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ABSTRACT

Machine learning and its promising branch deep learning have
shown success in a wide range of application domains. Recently,
much effort has been expended on applying deep learning tech-
niques (e.g., graph neural networks) to static vulnerability detection
as an alternative to conventional bug detection methods. To obtain
the structural information of code, current learning approaches
typically abstract a program in the form of graphs (e.g., data-flow
graphs, abstract syntax trees), and then train an underlying clas-
sification model based on the (sub)graphs of safe and vulnerable
code fragments for vulnerability prediction. However, these models
are still insufficient for precise bug detection, because the objec-
tive of these models is to produce classification results rather than
comprehending the semantics of vulnerabilities, e.g., pinpoint bug
triggering paths, which are essential for static bug detection.

This paper presents ContraFlow, a selective yet precise con-
trastive value-flow embedding approach to statically detect soft-
ware vulnerabilities. The novelty of ContraFlow lies in selecting
and preserving feasible value-flow (aka program dependence) paths
through a pretrained path embedding model using self-supervised
contrastive learning, thus significantly reducing the amount of
labeled data required for training expensive downstream models
for path-based vulnerability detection. We evaluated ContraFlow
using 288 real-world projects by comparing eight recent learning-
based approaches. ContraFlow outperforms these eight baselines
by up to 334.1%, 317.9%, 58.3% for informedness, markedness and
F1 Score, and ContraFlow achieves up to 450.0%, 192.3%, 450.0%
improvement for mean statement recall, mean statement precision
and mean IoU respectively in terms of locating buggy statements.

CCS CONCEPTS

• Security and privacy → Software security engineering; •
Computing methodologies→Machine learning; • Software

and its engineering→ Automated static analysis.
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1 INTRODUCTION

Although considerable efforts have been made to improve software
security, vulnerabilities remain a major concern within modern
software development. Existing static bug detectors (e.g., Check-
marx [35], RATs [60], ITS4 [70], CoBOT [25], Coverity [66], SVF [63],

Infer [18]) rely heavily on user-defined rules and domain knowledge
for effectiveness, making them labour-intensive [51]. Although they
have shown their successes in detecting conventional well-defined
bugs (e.g., use-after-frees, null dereferences), these detectors still
have difficulty in finding a wider range of vulnerabilities (e.g., nam-
ing issues [32] and incorrect business logic [10]) and report a large
portion of false positives/negatives [10, 51]. The recent success of
deep learning techniques has opened new opportunities to develop
more intelligent detection systems by learning vulnerability pat-
terns that capture the correlation between vulnerable programs
and their extracted code features through prediction models.

Existing Efforts and Limitations. Code embedding, which
aims to represent code semantics through distributed vector repre-
sentations, has recently been proposed for source code analysis and
bug detection. Initially, the embedding approach treats a program
as textual tokens [49–51] by applying natural language processing
techniques to learn code semantics without code structural informa-
tion. Later, several approaches [7, 10, 48, 81] improve the embedding
results by preserving structural information, for example, through
program dependence graphs, and then use graph neural networks
(GNNs) [41, 47] to classify whether a (sub)graph of a code fragment
is vulnerable or not. However, although learning a graph represen-
tation of code can be used for code classification or summarization
tasks, it is still insufficient for path-based vulnerability detection.
This is because the input graph representation does not distinguish
program paths, which are opaque to backend GNNs. The graph
features are learned from message passing between all connected
node pairs in GNNs, but unfortunately, without the knowledge
of any feasible/infeasible value-flow (program dependence) paths.
Therefore, these prediction models are unaware of potential buggy
paths, which indicate how a bug originates and is triggered. This is
one of the major aims of static bug detection: to help a practitioner
quickly locate and fix the reported vulnerabilities.

Insights and Challenges. To address the above limitations, the
detection approach needs to work on a precise learning model that
can preserve value-flow paths rather than the entire graph which
does not distinguish feasible/infeasible program dependence paths.
Inspired by the idea of a bag of tokens in word embedding [54],
some recent code embedding approaches embed a bag of paths on
abstract syntax trees (ASTs) [1] or value-flow graphs (VFGs) [62] for
code classification and summarization. The approaches randomly
sample a small fraction of paths to produce their embedding vec-
tors, and then aggregate them to form the final representation of a
code fragment. However, these approaches can not be directly used
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Figure 1: Framework overview.

for sophisticated tasks such as path-based bug detection, due to a
potentially unbounded number of program paths which need to
be embedded. The effectiveness of the path-based model lies in the
strategy of path selection. It is challenging yet important to identify
and preserve individual feasible paths [14] rather than the aggre-
gation of infeasible or bug irrelevant paths via random sampling,
to avoid imprecision during embedding. This requires selectively
learning paths with discriminative features which contribute to
bug semantics during model training, to yield precise embedding
for path-based vulnerability detection.

Our Solution. We present ContraFlow, a path-sensitive code
embedding approach which uses self-supervised contrastive learn-
ing to pinpoint vulnerabilities based on value-flow paths. To avoid
training a large number of value-flow paths, ContraFlow enables
contrastive learning to first work with value-flow paths extracted
from unlabeled code fragments, by learning a pretrained representa-
tion (or path encoder) such that semantically similar paths stay close
to each other while dissimilar ones are far apart. The resulting pre-
trained path encoder is then used to guide the path selection process
through self-supervised active learning by reducing a substantial
number of value-flow paths required for training the downstream
fine-tuning task, i.e., vulnerability detection. In the path selection
process, we introduce sparse and guarded value-flow analysis into
code embedding to further refine the selected value-flows by check-
ing their path feasibility [12, 64]. Thus, only feasible value-flow
paths are preserved in the embedding space to precisely represent
a code fragment. Our vulnerability detection is then able to report
likely buggy paths based on the path-sensitive representation and
interpret important value-flow paths contributing to a vulnerability,
hence bridging the gap between existing path-unaware learning
approaches and path-based static vulnerability detection.

Framework Overview. Figure 1 provides an overview of our
framework consisting of a training process and a prediction process.
The training process comprises the following three major phases:

(a) Contrastive Value-Flow Embedding. This phase aims to
train a value-flow embedding model, Value-flow Path Encoder
(VPE), using contrastive learning. Given a set of value-flow paths
extracted from unlabeled source code using an existing static an-
alyzer SVF [63], we first perform data augmentation to generate
contrastive value-flow representations [26], and then utilize the
standard Noise Contrastive Estimate (NCE) loss function [9] to
maximize the agreement between semantically similar value-flow
path vectors. This updates the parameters of our VPE to prompt it

to preserve the deep semantics of value-flow paths. The pretrained
VPE is used in the next two phases.

(b) Value-Flow Path Selection. This phase is designed to pre-
cisely select feasible and representative value-flow paths to repre-
sent the code fragment to support fast training of the path-based
detection model. We first use the pretrained VPE from Phase (a)
to generate the feature vectors of the input paths, and sample the
paths using self-supervised active learning [45] to capture the most
representative paths and make the embedding diverse and infor-
mative. We then perform path-sensitive code embedding given the
sampled paths as a reachability problem over the guarded value-
flow graph (VFG) [12, 64]. The VFG captures def-use relations in
a sparse manner and guards edges with annotations describing
control-flow transfer conditions. The feasibility checking is then
reduced to a reachability problem over the guarded VFG, to embed
only feasible paths in the low-dimensional embedding space.

(c) Detection Model Training. Given the selected paths pro-
duced by Phase (b) and the VPE model transferred from Phase (a),
this phase will train a precise detection model by only using the
selected paths of a program and its label (i.e., vulnerable or safe). We
first obtain the embedding vector from VPE for each selected value-
flow path, and then leverage the transformer architecture [69] to
produce a contextual vector for each path to capture the interaction
between paths. These vectors are then fed into a soft attention
layer [1] to score and aggregate them into one vector for the final
detection model training. The model can also interpret important
value-flow paths and statements according to their contribution to
the model outputs, which is ranked by the learned attention scores.

Once the model is trained, in the prediction process, we apply the
model to detect potential vulnerabilities in an unseen program with
the selected feasible and representative value-flow paths generated
as Phase (b). For a detected vulnerability, our approach reports
top-ranked value-flow paths as buggy paths according to the atten-
tion scores. Top-ranked statements are also identified as the top
influential statements in each buggy path.

Our major contributions are as follows:

• We present ContraFlow, a new path-sensitive code em-
bedding utilizing a pretrained value-flow path encoder via
self-supervised contrastive learning to significantly boost
the performance and reduce the training costs of later path-
based prediction models to precisely pinpoint vulnerabili-
ties.

• We formulate path-sensitive code embedding as a reacha-
bility problem over a guarded sparse value flow graph to
support lightweight yet precise embedding of feasible paths
in the low-dimensional embedding space.

• We evaluated ContraFlow by comparing it with eight
state-of-the-art learning-based vulnerability detection ap-
proaches. Experimental results show that our approach out-
performs the method/slice-level baselines by up to 334.1%
informedness, 317.9% markedness, 58.3% F1 Score, and up
to 450.0% mean statement recall, 192.3% mean statement
precision and 450.0% mean IoU in terms of locating buggy
statements.
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void msg_q(){
    Inf hd = log_kits("head");
    Inf tl = log_kits("tail");
    !!"
    if(FLG){
        rebuild_list(&hd);
        !!"
    }else{
        rebuild_list(&tl);
        !!"
    }
    if(FLG){
        set_status(&hd,&tl);
    }else{
        log_status(&hd, &tl);
    }
}
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Figure 2: A motivating example extracted from a real-world project POCO (a library for network-based applications). It

illustrates and details the three phases of our framework described in Figure 1.

2 A MOTIVATING EXAMPLE

Figure 2 illustrates the key idea of ContraFlow by going through
the three phases in Figure 1 using a Business Logic Error (CWE-
840) [55] extracted from a real-world project POCO (a library for
network applications) [31]. The vulnerability is caused by the API
misuse when calling set_status(&hd) after rebuild_list(&hd),
where hd is first defined at line 2○, then modified at line 6○ and used
at line 13○. This buggy value-flow path of hd can cause unexpected
behavior and result in denial of service.

Note that the value-flow paths of different variables extracted
from the original code fragment are large in size and contain many
paths including infeasible or bug irrelevant paths needed for feasibil-
ity checks and embedding. Our contrastive value-flow embedding
in Phase (a) first pretrains a VPE, to preserve the semantics of
paths (e.g., 𝜋1 − 𝜋4) in the latent space, and then selects the most
representative paths using active learning in Phase (b), followed
by feasibility checking which removes infeasible paths 𝜋2 and 𝜋3
through sparse and guarded value-flow analysis. Phase (c) further
fine-tunes and interprets 𝜋1 as the likely buggy path according to
the ranked attention scores (90% for 𝜋1) of the training model.

(a) Contrastive Value-Flow Embedding. As shown in Figure 2
(a), the input of this phase is a bag of value-flow paths extracted
from the code fragment, e.g.,𝜋1 ( 2○→ 6○→13○),𝜋2 ( 3○→ 9○→13○),𝜋3
( 2○→ 6○→15○) and 𝜋4 ( 3○→ 9○→15○). We feed them into the value-
flow path encoder (VPE) twice using different dropout masks [61]
in VPE, to obtain their vector representations, e.g., v𝜋1 , v𝜋2 , v𝜋3 and
v𝜋4 , and their corresponding contrastive representations [26], e.g.,
v+𝜋1 , v

+
𝜋2 , v

+
𝜋3 and v+𝜋4 . VPE is pretrained using contrastive learning

to capture the semantics of value-flow paths such that the pre-
trained similar embedding vectors (e.g., v𝜋1 and v+𝜋1 ) stay close to
each other while dissimilar pairs (e.g., v𝜋1 and v+𝜋3 ) are far apart,
as the two-dimensional feature space depicted in Figure 2(a). The
parameters of VPE are automatically updated in the backward prop-
agation process [33] by minimizing the NCE loss [9] that encodes
the similarities between value-flow embedding vectors.

(b) Value-Flow Path Selection. This phase uses the pretrained
VPE from Phase (a) to transform value-flow paths into embedding
vectors. After this, we sample a proportion of representative value-
flow paths, e.g., 𝜋1 − 𝜋4, according to the rankings learned from

self-supervised active learning [45]. These paths are further fed
into the path-feasibility checking to remove infeasible value-flow
paths. For instance, path 3○→ 9○→13○ is infeasible because the
control flow guards !FLG at 3○→ 9○ and FLG at 9○→13○ contradict
with each other. Likewise, 2○→ 6○→15○ is also infeasible. Finally,
only feasible value-flow paths 𝜋1 and 𝜋4 are preserved to train the
detection model in Phase (c).

(c) Detection Model Training. The input of this phase is the
selected feasible and representative value-flow paths produced by
Phase (b), which are first transformed into vectors using the VPE
model transferred from Phase (a). These embedding vectors then
go through a transformer architecture [69] to produce a contextual
vector for each value-flow path. For example, the contextual vector
of 𝜋1 is computed by attention with the other vectors, e.g., 𝜋4, to
add their influence on 𝜋1. After this, a soft attention layer [1] is
applied to merge these contextual vectors into one vector, which is
used for training the detection model. The ranked attention weights
indicate the contribution of different value-flow paths to the model
output. For instance, the value-flow path 𝜋1 ( 2○→ 6○→13○) poses
the highest attention weights (90%) while the others are negligible,
indicating that this value-flow path is likely a buggy path.

Let us demonstrate that our approach can embed more precisely
the structural code information than path-unaware learning-based
models by comparing ContraFlow with two recent approaches
VulDeeLocator [49] and IVDetect [48]. VulDeeLocator and its
previous work VulDeePecker [51] utilize a slicing criteria travers-
ing forward and backward from a user-specified API call to obtain
a subgraph on a program dependence graph (PDG). The resulting
subgraph merges multiple infeasible/feasible paths. In our example,
performing slicing given an API function, e.g., set_status will
produce a subgraph containing 2○, 3○, 5○, 6○, 9○, 12○, 13○. It nei-
ther distinguishes value-flows of different variables nor removes
infeasible paths. IVDetect [48] performs edge masking to iden-
tify important edges on the PDG based on the classification model
trained with GNNs. However, the approach is unaware of infeasible
program dependence (e.g., 9○→13○) and the resulting masked graph
can contain disconnected value-flows which are insufficient or in-
complete when reporting buggy paths. Section 4 provides more
evaluations to compare ContraFlow with the state-of-the-arts.
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Algorithm 1: Contrastive Value-Flow Embedding
1 for epoch← {1, 2, ...} do
2 Generate contrastive vector representations using data

augmentation [26]
3 Compute the contrastive loss L with Equation 3
4 Update parameters by applying stochastic gradient

ascent to minimize L
5 return Well-trained VPE

3 CONTRAFLOW APPROACH

This section details the three phases of our approach, namely con-
trastive value-flow embedding (Section 3.1), value-flow path selec-
tion (Section 3.2) and detection model training (Section 3.3).

3.1 Contrastive Value-Flow Embedding

The goal of our contrastive value-flow embedding is to pretrain a
value-flow embedding model, aka value-flow path encoder (VPE),
from the value-flow paths extracted from the code without the need
for manual labels, to support value-flow path selection (Section 3.2)
and to train the detection model (Section 3.3). We first describe the
contrastive value-flow embedding algorithm in Section 3.1.1 and
then elaborate the design of VPE in Section 3.1.2.

3.1.1 Contrastive Value-Flow Embedding Algorithm. Contrastive
value-flow embedding aims to learn discriminative vector repre-
sentations v𝜋 of similar/dissimilar guarded value-flow paths 𝜋 ex-
tracted from unlabeled code fragments by pretraining the VPE.
A guarded value-flow path 𝜋 consists of a sequence of program
statements representing a def-use chain between variables, with the
guard on each edge between two statements to indicate control-flow
transfer conditions [12, 64]. The guards will be used during path-
feasibility solving in Phase (b). Algorithm 1 summarizes the learning
algorithm. For each learning epoch, we generate contrastive vector
representations (Line 2) and compute the contrastive loss amongst
contrastive value-flow paths (Line 3). The parameters of VPE are
automatically updated in the training process (Line 4). The follow-
ing paragraphs describe contrastive value-flow representations and
the contrastive loss function.

Contrastive Value-Flow Representations. We utilize the mini-
mal data augmentation approach [26] to generate contrastive value-
flow vector representations using independently sampled dropout
masks, i.e., feeding the same value-flow path to the VPE twice with
independently sampled (different) dropout masks [61], to produce
an embedding pair (v𝜋 , v+𝜋 ), where v+𝜋 stands for the contrastive
representation regarding 𝜋 . The embedding pair generated from
the same 𝜋 are considered as positive while that produced from
different paths are treated as negative. Note that, this augmentation
approach largely outperforms common data augmentation tech-
niques (e.g., element deletion or substitution [52]) because it can
avoid potential representation collapse [26].

Contrastive Value-Flow Embedding Loss.We use the Noise
Contrastive Estimate (NCE) loss function [9] as the learning ob-
jective to maximize the agreement between positive value-flow
representations. For two value-flow path vectors v𝜋𝑖 and v𝜋 𝑗
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Figure 3: Value-Flow Path Encoder.

measure their similarity using cosine similarity:

𝑠𝑖𝑚(v𝜋𝑖 , v𝜋 𝑗
) =

v⊤𝜋𝑖v𝜋 𝑗

| |v𝜋𝑖 | | · | |v𝜋 𝑗
| | (1)

The loss of 𝜋𝑖 is defined as :

𝑙𝑜𝑠𝑠 (𝜋𝑖 ) = −𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑠𝑖𝑚(v𝜋𝑖 , v+𝜋𝑖 ))∑𝐵
𝑘=1 𝑒𝑥𝑝 (𝑠𝑖𝑚(v𝜋𝑖 , v

+
𝜋𝑘
))

(2)

where 𝐵 is the batch size of value-flow paths. The total value-flow
contrastive loss can be computed as:

L =
1
𝐵

𝐵∑︁
𝑖=1

𝑙𝑜𝑠𝑠 (𝜋𝑖 ) (3)

During pretraining, the vector representations of semantically
similar paths produced by the pretrained VPE stay close to each
other as the contrastive loss L diminishes through backward propa-
gation to a minimum stationary point [40]. Once the VPE is trained,
we use it to guide value-flow path selection in Section 3.2 and
transfer it to the detection model for fine-tuning in Section 3.3.

3.1.2 Value-Flow Path Encoder. To produce the feature vector v𝜋
to represent a value-flow path 𝜋 , we first introduce the processing
pipeline of VPE and then elaborate the design of the statement
encoder.

Processing pipeline. Figure 3 shows the pipeline of VPE con-
sisting of two steps:
• Local encoding: We apply a statement encoder to capture the

syntactic structure of each statement’s AST-subtree [79] of a
value-flow path 𝜋 . This encoder produces local features in the
form of vector representations v𝑠0 , v𝑠1 , .., v𝑠𝑁 to represent the
sequence of statements 𝑠0, 𝑠1, ..., 𝑠𝑁 in 𝜋 . We will detail the design
of the statement encoder later in this section.

• Global Encoding: To model the sequential naturalness of the
def-use chain on a value-flow path, we leverage Bidirectional
Gated Recurrent Unit (BGRU) [13] to generate hidden state vec-
tors h𝑠0 , h𝑠1 , ..., h𝑠𝑁 from v𝑠0 , v𝑠1 , .., v𝑠𝑁 . These generated vectors
encode the global features of a value-flow path, i.e., def-use fea-
ture propagation between statements. We then add weights to
each h𝑠 and merge them with the standard attention mecha-
nism [1], to produce a fixed length vector v𝜋 representing 𝜋 ’s
semantics.
Statement Encoder. Each statement 𝑠 is represented as an AST-

subtree, a subtree of the AST at the statement level [79]. The state-
ment encoder aims to model the in-depth feature of 𝑠 including
the AST node tokens, their types, and the syntactic structure (AST
edges). This can extract more fine-grained and holistic features by
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perceiving syntax-level code elements, making the local encoding
of a value-flow path more precise. We first compute the feature
vector v𝑛𝑖 of each node 𝑛𝑖 in the AST-subtree (Equation 4) by con-
sidering node properties and the tree structure. We then aggregate
the vectors of all nodes to produce vector v𝑠𝑚 to represent a sum-
mary of the tree (Equation 6). Finally we merge all the summary
vectors [73], and pass it to a fully connected layer and a dropout
layer to produce 𝑠’s feature vector v𝑠 .

Let 𝐶𝑖 denote the children of node 𝑛𝑖 in the AST-subtree. Each
node has two properties: the node type and node tokens. We first
obtain the property embedding vectors by looking up the embed-
ding matrices, where each row represents an embedding vector in
relation to a certain object [1]. We then use the element-wise sum
to produce 𝑛𝑖 ’s initial vector v𝑛𝑖 , which is then updated to v′𝑛𝑖 by
considering its children’s features. Formally,

v′𝑛𝑖 =
∑︁

𝑗 ∈𝐶𝑖∪{𝑖 }
𝛼𝑖 𝑗 ·Wv𝑛 𝑗

(4)

where W is a weighted matrix. 𝛼𝑖 𝑗 means the attention weights
between nodes 𝑛𝑖 and 𝑛 𝑗 , and is computed as:

𝛼𝑖 𝑗 =
𝑒𝑥𝑝 (𝜎 (𝑒𝑖 𝑗 ))∑

𝑘∈𝐶𝑖∪{𝑖 } 𝑒𝑥𝑝 (𝜎 (𝑒𝑖𝑘 ))
𝑒𝑖 𝑗 = a⊤𝑠 [W𝑎v𝑛𝑖 | |W𝑎v𝑛 𝑗

] · 𝜎 ((W𝑎v𝑛𝑖 )⊤ (W𝑎v𝑛 𝑗
))

(5)

Here a𝑠 is a global learnable attention vector, W𝑎 is a weighted
matrix, | | represents concatenation and 𝜎 (·) denotes the activation
function. Finally, we use the concatenation of the element-wise
mean and max pooling to aggregate the vectors of all nodes (as-
suming that we have 𝑁 nodes) and generate the summary vector:

v𝑠𝑚 = [ 1
𝑁

𝑁∑︁
𝑖=1

v′𝑛𝑖 | |𝑚𝑎𝑥𝑁𝑗=1v
′
𝑛 𝑗
] (6)

Note that there can be multiple processing layers (Equations 4
and 6), so a JK-net architecture [73] is used to aggregate the sum-
mary vector at different scales of processing to produce the final
statement vector: v𝑗𝑘 =

∑𝐿
𝑙=1 v

𝑙
𝑠𝑚 , where 𝐿 represents the number

of layers and v𝑙𝑠𝑚 represents the summary vector of 𝑠 after layer 𝑙 .
Finally, a fully connected layer and a dropout layer [61] are applied
on v𝑗𝑘 to produce the final statement vector v𝑠 = dropout (Wv𝑗𝑘 ).

Example 1. Figure 4 gives theAST-subtree of rebuild_list(&hd);
at Line 6 in Figure 2 to illustrate our statement encoder. The root
node 𝑛1 is of type CallExpression and has two children, a Callee
node 𝑛2 with tokens rebuild, list and an ArgumenList node 𝑛3

with tokens &, hd, which has its children 𝑛4-𝑛6. First, we look up
the type and token(s) of each node in the two embedding space
(matrices) to retrieve their corresponding vectors. We then perform
the element-wise sum to form one embedding vector for each node.
The resulting vector is then updated according to Equation 4. For
example, 𝑛1’s vector is computed by adding attention weights from
itself (𝛼11 · v𝑛1 ) and its children 𝑛2 (𝛼12 · v𝑛2 ) and 𝑛3 (𝛼13 · v𝑛3 ). At
last, all the hidden vectors of nodes are pooled as in Equation 6 and
summed at different scales to produce the final statement vector v𝑠 .

3.2 Value-Flow Path Selection

3.2.1 Value-Flow Active Learning. We select a portion of repre-
sentative paths using a recent self-supervised active learning ap-
proach [45] such that the number of paths for code embedding is
reduced while important program semantics are well-preserved.
Given a set of value-flow paths H = [v𝜋1 , ..., v𝜋𝑛 ] ∈ R𝑛×𝑑 , we aim
to select a representative subset H′ ∈ R𝑘×𝑑 ⊆ V. The approach
introduces an encoder-decoder model [45] to reconstruct the in-
put based on two reconstruction coefficient matrices Q, P ∈ R𝑛×𝑛 .
These twomatrices are trained using a joint reconstruction loss [45]
by minimizing the distance between (1) H and the reconstructed
matrix QH, (2) the cluster centroid matrix C, which is obtained us-
ing K-means clustering [39] on H, and the reconstructed matrix PH,
and (3) H and the decoder outputs G. After training, we calculate
the 𝑙2-norm [72] for each column of Q and P, and normalize the
value into [0, 1], to produce two ranking vectors q̂, p̂ ∈ R𝑛 . Finally,
q̂ and p̂ are merged and sorted in descending order, and the top-𝑘
value-flow paths are the most representative, which are fed into
the next phase for feasibility analyses.

3.2.2 Value-Flow Path Feasibility Analysis. We then perform path-
sensitive analysis for the value-flow paths selected using the afore-
mentioned active learning to further refine the value-flows for
precise code embedding. Feasibility checking is reduced to a reach-
ability problem over the guarded value-flow graph [12, 64] whose
edges are annotated with guards to describe control-flow transfer
conditions on the control-flow graph (CFG).

Given a value-flow path 𝜋 : 𝑠0, 𝑠1, . . . , 𝑠𝑁 , we define guard𝑣 (𝜋),
a Boolean function encoding the reachability of the control-flow
paths between each consecutive pair along the value-flow path in
the program, from 𝑠0 to 𝑠𝑁 . Hence, 𝜋 is feasible if guard𝑣 (𝜋) returns
true, and infeasible otherwise.

guard𝑣 (𝜋) =
𝑁−1∧
𝑖=0

∨
𝑝∈𝐶𝑃 (𝑠𝑖 ,𝑠𝑖+1)

∧
𝑒∈𝐶𝐸 (𝑝)

guard𝑒 (𝑒) (7)

where𝐶𝑃 (𝑠𝑖 , 𝑠𝑖+1) denotes all the control flow paths between 𝑠𝑖 and
𝑠𝑖+1, 𝐶𝐸 (𝑝) represents the control-flow edges in 𝑝 and 𝑔𝑢𝑎𝑟𝑑𝑒 (𝑒)
denotes the control-flow transfer condition for edge 𝑒 ∈ 𝐶𝐸 (𝑝). A
guard between two nodes (e.g., 𝑠𝑖 and 𝑠𝑖+1) on the value-flow path
is computed based on the disjunctions of the guards of each control-
flow path 𝑝 on the CFG. For a conditional control-flow transfer
(e.g., if-else branch), we encode the branch condition 𝑐 as a unique
Boolean guard for the true branch and !𝑐 for the else branch. An
unconditional control-flow transfer is assigned a true value.

Example 2. Figure 5 gives an example of our feasibility analysis
of the value-flow path from 2○ to 9○ and 2○ to 11○. For the first
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x = 12;
r = !!";
y = !!";
if(x > 10)
    y = 1;
else
    y = 2;
if(x < 30)
    r = y;
else
    r = 0;

1
2
3
4
5
6
7
8
9
10
11

(a) Source Code (c) Guarded
Value-Flow Path

(b) CFG
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7
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!c0
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true true

feasible:

infeasible:

(c0∧!c1)∨(!c0∧!c1) 
2 11

Figure 5: An example of guarded value-flow analysis.

path, as shown on the CFG in Figure 5(b), there are two control
flow paths in 𝐶𝑃 ( 2○, 9○), i.e., 𝑝1 : ⟨ 2○, 3○, 4○, 5○, 8○, 9○⟩ and 𝑝2 :
⟨ 2○, 3○, 4○, 7○, 8○, 9○⟩. Thus the feasibility of 𝜋 is determined by
the disjunction of

∧
𝑒∈𝐶𝐸 (𝑝1) 𝑔𝑢𝑎𝑟𝑑𝑒 (𝑒) and

∧
𝑒∈𝐶𝐸 (𝑝2) 𝑔𝑢𝑎𝑟𝑑𝑒 (𝑒)

according to Equation 7, i.e., (𝑐0∧𝑐1) ∨ (!𝑐0∧𝑐1), where 𝑐0 : 𝑥 > 10
is the guard at 4○ to 5○ and 𝑐1 : 𝑥 < 30 is the guard from 8○ to 9○.
Hence, 2○ to 9○ is feasible because 𝑐1 is a true value. In contrast,
the value-flow path from 2○ to 11○ is an infeasible one because !𝑐1
is a false value, thus this path is excluded for code embedding.

3.3 Detection Model Training

Our model training requires labeled code fragments (i.e., vulnerable
or safe) with their selected feasible value-flow paths (Section 3.2).
Each code fragment and its selected paths 𝜋1, 𝜋2, ..., 𝜋𝑁 are first
fed into the VPE transferred from Section 3.1.2 and go through a
multi-head self-attention layer as in Equation 8. A soft attention [1]
is then used to aggregate them into one vector, which is used for
classification (Equation 9) to predicted buggy paths.

Specifically, we first obtain the embeddingmatrices of each value-
flow path from VPE, V = [v𝜋1 , v𝜋2 , ..., v𝜋𝑁 ] ∈ R𝑁×𝑑𝑒𝑚𝑏𝑒𝑑 , where
each row v𝜋 denotes the feature vector (Section 3.1.2) of a selected
𝜋 . 𝑁 represents the number of value-flow paths and 𝑑𝑒𝑚𝑏𝑒𝑑 means
the embedding dimension of the value-flow paths. We first pass V
into a multi-head self-attention layer [69] to produce a contextual
feature matrix V′ ∈ R𝑁×𝑑𝑐𝑡𝑥 :

V′ = [h1 | |...| |hℎ]W𝑜

h𝑖 = Attn(VW𝑄

𝑖
,VW𝐾

𝑖 ) (VW
𝑉
𝑖 )

(8)

Here, Attn(Q,K) = softmax(norm(QK⊤)) stands for a 𝑁 ×𝑁 atten-
tion weights matrix, each row of which represents the attention
weights for its corresponding value-flow path.W𝑜 ∈ Rℎ ·𝑑ℎ𝑖𝑑×𝑑𝑐𝑡𝑥 ,
W𝑄

𝑖
,W𝐾

𝑖
,W𝑉

𝑖
∈ R𝑑𝑒𝑚𝑏𝑒𝑑×𝑑ℎ𝑖𝑑 are learnable weight matrices. ℎ de-

notes the attention head number and 𝑑ℎ𝑖𝑑 is the hidden dimension.
Finally, we use a global learnable attention vector a𝑐 to compute

the attention weights 𝛼𝑐
𝑖
=

𝑒𝑥𝑝 (v⊤𝜋𝑖 a𝑐 )∑𝑁
𝑗=1 𝑒𝑥𝑝 (v⊤𝜋𝑗

a𝑐 )
for 𝜋𝑖 and merge them

into a code vector v𝑐 =
∑𝑁
𝑖=1 𝛼

𝑐
𝑖
· v𝜋𝑖 which is used for the final

prediction through learning the label distribution conditioned on
the code 𝑐 , i.e., 𝑃 (𝑦𝑖 |𝑐), where 𝑦𝑖 is one of the vulnerability tag sets
𝑌 . The predicted distribution 𝑞(𝑦𝑖 ) is computed using a softmax
function, the dot product between the code vector v𝑐 and the vector

Table 1: Labeled sample Distribution.

Dataset granularity # Vulnerable # Safe # Total

D2A
Method 21,396 2,194,592 2,215,988
Slice 105,973 10,983,992 11,089,965

Fan
Method 8,456 142,853 151,309
Slice 42,527 713,239 717,496

FQ
Method 8,923 9,845 18,768
Slice 45,627 50,125 95,752

Total

Method 38,775 2,347,290 2,386,065
Slice 194,127 11,747,356 11,903,213

representation lb𝑖 of each label 𝑦𝑖 ∈ 𝑌 :

∀ 𝑦𝑖 ∈ 𝑌 : 𝑞(𝑦𝑖 ) =
exp(v⊤𝑐 lb𝑖 )∑

𝑦 𝑗 ∈𝑌 exp(v⊤𝑐 lb𝑗 )
(9)

To interpret the vulnerability at the statement level, the buggy
path set is obtained with top-𝑘 indexing via attention weights 𝛼𝑐

𝑖
.

For each buggy path we use top-𝑘 indexing based on the attention
weights of statements (Section 3.1.2) to obtain important statements.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate the effectiveness of ContraFlow at de-
tecting vulnerabilities in real-world projects by comparing it against
eight state-of-the-art learning-based approaches. ContraFlow im-
proves up to 334.1%, 317.9%, 58.3% informedness, markedness and
F1 Score, respectively, and up to 450.0%, 192.3%, 450.0% mean state-
ment recall, mean statement precision and mean IoU, respectively.

4.1 Datasets and Implementation

Datasets. We evaluate ContraFlow using 288 real-world open-
source projects extracted from three datasets, namely D2A [80],
Fan [20] and FFMPeg+Qemu (FQ) [81], consisting of 275K programs
with 30M lines of code. Note that our datasets are built upon real-
world vulnerabilities: Fan is built upon CVEs [20], and FQ and D2A
comprise vulnerabilities labeled by domain experts [80, 81]. We
label a sample as vulnerable if it contains at least one vulnerable
statement, and safe otherwise. For D2A, the bug traces (paths) are
already labeled for vulnerable statements. For Fan and FQ, we label
buggy statements based on the code fragment before and after its
bug-fixing patch on GitHub. The labeled method/slice distribution
is presented in Table 1. The average number of paths produced by
SVF is 453. We perform evaluations across projects (training on
some projects and validation and detection on different projects)
by randomly splitting the projects of our datasets into 80%, 10%
and 10% for training, validation and detection respectively. We also
compared the mixture of training, validation and detection on all
the projects. We utilize SMOTE [8] to alleviate the data imbalance
problem during training, while the ratios of the data are unchanged
for validation and detection.

Implementation. The interprocedural value-flow graph of a
program is generated by SVF [63]. We use Z3 SMT solver [15] to
solve path feasibility on the guarded sparse VFG. We use clang to
compile each file of a project into an LLVM bitcode file, which is
then fed into SVF to extract the VFG (Note that we extract buggy
samples by compiling different buggy versions of a project based
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on its GitHub commits). We use joern [17] to generate the AST-
subtree of statements. The neural networks are implemented on
top of PyTorch Lightning [19] and PyTorch Geometric [24].
The experiments are conducted on an Ubuntu 18.04 server with
an NVIDIA GeForce GTX 1080 GPU and an Intel Xeon E5-1620
3.50GHz CPU with 512 GB memory. The neural network is trained
in a batch-wise fashion with a batch size of 64. The embedding
dimension is set to 128. The number of selected paths is set to a
maximum of 100. The dropout rate is set to 0.1. We use stochastic
gradient descent [40] to train the neural network with a learning
rate of 0.002 for a maximum number of training epoch with 500. We
utilize AutoML [30] to automatically tune the hyper-parameters of
our model.

For the open-source approaches (SySeVR [50], Reveal [7], Deep-
Wukong [10], IVDetect [48] and VulDeeLocator [49]), we di-
rectly use their shared implementations. For the implementations of
VGDetector [11], Devign [81] and VulDeePecker [51] which are
not publicly available, we re-implemented them by strictly follow-
ing their methods elaborated in the original papers. We do not com-
pare ContraFlow with non-learning-based detectors, e.g., Check-
marx [35] and Infer [18], because our baselines (i.e., VulDeeLoca-
tor [49], VGDetector [11], SySeVR [50] and DeepWukong [10])
already report fewer false alarms and false negatives than these non-
learning-based static analyzers, which are only effective for specific
vulnerability types (e.g., use-after-frees and null-dereference) with
analysis rules predefined by domain experts [10, 48, 51].

4.2 Research Questions

Our evaluation aims to answer the following research questions:

RQ1 CanContraFlow outperformexisting learning-based

vulnerability detection approaches?Wewould like to in-
vestigate (RQ1.1) whether ContraFlow outperforms exist-
ing method/slice-level vulnerability detectors, and (RQ1.2)
whether ContraFlow achieves consistently better perfor-
mance in terms of locating buggy statements [49].

RQ2 How do different settings affect ContraFlow’s over-

all performance? We conduct ablation analysis to un-
derstand the influence of different components of Con-
traFlow, including (RQ2.1) the performance with and
without contrastive learning, (RQ2.2) the impact of path
selection strategies (active learning or random sampling,
path sensitive or insensitive), and (RQ2.3) the effectiveness
under different pretrainings (CodeBert [22], BLSTM [29],
BGRU [13]).

RQ3 How do different dataset scales for training affect

the performance of ContraFlow? We perform data
sensitive analysis to understand the performance with and
without contrastive learning under different dataset sizes.

4.3 Evaluation Methodology

Existing learning-based detectors can be generally summarized into
two categories (1) method-level detection, i.e., predicting whether
a program method is vulnerable or not, such as VGDetector [11],

!!"

-----
----------------------------------------

---------------
----------

-----

Figure 6: An example to illustrate LBS metrics. Each dashed

line represents a statement.

Devign [81], Reveal [7], and (2) slice-level detection, i.e., predict-
ing whether a program slice (e.g., a subgraph of PDG) is vulner-
able or not, including VulDeePecker [51], SySeVR [50], Deep-
Wukong [10], VulDeeLocator [49] and IVDetect [48].

ContraFlow provides a fine-grained path-based model which
can report the potentially buggy value-flow paths and statements
of a vulnerable program. Due to different detection granularities,
we perform a fair cross-comparison between ContraFlow and
the above approaches under their metrics, aiming to show that
ContraFlow still performs better than current approaches under
the following existing metrics [48, 49]:

• Informedness (IF) is an unbiased variant of Recall and TNR
(proportion of predicted truly safe samples) and is calculated as
IF = Recall + TNR − 1.

• Markedness (MK) is an unbiased variant of Precision and TNA
(correctness of predicted safe samples) and is computed asMK =

Precision + TNA − 1.
• F1 Score (F1) means the overall effectiveness, which is the har-

monic mean of Recall and Precision: F1 = 2 ∗ Precision∗Recall
Precision+Recall .

Here, #𝑇𝑃 (#𝐹𝑃 ) denotes the number of vulnerable (safe) meth-
ods/slices correctly (incorrectly) detected as vulnerable. #𝑇𝑁 (#𝐹𝑁 )
denotes the number of safe (vulnerable) methods/slices correctly
(incorrectly) predicted as safe. Recall = #𝑇𝑃

#𝑇𝑃+#𝐹𝑁 denotes the pro-
portion of detected truly vulnerable samples in all vulnerable sam-
ples.Precision = #𝑇𝑃

#𝑇𝑃+#𝐹𝑃 is the correctness of detected vulnerable
samples.

We use the above metrics to compare with method- and slice-
level approaches. Our approach predicts a method as vulnerable if
ContraFlow finds one buggy path contained in the method. Simi-
larly, we predict a slice as vulnerable if the slice and our reported
vulnerable value-flow paths have an overlapping statement.

We further evaluateContraFlow against IVDetect andVulDee-
Locator based on the same metrics used in VulDeeLocator [49]
to quantitatively compare the effectiveness of locating buggy state-
ments (LBS), which is inspired by the Jaccard Index [36]. For each
correctly detected vulnerable sample, let 𝑆𝑙 denote the set of labeled
vulnerable statements and 𝑆𝑑 denote the set of reported vulnerable
statements. The LBS metrics are defined as follows:

• Mean Statement Recall (MSR) MSR = 1
𝑁

∑𝑁
𝑖=1 SRi where

SR =
|𝑆𝑙∩𝑆𝑑 |
|𝑆𝑙 | denoting the proportion of detected vulnerable

statements in labeled vulnerable statements.
• Mean Statement Precision (MSP) MSP = 1

𝑁

∑𝑁
𝑖=1 SPi where

SP =
|𝑆𝑙∩𝑆𝑑 |
|𝑆𝑑 | , which stands for the locating precision of detected

vulnerable statements.
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Table 2: Comparison of method- and slice-level approaches

under informedness (IF), markedness (MK), F1 Score (F1),

Precision (P) and Recall (R). ContraFlow-method/slice de-

notes the evaluation at method- and slice-level respectively.

Model Name IF (%) MK (%) F1 (%) P (%) R (%)
VGDetector 31.1 29.3 56.7 52.6 61.4
Devign 30.1 28.8 58.7 54.6 63.4
Reveal 34.2 33.8 63.4 61.5 65.5
ContraFlow-method 60.3 58.2 75.3 71.5 79.4

VulDeePecker 17.3 17.3 52.3 52.2 52.4
SySeVR 24.3 24.2 55.0 54.5 55.4
DeepWukong 48.1 48.4 67.0 67.4 66.5
VulDeeLocator 38.4 38.1 62.0 61.4 62.5
IVDetect 37.4 37.3 64.1 64.0 64.6
ContraFlow-slice 75.1 72.3 82.8 79.5 86.4

• Mean Intersection over Union (MIoU)MIoU = 1
𝑁

∑𝑁
𝑖=1 IoUi

where IoU =
|𝑆𝑙∩𝑆𝑑 |
|𝑆𝑙∪𝑆𝑑 | , which reflects the overlap degree of de-

tected vulnerable statements and labeled vulnerable ones.

Example 3. Figure 6 illustrates the meaning of the LBS metrics.
In this example, 𝑆𝑙 contains 4 statements (the number of dashed
lines) and 𝑆𝑑 contains 5. They have a total of |𝑆𝑑 ∪ 𝑆𝑙 | = 6 state-
ments and an overlapping of |𝑆𝑑 ∩ 𝑆𝑙 | = 3 statements. Note that
we only have one sample here. Thus MSR = 3/4 (the proportion
of labeled vulnerable statements that a detection model can suc-
cessfully report). MSP = 3/5 (how precise a model is at locating
vulnerable statements). MIoU = 3/6 (an overall degree at which
the detected statements overlap with the labeled statements). The
closer MSR, MSP, MIoU are to 1, the better the performance is in
terms of locating buggy statements.

Efficiency. It takes about 72 hours to pre-train the value-flow path
encoder using contrastive learning. For detection model training
(i.e., fine-tuning), it takes much less time at approximately 18 and
34 hours to train ContraFlow-method and ContraFlow-slice
respectively. The vulnerability prediction phase is very fast with an
average prediction rate at about 10 methods/sec and 25 slices/sec
respectively.

4.4 Comparison with State-of-the-Arts (RQ1)

4.4.1 Method- and Slice-Level Comparison (RQ1.1). Table 2 com-
pares the results usingmethod- and slice-level metrics in Section 4.3.
Figure 7 presents the average ranking [48] comparison results. It is
clear that ContraFlow outperforms both our method- and slice-
level baselines under the existing metrics, including IF, MK, F1,
precision, recall, AVR and ASR.

Results. As shown in Table 2, ContraFlow outperforms all
our baselines with an average improvement of F1 Score at around
22.9% (e.g., 32.8% for VGDetector and 58.3% for VulDeePecker),
indicating an overall better effectiveness for vulnerability detec-
tion. The informedness of ContraFlow is the largest at 75.1%,
which is more than double that of IVDetect at 37.4% and over
four times the number of VulDeePecker at 17.3%. ContraFlow
also has a significantly higher markedness at 72.3% compared to
37.3% for IVDetect and merely 17.3% for VulDeePecker. A higher
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Figure 7: Comparison with IVDetect and VulDeeLocator

under AVR@k (ASR@k) [48]. AVR@k (ASR@k) represents

the average top-k ranking of the correctly predicted vulner-

able (safe) samples. N/A means that there is no correctly

predicted sample in the top-ranked list.

informedness means that our tool can correctly recall more vulner-
abilities and safe programs, and a higher markedness demonstrates
that the prediction result of ContraFlow is more trustworthy.
The precision and recall of ContraFlow are also better than the
other eight approaches by 18.0–52.3% in precision and 29.9–64.9%
in recall. Fig. 7 compares the AVR@{1-20} and ASR@{1-20} of these
approaches. It is clear that ContraFlow achieves the best aver-
age vulnerable and safe rankings across all the ranges. Notably,
the AVR@1 for most of our baselines (7/8) is not applicable (N/A)
since their first-ranked detected method/slice (i.e., most confident
prediction) is a false positive.

Analysis.The reason for the better performance of ContraFlow
is that it can preserve more comprehensive features of the input
program by considering path-sensitive value-flow paths, which
approximate the program runtime behaviour and bug semantics.
The other approaches either utilize textual representation [49–51]
or graph embedding [7, 11, 48, 81], which is insufficient for dis-
tinguishing feasible/infeasible or buggy/safe value-flow (program
dependence) paths. Therefore, the learned vulnerable/safe code
pattern is not as precise as ContraFlow.

4.4.2 Locating-Buggy-Statements Comparison (RQ1.2). IVDetect,
ContraFlow and VulDeeLocator can pinpoint and report dif-
ferent lengths of vulnerable statements (LOS). Figure 8 and Fig-
ure 9 present the experimental results for LBS under different
LOS. Table 3 further compares these approaches using SA, MFR
and MAR [48]. Overall, ContraFlow is superior to the other two
approaches (IVDetect and VulDeeLocator) in terms of all the
Locating-Buggy-Statements (LBS) metrics and SA, MFR and MAR.

MSR and MSP. It is clear that MSR increases dramatically from
1 LOS to 4 LOS and still rises steadily during the rest range of
LOS, reaching an upper bound, i.e., reporting all the embedded
statements, at about 89.5% for VulDeeLocator and ContraFlow,
and around 64.5% for IVDetect. This is because more LOS is likely
to cover more vulnerable statements. Particularly, ContraFlow
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Table 3: Comparison with IVDetect and VulDeeLocator

under SA, MFR and MAR [48]. Statement Accuracy (SA)

counts a correct detection if one labeled vulnerable statement

is reported. MFR/MAR are themean value of the first/average

ranks of correctly detected statements.

Model Name SA(%) MFR MAR1 LOS 4 LOS 6 LOS 12 LOS
VulDeeLocator 1.3 46.7 50.2 54.4 6.9 10.5
IVDetect 2.1 55.5 59.7 63.5 6.8 9.5
ContraFlow 15.1 73.9 78.2 84.1 2.1 5.7

can recall more lines of vulnerable statements than the others across
all the LOS by up to 89.6%. However, more LOS observes a sharp
decrease of 50.1% MSP for VulDeeLocator, which is capped at
9.5% while IVDetect has an even lower MSP at about 5.3%. In
comparison,ContraFlow achieves a significantly higherMSPwith
91.2% at 1 LOS and is consistently better than the other two as the
LOS grows larger. This is becauseContraFlow only selects feasible
value-flow paths as inputs so the embedded statements contain less
noise. In contrast, at the upper bound, IVDetect detects the whole
method as vulnerable while VulDeeLocator reports all the slices
without distinguishing infeasible/feasible paths.

MIoU and MSF. As shown on Figure 9, IVDetect and VulDee-
Locator report their best performance at 4 and 6 LOS respectively
in terms of MIoU. However, there is still an average gap of approxi-
mately 15.4% MIoU and 24.6% MSF between these two approaches
and ContraFlow. By comparison, the best performance in terms of
MIoU and MSF for ContraFlow appears at about 8 LOS, meaning
that ContraFlow is capable of reporting a larger proportion of
vulnerable statements with fewer false positives.

SA,MFRandMAR.Table 3 compares the SA,MFR andMAR [48]
of these detectors (IVDetect, VulDeeLocator). We can see that
ContraFlow performs better than VulDeeLocator and IVDe-
tect in terms of these metrics. There is a notable rise from 1 LOS to
4 LOS for all the approaches. This result is also consistent with the
trend of MSR in Figure 8. The SA at 12 LOS is the largest at 84.1% for
ContraFlow in comparison with 54.4% for VulDeeLocator and

Table 4: Ablation Analysis Results. ContraFlow-

CodeBert/BLSTM/BGRU means ContraFlow with

CodeBert/BLSTM/BGRU as the value-flow path encoder.

Model Name IF (%) MK (%) F1 (%) MIoU (%) MAR
Non-contrastive 61.3 57.9 74.2 40.3 7.8
Random-sampling 63.2 59.6 75.0 42.9 7.1
Path-insensitive 49.3 47.2 68.6 33.2 9.8
ContraFlow-CodeBert 68.3 63.9 78.0 45.3 6.4
ContraFlow-BLSTM 56.3 54.4 73.2 42.3 7.5
ContraFlow-BGRU 58.3 56.2 74.2 43.1 6.9
ContraFlow 75.1 72.3 82.8 50.9 5.7

63.5% for IVDetect. Note that these numbers are larger because
the interpretation is considered as correct as long as one labeled
vulnerable statement is reported. Regarding MFR and MAR, Con-
traFlow improves VulDeeLocator in terms of MFR and MAR by
4.8 and 4.7 ranks and IVDetect by 2.3 and 2.2 ranks, respectively.

The above LBS comparison shows that ContraFlow can detect
a larger percentage of vulnerable statements with higher precision.
This can be explained by the more precise embedding for vulnera-
bility detection used by ContraFlow (i.e. path-sensitive value-flow
paths), which is closer to the runtime execution feature of programs
and thus can better manifest the potential vulnerable behaviour of
programs and boost vulnerability semantic comprehension.

Cross-project vs. Mixture-of-projects.We also evaluated two
settings for training and detection (1) cross-project evaluation (train-
ing on some projects and detection on different projects), and (2)
mixture-of-projects evaluation (training and detecting on the mix-
ture of all projects). Mixture-of-projects shows a much better re-
sult than cross-project. The F1 Score for mixture-of-projects is
10.9% higher at 92.9%. It also reports a better informedness and
markedness at 83.1% and 81.2%, respectively. This is because mix-
ing projects during evaluation can have similar code fragments
of the same project both appearing in the training, validating and
detecting datasets, which can unexpectedly inflate our evaluation
metrics due to overfitting. Thus, cross-project is a more objective
setting to avoid favouring a model undesirably due to overfitting.

4.5 Ablation Analysis (RQ2)

As shown in Table 4, overall, the experimental results in terms of
method/slice- and LBS metrics decline to varying degrees under
different variants.

4.5.1 Contrastive Learning (RQ2.1). All the evaluation results re-
duce significantly when there is no pretrained value-flow path
encoder with contrastive learning. Both the informedness and
markedness drop to below 62% from over 72%. The F1 Score also
decreases by 15.6% to 74.2%, and MIoU records a 26.3% decline to
40.3%. This demonstrates the performance gain with contrastive
learning for precise code representation (feasible value-flow paths)
to successfully boost the performance of the expensive downstream
fine-tuning task, i.e., vulnerability detection.

4.5.2 Value-Flow Path Selection (RQ2.2). Path-insensitive Con-
traFlow reports a significant gap of 20.6% for F1 Score and 53.3%
for MIoU. The informedness of path-insensitive ContraFlow is
also 52.3% lower than path-sensitive ContraFlow at only 49.3%.
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Figure 10: Data sensitivity analysis.

This demonstrates the importance of preserving program execution
properties (e.g., path-sensitivity) when learning to detect vulner-
abilities. Regarding different sampling methods, the F1 Score of
random sampling is about 10.4% smaller than active learning while
the MIoU is around 18.6% smaller, showing that active learning can
definitely improve the performance of our approach.

4.5.3 Value-Flow Path Encoders (RQ2.3). As for the performance
of different encoders, CodeBert, BLSTM and BGRU perform worse
than our VPE. For example, the markedness of ContraFlow-
CodeBert is 63.9% (8.4% lower thanContraFlow), andContraFlow-
BLSTM has a 32.9% less markedness at 54.4%. Of these three en-
coders, CodeBert performs better than the other two with an im-
provement of about 5.8% for F1 Score, because CodeBert is built
on the advanced RoBerta model [52] and can better capture the
semantics of statement tokens than RNNs (BLSTM and BGRU).
However, it still cannot fully capture the syntactic structure of AST-
subtree and type information of an AST node, thus leaving room
for improvement to represent the local features of statements.

4.6 Data Sensitivity Analysis (RQ3)

Figure 10 presents the results of the data sensitivity analysis. There
is a clear decline in both the F1 Score and MIoU when the dataset
size decreases during training. For instance, the F1 Score for Con-
traFlow’s contrastive version drops from 70.5% when using the
full dataset to 59.6% when using only a fifth of the dataset. The
non-contrastive version of ContraFlow records a sharper decline
by nearly half of the F1 Score and more than half of MIoU, to below
10%. The reason for this is that the model with pretraining can
exhibit better performance than the randomly initialized model
when the size of the labeled data for fine-tuning is not sufficient.
Thus, our pretraining and fine-tuning achieve consistently better
performance under limited well-labeled data.

4.7 Case Study

Figure 11 shows two real-world code patches from the detection
results of our ContraFlow, which are extracted from ImageMag-
ick [34] and TCPDUMP [68] respectively. These cases are used to
demonstrate the effectiveness of ContraFlow at reporting feasible
buggy paths and important paths for bug fixing to detect real-world
vulnerabilities (e.g., API misuse and inconsistent logic error) .

Figure 11 (a) shows an API misuse when calling load_img(img)
to load an image (img) after truncating it with trunc_img(img),
which is similar to our motivating example in Fig. 2. ContraFlow
can distinguish the feasible but vulnerable value-flow path (buggy
path) 1○→ 5○→13○, and infeasible but safe path 1○→ 8○→13○. This
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vulnerability is fixed by replacing load_img with load_img_safe.
It is interesting to find that this fix at the syntax level can be per-
ceived by ContraFlow with local features well preserved by our
value-flow path encoder (Section 3.1.2).

Figure 11 (b) presents another high-level logic error (incom-
plete logging). The function json_print calls rawprint to dump
the cached logging file. In the pre-fix version, the log-dumping
logic is incomplete due to a missing important terminator char-
acter “}” which leads to an invalid logging format and crashes
the log reading program. ContraFlow’s reported value-flow path
1○→ 7○→10○→13○ manifests this vulnerable behaviour, i.e., only
dumping the body of the output file. This vulnerability is fixed by
adding another printing operation at Line 4. Regarding this fix,Con-
traFlow reports two important value-flowpaths, 1○→ 3○→10○→13○,
and 1○→ 4○, showing a fixed intact data handling logic.

4.8 Threats to Validity

We discuss the threats to validity of ContraFlow: (1) the vulner-
ability labeling in existing benchmarks [20, 80, 81] might not be
perfect and may contain mislabeled samples. Here, we trust the
labeling results since they are labeled by domain experts [20, 81]
and differential analysis [80], which runs before and after each bug-
introducing commit using industrial-strength static analyzers [18].
In addition, our pretrainedmodel with contrastive learning is robust
against some mislabeled samples [16]. (2) Like [7, 48, 81], we only
conduct experiments in C/C++ programs without distinguishing
vulnerability types. In principle, our methodology can be adapted
to other programming languages. (3) We need to compile the source
code to extract more precise value-flow paths. In principle, Con-
traFlow accepts value-flow graphs as its inputs, which can also
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be produced by other tools that handle incomplete code [17]. (4)
We used one typical algorithm [45] for path sampling. Though in-
tuitive, the results demonstrate its effectiveness. It is interesting to
further investigate more sampling algorithms. (5) Our feasibility
checking is not full path-sensitive and resolves conditions only
on the guarded VFG under the soundy assumptions [53]. We han-
dle recursive calls and loops by bounding them to one iteration
following [12, 57, 64].

5 RELATEDWORK

Static Vulnerability Detection. Static detection of vulnerabilities
is a long-standing research topic with quite a number of static tools
(e.g. Clang Static Analyzer [2], Infer [18], Checkmarx [35]
and SVF [63]) aiming to pinpoint buggy paths of vulnerabilities
by analyzing source code. Most of them [4, 44, 46, 57, 58, 65, 74–
76] detect well-defined vulnerabilities like memory errors based on
traditional program analysis techniques (e.g., abstract interpretation
and symbolic execution), however, they require manually defined
rules to detect a wider range of vulnerabilities.
Learning-Based Vulnerability Detection. Recently, several stud-
ies have successfully applied learning techniques to automated vul-
nerability detection. They use different code representations (lexical
tokens [56, 71], textual slice [49–51, 82], abstract syntax tree [81],
control flow graph [11] and program dependence graph [7, 10, 48,
81]) to automatically learn vulnerability patterns under different
granularities (method [7, 11, 56, 81], slice [10, 48–51, 82]). VulDee-
Locator [49] and IVDetect [48] improve the detection results by
performing post-processing (interpretation) on the trained detec-
tion model with the attention and edge-masking technique [78]. All
the current approaches are path-unaware and learning a text/graph
representation is insufficient for path-based vulnerability detection
since the representation does not distinguish program paths, which
is crucial for static vulnerability detection.
Contrastive Learning. Being a dominant self-supervised learn-
ing approach, contrastive learning has recently made significant
progress in a wide range of domains such as computer vision [23,
28, 43, 67] and natural language processing [21, 27, 42, 59, 77].
There are also approaches [6, 37] using contrastive learning to
solve code retrieval and summarization tasks; however, these ap-
proaches are token-based and cannot be applied to path-based
vulnerability detection. Typically, contrastive learning formulates
the self-supervised learning task as teaching a model which data
instances are similar/dissimilar, which is automatically labeled from
existing unlabeled data, using learning techniques such as siamese
neural networks [5], and NCE loss [9]. There are theoretical studies
and literature reviews regarding the success of contrastive learning
on a range of applications [3, 38].

6 CONCLUSION

This paper presents ContraFlow, a new path-sensitive code em-
bedding approach via self-supervised contrastive value-flow em-
bedding that precisely preserves path-sensitive value-flow paths in
the embedding space to detect software vulnerabilities. The value-
flow paths are embedded with an attention-based structure-aware
encoder which is trained with contrastive learning to preserve the
local and global semantics of value-flow paths. The pretrained path

encoder is then used to support the subsequent vulnerability de-
tection task with attention-based neural networks. We evaluated
ContraFlow using a benchmark of over 2 million methods and 11
million slices extracted from popular open-sourced projects. The
experimental results show that ContraFlow outperforms the eight
recent learning-based vulnerability detection approaches by up to
334.1%, 317.9%, 58.3% in informedness, markedness and F1 Score,
and up to 450.0%, 192.3%, 450.0% in mean statement recall, mean
statement precision and mean IoU, respectively.
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