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Abstract

This study introduces a newmulti-layer multi-component ensemble. The components of this ensemble are trained locally on subsets

of features for disjoint sets of data. The data instances are assigned to local regions using the similarity of their features pairwise

squared correlation. Many ensemble methods encourage diversity among their base predictors by training them on different subsets

of data or different subsets of features. In the proposed architecture the local regions contain disjoint sets of data and for this data

only the most similar features are selected. The pairwise squared correlations of the features are used to weight the predictions of

the ensemble’s models. The proposed architecture has been tested on a number of data sets and its performance was compared to

five benchmark algorithms. The results showed that the testing accuracy of the developed architecture is comparable to the rotation

forest and is better than the other benchmark algorithms.
c© 2016 The Authors. Published by Elsevier B.V.
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1. Introduction

In the past decades ensemble learning has been an active area of research in machine learning. One of the earliest

work on ensemble learning was introduces in1, where the authors suggested partitioning the feature space using two or

more classifiers. Later on Breiman introduced Bagging2, a simple to implement method, where the base predictors of

the ensembles are trained on bootstrap replicas of the training data. Schapire3 proved that a strong learner (in probably

approximately correct sense) can be built by combining a number of weak learners using Boosting algorithm. This

had led to the development of AdaBoost, one of the most successful ensemble learning algorithms, and its many

variations to solve multi-class and regression problems. In the past decade many well performing ensemble methods

were developed and used in a wide area of applications, such as stacked generalization4, mixture of experts5 and

consensus aggregation6 among others.

In literature, it has been shown that using an ensemble of predictors can often improve the generalization perfor-

mance compared to that of a single predictor. The conditions for this improvement is for the base predictors to be

diverse with respect to their errors and that they have a reasonable performance level7, 8, 9 and10.
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In order to design diverse predictors a number of approaches can be used, such as: varying the initial condi-

tions (e.g. start each predictor with different randomly generated weights)11, varying model architecture or model

type12, 13, 14 and15, or varying the training data (where the base predictors are trained on a subset of the training data2

or a subset of the features16). The latter approach is more likely to generate diverse models than the previous two

approaches17. Many well performing ensemble algorithms use sampling techniques either in the feature space (like

in rotation forest16) or in the instance space (like in Bagging2) to generate their base predictors. This study aims

to combine the two sampling techniques by training the base predictors on a subset of features for a subset of data.

The locality of the selected features are determined based on the pairwise similarity of their squared correlation. A

measure which was introduced in18 and has been successfully used in image recognition task when applied with deep

learning algorithms is adapted in the proposed algorithm.

Once the models have been trained, a fusion method is used to combine them into a single ensemble. The fusion

method used in this study is Weighted Majority Vote (WMV)19, where the weights are assigned to the values of the

pairwise squared correlation of the features.

A two-layer, multi-component predictive system is presented in this paper. In the first layer the data is split

according to their features pairwise similarity and is assigned to a set of Local Regions (LRs). For each LR a number

of models are trained and an ensemble is constructed. In the second layer an ensemble that combines the ensembles

outputs from the previous layer using WMV is constructed to provide the final prediction. The performance of this

system is tested on several data sets and compared to five benchmark algorithms.

The organization of this paper is as follows: in the next section multi-layer, multi-component predictive systems

are introduced, followed by a section that present sampling techniques and shed light on the pairwise similarity metric

used in this work. In section four the experimental work will be discussed, this is followed by the obtained results in

section five. Finally the conclusions, limitations and future work are given in section six.

2. Multi-layer, multi-component predictive systems

The use of multi-layer, multi-component predictive systems have shown many theoretical and practical benefits

compared to the use of a single best model20, these include: statistical benefits, as combining the output of several

classifiers can often compensate for the possible unfortunate poor prediction of a single predictor, also, it is beneficial

to use ensemble learning when the data is too large or too small. Furthermore, when the problem is too difficult to

solve by a single predictor, ensemble methods can provide a divide and conquer strategy that a single predictor is

incapable of achieving. Finally, when the data is generated from different resources (data fusion) a single predictor

cannot represent the whole data accurately.

Once the base predictors of the ensemble are generated either a set or all of them are combined together. In

general, combiners methods can be classified according to their ability to train (trainable vs. untrainable combiners)

and to the type of their output (class label vs. continuous output combiners)20 21. One of the most widely used

combining method is majority vote. It has been shown in22 that by suitable organising of the predictive system into

multi-component, multi-layer structure the limits of the majority vote error for such a system can be significantly

expanded in comparison to a traditional single layer ensemble. The theoretical findings from22 prompted the design

of multistage selection fusion model discussed in23 and subsequent very successful extensions and applications of

multi-layer, multi-component systems in time series forecasting24 and generic predictive modelling25 with examples

of applications to airlines ticket demand prediction26, water pollution monitoring end prediction27 or adaptable soft

sensors development in process industry25.

In this paper we continue our explorations of such systems. The multi-layer, multi-component predictive system

used in this study is shown in Figure 1, where w11,...,w1m, are the weights of the first layer and w21,...,w2m are

the weights of the second layer. M1, ..., Mk are the base predictors of the first layer ensembles, g1, ..., gm are the

ensembles created from combining the base predictors and Ŷ is the final prediction of the system. Let X be the data

set containing the training objects, c represent the number of classes, Ω represent the actual class and Mi,k represent

the output prediction of the model, where Mi,k = 1 for class Ωk and 0 otherwise and k = 1, .., c. The outputs of the base
predictors Mi,c and the ensemble g j are given as c-dimensional binary vectors where [Mi,1, .., Mi,c]

T ∈ {0, 1}c, i = 1, .., k
and [g1,c, .., g j,c]T ∈ [0, 1]c, j = 1, ..,m respectively. Equations 1 and 2 shows the mathematical representation for the
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Fig. 1. The multi-layer multi-component predictive system.

ensembles generated from the first layer:

g j(x) = Σki=1w1 jM
( j)
i (x) (1)

and let

d j,k(x) =

⎧⎪⎪⎨⎪⎪⎩
1 i f g j(x) labels x in Ωk,

0 otherwise.
(2)

Then in the second layer the ensemble is given by:

h(x) = Σmj=1w2 jd j,k (3)

and the final prediction of the system is:

Ŷ = argmax
c
h(x). (4)

3. Generating diverse models

In order to generate diverse ensemble, the base predictors can be trained on either subsets of the data or subsets of

the features. In the first approach the predictors do not see all of the training data which might be impractical in real

scenarios were limited data is available. On the other hand, in the second approach a subset of the features are chosen

for training each predictor. This can be achieved by using either feature extraction or feature selection methods17. In

feature extraction methods, such as Principle Component Analysis (PCA) or Independent Component Analysis (ICA)

the dimensionality of the data is reduced by creating new features that represent the projections of multiple existing

features. In this case, the features selected for projection are the most discriminative features, thus there is a high

probability that similar features will be chosen for creating the principle components. This can lead to training the

base predictors on similar set of principle components, which eventually reduce the diversity among the predictors28.

On the other hand, in feature selection methods, a different subset of features is chosen for the training of each

base predictor. Subset selection can be achieved through many approaches. Some popular choices of feature selection

in classification problems are correlation10 and mutual information29. A recent study by18 trains deep networks

on local receptive fields that were created using a subset of features for a subset of data, where similar features are

grouped together. The similarity of the features is measured using a variation of Pearsons product-moment coefficient.

Pearson’s correlation method can only show linear-dependencies between the features. In the work presented in18 a

measure for higher order dependencies between the features is used, this measure is the correlation between the energy

responses of the features. The efficiency of this measure was illustrated in the results obtained when used with deep

learning algorithm to solve unsupervised image recognition task.
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Due to the success achieved using this similarity metric with deep learning network and due to the similarity be-

tween the architecture proposed in this study (shown in Figure 1) and deep learning network, this work was developed

to use the squared correlation similarity metric to divide the data into LRs. The LRs data are used to train a set of local

expert models. In order to generate the LRs, squared correlation between features is considered. Similar features are

grouped in one region, such that the predictive model trained on the resultant subsets specialize in a particular aspect

of the prediction problem. The chosen features are the ones with the highest correlation (but they are not identical).

The high correlation between the features is viewed as an indication for their similarity in defining a certain region of

the search space. On the other hand weakly correlated or independent features are assigned to different regions.

Mixing both sampling in the feature space as well as the instance space can encourage both diversity and locality of

the resultant local models. Previous ensemble methods have shown improved performance when either one of these

sampling methods were used. This study investigate the benefits of mixing those two approaches. The following

subsection provides a detailed description of the correlation based local regions used in this work.

3.1. Correlation based local regions

This approach aims to group similar features into the same LR. The similarity metric used is the pairwise ”square
correlation” between the features (introduced in18). The reason for using squared correlation is that if the data set
consists of linearly uncorrelated features, then a higher measure of correlation between the features can be found by

computing the energy correlation between two features at a time (squared response).

Given a data set X that consists of linearly uncorrelated features (which can be obtained by applying a whitening

procedure). Here we define x j and xk as two features in the data set. If E[x] = 0 and E[(xx)T ] = I, then the following
similarity measure between the squared responses of features can be defined:

S [x j, xk] = corr(x2j , x
2
k)

= E[x2j , x
2
k − 1]/

√
E[x4j − 1][x4k − 1]

≡
∑
i x

(i)2

j x(i)
2

k − 1
√∑

i(x
(i)4
j − 1)

∑
i(x

(i)4
k − 1)

(5)

where i represent the sample index.

The following points summarise the steps used to generate the local regions using this metric:

• Whiten the input data set using Zero-phase Component Analysis (ZCA) whitening30.

• Compute the pairwise similarity between all the features using Equation 5.

• Select N rows, j1, ..., jN of the similarity matrix S.

• Construct LRs containing the top M values for the N rows of S j,k

Each one of the N rows serves as a seed for a single region. Once the seeds for the LRs are chosen, the pairwise

squared correlation for the features of each new instance is computed and compared with the seeds of the LRs. The

instances are assigned to the local regions with the highest similarity. At the end of this stage an N disjoint sets (LRs)

are constructed. Based on the LRs found, a multi-layer, multi-model predictive system is built.

4. Methodology

The procedure used to construct the multi-layer predictive system presented in this work encompasses the following

phases: a) data preparation and partitioning, b) model generation and c) ensemble combination. In the following

subsections a detailed description of these phases is given.

In order to validate and examine the generalization ability of the proposed architecture, Density Preserving Sam-

pling (DPS)31 is used to partition the data. DPS divide the data into subsets that are guaranteed to be representative of



727 Bassma Al-Jubouri and Bogdan Gabrys  /  Procedia Computer Science   96  ( 2016 )  723 – 732 

Data set

DPS

F1 F2 F3 F4

LR1

LR2

LRN ��
��
��
��
��
��

��
��

M1 M2 M3 Mk

DPS

Fig. 2. Data preparation and model generation.

the whole data set31. In this work DPS is used to split the data into training and testing sets and then it is used to split

the LRs data into K folds. K models are trained on the generated folds. Initially both DPS and Cross Validation (CV)

were used to split the LRs data. However, when comparing the accuracies obtained from the two methods it was found

that the models trained on CV folds had large variation in their accuracies. On the other hand, the models that were

trained on the folds generated from the DPS were more stable (i.e. they had low variance in their error estimation).

Due to this, DPS will be used in this work to partition the data.

4.1. Data preparation and partitioning

After loading the data the following procedure is used to preprocess and partition the data. The data goes through

three partitioning stages, first the whole data is split into training and testing sets, then the training set is allocated to

the LRs and finally within the LRs the data is split into K subsets which are used to train the local models. Figure

2 shows the preparation and partitioning of the data, where, F1, ...F4 are the folds generated from the first DPS split,

LR1, ...LRN are the LRs and M1, ...Mk are the local models within the regions trained using data from the second DPS

split.

The points given below summarise the procedure used in this phase:

• Apply DPS to split the data into 4 representative folds.

• Use 3 out of 4 folds as the training data and the last fold as the testing data. Repeat for all four folds, so that

each time different fold is used for the testing.

• Whiten the features of both the training and testing data using ZCA.

• Compute the pairwise squared correlation (energy) among all of the features of the training data and store the

results in the similarity matrix.

• Choose N rows from the similarity matrix to be the seeds for the LRs.

• Compute the pairwise squared correlation for the features of each training instance and compare the results with

the seeds of the N LRs. Add the instance to the LR that has the highest similarity with respect to its feature

values.

• Apply k fold DPS to the LRs data.

Note that applying the whitening procedure to the data remove the linear dependencies within the data. In such case

a measure of a high order dependencies between two features can be obtained by looking at the correlation of their

energy (squared responses).
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Table 1. Weights calculation for the illustrative example.

f1 f2 f3 f4 f5 f6 f7 LRs weights

C1 C3 C5 C6 C1 +C3 +C5 +C6
C2 C3 C6 C7 C2 +C3 +C6 +C7

C1 C2 C4 C7 C1 +C2 +C4 +C7

4.2. Model generation, testing and combining

Once the data is assigned to the relevant LRs, the second DPS is applied to generate the K folds within the LRs

and K models are trained on the LR folds. Furthermore, for all new instances N weights values are computed with

respect to the N LRs. The following points give a detailed description for this phase:

• Train a predictive model on each of the K LRs folds.

• Compute the pairwise squared correlation for each testing data instance and measure its similarity to the seeds

of the LRs. The summation of the energy for the corresponding features (to the LR) is used to weight the

predictions of the LRs models. Given bellow is an illustrative example on how the weights of the LRs are

calculated for a single instances.

Where f1... f7 are the features of the samples and C1...C7 are the pairwise squared correlation of the features.
When a new sample arrive the values C1...C7 are computed and the summation of the selected features (with
respect to the LRs) is used as weights for the corresponding LR’s prediction.

In the first layer, ensembles are generated from combining the models of the individual LRs, while, in the second

layer an ensemble of the first layer ensembles is generated. The combining methods used is a WMV with the pairwise

squared correlation of the features used as the weights in both layers.

5. Results

The Local learning Multi-layered (LLM) architecture described in the previous section is applied to the data sets

shown in Table 2. The data sets used are taken from the UCI machine learning archive32. In this study the models used

to provide the predictions will be referred to as base predictors. The base predictors used in the first set of experiments

are CART Decision Trees (DTs) and in the second set of experiments are feed forward Neural Networks (NNs). The

testing accuracies of the proposed architecture are compared to the accuracies of five benchmark algorithms, these

are: Rotation Forest (RF), AdaBoost, Bagging, single CART DT and Linear Discriminant Analysis (LDA).

The setting of the algorithms used in these experiments are given bellow. A predefined number of LRs and number

of models within each LR is selected. The parameters are chosen for illustration purpose and so that the results

obtained can be compared across all the data sets. Also, it highlights the advantages and drawbacks of predefining

these parameters with respect to the data set size and dimensionality:

• LLM: 6 LR’s are used each have 8 models (48 DT’s in total) trained on disjoint subsets of the data. The number

of features used in the LRs is determined through a separate optimization routine. where four different numbers

of features are considered (with step size equal to the number of features/4) and the number of features that
generate the maximum testing accuracy is chosen.

• RF: the number of classifier are 6 and the number of disjoint features subspaces are 6.

• AdaBoost and Bagging: 60 DT were used as the weak learner for both algorithms, this value is chosen to be

slightly higher than the number of DT’s used in the LLM.

• Single DT and LDA: a single CART DT and a linear discriminant analysis.
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Table 2. Data sets used in the experiments.

Data sets Examples Features Classes

Spambase 4601 57 2

German credit cards 1000 20 2

Gaussian 8D 5000 8 2

Pima Indians Diabetes 768 8 2

Ionosphere 351 34 2

Vehicle 846 18 4

Waveform 5000 40 3

The following subsection discusses the internal accuracies of the proposed architecture and the comparison of the

testing accuracies with the benchmark algorithms. This is followed by another subsection that investigates the effect

of changing the base predictors model type on the performance of both the RF and the LLM architecture.

5.1. Internal Accuracies and Benchmark Comparison

The original data sets are split using DPS into four folds, and each time a different fold is used for testing and

the remaining three folds are used for training. The performance of the LRs models can vary over the four iterations

and in most cases there is no single LR that dominates the others over the four iterations. Changing one fold of the

training data can affect the performance of the LRs, where it can become better or worse and/or have a smaller or

larger variation in its models accuracies. This is due to the new data instances being assigned differently to the LRs

based on their pairwise similarity with the regions seeds. The term internal accuracy in this work refer to the variation

in the accuracies of the LRs base predictors. An example of the internal accuracies of the LRs for the Gaussian 8

dimensional data set is illustrate in Figure 3. It can be seen in Figure 3 that there is no single LR’s that has the best

accuracy over the four iterations. Also the amount of variation in the accuracies of the individual LRs changes over the

four folds, for example in iteration 2 the 6th LR has the smallest variation among its 8 models accuracies, however, for

the same LR the amount of variation is higher in the other iterations. The same behaviour can be seen in the internal

accuracies of the other data sets.

In general, large data sets lead to more stable LRs and reduce the accuracy variation within and across the LRs.

However, how big a data set should be, depends on the dimensionality of the data and its distribution in the search

space. A small data set with high dimensionality like the ionosphere data set can have a wide range of variation in

the LRs accuracies. This is due to the small number of instances that are assigned to the LRs, which can lead to a

model being validated on few or a single data instance(s). Classifying this instance correctly or incorrectly results in

0% or 100% accuracy. The solution to this problem is to lower the number of LRs and/or the number of their internal

models. However, in order to be able to compare the accuracies over all of the data sets used in these experiments, the

same number of LRs and models were used.

Benchmark Comparison
The overall testing accuracies of the LLM architecture are evaluated and compared with the five benchmark algo-

rithms described above. Table 3 shows the average testing accuracy for the learning algorithms over the four DPS

folds. The LLM architecture has the highest testing accuracies on three data sets (Gaussian 8D, Pima Indians Diabetes

and vehicle). It perform very closely to the RF on Spambase (with 0.30% difference) and has a slightly lower testing

accuracy than Adaboost on the German credit card data set (less than 0.2%). Also, it is the second best after the

RF on the Ionosphere data set (as was mentioned before this is due to the small number of instances and the high

dimensionality of the Ionosphere data set).
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Table 3. Benchmark Comparison: Testing accuracy.

Data sets LLM RF Adaboost Bagging singleDT LDA

Gaussian 8D 88.16 80.70 69.94 63.68 50 51.68
German credit cards 70 65.30 70.20 49.80 56 54.10
Ionosphere 77.19 92.61 74.64 62.09 56.99 67.53
Spambase 85.20 85.50 63.70 67.05 60.60 42.21
Pima Indians Diabetes 76.62 73.3 35.03 36.59 65.10 34.90
Vehicle 67.61 61.37 25.65 25.53 25.41 28.25
Waveform 65.68 91.46 42.46 61.24 49.84 65.92

5.2. Changing the type of the base predictors

In this subsection the type of the base predictors was changed from CART DTs to feed forward NNs for both the

LLM architecture and the RF method. The accuracies of both methods using the new base predictor is shown in Table

4. In general, changing the base predictors to NNs improves the overall testing accuracies for both methods. However,

the improvement in the testing accuracy of the RF method, when NNs is used as the base predictors, is higher than

that of the LLM architecture. Furthermore, the test accuracy of the LLM architecture has improved on all but the

ionosphere data set and the Pima Indians Diabetes, where the it has deteriorated by 2.94% ans 0.3% respectively. It

remains the same on the German credit card.
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Fig. 3. Training accuracies of the local regions models for the Gaussian 8D data set.
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Table 4. Benchmark Comparison: Testing accuracy using NNs as the base predictors

Data sets LLM test RF test

Gaussian 8D 88.45 88.4
German credit cards 70 70

Ionosphere 74.25 93.15
Spambase 90.55 85.75
Pima Indians Diabetes 76.30 76.8
Vehicle 78.50 81.75
Waveform 85.05 92.65

5.3. Further discussion

The LLM architecture has been tested on a number of data sets. The results showed that there are different levels

of variation in the accuracy among the LRs models. The amount of this variation is affected mainly by the size and

dimensionality of the data. If there is enough data to train and validate the LRs models, the variation is small and if

the data is not enough the variation is high. The architecture with the current setting works best for large data sets, as

can be seen from the testing accuracies of the architecture when applied to data sets like Gaussian 8D or Spambase.

However, the results showed that both the number of LRs and number of models developed within the LRs need to be

optimised in accordance with the data set size and dimensionality. Changing the base predictors to NNs had a better

effect on the prediction accuracy of the RF method than it had on the LLM architecture. There is an increase in the

prediction accuracy of both algorithms; however, the increase in the RF accuracy is higher than that in the LLM.

6. Conclusions, limitations and future work

This study introduced a local learning based algorithm for multi-layer, multi-component architecture. The archi-

tecture consists of multiple LRs, each of which has multiple models developed on subsets or all of the features for

disjoint sets of data. The way in which the features are selected and assigned to the individual LRs depends on the

similarities of their pairwise squared correlation. This generation method of the LR can be applied in supervised as

well as unsupervised learning as it does not consider the output class when splitting the data.

The results show that the overall testing accuracies of the proposed architecture exceeded the average internal

accuracies of the LRs models. This is due to the fact that the LRs are trained on disjoint sets of the data. However,

as the prediction of the LRs is weighted by the squared correlation of their features, a higher degree of importance is

given to the prediction of the most similar LR(s) and this can often lead to the correct prediction.

In order to create an ensemble, two aspects should be taken into consideration: how the base predictors are gener-

ated and how they are combined. This study investigated one aspect of the problem that is the generation of diverse

models; however, it does not focus on how these models are combined. Future work will investigate the use of different

types of combiners and examine the effect it can have on the performance of the proposed architecture. Furthermore,

one of the advantages of using ensembles with diverse models is their robustness to noise in the data. Further work

will test the proposed architecture on data with added level of noise and examine the complementary behaviour of its

models.
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