each temporal hyperrelation subgraph via the
relation-aggregating R-GCN. We aggregate the adjacent in-
formation of each node (i.e., relation) in the graph via the
message-passing operation:

r(l)ro =

f

 ∑
hr∈HR

1

cro,hr

∑
rs∈Rhr

ro

W
(l−1)
hr (r(l−1)

rs + hr(l−1)) +W
(l−1)
0 r(l−1)

ro


(1)

where r(l−1)
ro , r(l)ro ∈ RM×d indicates the embeddings of all

the relations in the (l − 1)th and lth layers of the relation-
aggregating R-GCN, respectively. Rhr

ro indicates the set of
relations that are adjacent to node ro via the hyperrelation hr.
r(l−1)
rs and hr(l−1) indicate the embeddings of the adjacent

Algorithm 1 Hyperrelation subgraph construction algorithm
Input: A subgraph Gt with quadruples (s, r, o, t)
Output: A twin hyperrelation subgraph HGt with quadruples
(rs, hyper-r, ro, t)

1: for each quadruple in Gt do
2: Determine the relation-object adjacency matrix ROt

and relation-subject adjacency matrix RSt.
3: end for
4: if (s

′
, rs, o, t) ∩ (s, ro, o

′
, t) ∩ o = s then

5: Obtain the adjacency matrix OSt of the hyperrelation
o-s through ROt ×RSt.

6: end if
7: if (s, rs, o

′
, t) ∩ (s

′
, ro, o, t) ∩ s = o then

8: Obtain the adjacency matrix SOt of the hyperrelation
s-o through RSt ×ROt.

9: end if
10: if (s, rs, o, t) ∩ (s

′
, ro, o

′
, t) ∩ o = o

′
then

11: Obtain the adjacency matrix OOt of the hyperrelation
o-o through ROt×ROt and set the diagonal elements
of OOt to zero.

12: end if
13: if (s, rs, o, t) ∩ (s

′
, ro, o

′
, t) ∩ s = s

′
then

14: Obtain the adjacency matrix SSt of the hyperrelation
s-s through RSt ×RSt and set the diagonal elements
of SSt to zero.

15: end if
16: Generate HGt through the hyperrelation adjacency matri-

ces OSt, SOt, OOt, and SSt.
17: return HGt

relations and the corresponding hyperrelations in the (l−1)th

layer of the relation-aggregating R-GCN. cro,hr represents
the size of Rhr

ro . f(·) represents the adopted activation func-
tion (the reflected rectified linear unit (RReLU ) function).
W

(l−1)
hr indicates the edge-specific parameters for aggregating

the structural features according to different hyperrelations.
W

(l−1)
0 indicates the parameters for aggregating the self-loop

features of all the relations. Thus, the output of the relation-
aggregating R-GCN in the twin hyperrelation subgraph HGt

is the neighborhood-aggregated relation embeddings Rt
Agg at

timestamp t. Generally, as Figure 2(a) shows, the relation-
aggregating R-GCN in a certain hyperrelation subgraph HGt

at the tth historical timestamp can be formally represented as:

Rt
Agg = RAR_GCN(Rt

Lstm,HRt) (2)

where Rt
Agg ∈ R2M×d is the output of the relation-aggregating

R-GCN at the tth historical timestamp.
As shown in Figure 2(a), Rt

Lstm ∈ R2M×d and HRt ∈
R2H×d are the output relation embeddings and hyperrelation
embeddings of the LSTM and the hyper LSTM in the TIM
at the tth timestamp, respectively, and they both contain
structural information from the previous (t− 1)th timestamp.
Thus, we use the R-GRU to model the chronological dependen-
cies between the relation embeddings in sequential subgraphs.
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Specifically, we normalize the aggregation operation of the
relation-aggregating R-GCN by passing the input and output
relation embeddings into a GRU cell to accommodate complex
modeling:

Rt = R_GRU(Rt
Agg,Rt

Lstm) (3)

where Rt
Lstm ∈ R2M×d is the output of the LSTM in the

TIM at the tth historical timestamp; however, it contains
hidden relation and entity information from the (t − 1)th

timestamp, as mentioned above. Rt ∈ R2M×d is the final
relation embeddings of the tth historical subgraph.

D. Entity Aggregation Module (EAM)

This module is designed to aggregate the neighboring entity
and relation information of the entities in each historical
subgraph of the TKGs.

As Figure 2(c) shows, we aggregate the neighborhood
information of the entities of each historical subgraph through
the entity-aggregating R-GCN. Similar to the RAM processing
strategy, we adopt message-passing architecture here:

e(l)o =

f

∑
r∈R

1

co,r

∑
s∈Er

o

W(l−1)
r (e(l−1)

s + r(l−1)) +W
(l−1)
0 e(l−1)

o


(4)

where e(l−1)
o , e(l)o ∈ RN×d indicate the embeddings of all the

entities in the (l−1)th and lth layers of the entity-aggregating
R-GCN, respectively. Er

o indicates the set of entities that
are adjacent to node o and connected by relation r. e(l−1)

s

and r(l−1) indicate the embeddings of the adjacent entities
and the corresponding relations in the (l − 1)th layer of
the entity-aggregating R-GCN. co,r represents the size of
Er
o . Moreover, f(·) represents the adopted activation function

(RReLU ). W(l−1)
r indicates the edge-specific parameters used

to aggregate the structural features according to different
relations. W(l−1)

0 indicates the parameters used to aggregate
the self-loop features of all the entities. Finally, the entity-
aggregating R-GCN of the tth historical subgraph can be
formally represented as:

Et
Agg = EAR_GCN(Et−1,Rt) (5)

where Et
Agg ∈ RN×d is the output of the entity-aggregating

R-GCN at the tth timestamp. Et−1 ∈ RN×d is the output
of the R-GRU at the (t − 1)th timestamp. Rt ∈ RN×d is
the relation embeddings obtained from the RAM at the tth

timestamp. Next, similar to the RAM, we again use an R-GRU
to model the evolution of the entity embeddings over time in
different historical subgraphs within the EAM. As shown in
Figure 2(c), we pass the output of the R-GRU at the previous
historical timestamp and the output of the entity-aggregating
R-GCN at the next historical timestamp to the current R-GRU:

Et = R_GRU(Et
Agg,Et−1) (6)

where Et ∈ RN×d is the final entity embeddings of the original
subgraph Gt at the tth historical timestamp.

E. Twin-Interact Module (TIM)

As shown in the leftmost part of Figure 2, we generate
hyperrelation subgraphs according to the relative positional
associations between the relations and entities in the original
subgraphs. Following MaKEr [28], we use four hyperrela-
tions {o-s,s-o,o-o,s-s} to model the positional association
constraints between the relations and entities.

In TKGs, when the interactions between relations and enti-
ties are modeled, the sequential evolution between historical
subgraphs must be considered. As shown in Figure 2(b), the
TIM actually builds evolutionary communication channels be-
tween the RAM and the EAM. In particular, the entity embed-
dings from the EAM of the (t− 1)th timestamp participate in
the mean pooling operation to update the relation embeddings;
then, following previous work [8], [12], we preserve the distant
features by concatenating the relation embeddings of the first
historical timestamp:

Rt
Mean = [R0;MP(Et−1,Et

r)] (7)

where Rt
Mean ∈ R2M×2d, R0 ∈ R2M×d, and Et−1 ∈ RN×d.

MP indicates the mean pooling operation. Et
r indicates the

entities immediately connected to specific relations {r} regard-
less of the in-degree or out-degree edges that are present at
the tth timestamp. This step models the general association
constraints between the relations and entities. Then, we utilize
LSTM to model the evolution of these interactions over time:

Rt
Lstm,Ct = LSTM(Rt

Mean, (Rt−1,Ct−1)) (8)

where Rt
Lstm ∈ R2M×d is regarded as the relation embedding

input of the relation-aggregating R-GCN at the tth timestamp.
Rt−1 ∈ R2M×d is the relation embedding output of the RAM
for the previous timestamp. Ct ∈ R2M×2d and Ct−1 ∈
R2M×2d are the temporary iterative vectors of the LSTM
sequence modeling process, and we set C0 = R0

Mean at the first
historical timestamp. Then, we further update the hyperrelation
embeddings at the tth historical timestamp according to the
updated relation embeddings Rt

Lstm performing hyper mean
pooling in the hyperrelation subgraphs:

HRt
Mean = [HR0; HMP(Rt

Lstm,Rt
hr)] (9)

where HRt
Mean ∈ R2H×2d. HR0 ∈ R2H×d denotes the

initialization embeddings of the hyperrelations. HMP indicates
the hyper mean pooling operation. Rt

hr indicates the relations
immediately connected to specific hyperrelations {hr} regard-
less of the in-degree or out-degree edges that are present at the
tth timestamp. Thus, we embed the related relation and entity
features into the hyperrelations that express the positional as-
sociation constraints. Next, we model the evolutionary patterns
of the positional association constraints over time between
the original subgraph sequence and the hyperrelation subgraph
sequence via hyper LSTM:

HRt,HCt = H_LSTM(HRt
Mean, (HRt−1,HCt−1)) (10)

where HRt ∈ R2H×d and HRt−1 ∈ R2H×d are the hyperrela-
tion embeddings at the tth and (t−1)th historical timestamps,
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respectively. HCt ∈ R2H×2d and HCt−1 ∈ R2H×2d are
the temporary iterative vectors of the hyper LSTM sequence
modeling process, and we initialize HC0 = HR0

Mean at the
first historical timestamp.

In general, at a particular historical timestamp t, as shown in
Figure 2(b), the TIM generates relation embeddings Rt

Lstm and
hyperrelation embeddings HRt that both contain the positional
association constraints between the relations and entities at
the tth timestamp according to the output entity embeddings
Et−1 obtained from the EAM at the (t−1)th timestamp. Then,
the RAM generates relation embeddings Rt that aggregate the
complete adjacent information at the tth timestamp according
to the obtained Rt

Lstm and HRt. Finally, the EAM obtains the
updated entity embeddings Et at the tth timestamp according
to the relation embeddings Rt from the RAM and the entity
embeddings Et−1 of the (t− 1)th previous timestamp.

F. Time-Variability Training Strategy

The time-variability problem arises because different histor-
ical timestamps play different roles in future event forecasting
(i.e., TKG extrapolation). To overcome the time-variability
challenge, following CEN [7], we comprehensively consider
the entity and relation representations over different historical
timestamps.

For the entity forecasting task (s, r, ?, t + 1) and the re-
lation forecasting task (s, ?, o, t + 1) at the (t + 1)th fu-
ture timestamp, we obtain the entity embedding sequence
{Et−k+1, · · · ,Et−1,Et} and the relation embedding sequence
{Rt−k+1, · · · ,Rt−1,Rt} for all the subgraphs in the time-
variability k-length history. We adopt Conv-TransE [20] as
a component unit of the time-variability E-decoder and the
time-variability R-decoder. Specifically, the entity and relation
decoding processes based on the embeddings {Et,Rt} at a
specific historical timestamp t can be represented as:

pe
t(o|s, r,Et,Rt) = f(Conv_TransE(st, rt) · Et) (11)

pr
t(r|s, o,Et,Rt) = f(Conv_TransE(st, ot) · Rt) (12)

where st ∈ Rd, ot ∈ Rd, and rt ∈ Rd are the embeddings of
the entities s, o and the relation r of a certain query at the
tth historical timestamp. f(·) denotes the softmax function. pe

t

(i.e., pe
t(o|s, r,Et,Rt)) and pr

t (i.e., pr
t(r|s, o,Et,Rt)) are an N-

dimensional vector and an M-dimensional vector, respectively;
the dimensionality of each denotes the probability score of
forecasting the corresponding entity or relation as a missing
object or relation.

We train the model with each timestamp as a batch. For
an event extrapolated to a certain future timestamp (t + 1),
the training process is regarded as an N -label and an M -
label classification problem for the entity forecasting task
and relation forecasting task, respectively. We use the cross-
entropy loss function; thus, the loss functions of these two
tasks can be expressed as:

Lt+1
e = −

∑
(s,r,o)∈Vt+1

∑
i∈E

ot+1
i ln (pe

t−k+1 + · · ·+ pe
t−1 + pe

t)

(13)

Lt+1
r = −

∑
(s,r,o)∈Vt+1

∑
j∈R

rt+1
j ln (pr

t−k+1 + · · ·+ pr
t−1 + pr

t)

(14)
where Vt+1 represents all the facts at the (t + 1)th future
timestamp. ot+1

i and rt+1
j denote the ith ground-truth object

entity and the jth ground-truth relation, respectively, in the
(t+1)th temporal subgraph Gt+1. Note that the time-variability
strategy requires us to consider the newly emerging historical
facts at the (t + 1)th timestamp when training the facts at
the (t + 2)th future timestamp to address the time-variability
problem.

To train these two temporal tasks simultaneously, we set the
learning weights for the two losses. Therefore, for the training
process at the (t+1)th future timestamp, the final loss can be
represented as Lt+1 = λLt+1

e +(1−λ)Lt+1
r . λ is the learning

weight of entity forecasting.

G. Computational Complexity Analysis

In this section, we analyze the computational complexity
of our proposed RETIA model. The time complexity of
generating the hyperrelation subgraphs is O(V ), where V
is the maximum number of facts contained in a separated
historical timestamp. For the RAM and the EAM, the time
complexities of relation aggregation and entity aggregation
are O(kM) and O(kN), respectively. For the TIM, the
computational complexities of mean pooling and LSTM are
O(kMP ) and O(kd2), respectively, where P is the maximum
number of entities adjacent to a relation at a specific historical
timestamp. Similarly, the computational complexities of hyper
mean pooling and the hyper LSTM are O(kHP

′
) and O(kd2),

respectively, where P
′

is the maximum number of relations
associated with a hyperrelation in the corresponding hyperre-
lation subgraph. Thus, the computational complexity of the
RETIA model is O(k(M +N +MP +HP

′
+ d2) + V ).

IV. EXPERIMENTS

In this section, we evaluate the performance of our proposed
RETIA model on five popular TKG datasets.

A. Experimental Setup

1) Datasets: We use five public TKG datasets to demon-
strate the effectiveness of our proposed method. They are
YAGO [29], WIKI [30], ICEWS14 [25], ICEWS05-15 [25],
and ICEWS18 [3]. The ICEWS series, which includes the
ICEWS14, ICEWS05-15, and ICEWS18 datasets, is from the
Integrated Crisis Early Warning System [31]. The YAGO
and WIKI datasets are supplemented with time information
based on the traditional static KGs YAGO3 and Wikipedia.
Following extensive previous work [3], [7], [8], [12], we
split the datasets into training, validation, and test sets using
proportions of 80%/10%/10%. We detail information about the
adopted datasets in Table V.

2) Baseline Methods: We compare the performance of
our proposed RETIA model with that of multiple static and
dynamic modeling methods (including interpolation and ex-
trapolation). Note that the static methods are trained without
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the time dimension and the interpolation methods are trained
with both historical and future data; thus, they are not good at
future event forecasting when provided with only historical in-
formation. The static modeling methods include DistMult [17],
ConvE [19], ComplEx [18], Conv-TransE [20], RotatE [21],
and R-GCN [9]. Some modeling methods that operate under
the interpolation setting include TTransE [23], HyTE [24],
and TA-DistMult [25]. We focus on comparisons with the
modeling methods under the extrapolation setting, as these
approaches are designed to address the task of forecasting
future events (i.e., TKG extrapolation). These methods include
RE-NET [3], CyGNet [4], xERTE [5], CluSTeR [26], RE-
GCN [8], TITer [6], TLogic [27], CEN [7], and TiRGN [12].
Detailed descriptions of the abovementioned modeling meth-
ods are presented in Section II.

3) Evaluation Protocol: We evaluate the effectiveness of
our proposed RETIA model through a link prediction task.
Four evaluation metrics are widely adopted for such tasks.
They are the mean reciprocal rank (MRR), hits at 1 (Hits@1),
hits at 3 (Hits@3), and hits at 10 (Hits@10), which all reflect
the rankings of ground-truth missing entities or relations in
the obtained extrapolation results. Following RE-GCN [8],
for entity extrapolation, we report the mean results of the
subject forecasting and object forecasting tasks; for relation
extrapolation, we report only the results of the MRR metric
due to the small number of relations; and for the YAGO and
WIKI datasets, we report only the results of the MRR, Hits@3,
and Hits@10 metrics.

Many previous studies [5]–[8], [12], [26], [27], [32] have
proven that the traditional static evaluation metrics under the
filtered setting are not suitable for scenarios with temporal
dynamics; thus, some such works have adopted the dynamic
time-aware filtered setting. However, regardless of whether a
static filtered setting or a time-aware filtered setting is used,
the approaches for handling one-to-many or many-to-many
fact forecasting are crude. Taking an object forecasting task
(s, r, ?, t + 1) with the ground-truth entity o4 as an example,
when there are multiple valid facts with the same subject s
and relation r at the future timestamp t+ 1, then the objects
{o0, o1, o2, · · · } of these facts are conflicting entities for o4.
The time-aware filtered setting simply filters all the conflicting
candidate entities except for the ground-truth missing entity
o4 of the specific task and thus tends to obtain better results.
Without loss of generality, we report the results obtained under
the raw setting instead.

4) Implementation Details: We implemented our RETIA
model using PyTorch. Then, we trained the model on a Tesla
V100 GPU. Considering time variability, we conducted model
learning through two processes: general training and online
continuous training. During the general training process, we
utilized the training set and configured the parameters accord-
ing to the model performance achieved on the entire validation
set. During online continuous training, we utilized the facts
acquired at the newly emerging historical timestamps and
updated the obtained parameters according to the model per-
formance achieved for the next (i.e., future) validation or test

timestamp. We set the training batch size as the size of each
timestamp to adapt to the abovementioned training process. We
chose the historical length k from {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
according to the model performance on the validation set
in general training. Finally, we set k to 3 for the YAGO
and WIKI datasets, 4 for the ICEWS18 dataset, and 9 for
the ICEWS14 and ICEWS05-15 datasets. For the relation-
aggregating R-GCN and the entity-aggregating R-GCN, we
set the number of layers to 2 and the dropout rate of each
layer to 0.2. For each Conv-TransE unit in the time-variability
E-decoder and R-decoder, we set the kernel size to 3 × 2,
the number of kernels to 50, and the dropout rate to 0.2. We
set the learning weight of the entity forecasting task λ to 0.7
for all the datasets. Following RE-GCN [8] and TiRGN [12],
we also added static graph constraints when dealing with the
ICEWS14, ICEWS18, and ICEWS05-15 datasets. The Adam
optimizer was used for parameter learning, and the learning
rates for general training and online continuous training were
both set to 0.001. For the static modeling baseline methods,
we removed the time dimension from all the TKG datasets.
The embedding dimensionality d was set to 200, which was
the same experimental setting as that in RE-GCN [8]. Some
of the baseline results were also adopted from [8].

For some extrapolation baseline methods, including
xERTE [5], TITer [6], TLogic [27], CEN [7], and TiRGN [12],
their open source codes and default parameters were used to
obtain results under the raw setting. For CluSTeR [26], which
does not possess open source codes, we reported the corre-
sponding results obtained in the original paper. TLogic [27]
can process only the datasets of the ICEWS series because
other datasets do not have content references for entities
and relations in the real world. We reorganized the input
format of the TLogic model for the ICEWS14 and ICEWS05-
15 datasets because we kept the dataset-splitting strategy of
TLogic consistent with that of the other baseline models. For
CEN [7], we reported the results obtained under the online
setting, addressing the time-variability problem.

B. Results of TKG Extrapolation

1) Entity Forecasting: The results of the entity forecasting
task are shown in Table III and Table IV. The best results
are in bold, and the second-best results are underlined. The
proposed RETIA model performs much better than the static
modeling methods because it ignores the time dimension of the
facts in the TKGs, and conflicting facts at different historical
timestamps are compressed into a static KG, which makes it
almost impossible to obtain accurate representations of the en-
tities and relations. The performance achieved by the dynamic
modeling methods under the interpolation setting is generally
better than that of the static methods because the dynamic
modeling methods take time information into consideration.
Nevertheless, some of the interpolation methods, specifically
TTransE [23] and HyTE [24], perform poorly because these
two models focus on only embedding the timestamps into
the low-dimensional space while ignoring the evolutionary
patterns passed between historical subgraphs. We focus on
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TABLE III
PERFORMANCE ACHIEVED IN TERMS OF ENTITY FORECASTING ON THE ICEWS14, ICEWS18, AND ICEWS05-15 DATASETS WITH RAW METRICS.

Method ICEWS14 ICEWS05-15 ICEWS18
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

DistMult 20.32 6.13 27.59 46.61 19.91 5.63 27.22 47.33 13.86 5.61 15.22 31.26
ConvE 30.30 21.30 34.42 47.89 31.40 21.56 35.70 50.96 22.81 13.63 25.83 41.43
ComplEx 22.61 9.88 28.93 47.57 20.26 6.66 26.43 47.31 15.45 8.04 17.19 30.73
Conv-TransE 31.50 22.46 34.98 50.03 30.28 20.79 33.80 49.95 23.22 14.26 26.13 41.34
RotatE 25.71 16.41 29.01 45.16 19.01 10.42 21.35 36.92 14.53 6.47 15.78 31.86
R-GCN 28.03 19.42 31.95 44.83 27.13 18.83 30.41 43.16 15.05 8.13 16.49 29.00

TTransE 12.86 3.14 15.72 33.65 16.53 5.51 20.77 39.26 8.44 1.85 8.95 22.38
HyTE 16.78 2.13 24.84 43.94 16.05 6.53 20.20 34.72 7.41 3.10 7.33 16.01
TA-DistMult 26.22 16.83 29.72 45.23 27.51 17.57 31.46 47.32 16.42 8.60 18.13 32.51

RE-NET 35.77 25.99 40.10 54.87 36.86 26.24 41.85 57.60 26.17 16.43 29.89 44.37
CyGNet 34.68 25.35 38.88 53.16 35.46 25.44 40.20 54.47 24.98 15.54 28.58 43.54
xERTE 32.23 24.29 36.41 48.76 38.07 28.45 43.92 57.62 27.98 19.26 32.43 46.00
CluSTeR 46.00 33.80 - 71.20 44.60 34.90 - 63.00 32.30 20.60 - 55.90
RE-GCN 41.50 30.86 46.60 62.47 46.41 35.17 52.76 67.64 30.55 20.00 34.73 51.46
TITer 40.90 31.77 45.84 57.67 46.62 36.46 52.29 65.23 28.44 20.06 32.07 44.33
TLogic 41.80 31.93 47.23 60.53 45.99 34.49 52.89 67.39 28.41 18.74 32.71 47.97
CEN 41.64 31.22 46.55 61.59 49.57 37.86 56.42 71.32 29.70 19.38 33.91 49.90
TiRGN 43.88 33.12 49.48 64.98 48.72 37.17 55.48 70.53 32.06 21.08 36.75 53.62

RETIA 45.29 34.60 50.88 66.06 52.17 40.21 59.42 73.98 34.16 22.97 39.27 55.96

TABLE IV
PERFORMANCE ACHIEVED IN TERMS OF ENTITY FORECASTING ON THE

YAGO AND WIKI DATASETS WITH RAW METRICS.

Method YAGO WIKI
MRR Hits@3 Hits@10 MRR Hits@3 Hits@10

DistMult 44.05 49.70 59.94 27.96 32.45 39.51
ConvE 41.22 47.03 59.90 26.03 30.51 39.18
ComplEx 44.09 49.57 59.64 27.69 31.99 38.61
Conv-TransE 46.67 52.22 62.52 30.89 34.30 41.45
RotatE 42.08 46.77 59.39 26.08 31.63 38.51
R-GCN 20.25 24.01 37.30 13.96 15.75 22.05

TTransE 26.10 36.28 47.73 20.66 23.88 33.04
HyTE 14.42 39.73 46.98 25.40 29.16 37.54
TA-DistMult 44.98 50.64 61.11 26.44 31.36 38.97

RE-NET 46.81 52.71 61.93 30.87 33.55 41.27
CyGNet 46.72 52.48 61.52 30.77 33.83 41.19
xERTE 64.29 74.50 87.38 52.85 60.96 71.89
RE-GCN 63.07 71.17 82.07 51.53 58.29 69.53
TITer 64.97 74.80 87.44 57.36 63.80 72.52
CEN 63.39 71.68 83.16 51.98 58.96 70.61
TiRGN 64.71 74.17 87.01 53.20 60.78 72.07

RETIA 67.58 78.42 88.06 70.11 78.30 84.77

comparisons with the dynamic modeling methods under the
extrapolation setting.

Regarding the extrapolation-based modeling methods, RE-
TIA outperforms the RE-NET [3] and CyGNet [4] models
because these two methods do not aggregate the neighborhood
information of entities and thus fail to model the internal
structures of the historical subgraphs. The xERTE [5], CluS-
TeR [26], and CEN [7] approaches model the temporal evo-
lution of the entity embeddings between subgraphs while ag-
gregating the adjacent information of entities, but they do not
model the relation embeddings. The reinforcement learning-
based methods, including CluSTeR [26] and TITer [6], extract
a limited number of entities from the entity set to make up the
candidate set; thus, the ranking cardinality is much lower than
that of other methods, and better results can be easily obtained.
This is why RETIA is slightly weaker than CluSTeR on the

TABLE V
DETAILS OF THE TKG DATASETS.

#Datasets ICEWS14 ICEWS05-15 ICEWS18 YAGO WIKI

#Entities 6,869 10,094 23,033 10,623 12,554
#Relations 230 251 256 10 24
#Training 74,845 368,868 373,018 161,540 539,286
#Validation 8,514 46,302 45,995 19,523 67,538
#Test 7,371 46,159 49,545 20,026 63,110
#Granularity 24 hours 24 hours 24 hours 1 year 1 year

ICEWS14 dataset. Rule-based methods, including TLogic [27],
conduct more targeted modeling. However, TLogic also ig-
nores structural aggregation information during the evolution
of historical subgraphs; therefore, RETIA performs better than
TLogic on the ICEWS series datasets, which is the dataset that
TLogic performs well on. Moreover, RETIA performs better
than RE-GCN [8] and TiRGN [12] because these methods
aggregate only the adjacent entity information of the relation
embeddings, as mentioned above, which leads to incomplete
relation representations due to the "message islands" prob-
lem and further affects the score decoding process of entity
forecasting. On the other hand, all of these extrapolation
methods ignore the positional association constraints between
the embeddings of the entities and relations, thus resulting in
the fuzzy aggregation of the structural information in each
subgraph. Therefore, our proposed RETIA model outperforms
the existing entity forecasting baselines on almost all the
datasets and evaluation metrics.

2) Relation Forecasting: The results of relation forecasting
are shown in Table VII. Similarly, the best results are bolded,
and the second-best results are underlined. Since little work
has been performed on relation forecasting, we compare
RETIA with only the representative models. As mentioned
above, methods that do not model relation embeddings cannot
forecast future relations. In particular, the compared static mod-
eling methods include ConvE [19] and Conv-TransE [20]. The
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TABLE VI
ABLATION STUDY RESULTS OBTAINED ON ALL THE DATASETS.

Module YAGO WIKI ICEWS14 ICEWS05-15 ICEWS18
Entity Relation Entity Relation Entity Relation Entity Relation Entity Relation

wo. Entity Aggregation Module (EAM) 2.34 57.34 0.61 36.21 0.13 13.72 11.31 19.94 0.08 14.66
wo. Relation Aggregation Module (RAM) 61.30 15.94 45.78 12.39 29.95 3.63 30.54 3.90 15.66 2.49

RETIA 67.58 98.91 70.11 98.21 45.29 42.05 52.17 43.19 34.16 41.78

TABLE VII
PERFORMANCE ACHIEVED IN TERMS OF RELATION FORECASTING ON ALL

THE DATASETS WITH RAW METRICS.

Method YAGO WIKI ICEWS14 ICEWS05-15 ICEWS18

ConvE 91.33 78.23 38.80 37.89 37.73
Conv-TransE 90.98 86.64 38.40 38.26 38.00

RGCRN 90.18 88.88 38.04 38.37 37.14
RE-GCN 97.74 97.92 41.06 40.63 40.53
TiRGN 93.58 98.12 42.57 42.12 41.78

RETIA 98.91 98.21 42.05 43.19 41.78

compared dynamic modeling methods include RGCRN [33],
RE-GCN [8], and TiRGN [12]. Among them, RE-NET [3]
extends a heterogeneous graph model (GCRN) [33] to an
RGCRN by replacing the GCN with an R-GCN.

The RETIA model performs significantly better than the
static approaches because this kind of method does not model
time information. In the comparison with the dynamic model-
ing methods, the superior performance of RETIA on almost
all the datasets demonstrates that aggregating adjacent entity
and relation features simultaneously for relation embeddings
helps obtain accurate representations. We note that RETIA
does not work as well on the ICEWS14 dataset as it does
on TiRGN because TiRGN uses historical one-hop repetitive
relations to limit the scope of the candidate set. Specifically, it
simply kicks relations that do not exist historically out of the
candidate set, which occasionally yields better performance
on certain datasets. On the other hand, in the comparison
with the baseline models, the relation forecasting improvement
achieved by RETIA is much smaller than its entity forecasting
improvement because we model the forecasting process as
a multilabel classification task, and the number of relations
in the dataset is much smaller than that of entities, making
relation forecasting significantly easier than entity forecasting.

3) Comparison on Prediction Time: We compare the run
time of RETIA with that of the important extrapolation
baseline methods on all the datasets. Note that the time
consumption results for RE-NET were taken from [8], since
we were unable to run their open-source codes due to program
crashes. As shown in Table VIII, we underline the results
for which the time efficiency is better than that of RETIA.
RETIA spends more run time than RE-NET and CyGNet on
the ICEWS series datasets, but consumes far less time on the
YAGO and WIKI datasets. Compared to RE-GCN and CEN,
RETIA consumes more time on all the datasets due to its
higher model complexity. xERTE and TLogic are more time-
consuming because they both use sampling mechanisms to

TABLE VIII
RUN-TIME COMPARISONS OF THE EXTRAPOLATION METHODS ON ALL THE

DATASETS (D: DAYS; H: HOURS; MIN: MINUTES; S: SECONDS).

Method ICEWS14 ICEWS05-15 ICEWS18 YAGO WIKI

RE-NET 3.07 min 19.88 min 23.15 min 8.23 min 26.07 min
CyGNet 58.62 s 20.34 min 4.38 min 21.40 s 1.06 min
xERTE 14.81 min 3.67 h 2.62 h 29.22 min 2.58 h
RE-GCN 3.33 s 46.51 s 6.86 s 0.29 s 0.53 s
TITer 2.93 min 22.66 min 2.26 d 1.62 h 22.35 min
TLogic 37.91 min 20.63 h 1.37 d - -
CEN 5.42 s 1.73 min 12.08 s 1.24 s 4.38 s
TiRGN 17.36 min 9.46 h 2.11 h 18.90 min 39.23 min

RETIA 8.46 min 3.93 h 28.71 min 6.40 s 18.06 s

generate a large number of query-related subgraphs. The time
consumed by TITer depends on the specific reinforcement
learning strategy. TiRGN is less time-efficient because it
takes considerable time to extract historical repetitive entities
and relations from the global historical space. In summary,
RETIA guarantees a limited increase in time efficiency while
providing excellent extrapolation performance.

C. Ablation Study

In this section, we conduct an ablation test to study the roles
of the RAM and the EAM in the model. The study of the TIM
is separately provided in Section IV-D.

As Table VI shows, the best results are in bold, and the
second-best results are underlined. We conduct an ablation
study on all the experimental datasets and report the results
in terms of the most representative MRR metric. The ex-
pressions "wo. Entity Aggregation Module (EAM)" and "wo.
Relation Aggregation Module (RAM)" represent the removal
of the EAM or RAM from the complete RETIA model, and
"RETIA" indicates the complete proposed model. We record
the entity forecasting and relation forecasting results under the
"Entity" and "Relation" columns, respectively.

In the experiment, we randomly initialize the entities and
relations and then remove the EAM by keeping the initialized
entity embeddings unchanged and updating the relation em-
beddings normally. On the other hand, we randomly initialize
the entities, relations, and hyperrelations and then remove
the RAM by keeping the initialized relation embeddings
unchanged and iteratively updating the entity embeddings. It
is observed that the absence of the EAM or the RAM can
significantly degrade the performance of the model, proving
that accurate entity and relation representations are essential
for both entity and relation forecasting. Without the RAM,
a significant degradation can be observed in the model’s
relation forecasting performance; in the absence of the EAM,
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Fig. 3. Study on the role of the TIM in the general
training process with the YAGO dataset.

Fig. 4. Study on the role of the TIM in the general
training process with the ICEWS14 dataset.

Fig. 5. Study on the positional association con-
straints with the YAGO dataset.

a significant decrease can be observed in the entity prediction
performance of the model. This proves that the expressions of
entity embeddings and relation embeddings play major roles in
entity and relation forecasting tasks, respectively. In particular,
the loss of entity aggregation modeling is catastrophic for
the entity forecasting task, with the MRR metric reaching
only 0.08 even on the most challenging ICEWS18 dataset
(which contains the largest number of entities). On the other
hand, relation aggregation modeling can significantly affect
the relation forecasting performance of the model and reduce
the accuracy of entity forecasting to a certain extent. When
the complete neighborhood structure information is aggregated
for both the entities and the relations and the evolutionary
association constraints are simultaneously modeled via the
TIM, RETIA realizes a greater level of improvement.

D. On the Twin-Interact Module

In this section, we investigate the overall contribution of
the TIM to model performance and further study the role of
evolutionary modeling of the positional association constraints
on the YAGO and ICEWS14 datasets.

1) On the Association Constraints: On the one hand, we
randomly initialize the entity and relation embeddings and
send them to the EAM to iteratively update the entity embed-
dings while keeping the relation embeddings unchanged. On
the other hand, we iteratively update the relation embeddings
by sending the randomly initialized relation and hyperrelation
embeddings to the RAM while keeping the hyperrelation
embeddings unchanged. Note that the relation embeddings
in the EAM and RAM are two different and inconsistent
individuals. As Figure 3 and Figure 4 show, we report the
results of the general training process of the model conducted
with and without the TIM based on the YAGO and ICEWS14
datasets. "w. TIM" indicates the model with the TIM, and the
losses of different epochs are plotted from left to right in blue.
However, "wo. TIM" indicates that the TIM is removed from
the model, and the losses are plotted from right to left in green.
"Joint" indicates the joint losses with the task weight λ that
are actually backpropagated during training.

During the general training process, when the model perfor-
mance in the current epoch is lower than that in the historical
best epoch for five consecutive iterations, we stop the model

TABLE IX
STUDY ON THE ROLE OF THE TIM IN THE FORECASTING PROCESS WITH

THE YAGO AND ICEWS14 TEST SETS.

Module
YAGO ICEWS14

Entity Relation Entity Relation
MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10

wo. TIM 66.27 85.68 69.23 86.49 42.61 63.09 36.44 57.77
w. TIM 67.58 88.06 98.91 99.93 45.29 66.06 42.05 73.65

training procedure. When the association constraints between
entities and relations are considered, the training process of the
model converges more easily. During the training process, on
both datasets, the losses of the modeling process including the
association constraint are reduced to a low level in a relatively
short period of time. For the YAGO dataset, the "wo. TIM" loss
eventually drops to a level similar to that of "w. TIM"; however,
for the ICEWS14 dataset, the "wo. TIM" model has difficulty
converging due to the more complex data structure and smaller
time granularity. On the other hand, as Table IX shows, we
compare the forecasting performance of the model under two
conditions on the two datasets. Note that the comparisons are
the final results obtained after conducting online continuous
training. If the association constraints between entities and
relations (wo. TIM) are not modeled, the model not only
does not converge easily in the general training process but
also performs poorly on the test set. In summary, the learned
embeddings tend to overfit the data because they ignore the
association constraints.

2) Capturing the Positional Association Constraints via
Hyperrelations: The hyperrelations are used to model the
positional association constraints between entities and rela-
tions. We further explore the ability of hyper mean pooling
and the hyper LSTM to capture the positional association
constraints by changing the hyperrelation embeddings that
the TIM delivers to the RAM. As Figure 5 shows, "wo.
HRM" indicates that the hyperrelations are not modeled, and
we take the initialized embeddings as RAM inputs instead.
"w. HMP" refers to using hyper mean pooling to aggregate
the adjacent relation information of the hyperrelations. "w.
HMP+HLSTM" indicates that the evolutionary dependencies
between the hyperrelations of the subgraphs are modeled using
the hyper LSTM based on hyper mean pooling.

For both the entity and relation forecasting tasks, the
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Fig. 6. Study on the role of relation modeling in
entity forecasting with the ICEWS18 dataset.

Fig. 7. Study on the role of relation modeling in
relation forecasting with the ICEWS18 dataset.

Fig. 8. Study on the time-variability training
strategy in entity forecasting with all the datasets.

performance achieved by inputting the initial hyperrelation
embeddings into the RAM for aggregation almost reaches
that of the hyper mean pooling operation. On the one hand,
this is because the hyperrelation generation algorithm already
includes the positional association constraints between entities
and relations, and the evolutionary modeling of relations
captures the common association constraints. On the other
hand, hyper mean pooling directly replaces the hyperrelation
representations with the mean of the immediately adjacent
relation embeddings, which affects the layer normalization
process [34] of complex networks. When using the hyper
LSTM to model the chronological evolution of the positional
association constraints, the model makes further improvements
in both the entity forecasting and the relation forecasting tasks.
This proves that in the process of capturing the association
constraints, the temporal dependencies between subgraphs
play a more important role than the structural information
inside the subgraphs.

E. On Relation Embeddings

In this section, we study the ability of the relation represen-
tation modeling approach of our proposed RETIA to overcome
the "message islands" problem on the most representative
ICEWS18 dataset.

As Figure 6 and Figure 7 show, we compare the effects of
different degrees of relation modeling on entity and relation
forecasting tasks, respectively. "wo. RM" indicates that the
relations are not modeled, and the scores are calculated directly
by inputting the initialized embeddings into the decoder. "w.
MP" refers to utilizing mean pooling to aggregate the imme-
diately adjacent entity features for relation embeddings. "w.
MP+LSTM" refers to modeling the chronological evolution of
the relations via LSTM based on the mean pooling operation.
"w. MP+LSTM+Agg" indicates that based on the mean pool-
ing and LSTM operations, we further aggregate the adjacent
relation information for the modeled relations through the
RAM instead of stopping the message-passing process for the
relations at the level of the immediately adjacent entities. This
step is the key to overcoming the "message islands" problem.

The initial relation embeddings obtained without any mod-
eling can still achieve a certain level of entity forecasting
performance, but it is fatal to relation forecasting, as it can
make the model almost lose its forecasting ability. There is

still a performance gap between the mean pooling operation
and the simultaneous mean pooling and LSTM operations. As
mentioned above, this is because using only the mean pooling
operation can lead to an impairment in the layer normalization
process conducted for the relation embeddings, thus having a
greater impact on the relation forecasting task.The advanced
baseline methods (RE-GCN and TiRGN) model the relations
at the 3rd level (w. MP+LSTM), which leads to the "message
islands" problem. Our proposed hyperrelation subgraph aggre-
gation method can effectively further improve the achieved
entity and relation forecasting performance. Because RETIA
no longer rigidly adheres to the characteristics of the immedi-
ately adjacent entities, through message-passing architecture,
it makes each relation cross the one-hop gap and passes the
feature information out.

F. On the Time-variability Training Strategy

In this section, we investigate the influence of the time-
variability training strategy on all the datasets.

Since the CEN model, which also considers the time-
variability problem, does not model the relation representa-
tions, as shown in Figure 8, we comparatively report only the
impact of the online continuous training process on the more
representative entity forecasting task. Across all the datasets,
RETIA achieves greater improvements than the advanced
baseline method under the time-variability training strategy.
This proves that reasonably modeling relations and considering
the association constraints between entities and relations are
more conducive to solving domain obstacles such as the time-
variability problem.

V. CONCLUSION

In this paper, we propose RETIA to address the challenge
of "message islands" in relation modeling and to capture
the positional association constraints between relations and
entities. RETIA evolutionally aggregates adjacent entity and
relation features to produce relation embeddings on a twin
hyperrelation subgraph sequence, thus spanning the message-
passing gap. In addition, RETIA captures positional asso-
ciation constraints by modeling the structural information
and chronological dependencies of hyperrelations. Extensive
experiments demonstrate its significant improvements over the
baseline models.
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