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Abstract

Reinforcement learning (RL) is one of the most important branches
of Al. Due to its capacity for self-adaption and decision-making in
dynamic environments, reinforcement learning has been widely applied
in multiple areas, such as healthcare, data markets, autonomous driv-
ing, and robotics. However, some of these applications and systems
have been shown to be vulnerable to security or privacy attacks,
resulting in unreliable or unstable services. A large number of studies
have focused on these security and privacy problems in reinforcement
learning. However, few surveys have provided a systematic review and
comparison of existing problems and state-of-the-art solutions to keep
up with the pace of emerging threats. Accordingly, we herein present
such a comprehensive review to explain and summarize the challenges
associated with security and privacy in reinforcement learning from a
new perspective, namely that of the Markov Decision Process (MDP).
In this survey, we first introduce the key concepts related to this
area. Next, we cover the security and privacy issues linked to the
state, action, environment, and reward function of the MDP process,
respectively. We further highlight the special characteristics of security
and privacy methodologies related to reinforcement learning. Finally,
we discuss the possible future research directions within this area.

Keywords: Reinforcement Learning, Security, Privacy Preservation, Markov
Decision Process, Multi-agent System
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1 Introduction

Reinforcement learning (RL) is one of the most important branches of AL
Due to its strong capacity for self-adaptation, reinforcement learning has been
widely applied in multiple areas, including health care [1], financial markets [2],
and robotics [3]. Reinforcement learning is considered to be a form of adap-
tive (or approximate) dynamic programming [4], and has achieved outstanding
performance in solving complex sequential decision-making problems. Rein-
forcement learning’s strong performance has led to its implementation and
deployment across a broad range of fields in recent years, such as the Inter-
net of things (IoT) [5], recommend systems [6], healthcare [7], robotics [8],
finance [9], self-driving cars [10], and smart grids [11], and so on. Unlike other
machine learning techniques, Reinforcement learning has a strong ability to
learn by trial and error in dynamic and complex environments. In particular,
it can learn from the environment which has minimum information about the
parameters to be learned [12].

In the reinforcement learning context, an agent can be viewed as a self-
contained, concurrently executing thread of control [13]. It can interact with
the environment and obtain a state of the environment as input. The state of
the environment can be the situation surrounding the agent’s location. Take
the road conditions in an autonomous driving scenario as an example. In figure
1, the green vehicle is an agent, and all the objects around it can be regarded
as the environment; thus, the environment comprises the road, the traffic signs,
other cars, etc. Based on the state of the environment, the agent chooses an
action as output. Next, the action changes the state of the environment, and
the agent will receive a scalar signal that can be regarded as an indicator of the
value for the state transition from the environment. This scalar signal is always
represented as a reward. The agent’s purpose is to learn an optimal policy
over time by trial and error in order to gain a maximal accumulated reward as
reinforcement. In addition, the combination of deep learning and reinforcement
learning further enhances the ability of reinforcement learning [14].

However, reinforcement learning has been subject to privacy attacks due to
its weaknesses that can be leveraged by attackers. Established samples used in
reinforcement learning contain the learning agent’s private information, which
is vulnerable to a wide variety of attacks. For example, in disease treatment
applications with reinforcement learning [1], real-time health data is required,
and to achieve an accurate dosage of medicine, the information is always
collected and transmitted in plaintext. This may cause disclosure of users’ pri-
vate information; consequently, the reinforcement learning system may collect
data from public resources. Most collected datasets contain private or sensi-
tive information that has a high probability of being disclosed [15]. Moreover,
reinforcement learning may also require data sharing [16] and needs to trans-
mit information during the sharing process. Thus, attacks on network links
can also be successful in a reinforcement learning context. Furthermore, cloud
computing, which is always used for reinforcement learning computation and
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Fig. 1 An autonomous driving scenario. The green car is an agent. the environment
comprises the road, the traffic signs, other cars, etc.

storage has inherent vulnerabilities to certain attacks [17]. Rather than chang-
ing or affecting the model, the attackers may choose to focus on obtaining or
inferring the privacy data; for example, Pan et al. [18] inferred information
about the surrounding environment based on transition dynamics.

Moreover, reinforcement learning is also weak to security attacks. It is ten-
der for attackers to leverage the breachable data source [19]. For example,
data poisoning attacks [20] and adversarial perturbations [21] are very popular
existing approaches in this field. From a defense perspective, several methods
have been proposed over the past few years to address these security concerns.
Some researchers have focused on protecting the model from attacks and ensur-
ing that the model still performs well while under attack. The aim is to make
sure the model takes safe actions that are exactly known, or to get optimal
policy under worse situations, such as by using adversarial training [22].

Figure 2 presents an example of security attacks in reinforcement learn-
ing in an autonomous driving scenario. An autonomous car is driving on the
road and observing its environment through sensors. To keep safe while driv-
ing autonomously, it will continually adjust its behavior based on the road
conditions. In this case, an attacker may focus on influencing the autonomous
driving conditions. For example, at a particular time, the optimal action for
the car to take is to go straight; however, an action attack may directly influ-
ence the agent to turn right(attack may also impact the value of the reward).
With regard to environmental influencing attacks, the attacker may conceive
or falsely insert a car in the right front of the environment, and this disturbing
may mislead the autonomous car into taking a wrong action. As for reward
attacks, rivals may try to change the value of the reward(e.g., from +1 to -1)
and thereby impact the policy of the autonomous car.

The main approaches to defending privacy and security in the reinforcement
learning context include encryption technology [23] and information-hiding
techniques, such as differential privacy [24]. In addition, some artificial algo-
rithms also have been used to preserve individual privacy [25], such as federated
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Fig. 2 A simple example of a security attack in reinforcement learning in the context of
automatic driving. An action attack, environmental attack and reward attack are shown
respectively. An action attack works by influencing the choice of action directly, such as
by tempting the agent to take the action “turn right” rather than the optimal action “go
straight”. Environmental attacks attempt to change the agent’s perception of the environ-
ment so as to mislead it into taking an incorrect action. Finally, the reward attack works by
changing the value of a reward given for a specific action in a state.

learning (FL) which can preserve privacy for the learning mechanism and
structure. Yu et al. [26] adopt federated learning (FL) into a deep reinforce-
ment learning model in a distributed manner, with the goal of protecting data
privacy for edge devices.

As an increasing number of security and privacy issues in reinforcement
learning emerge, it is meaningful to analyze and compare existing studies to
help spark ideas about how security and privacy might be improved in future
in this specific field. Chen et al. [27] reviewed the research related to rein-
forcement learning from the perspective of artificial intelligence security about
adversarial attacks and defence. Another survey paper [12] conducted a litera-
ture review on securing IoT devices using reinforcement learning. Two further
survey papers [28], [29] explored deep reinforcement learning in IoT.

However, the works mentioned above are all focused on the IoT or commu-
nication networks. Very few existing surveys have comprehensively presented
the security and privacy issues in reinforcement learning. Accordingly, in
this paper, we highlight the objects that the attacks aim at and provide a
comprehensive review of the key methods used to attack and defend these
objects.

The main contributions of our survey can be summarized as follows:

® The survey organizes the relevant existing studies from a novel angle that is
based on the components of the Markov decision process (MDP). We classify
current researches on attacks and defences based on their objects in MDP.
This provides a new perspective that enables focusing on the target of the
methods across the entire learning process.

® The survey provides a clear account of the impact caused by the targeted
objects. These objects are components in MDP that are related to each
other and may exist in the same time or/and space. Adopting this approach
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enables us to follow the MDP to comprehend the relevant objects and the
relationships between them

® The survey compares the main methods of attacking or defending the com-
ponents of MDP, and thereby sheds some lights on the advantages and
disadvantages of these methods.

The remainder of this paper is structured as follows. We first present pre-
liminary concepts in reinforcement learning systems in Section 2. We then
outline the security and privacy challenges in reinforcement learning in Section
3. Next, we present further details on security in reinforcement learning in
Section 4, followed by an overview of privacy in reinforcement learning in
Section 5. Finally, Sections 6 and 7 present our avenues for future work and
conclusion respectively.

2 Preliminary

2.1 Notation

Table 1 lists the notations used in this article. RL is reinforcement learning,
and DRL is deep reinforcement learning. MDP stands for the Markov Decision
Process, which is widely used in reinforcement learning. MDP can be denoted
by a tuple (S, A,T,r,v), which is made up of the agent action space A, the
environment state space S, the reward function r, the transition dynamics
T, and a discount factor v € [0,1). The transition dynamics is a probability
mapping from state-action pairs to states T : (S x A) x S — [0, 1]. The agent’s
purpose is to find an optimal policy that can map environment states to agent
actions to maximize long-term reward. v™(s) and Q™ (s,a) are the state and
action-state values, which can regard as a means of evaluating the policy.

Table 1 The main notations through the paper.

notations meaning
RL Reinforcement learning
DRL Deep reinforcement learning
MDP Markov decision process

A The action space of the agent

S The state space of the environment
T The transition dynamics
r

5

T
" (

The reward function
A discount factor which is within the range (0,1)

Policy
v7(s) State value
Q" (s, a) Action-state value

2.2 Reinforcement learning

The reinforcement learning model contains the environment states S, the agent
actions A, and scalar reinforcement signals that can be regarded as rewards

)
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r. All the elements and the environment can be conceptualized as a whole
system. At step ¢, when an agent interacts with the environment, it can receive
a state of the environment s; as input. Based on the state of the environment
s¢, the agent chooses an action a; using the policy 7 as output. Next, the action
changes the state of the environment to s;y1. At the same time, the agent will
obtain a reward r; from the environment. This reward is a scalar signal that
can be regarded as an indicator of the value for the state transition.

In this process, the agent learns a piece of knowledge, which may be
recorded as s, a¢, 7t 5441 in a Q table. Q table has calculated the maximum
expected future rewards for action at each state, and can guide us to choose
the best action at each state. In the next step, the updated s;y; and ryy; will
be sent to the agent again. The agent’s purpose is to learn an optimal policy
7 so as to gain the highest possible accumulated reward r. To arrive at the
optimal policy m, the agent can train by applying a trial and error approach
over the long-term episodes.

A Markov Decision Process (MDP) with delayed rewards is used to han-
dle reinforcement learning problems, such that MDP is a key formalism in
reinforcement learning.

Environment

(Sl’al’ rpsz)
State | Reward Action ’
« ! (Sxaanr;asnl)
Policy !
f Q- Table
P
Agent RL DRI1

Fig. 3 The interaction between agent and environment with MDP. The agent interacts with
the environment to gain knowledge, which may be recorded as a table or a neural network
model (in DRL), and then takes an action that will react to the environment state.

If the environment model is given, two simple iterative algorithms can be
chosen to arrive at an optimal model in the MDP context: namely, value iter-
ation [30] and policy iteration [31]. When the information of the model is not
known in advance, the agent needs to learn from the environment to obtain this
data based on an appropriate algorithm, which is usually a kind of statistical
algorithm. Adaptive Heuristic Critic and T'D(\), which is a policy iteration
mechanism, were used in the early stages of reinforcement learning to learn
an optimal policy with samples from the real world [32]. Subsequently, the
Q-learning algorithm increased in popularity [33, 34] and is now also a very
important algorithm in reinforcement learning. The Q-learning algorithm is
also an iterative approach used to select an action with a maximum Q value,
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which is an evaluation value, in order to ensure that the chosen policy is opti-
mal. Moreover, due to its ability to deal with high-dimensional data and to
approximate the function, deep learning has been combined with reinforce-
ment learning to create the field of “deep reinforcement learning” (DRL) [35].
This combination has led to significant achievements in several fields, such as
learning from visual perceptual [14] and robotics [36].

An example of reinforcement learning is presented in Figure 4. The figure
depicts a robot searching for an object in the Grid World environment. The
red circle represents the target object, the grey boxes denote the obstacles,
and the white boxes denote the road. The robot’s purpose is to find a route to
the red circle. At each step, the robot has four choices of action: walking up,
down, left and right. In the beginning, the agent receives information from the
environment which may be obtained through sensors such as radar or camera.
The agent then chooses an action and receives a corresponding reward. In the
position shown in the figure, choosing the action of up, left or right, may result
in a lower reward, as there are obstacles in these three directions. However,
taking the action of moving down will result in a higher reward, as it will bring

the agent closer to its goal.

Fig. 4 A simple example of reinforcement learning, in which a robot tries to find an object
in the Grid World environment. The blue robot can be seen as the agent in reinforcement
learning. The red circle is the target object. The grey boxes denote the obstacles, while the
white boxes denote the road. The robot’s purpose is to find a route to the red circle.

2.3 Markov Decision Process (MDP)

The Markov decision process (MDP) is a framework used to model decisions
in an environment [37]. From the perspective of reinforcement learning, MDP
is an approach which has a delayed reward. In MDP, the state transitions are
not related to any previous environment states or agent actions. That is to say,

7
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the next state is independent of the previous states and based on the current
environment state.

MDP can be denoted as the tuple (S, A, T,r,~), which is made up of the
agent action space A, the environment state space S, the reward function r, the
transition dynamics 7', and a discount factor v € [0,1). The transition dynam-
ics can be defined as a probability mapping from state-action pairs to states
T:(Sx A) xS — [0,1]. The agent’s purpose is to find an optimal policy =
that can map environment states to agent actions in a way that maximizes its
long-term reward. The discount factor v is applied to the accumulated reward
to discount future rewards. In many cases, the goal of a reinforcement learn-
ing algorithm with MDP is to maximize the expected discounted cumulative
reward.

At time step t, we denote the environment state, agent action, and reward
by s, a; and r; respectively. Moreover, we use v™(s) and Q™ (s,a) to evaluate
the state and action-state value. The state value function can be expressed as
follows:

o0
v™(s) = Ey thr(st,atﬂso =s, (1)
>0

The action-state value function is as follows:

Q" (s,a) = B, Z'ytr(st,atﬂso =s,a0 =a,T (2)
>0

In a wide variety of works, Q-learning was the most popular iteration method
applied to discounted infinite-horizon MDPs.

2.4 Deep reinforcement learning

In some cases, reinforcement learning finds it difficult to deal with high-
dimensional data, such as visual information. Deep learning enables reinforce-
ment learning to address these problems. Deep learning is a type of machine
learning that can use low-dimensional features to represent high-dimensional
data through the application of a multi-layer Artificial Neural Network (ANN).
Consequently, it can work with high-dimensional data in fields such as image
and natural language processing. Moreover, deep reinforcement learning (DRL)
combines reinforcement learning with deep neural networks, thereby enabling
reinforcement learning to learn from high-dimensional situations. Hence, DRL
can learn directly from raw, high-dimensional data, and can accordingly
acquire the ability to understand the visual world. Moreover, DRL also has
a powerful function approximation capacity, which also employs deep neural
networks to train approximate functions in reinforcement learning; for exam-
ple, to produce the approximate function of action-state value Q™ (s,a) and
policy .
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The process of DRL is nearly the same as that of reinforcement learning.
The agent’s purpose is also to obtain an optimal policy that can map envi-
ronment states to agent actions in a way that maximizes long-term reward.
The main difference between the DRL and reinforcement learning processes
lies in the Q table. As shown in Figure 3, in reinforcement learning, this table
may be a form that records the map from state to action; by contrast, in deep
reinforcement learning, a neural network is typically used to represent the Q
table.

3 Security and privacy challenges in
reinforcement learning

In this section, we will briefly discuss some representative attacks that cause
security and privacy issues in reinforcement learning. In more detail, we
explore different types of security attacks (specifically, adversarial and poi-
soning attacks) and privacy attacks (specifically, genetic algorithm (GA) and
inverse reinforcement learning (IRL)). Moreover, some representative defence
methods will also be discussed (specifically, differential privacy, cryptography,
and adversarial learning). We further present the taxonomy based on the com-
ponents of MDP in this section, along with the relationships and impacts
among these components in reinforcement learning.

3.1 Attack methodology
3.1.1 Security attacks

In this part, we discuss security attacks designed to influence or even destroy
the reinforcement learning model in the reinforcement learning context. Specif-
ically, we briefly introduce some recently proposed attack methods developed
for this purpose.

One of the popular meanings of the term ”security attack” is an adversar-
ial attack with adversarial examples [38, 39]. The common form of adversarial
examples involves adding imperceptible perturbations to data with a pre-
defined goal; these perturbations can deceive the system into making mistakes
that cause malfunctions, or prevent it from making optimal decisions. Because
reinforcement learning gathers examples dynamically throughout the train-
ing process, attackers can directly add imperceptible perturbations to states,
environment information, and rewards, all of which may influence the agent
during reinforcement learning training. For example, consider the addition of
tiny perturbations to state s in order to produce s+ ¢ [35, 40] (9 is the added
perturbation). Even this small change may affect the following reinforcement
learning process. Attackers determine where and when to add perturbations,
and what perturbations to add, in order to maximize the effectiveness of their
attack.

Many algorithms that add adversarial perturbations have been proposed.
Examples include the fast gradient sign method (FGSM), which can calculate

9
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adversarial examples, the strategically-timed attack, which focuses on selecting
the time step of adversarial attacks, and enchanting attack (EA), which can
mislead the agent regarding the expected state through a series of crafted
adversarial examples. Moreover, defenses to adversarial examples have also
been studied. The most representative method is adversarial training [41],
which trains agents under adversarial examples and thereby improves model
robustness. Other defensive methods focus on modifying the objective function,
such as by adding terms to the function or adopting a dynamic activation
function.

Another common type of security attack is the poisoning attack, which
focuses on manipulating the performance of a model by inserting maliciously
crafted "poison data” into the training examples. A poisoning attack is often
selected when an attacker has no ability to modify the training data itself;
instead, the attacker adds examples to the training set, and those examples
can also work at test time. Attacks based on a poisoned training set aim to
influence the behaviour of the model so that it outputs incorrect results. As
reinforcement learning requires a very large amount of data for training, and
may also collect various types of data from sensors and public applications,
it may be vulnerable to fake data injected by attackers into these kinds of
data inputs. Examples include the poisoning attack on the environment [19],
in which the attacker crafts malicious environmental examples(such as the
transition dynamics) at training time to change the policy.

The most effective method of crafting poisoned data may be the tradi-
tional gradient-based method, and there are also some methods based on
the gradient method. The representative methods to defend against poison-
ing attacks are detection methods and training-based defences. The detection
method attempts to detect the poisoned training data or identify corrupted
models after they have been trained. The training-based defences are designed
to develop robust training routines or to remove the effects of poisoned data.

3.1.2 Privacy attacks

Two common types of privacy attacks are those that get/search private infor-
mation directly and those that infer private information based on known
information. Data transfer and storage are necessary components of reinforce-
ment learning, as the agent requires a large amount of data for training and
also needs to interact with its environment. As a consequence, privacy attacks
on storage and transfer can be also used for reinforcement learning. Moreover,
some other special inferring methods are also used.

Genetic algorithm (GA) belong to the category of evolutionary comput-
ing algorithms, which are a type of search algorithm inspired by the process
of natural selection. These algorithms can be used to attack reinforcement
learning systems in order to obtain privacy information. Transition dynam-
ics search [18] is one such method. The basic Genetic Algorithm starts with
a randomly initialized population of candidates. A selection operator selects
parents by randomly picking two candidates and choosing the one with the
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higher score. Crossover is then used to generate the child candidates of selected
parents, and random mutation is applied to the child candidates to generate
new candidates [42].

Inverse reinforcement learning (IRL) is a kind of inferring algorithm that
can be used to infer the reward function of reinforcement learning based on the
policy or observed behaviour [43]. In inverse reinforcement learning methods,
the observed agent is regarded as an expert while the subject agent is viewed
as the learner, and IRL assumes that the expert is behaving according to an
underlying policy. The purpose of IRL is to learn an optimal reward function
that can explain the observed behaviours. IRL is usually used to help the
reinforcement learning system to obtain a reward function; however, because
of its ability to infer, IRL may also be applied to attack.

3.2 Possible defense methodologies

In this section, we will present three representative defensive methods that are
widely used in various fields.

3.2.1 Differential Privacy

Differential privacy is a prevalent privacy model that can guarantee minimal
impact on the analytical output of a dataset if any individual record is stored
in or removed from a dataset [44].

In differential privacy, two datasets D and D’ are regarded as neighbouring
datasets if they differ in terms of only one record. A query f is a function
that maps the dataset D to an abstract range R (f : D — R). A group of
queries is denoted as F' = {f1, ..., fm}, and F(D) denotes {f1(D), ..., fm(D)}.
The maximal difference in the results of query f is defined as the sensitivity of
query A f, which determines how much perturbation is required for a privacy-
preserving answer at a given privacy level. The goal of differential privacy is
to mask the differences in the answers to query f between the neighbouring
datasets. To achieve this goal, differential privacy provides a mechanism M,
which is a randomized algorithm that accesses the datasets.

There are three types of widely used differential privacy mechanisms: the
Laplace mechanism, the exponential mechanism and the Gaussian mechanism.
The Laplace mechanism adds Laplace noise to the true answer; here, Lap(b) is
used to represent the noise sampled from the Laplace distribution with scaling
b. Exponential mechanisms M select and output an element with probability
proportionality. Compared to a Laplace mechanism, a Gaussian mechanism
adds zero-mean isotropic Gaussian distribution sampled noise.

Differential privacy can be used in learning problems to improve various
aspects of a model, such as randomization, privacy preservation capability, and
algorithm stability [45]. For example, Ye et al. [46] applied differential privacy
to a confidence score vector containing a probability distribution over the
possible classes predicted by an ML model. This approach can defend against
data inference attacks in a time-efficient manner by controlling the utility loss

11
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of confidence score vectors; in so doing, it fully reflects the advantages of the
privacy preservation capability and algorithm-stability ability of differential
privacy.

There are two popular variants of differential privacy: joint differential pri-
vacy (JDP) and local differential privacy (LDP). The former has a centralized
agent that is responsible for protecting users’ sensitive data, while in the latter,
information needs to be protected directly on the user side.

3.2.2 Cryptography

Cryptography is the classic method used for privacy protection fields by encod-
ing messages so that they cannot be understood by untrusted parties. The
main encoding techniques are symmetric algorithms and asymmetric algo-
rithms. Symmetric algorithms utilize the same key for both encryption and
decryption. Examples include Data Encryption Standard (DES), triple-DES
(TDES) and Advanced Encryption Standard (AES). DES was the first encryp-
tion standard method. It employs a block cipher that can encrypt 64 bits of
plain text at a time, along with a 56-bit key. The TDES algorithm adopts
three rounds of DES encryption, so that it has a key length of 168 (56 * 3)
bits, along with two or three 56-bit keys. This method first uses three dif-
ferent keys to generate the cipher text C(t) from the plaintext message .
One of the most popular Cryptography methods in recent years is Homomor-
phic Cryptosystems [23], which allows operations on the cipher text; hence, it
has great adaptability and is suitable for use in different systems for different
aims [47]. A homomorphic encryption algorithm H is a set of four functions
H = KeyGeneration, Encryption, Decryption, Evaluation. Here, key gener-
ation is a client that generates a pair of keys: a public key pk and a secret
key sk for encryption of plain text. The purpose of Encryption is to use the
sk client to encrypt the plain text PT and generate Esk(PT). The cipher text
(CT) will be sent to the server with the public key pk. The Evaluation func-
tion evaluates the cipher text (CT). Finally, the Decryption function uses sk
to decrypt and obtains the original result.

3.2.3 Adversarial learning

Some smart methods have been adopted for privacy protection purposes. One
of these methods, adversarial learning, is used specifically to combat adver-
sarial attacks. The main idea behind adversarial learning involves training a
model on a training set with adversarial examples to increase model robust-
ness. To do this effectively, it may be necessary to generate a large number of
adversarial examples or increase the amount of perturbed data. During train-
ing time, an agent may learn with a modified objective function that has the
original loss function J. The objective function is as follows:

j(@,x,y) =aJ(0,z,y)+ (1 —a)J (0, + esign(V,J(0,2,9)),y) (3)
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Notably, these methods may require a huge number of adversarial examples,
and may also be computationally intensive. Moreover, some of the defensive
strategies do not work against certain kinds of adversarial attacks.

3.3 Taxonomy based on the components of MDP

In the below, we classify security and privacy in reinforcement learning based
on the components of MDP. First, we categorize the existing research as either
security-related or privacy-related. In this paper, we regard papers about
attacks that influence or even destroy the reinforcement learning model and
defences that enhance the robustness of the reinforcement learning model as
examples of security problems in reinforcement learning. For example, study-
ing how to attack a system to mislead the agent, or how to protect the system
from adversarial attacks so that it remains stable and produces good output.
In addition, research into obtaining, inferring, or conversely protecting private
information will be regarded as related to privacy in reinforcement learning
in this paper. Examples include inferring the information of the environ-
ment based on known transition dynamics and using cryptograms to preserve
privacy.

We subsequently conduct a further classification of security in reinforce-
ment learning and privacy in reinforcement learning based on the MDP
perspective. In a reinforcement learning model, an agent interacts with the
environment via perception and action, and a Markov Decision Process (MDP)
is always used for reinforcement learning (as shown above). MDP consists
of the tuple (S,A,T,r,v). We can thus organize the categorization follow-
ing the Markov Decision Process, especially the elements of the MDP tuple.
Specifically, we identify the attack and defense targets of state and action,
environment and reward. The state s and action a refer to the state of the envi-
ronment and the action of the agent in reinforcement learning, or an expression
based on s or/and a (e.g., Q-value). The environment includes the transition
dynamics in MDP and surrounding environment situations. The reward aspect
pertains to studies that aim at the reward function of MDP in reinforcement
learning. The taxonomy is shown in figure 2.

The agent’s purpose is to find an optimal policy that can map environment
states to agent actions. To facilitate more efficient policy evaluation, the con-
cept of reward was introduced to reinforcement learning. A reward is a scalar
signal that can be regarded as an indicator of the value for the state transi-
tion. Long-term rewards can be adopted to assess the policy; examples include
the mean value of the reward, accumulated reward, or other functions based
on rewards, such as the Q-value and V-value.

At each step, the agent first observes the state s; from the environment.
Next, the agent takes an action a; based on the policy 7; subsequently, the
agent will receive a reward r; as feedback from the environment, and the
environment changes to s;y;. The transition dynamics can be defined as a
probability mapping from state-action pairs to states T : (S x A) x § —
[0,1]. Tt is usually difficult to determine an optimal policy based solely on

13
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the calculations of the evaluating function. Hence, value iteration methods
are adopted to solve this issue. The action-state value iteration formula for
evaluating the policy can be expressed as follows:

Qir1(s,a) = Qi(s,a) + [7“ +7 ) w(aspa|sis)Qil(sear, arpr) — Qilse, at)}
(4)

Figure 5 illustrates the process, along with the attacks of the main elements
classified in this paper.

i i i ‘ Sts1

St Policy a Environment 1 e

> Evaluation function <

Fig. 5 The objects of attacks/defenses and their impacts on the reinforcement learning
process. We can observe that all elements are situated in the chain of the reinforcement
learning process; they are not isolated, but connected to each other. Therefore, attacks aimed
at s¢, at, r¢, and the environment (such as the transition dynamics T') can all affect the
elements in the chain.

We can determine that the state s; of the environment may affect the action
taken. In more detail, an agent using the policy output an action based on
the state. The action a; will in turn affect the environment, and may impact
the reward r; and the next state sy;;1. Moreover, the function used to evalu-
ate the policy is based on s¢, a; and r;. Consequently, if an adversary attacks
st, the action a; may be directly influenced, while the reward and policy may
also be impacted. If opponents attack a;, the next state and reward may be
changed by this attack; furthermore, the policy may also be affected. In addi-
tion, attacks targeting rewards can also influence the policy, while attacks on
the environment (like the transition dynamics, which is a probability map-
ping from state-action pairs to states) also have an influence on the choices of
action and the next state. Thus, attacks aimed at s;, a;, 7¢, and the environ-
ment (such as the transition dynamics T') can all influence the agent to make
a sub-optimal decision. In addition, the learning process is continuous; thus,
attacks on every component in the chain may affect each other in some steps,
and as a result, the agent may fail to achieve its goal.

4 Security in reinforcement learning

Security is one of the most significant aspects of reinforcement learning, as it
involves exploring possible attacks and defenses to improve the robustness of
the model. It tends to get a model which has a reliable and stable performance
even when faced with sudden interference or changes.

In this section, we will present a review of security in reinforcement learn-
ing based on the MDP perspective. This section can be divided into three

15
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subsections. The first addresses the security of state and action in MDP. The
second examines the security of the environment, which includes the transi-
tion dynamics in MDP and the surrounding environment situations. Finally,
we explore the security of the reward function in MDP.

4.1 Security of state and action in MDP

The state and action in MDP are the state of the environment and the action
of the agent in reinforcement learning. Through the use of adversarial examples
or the application of sudden perturbations to these elements, a reinforcement
learning model can be misled from optimal performance. Many existing meth-
ods focus on attacking the state and action in reinforcement learning; at the
same time, methods of defending against these attacks have also been studied.

In this section, we attempt to survey the security problems that target
the state or/and action in MDP of reinforcement learning. Lee et al. [48] and
Chen et al. [49] focused on the action in MDP and studied the attacking
and protecting of actions respectively. Zhao et al. [40], Garrett et al. [50],
Sun et al. [35] and Ye et al. [51] all focused on attacking states in MDP of
reinforcement learning. Moreover, Dai et al. [52] learned to protect both the
actions and states in MDP.

4.1.1 Action Security in MDP

Attackers targeting actions can misdirect the agent’s subsequent progress, and
may also influence the reward or policy. One of the popular basic approaches
to such attacks involves the use of adversarial samples that add perturbations
to the action space. It is also possible to disturb the action sequence to produce
inaccurate performance.

Lee et al. [48] studied strategies for attacking the action space in MDP
of reinforcement learning. They proposed two novel attack strategies, both
of which were optimization-based approaches. The first is a Myopic Action
Space (MAS) attack, which creates perturbations in a greedy manner with-
out future considerations and then distributes these attacks across the action
space dimensions. The second is a Look-ahead Action Space (LAS) attack,
in which the attacker can make predictions, selects a designed sequence of
future perturbations, and distributes the attacks across the action and tem-
poral dimensions. The results show that LAS attacks have a greater influence
on the agent than MAS attacks. Projected gradient descent (PGD) is used for
the two formed optimal problems.

The approaches outlined above focus on attacking action space. Conversely,
producing robust actions for reinforcement learning is also important and
merits research attention.

Chen et al. [49] investigated reinforcement learning under action attack
and considered actions to be robust in two situations. One is the Probabilistic
Action Robust MDP (PR-MDP), with an adversary that adds a perturbation
to the selected action; the other is the Noisy Action Robust MDP (NR-MDP),
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in which an agent has a probability of taking an alternative adversarial action.
PR-MDP and the NR-MDP can both be viewed as a zero-sum game. Sub-
sequently, Policy Iteration (PI) schemes are used to solve these problems in
order to reach Nash Equilibrium or convergence.

4.1.2 State Security in MDP

The state space, which is another important part of MDP, has a similar char-
acter to the action space in reinforcement learning systems. Both of them can
affect the evaluation of policy and the environment. Methods of perturbing
the state space or deceiving agents in this space have also been investigated,
with particular attention paid to the dynamics of the agent cases. There are
two common approaches to crafting state-space perturbations of reinforcement
learning: model-based means and optimization based-means.

Zhao et al. [40] studied adversarial sample attacks in reinforcement learn-
ing using a model-based mean. They attempted to formulate an approximate
sequence-to-sequence (seq2seq) model to predict a single agent action or a
sequence of future agent actions, and produce adversarial samples to affect the
state in MDP. They considered a full black-box attack situation, in which the
attacker has no message of the agents, regardless of the training parameters
or training methods of the agents. Finally, the adversarial samples are used to
trigger a trained agent to misbehave at a specific time. This is a new concept
in adversarial sample reinforcement learning that involves a time-bomb attack.

For certain high-dimensional continuous state space situations, computing
an optimization-based approach may be a more suitable means of generating
attacks for a target agent compared to training another model.

Garrett et al. [50] proposed an optimization method to formulate an attack
that can directly influence the state(s). These attacks can affect the learning
policy, cause the agent to act sub-optimally, and destabilize the cyber-physical
system; this is made possible by the assumption that, in some cases, a foe can
manipulate sensing/actuation signals. These authors used a Z table to conduct
an attack. The Z table is a measure of how effective an adversarial effect to a
state is versus the cost to perform the effect. Then using iteration to get the
target state(s).

Models also can be used as an auxiliary means of making predictions that
improve the attack methods. Sun et al. [35] proposed adversarial attacks that
add perturbation into the agent’s observation state. The goal of adversarial
attacks against Deep Reinforcement Learning (DRL) is to inject a small set
of adversarial samples in critical moments. For simplicity, this problem can be
regarded as two sub-problems: that of ”when to attack”, and that of “how to
attack”. Critical point attack and antagonist attack are two models proposed
to predict environment states and accordingly discover the critical steps and
locations for perturbations. Existing adversarial example techniques are then
used to compute and add perturbations in the selected critical moments.

Ye et al. [51] proposed a model-based self-advising method for multi-agent
learning. This method enables the agents with the same ability when asked
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for advice on an unfamiliar state. The idea is to train a model based on states
similar to a certain state. These authors provided a defined conception of
”Similar States” and adopted a deep neural network to train a teacher agent
on states both unfamiliar and familiar to the student. This method produces
an improvement in learning and more robust performance with a much lower
communication overhead.

4.1.3 State and Action Security in MDP

Sometimes, action and state space can be considered at the same time, at
which point they are regarded as state-action pairs. These pairs can affect the
reward function and potentially skew the policy so that the agent makes poor
decisions in the Markov process.

Dai et al. [52] proposed a reinforcement learning method that considers safe
exploration by evaluating the risk level of each state-action pair, then record-
ing the most dangerous state-action pairs based on the security performance
metrics in a blacklist. This algorithm employs a modified Boltzmann distribu-
tion based on the Q-values and the risk levels to choose an action. Moreover,
a convolutional neural network was adopted to weigh the long-term risk lev-
els of each state-action pair, while transfer learning was chosen to reduce the
initial explorations in initial parameters learning.

We can observe that almost all the papers mentioned above consider
adding perturbations to the target to influence a system. Moreover, the pop-
ular method of identifying a good perturbation is to regard the issue as an
optimization problem. As a result, optimization-based approaches such as the
gradient method and some intelligent approaches such as imitation learn-
ing have been selected for these purposes. Optimization-based approaches are
traditional algorithms used to solve optimization problems, which are very
efficient and intuitive; however, these methods may be useless for complex
problems. In contrast, intelligent approaches can deal with these problems,
thus these approaches can extend to more areas. Nevertheless, intelligent
approaches may require more data for learning and more computing resources.

4.2 Security of Environment

In reinforcement learning systems, an agent interacts with the environment
and then adjusts its learning results based on the information obtained from
the environment. The environment includes the transition dynamics in MDP
and surrounding environment situations; examples of the latter include the
surrounding architecture or road conditions encountered by the agent in the
real world. Affecting the transition dynamics in MDP and the surrounding
environment situations can also influence the reward or state of environment
input received by the agent; thus, it can mislead the agent into taking incorrect
actions, and can also affect the policy.
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Rakhsha et al. [38] and Chan et al. [53] focus on studying attacks on the
transition dynamics and the features obtained from the environment respec-
tively. Wang et al. [22], Li et al. [54] and Zhai et al. [55] focused on policy
robustness in disturbed environmental conditions. All three of the above ideas
are for single-agent areas. However, Li et al. [41] and Lin et al. [39] focused
on the environment issue in multi-agent fields. Li et al. [41] aimed at build-
ing robust policies under a non-stationary environment, while Lin et al. [39]
proposed attacks on the feature from the environment that mislead the agent
into taking a target action.

4.2.1 Environment security of a single agent

The issue of an attacker who harms or poisons the learning environment was
researched by Rakhsha et al. [38]. These authors focused on data poison-
ing attacks that can manipulate the rewards or the transition dynamics in
the reinforcement learning (RL) algorithm, based on the understanding that
reinforcement learning agents aim to maximize their average reward in undis-
counted infinite-horizon settings. To fabricate the attacks, optimal methods
with constraints and bounds were used. This paper considered online learning
settings with poisoned feedback, in which the agent uses a regret-minimization
mechanism to learn a policy while considering the different attack costs for
online learning settings. In addition, it also studied offline settings in which
the agent is formulating plans in a poisoned environment.

In many cases, the surrounding environment information is complicated or
high-dimensional, meaning that pre-management is required. Thus, the oppo-
nent can not only focus on the surrounding environment data directly, but
can also aim at the data after some calculating steps (for example, extracting
features).

Chan et al. [53] studied the adversarial attack strategy against DRL by
crafting an adversarial sample that perturbs the features to efficiently affect
the cumulative reward. A static reward impact map is presented to measure
the influence on the cumulative reward made by inputting features, that have
slight changes. Then, using the "reward impact map” measures the importance
of a feature; subsequently, select suitable actions. Finally, a crafted adversarial
sample based on the gradient function attacks the sample by perturbing the
features.

The studies above focus on attacks. However, it is also important to develop
a more reliable and stable reinforcement learning system for the surround-
ing situation. Accordingly, some approaches were developed and tested in a
perturbed or poisoned environment.

Wang et al. [22] developed a mechanism that considers reinforcement learn-
ing with safety falsification methods. This framework is a falsification-based
robust adversarial reinforcement learning (FRARL) framework that trains the
policy in the new adversarial environment; thus, the system can perform as
an adversarial reinforcement learning mechanism to enhance the robustness
of trained policies. It is the first generic mechanism that combines temporal
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logic falsification with adversarial learning to improve policy robustness. A
cross-entropy method is used to get the initial conditions and input sequences.

Li et al. [54] considered policy learning for Robust Markov Decision Pro-
cesses (RMDP) from another unique perspective. Specifically, rather than
concentrating on attack problems, these authors focused on the robustness of
the environment to simulator domain mismatch in real application scenarios.
They treated the mismatch as a perturbation and established the goal of find-
ing a robust policy that ensures a near-optimal reward against the worst-case
perturbation. A two-player zero-sum game was developed that considers the
perturbation as an adversarial player, and Nash Equilibrium (NE) was used
to find the robust policy.

Zhai et al. [55] also studied the problem of the differences between simu-
lated and real environment, which may reduce the performance of the learned
policies. These authors also modeled environmental differences as adversar-
ial disturbances and constructed a two-player-zero-sum game between the
normal and adversarial agents. However, such a method may increase the diffi-
culty of the training domain. Consequently, this paper also considered certain
constraints in the adversarial architecture and used a data-driven Lyapunov
network to ensure the stability of the system during training.

We can observe that single-agent reinforcement learning is delicate and sen-
sitive in the training surrounding situation. Notably, this issue is even more
pronounced in multi-agent scenarios. Researchers have accordingly studied
these problems to make the learned models more robust for multi-agents.

4.2.2 Environment security of multi-agents

Li et al. [41] studied the problem of training robust deep reinforcement learn-
ing agents with continuous actions in the multi-agent learning setting. They
proposed a Minimax Multi-Agent Deep Deterministic Policy Gradient algo-
rithm (M3DDPG) to improve the robustness of the multi-agent reinforcement
learning system. Their approach introduced the Minimax Optimization idea to
update policies considering the worst situation. When this approach is applied,
each agent operates under the assumption that all other agents are acting
adversarially. The algorithm was based on Multi-Agent Deep Deterministic
Policy Gradient (MADDPG), a decentralized policy and a centralized critic
framework, used to obtain a Q function. These authors further proposed Multi-
Agent Adversarial Learning (MAAL), which can approximate the non-linear
Q function using a locally linear function to solve this optimization problem.

Lin et al. [39] studied attacks on cooperative multi-agent reinforcement
learning (c-MARL), which is a necessary element of improving the robustness
of the algorithm. In this study, perturbing agents’ observations with an adver-
sarial example can mislead the agents and minimize the value of a team’s total
reward. This special attack method comprises two steps. First, the adversary
selects actions that can minimize the total team reward using a policy network
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trained with reinforcement learning. Next, the rival perturbs the agent’s obser-
vation by using targeted adversarial examples and gradient-based methods to
make the agent take specific actions.

Some of the papers discussed above focus on attacks, while others are about
defending the environment. Attacks of this kind almost always utilize adversar-
ial samples, while defenses against such attacks are always robust adversarial
learning methods that consider training the agent in a worse situation to obtain
a robust model.

4.3 Security of reward function in MDP

In many reinforcement learning (RL) applications, the agent extracts reward
signals from the user or environment. A reward is crucial for a Markov decision
process, as it indicates the feedback received by agents when they take certain
actions in certain states. Ultimately, the reward is used to decide which action
is optimal. Thus, adversaries tend to attack the reward functions of MDP in
reinforcement learning.

4.3.1 Attack reward function in MDP

The reward-poisoning attacks issued against reinforcement-learning agents
were investigated by Zhang et al. [56]. In this paper, these authors studied
the training-time reward poisoning attack problem, which involves crafting
environmental rewards and forces the reinforcement learning agent to learn a
nefarious policy. They regarded the reward shaping task as an optimal control
problem on a higher-level attack MDP. They also characterized conditions in
situations where such attacks are useless, as well as provided upper bounds on
the attack cost when an attack is feasible.

The concept discussed above involves learning to attack the reinforce-
ment learning systems through reward. A robust reward signal therefore
becomes important, and has accordingly attracted significant attention from
researchers.

4.3.2 Protecting reward function in MDP

Li et al. [57] focused on the problems of reward signal sparsity and instability
in the field of dialogue generation. Dialogue reward learning with adversarial
inverse reinforcement learning (DG-AIRL) is proposed to address this issue.
This mechanism is a sequence-to-sequence (Seq2Seq) model that adopts adver-
sarial imitation learning to enable the model to give human-like dialogue
responses, and further designs a specific reward function structure to measure
the reward of each word in the generated sentences. An entropy regularization
term is also used to improve training stability.

The above-mentioned paper aimed at attacking the reward function using
a poisoning attack that selected an optimal control method. It is possible
that learning methods could be used to handle such a problem. Moreover,
the adversarial sample which is another popular attack algorithm, can also be
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applied to reward function attacks in future work. In addition, the adversarial
inverse reinforcement learning method can successfully improve the quality of
intelligence in reward inferring, and may be extended in other areas.

A summary of research into security in reinforcement learning is presented
in Table 5.

5 Privacy in reinforcement learning

In this section, we will discuss privacy in reinforcement learning problems such
as obtaining or inferring private information and protecting user privacy, with
a particular focus on the MDP perspective. This section can be divided into
three subsections. The first explores the privacy of state and action in MDP.
The second one addresses the privacy of the environment, which encompasses
the transition dynamics in MDP and the surrounding environment situations.
The last part examines the privacy of the reward function in MDP.

5.1 Privacy of state and action in MDP

The agent and the environment interact through states and actions, which
may be stolen by adversaries and cause privacy leakage problems.

States and actions in MDP encompass the state of the environment, the
action of the agent, and other concepts based on state and action. Vietri et
al. [58] aim at protecting the state and action directly in MDP. Wang et
al. [37], Sakuma et al. [23], Ye et al. [59], Cheng et al. [60], and Chowdhury and
Zhou [61] focused on protecting the Q-functions based on states and actions.

5.1.1 Using differential privacy to ensure the privacy of state
and action in MDP

For privacy protection problems, differential privacy is a popular model that
has been widely used in many areas. Differential privacy considers the worst-
case situation in which attackers know all the data except for a new record in
a dataset. It can ensure that any individual record being stored in or removed
from a dataset makes little difference to the dataset’s analytical output [62].

The work of Wang et al. [37] considered the use of differential private meth-
ods for reinforcement learning in continuous spaces, with a focus on protecting
the value function approximator. The algorithm added Gaussian process noise
to the corresponding action-state value function of deep Q-learning, which can
satisfy differential privacy guarantees at every iteration. It also chose the repro-
ducing kernel Hilbert space (RKHS) embedding common neural networks for
the nonlinear value function.

Ye et al. [59] also adopted differential privacy to study issues in rein-
forcement learning. These authors proposed a novel differential advising in
multi-agent reinforcement learning inspired by the differential privacy mecha-
nism. Using this approach, an agent can take advice produced with reference to
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a slightly different state. It also added Laplace noise to the agent advice Q(s),
which can provide the agent with more reliable data for use in decision-making.

The knowledge transfer problem in multi-agent reinforcement learning was
studied by Cheng et al. [60]. They proposed a Differential knowledge Transfer
with relevance Weight (DTW) algorithm, which also chose differential privacy
to handle this problem. DTW was embedded into the multi-agent reinforce-
ment learning algorithm to add differential noise and relevance weights to the
Q-value. This model can expand the knowledge set and reduce the influence
of negative transfer.

Far less attention has been paid to addressing privacy in reinforcement
learning problems, compared with private bandit algorithms. Vietri et al. [58]
proposed the first reinforcement learning algorithm for regret minimization
with the JDP guarantee. These authors designed an algorithm named the Pri-
vate Upper Confidence Bound algorithm (PUCB) for reinforcement learning,
which used differentially private guaranteeing of the Laplace mechanism to
protect the information of training data, and moreover imposed lower bounds
on the regret and a smaller number of sub-optimal episodes. It computed the
policy of the reinforcement learning algorithm using private counts such as
n(s,a, h) and m(s, a, s, h), which are the number of times the agent has taken
action a in state s at time h and the number of times the agent has taken action
a in state s at time h and transitioned to s respectively. This method satisfies
the joint differential privacy (JDP) with lower-bounds sample complexity and
regret of probably approximately correct (PAC).

Chowdhury and Zhou [61] also considered the regret bounds of reinforce-
ment learning. They proposed two general frameworks for designing private,
optimistic reinforcement learning algorithms, one for policy optimization and
another for value iteration, that also satisfied JDP and LDP requirements.
They designed the counts returned by the privatizer, which depend on users’
states and actions to calculate the private mean empirical costs and private
empirical transitions. Examples include the count N;’f(s, a) and its privatized
versions N ¥(s,a), which denote the number of times that the agent has visited
state-action pair (s,a) at step h before episode k and are similar to the counts
in [58]. The frameworks also can obtain sublinear regret guarantees.

5.1.2 Using cryptography to improve the privacy of state
and action in MDP

Sakuma et al. [23] studied the issue of privacy in distributed reinforcement
learning (DRL), devising privacy-preserving reinforcement learning algorithms
using an additive homomorphic cryptosystem. The Q-values are encrypted,
allowing the addition of encrypted values without requiring their decryption.
Data partitioning by time and by observation were considered, and random
action selection was used for these two aspects.

Differential privacy and cryptography are both prevalent privacy models,
each with its advantages and disadvantages. Differential privacy may be more
flexible and can be used in many fields due to its ability to achieve a balance
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between data utility and privacy. However, this method may sometimes be
unreliable, leading to privacy leakage and the sacrifice of some data utility.
In contrast, cryptographic techniques are very reliable, but at the same time,
they require a great deal of calculation and may reduce the efficiency of data
sharing.

5.2 Privacy of environment

Interaction and data sharing occur frequently between the agent and the envi-
ronment, and the environment is closely connected with other information in
MDP. Hence, there is also a high probability of environmental privacy leak-
age. Opponents will focus on stealing the transition dynamics data of the
environment or information of the surrounding conditions (The surrounding
conditions denote the area in which the agents are trained and/or to which
they are applied).

The privacy leakage problem in deep reinforcement learning was studied
by Pan et al. [18]. These authors focused on the problem of environment
dynamics search with the goal of inferring the environment. Genetic algorithm
and shadow policies were selected for optimal policy selection and candidate
inference respectively. This private environment information leaking problem
was considered under two different scenarios. In the first, the attacker has no
knowledge about the training surrounding situations, and the environments
just with common constraints. In the second, the attacker has access to a set
of potential candidates of the training environment dynamics.

Ye et al. [63] studied private information leakage of Multi-Agent planning
for logistic-like problems. These authors adopted a planning approach that
employed a reinforcement learning algorithm to make a plan to find the opti-
mal route from the initial state to the goal state. This paper, proposed an
approach adopting the differential privacy technique to achieve strong privacy
preservation in multi-agent environments. It also used the concept of a “privacy
budget ” to control the communication overhead.

Zhou et al. [64] proposed to protect users’ sensitive and private infor-
mation by considering regret minimization in large state and action spaces.
Their work used the notion of joint differential privacy (JDP) and considered
MDPs by means of linear function approximation. It further proposed two
algorithms that applied the Gaussian mechanism to the information of the
environment to protect the features. The two proposed privacy reinforcement
learning algorithms are based on value iteration and policy optimization.

5.3 Privacy of reward function in MDP

Reinforcement learning is a framework within which an agent learns a
behaviour policy through interacting with the environment and responding to
positive and negative rewards [65]. The reward function always determines the
amount of the reward and when it is given. Thus, the reward function is a
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key element of giving the reward, and is accordingly very important for rein-
forcement learning. However, it is likely that observers can attempt to infer
information about the policy from the reward function.

Liu et al. [66] aimed to preserve the privacy of a reward function in rein-
forcement learning. Specifically, these authors proposed two methods with
more general dissimulation models to preserve reward privacy: the Ambiguity
Model, in which the agent selects actions that maximize the entropy based
on ambiguity, and the intention recognition model, which takes action selec-
tion as a weighted sum of honest and ‘irrational’ behaviour. These methods
both use pre-trained Q-functions and produce a policy that makes it hard to
use inverse reinforcement learning or imitation learning. Thus, an observer is
difficult to obtain the reward function.

Ye et al. [24] addressed issues with Multi-agent Advising Learning and
applied reinforcement learning to deal with the packet routing problem. These
authors adopted differential privacy to reduce the impact of the malicious
agent by adding Laplace noise to the accumulated reward to protect the infor-
mation of each agent. The privacy budget concept was then used to control
the communication overhead, which can improve the learning performance.

Fu et al. [67] proposed an adversarial inverse reinforcement learning
algorithm to acquire a robust reward for changes in dynamics. Inverse rein-
forcement learning focuses on the problem of inferring an expert’s reward
function from demonstrations, and this paper combines such a mechanism with
adversarial learning, which can improve the robustness of the algorithm. This
approach enables the proposed algorithm to learn policies even in environments
that undergo great changes during training; thus, it achieves better perfor-
mance than prior IRL methods in continuous, high-dimensional situations with
unknown dynamics.

As differential privacy is always adopted to establish a mathematical way
of guaranteeing data privacy in reinforcement learning, and considering that
inverse reinforcement learning is applied to inferring the reward function from
demonstrations and providing rewards to the learning system, Prakash et
al. [68] investigated the existing set of privacy techniques for reinforcement
learning and proposed a new Privacy-Aware Inverse reinforcement Learning
(PRIL) analysis framework, which is a new form of privacy attack that targets
the private reward function. This reward attack attempts to reconstruct the
original reward from a privacy-preserving policy (such as differential privacy)
using an inverse reinforcement algorithm. The results showed that privacy in
the policy domain does not translate to privacy in the reward domain, as the
reconstruction error is independent of the e-DP budget.

Privacy problems related to the environment information and reward func-
tion are shown above. Environment components, the surrounding situation and
the reward function are considered. We can observe that differential privacy is
the most popular method, and moreover that some intelligent algorithms have
been developed in the privacy arena. Intelligent algorithms can handle more
complex problems and situations, even if little information about the model
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and the goal is available; thus, they can expand the horizons of privacy pro-
tection. We can further observe that inverse reinforcement learning has been
adopted to address these privacy problems [64, 67]. In fact, however, inverse
reinforcement learning is more frequently used to approach the problem of
inferring an expert’s reward function from demonstrations and to provide the
reward to the learning system rather than to tackle security and/or privacy
issues. However, the concept of ”inferring a reward function” naturally prompts
thoughts of privacy leakage and unreliable models. Consequently, it might be
possible to consider the security and privacy problems of inverse reinforcement
learning, like the work in [68].
Table 8 provides a concise summary of the research discussed above.

6 Future works

This paper focuses on security and privacy in reinforcement learning. Develop-
ing a stable and reliable algorithm is an important direction of reinforcement
learning. Attacks and defenses of MDP in this area are both key elements.
There are numerous related research avenues that could be pursued in future.

Attacking various components of MDP In the papers discussed above,
opponents may attack only one or two elements of MDP. We may study attack-
ing many different elements in MDP in future, along with the impact caused
by more elements. We could also investigate the combined action of attacking
multiple elements simultaneously; it is possible that the combined effect will
exceed the total impact of separate attacks.

In addition, we can further study the relationship between the elements
with the hope of more strongly influencing the system performance. We can
infer other information about the system elements based on some elements
in MDP, or find the most efficient attack point or moment based on the
relationship between these elements.

Furthermore, we could also discuss issues related to the limited knowl-
edge possessed by attackers. For example, if an attacker possesses partial state
information and partial Dynamic Transition probability information, it may
be possible to produce attacks based on this limited knowledge alone and then
combine the analysis of the relationship between these two elements.

Improving robustness of reinforcement learning In real situations,
the environment is complex and continuously changing. We can consider
fault-tolerant control to develop a more robust algorithm that is capable of
handling this complex and changing environment. For example, we could con-
sider the situation in which the agent receives incorrect information, or fails
to receive some part of the required information, because of issues with the
sensors. We could also consider the situation in which the connection quality
is poor, preventing the agent from receiving information in a timely fashion
and consequently causing it to make sub-optimal decisions.

An adaptive fault-tolerant control (FTC) approach for MIMO nonlinear
discrete-time systems was proposed by Liu et al. [69]. In this paper, abrupt
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faults and incipient faults are both taken into account. Li et al. [70] also focused
on the adaptive fault-tolerant tracking control problem, and further considered
the influence of the dead zones and actuator faults on the control performance.
Future work could thus take specific faults into account based on the actual
situation.

Security and privacy issues of smart methods in reinforcement
learning Many intelligent methods have been used for reinforcement learning
problems. These methods may be used in complex problems in which it is
difficult to obtain the goal or the model.

Inverse reinforcement learning (IRL) is one such intelligent method that
is used to infer the reward function of the reinforcement learning model. Its
application fields include video games, in which it is often more difficult to
design a reward function that describes the behaviors and yields an optimal
policy than to provide demonstrations of the target behaviour in the video
games. Tucker et al. [71] used inverse reinforcement learning algorithms to infer
a reward from demonstrations; this approach utilized CNNs to deal with high-
dimensional video games. Neu et al. [72] investigated the application of IRL
algorithms to parser training problems, and were able to automatically find a
reward function that matched the training set. IRL may be a good method for
use in building a better reinforcement learning model, as it enables rewards to
be obtained automatically. However, it also may be used to attack a system to
infer the reward function. Moreover, to obtain rewards, IRL also needs data
to train; as a result, privacy leakage problems may arise [68].

In addition, while such intelligent algorithms can improve the handling
of certain problems, it might be preferable to focus on specific convergence
analysis rather than simply learning in future work (for example, studying the
regret bounds of reinforcement learning [61]).

7 Conclusion

In this paper, we investigated security and privacy in reinforcement learning.
We analyzed the targets and impacts from the perspective of MDP, and review
existing research based on the elements of MDP. Specifically, we recognize
attacks and defenses of state and action, environment and reward.

We also described the strategies and representative methods of security and
privacy issues, facilitating a clear understanding of what method is used for
which object of the MDP. We conducted an analysis combining those methods
with the character of the elements of the MDP tuple. We went on to discuss the
advantages and limitations of the studies, along with potential future directions
of research into security and/or privacy in reinforcement learning.

In summarizing the recent research into security and privacy in reinforce-
ment learning, the following important findings can be extracted:

® Every element in MDP can be attacked, and can thus affect the overall
process.
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® Security and privacy issues in reinforcement learning are always regarded as
optimal problems, and mathematical optimization methods and some intel-
ligent learning algorithms are adopted to deal with the optimal problems.

Based on these findings, we suggest three directions for future research:

¢ Considering the elements in MDP. Investigating different components of
MDP and the relationships between them may help to alleviate the security
and privacy problems in reinforcement learning.

e Considering the real environment and actual situations of the learning sys-
tem is an interesting direction; for example, exploring equipment faults and
environmental disturbances.

® Given the many intelligent methods used in the various areas of rein-
forcement learning research, it would seem wise to discuss the potential
problems that may occur as a result, and to improve the performance of
those intelligent methods.
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