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Abstract Structured entities analysis is the basis of the modern science, such as
chemical science, biological science, environmental science and medical science.
Recently, a huge amount of computational models have been proposed to analyze
structured entities such as chemical molecules and proteins. However, the problem
becomes complex when local structural entity graphs and a global entity interaction
graph are both involved. The unique graph of graphs structure cannot be properly ex-
ploited by most existing works for structural entity analysis. Some works that build
neural networks on the graph of graphs cannot preserve the local graph structure
effectively, hence, reducing the expressive power of the model. In this paper, we
propose a Powerful Graph Of graphs neural Network, namely PGON, which has 3-
Weisfeiler-Lehman expressive power and captures the attributes and structural infor-
mation from both structured entity graphs and entity interaction graph hierarchically.
Extensive experiments are conducted on real-world datasets, which show that PGON
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outperforms other state-of-the-art methods on both graph classification and graph in-
teraction prediction tasks.

Keywords Graph Neural Network · Graph of Graphs · Weisfeiler-Lehman Test ·
Graph Classification

1 Introduction

Structured entities such as chemical molecules and proteins are frequently used in
many fields such as biology, chemistry, material science, medical science and en-
vironmental science. The analysis of structured entities is the basis of our life. For
instance, new material is developed based on the analysis of existing chemicals and
new drugs are discovered based on the interaction between drugs and proteins and
the properties of other drugs.

One immediate way to analyze structured entities is to conduct experiments to test
the properties of such entities or the interactions between entities in laboratories or
clinics. This is the most reliable method for structured entity analysis. Nevertheless,
because of the large number of structured entities, it is impracticable with regard to
both resources and time to investigate all entities.

Recently, structured entities have been modeled as graphs and analyzed by many
computational algorithms, such as graph classification, link prediction, clustering,
etc. For example, graph classification results could help to determine the function
of proteins and the toxicity of chemical compounds. The link prediction between
the graphs could be used to understand the interactions between chemical molecules,
drugs or proteins, which are vital for drug discovery, side effect prediction and pathol-
ogy analysis [29]. Therefore, DeepCCI [18] and DeepDDI [35] are proposed to pre-
dict the interactions between chemicals and drugs respectively.

Thanks to the advancement of graph neural networks, a variety of techniques
have been proposed to analyze structured entities effectively and efficiently by utiliz-
ing graph neural networks (GNNs). Therefore, instead of conducting time-consuming
and labor intensive laboratory experiments, the GNN-based models provide an effi-
cient and effective solution for the analysis of biological and chemical data. With the
development of GNNs, structural and feature information are well exploited in such
analysis.

Decagon [49] exploits the drug-drug, drug-protein and protein-protein network
to predict drug side effects; MR-GNN [43] utilizes the multi-resolution graph neural
network to model the detailed structure of the chemicals; and GCPN [45] proposed a
graph convolutional policy network to generate molecular graphs.

Though the structural information of a graph acts as a pivotal part of GNN-based
models, it has not been extensively studied yet. Most GNN-based models only ex-
ploit graph structural information and ignore the interaction information between the
graphs. For example, in the protein interaction network, conventional GNN-based
models learn representations only from the structural information of the proteins or
from the interaction relations between the proteins. In Fig. 1, there is a graph con-
taining the interactions between the chemical compounds. The chemical molecules
are modeled as local graphs. The atoms in the molecule are modeled as nodes in
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Fig. 1: Interaction graph of molecule graphs.

the graph, while the bonds between the atoms are represented as the edges. On the
other hand, we have a global graph which contains the interactions (edges) among the
structured entities (nodes). Only a few works combine these two kinds of structures
together and produce the more informative representations for down-stream graph
analysis tasks. SEAL-CI [22] applies a hierarchical graph neural network to capture
the graph interaction information. DGCN [15] learns the compound representations
from both the compound graphs and the inter-compound network in an end-to-end
manner. The work in [40] introduces GoGNN, the graph of graphs neural network, to
solve graph interaction prediction tasks. However, these methods cannot powerfully
and distinguishably represent graph structural information together with graph fea-
tures. Further, they focus on only one task, i.e., link prediction or graph classification,
which limits their generalizability.

Motivated by the shortcomings of the current models, we propose our Powerful
Graph Of graphs neural Network (PGON) to capture graph interaction and graph
structural information for multiple graph analysis tasks. PGON uses the invariant
and equivariant functions to build the graph neural network following the 2-folklore
Weisfeiler-Lehman (FWL) isomorphism test algorithm such that PGON is able to
powerfully preserve the structural information for each molecular or protein graph.
PGON also follows the graph of graphs framework. In that way, PGON could con-
sider both levels of the graphs to extract broader information, which improves the
performance of PGON on graph analysis tasks. The contributions of our proposed
model are summarized as follows:
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– We exploit the equivariant and invariant mapping functions to build the graph
neural network following the 2-FWL test. Therefore, our model is able to repre-
sent the graph structure as powerfully as a 3-Weisfeiler-Lehman test algorithm.

– We study both graph classification and graph interaction prediction tasks from a
graph of graphs perspective. Our model could exploit more topological informa-
tion and the interactions between local graphs to enhance performance.

– We evaluate our proposed PGON using both graph classification and graph inter-
action prediction tasks on real-world datasets. PGON has superior performance
compared to other baseline methods.

2 Related Work

In this section, we introduce the related works including graph neural networks, graph
of graphs and structured entity analysis models.

2.1 Graph Neural Network

Node-level applications. There are two main kinds of node-level applications of
graph neural networks: node classification and link prediction [17,38,46,13,27,25,
24,14,39,37]. In order to preserve the relations among the nodes in the graph, struc-
tural and attribute information of the graph and represent the graph by low-dimension
vectors, the existing node embedding methods mainly exploits the conventional tech-
niques such as skip-gram, autoencoders and neighbor aggregation-based graph neural
networks.
Graph-level applications. Recently, several research papers proposed graph neural
network-based models for graph-level applications such as graph classification [47,
21,48,32,9] and graph matching[23,10]. These models produce the graph represen-
tations only considering the individual or pair-wise graph relations, and ignoring the
interactions between the graphs. Therefore, they cannot aggregate all the information
from the neighboring graphs simultaneously, which limits their performance on these
tasks.

2.2 Graph of Graphs

We first develop the concept of “Graph of Graphs” (a.k.a., “Network of Networks”).
In most real-world systems, an individual network is one component within a much
larger complex multi-level network. These networks are network of networks (graph
of graphs) when the graph theory paradigm is applied. [4] introduces the theoretical
research development [8], applications [33] and phenomenological model [34] on the
graph of graphs.

These works enable us to understand and model the inter-dependent critical in-
frastructures. The work in [22] proposed SEAL-CL which solves the graph classifi-
cation task by learning a graph neural network in a hierarchical graph perspective.
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DGCN [15] is a dual graph convolutional network that learns compound representa-
tions from both the compound graphs and the inter-compound network in an end-to-
end manner. GoGNN [40] proposed the graph of graphs neural network to predict the
interactions between structured entities.

2.3 Structured Entity Analysis

Many modern science are based on the analysis of structured entities, such as chem-
ical science, biological science, medical science, and environmental science. There-
fore, we need to capture the property of the entities and structured entity interactions.
Over the last few years, a great amount of structured entity analysis techniques have
been proposed in some specific applications.

GCPN [45] proposed the graph convolutional policy network to generate molec-
ular graphs. GRAN [26] exploits the graph recurrent attention networks for the graph
generation. CONDGEN [44] generates the conditional graph structure by graph vari-
ational generative adversarial network. As for the graph interaction prediction task,
DeepCCI and DeepDDI [18,35] utilize traditional convolutional neural network and
principal component analysis on the medical and biological data. There are some
GNN-based models. For instance, Decagon [49] performs the graph convolutional
network on the drug-protein interaction graph; MLRDA [3] utilizes a graph autoen-
coder model with a novel loss function for drug-drug interaction prediction task; MR-
GNN [43] extracts local features of molecule graphs using dual graph-state LSTMs.

In this paper, two representative applications are studied: structured entity classi-
fication and structured entity interaction prediction.

3 Preliminary

In this part, we introduce the important definitions and the notations used in this
paper.

3.1 Input Graphs

In this paper, we not only focus on graph structures but also consider the interactions
between the graphs. Therefore, the input graphs are regarded as graph-of-graphs.
There are two hierarchical structures of graph-of-graphs: local graphs which illus-
trate the local information of the objects involved in the interaction network, and
interaction graph describes the interaction relationships between the local instances.
Local Graphs. Local graphs are graph instances in this paper. More specifically, local
graphs are molecule graphs which are modelled as heterogeneous graphs with multi-
ple types of nodes and edges or the protein graphs containing amino acids and their
connection relationships. We formally denote the local graph as GL(V,E) where
V = {vi} is the set of vertexes (atoms or amino acids) in the graphs and E = {eij}
is the set of edges representing the bonds between atoms or the connection between
amino acids vi and vj . As the input, a vector xa is used to encode the vertex. In the
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molecule graphs, a weight is assigned to each edge which is determined by the kind
of the bond. For instance, in the acetylene molecule, the bond between the carbon
atoms is a triple bond. As a result, we set the weight of the edge eCC in the acetylene
molecule graph between the carbon atoms to 3.
Interaction Graphs. We model the interactions between the local graphs as a graph
GI . Thus, we have the graph of graphs. The interaction graph is denoted by GI =
{N,EI}, where N = {GL} is the node set of GI that contains the local graphs, and
EI denotes the interaction edges between the local graphs.

Example 1 (Graph of Graphs.) There are various graph of graphs in real life. We
list one representative example here. The software interaction networks for malware
detection is one typical graph of graphs. The local graphs in the software interaction
networks are the function call graphs, which represent calling relationships between
subroutines in a computer programs. The interaction graph illustrates the interaction
between the computer programs involved in the network.

3.2 Problem Definition

In this paper, we focus on the graph classification and graph interaction prediction
task.
Graph Classification: a molecule graph gL is called a labeled graph if it is labeled
by a class vector yL ∈ {0, 1}c, where c denotes the number of classes. Otherwise, a
local graph is unlabeled. Therefore, we have two subsets of graphs: unlabeled graphs
GU and labeled graphs GLabel. The objective of graph classification is to determine
the class labels of the unlabeled graphs in GU with given class labels in the labeled
graphs GLabel and the graph of graphs topological structural information.
Graph Interaction Prediction: Given the local graph g = (N,E), and graph inter-
action graph G = (g, I), where I indicates the interactions between the local graphs
g, the objective of graph interaction prediction is to predict the existence of unseen
interactions Iu between the graphs.

3.3 Theoretical Definitions

Definition 1 Equivariant Function. With given matrix X and any permutation ma-
trix P , a function f is an equivariant function if f(P TXP ) = P T f(X)P .

Definition 2 Invariant Function. With given matrix X and any permutation matrix
P , a function f is an invariant function if f(P TXP ) = f(X).

3.4 The Weisfeiler-Lehman graph isomorphism test.

The Weisfeiler-Lehman (WL) graph isomorphism test is a family of algorithms used
to test the graph isomorphism. Given graph G(V,E, d) where |V | = n, and d : V →
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Σ maps each vertex in V to the color setΣ. Two graphs are isomorphic if there exists
a bijection φ : V → V ′ that preserves the edge and color attached to the vertices.

There are two families of WL-test algorithms: k-WL and k-Folklore WL (FWL
) algorithms. They both produce the canonical form for each graph G and con-
struct the k-tuples of vertices with the corresponding color set, that is mapping c :
V k → Σ. C is the tensor representing the coloring of k-tuples. For each k-tuple
vi = (vi1 , ..., vik) ∈ V k, the corresponding color set is denoted as Ci ∈ Σ, i ∈

(
n
k

)
.

The k-WL and k-FWL test algorithms refine the coloring set C in every iteration
until the split groups of k-tuples no longer change. In each step, the k-WL and k-
FWL algorithms aggregate the color labels from the neighboring k-tuples to update
the coloring C. The aggregation steps for the algorithms to refine the coloring set of
each k-tuple are shown in the following equations:

Nj(i) = {(i1, ..., ij−1, i′, ij+1, ..., ik)|i′ ∈ [n]} (1)

NF
j (i) = {(j, i2, ..., ik), (i1, j, ..., ik), ..., (i1, ..., ik−1, j)} (2)

Nj(i), j ∈ [k] is a set of n k-tuples denoting the j-th neighborhood of the selected
tuple i by the k-WL algorithm. NF

j (i), j ∈ [n] denotes the j-th neighborhood used
by k-FWL algorithm. Then both k-WL and k-FWL algorithms aggregate the coloring
set using the bijective mapping from the collection of all possible tuples selected by
Equations 1 and 2.

Previous works [2,11,12,28] show that 1-WL and 2-WL tests have equivalent
discrimination power. When k ≥ 2, the k + 1-WL test is more powerful than the
k-WL test in detecting non-isomorphic graphs.

4 Model

In this section, we introduce details of the powerful graph of graphs neural network
(PGON). The framework, graph of graphs architecture and the training objectives are
discussed in this section.

4.1 Framework

PGON is a graph neural network model that takes the graph of graphs structure and
feature information as input, and then produces the predicted class labels or predicts
the interaction probabilities between the graphs in an end-to-end manner. The frame-
work of PGON is shown in Figure 2. The model is formed by two graph neural net-
works. A local graph neural network whose input is the atom or amino acid features.
An interaction graph neural network which eventually produces a representation of
graph for down-stream tasks, i.e., graph classification and graph interaction predic-
tion. Local graph neural network learns the hidden features which serve as the initial
input for the interaction graph neural network. The hidden feature is representative
since we exploit the GNN that has the same expressive power as 3-WL tests. The
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Fig. 2: Framework of Powerful Graph of Graphs Neural Network.

interaction-level graph neural network promotes the ability of local graph neural net-
work to find the key substructure through training process by the feature aggregation
mechanism.

4.2 Local Graph Neural Network

The input local graphs are chemical or protein graphs. In these kinds of graphs, the
structure of the graph is very important for the analysis task. For example, the reac-
tions between the organic chemical molecules are mainly decided by some specific
subgraphs: functional groups. Reactions between organic acid and ethanol are intrin-
sically controlled by two functional groups, i.e., the carboxy group (-COOH) and
hydroxy group (-OH). As for the proteins, the structures of proteins, especially the
sequences and structures of amino-acids, are also responsible for the characteristic
properties of the proteins. Though currently we cannot model the 3D structure of
proteins using graph neural networks, the discriminative GNN model could preserve
the plain structures of the proteins which are the most important for protein proper-
ties.

Based on the above motivations, we design the local graph neural network which
is discriminative enough to distinguish graph structures. Therefore, we use the graph
neural network proposed by Maron et al. [28]. The GNN model has 3-WL discrimi-
nation power and low computation complexity. The model is formed by the invariant
layer and several MLP blocks:

F = m ◦ h ◦Mk ◦Mk−1 ◦ ... ◦M1, (3)

where m is a transformation layer such as MLP, h is an invariant layer andM1, ...,Mk

are the MLP-based blocks described below. Each block has three MLPs, two of them
(MLP1 and MLP2) map the tensor dimensions Rn×n×d0 → Rn×n×d1 , and the
other transforms the tensor dimensions Rn×n×d0 → Rn×n×d2 . The detail of the in-
put tensor is introduced in Section 5. The tensors produced by theMLP1 andMLP2
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are in the same dimensions. These two tensors are multiplied to produce the new fea-
ture tensor. The computation process for each MLP block is shown in the following
equations:

Xi =MLPi(X), {i = 1, 2, 3} (4)
X4 = X1 ⊗X2 (5)

Xout = X3 ⊕X4, (6)

where ⊗ indicates the matrix multiplication between the corresponding matrices:
X1(:,:,j) and X2(:,:,j) and ⊕ is the concatenation of the tensors. Xout is the output
feature tensor for every graph after the MLP block. Different from MR-GNN [43]
which uses dual graph-state LSTMs, PGON exploits pooling-based graph model to
learn the representation that preserves the substructure information of each graph.
Therefore, PGON enjoys lower time and space complexity compared to MR-GNN.
In the model of PGON shown in Figure 2, the most representative substructures are
selected in the self-attention graph pooling layer by learning the self-attention score
s ∈ Rn×1 for the local graph GL with n vertices.

s = σ(D̃−
1
2 ÃD̃−

1
2XfeatWatt) (7)

where Watt ∈ Rd×1 denotes the weight matrix in the self-attention pooling layer,
and Xfeat denotes the feature vectors of the graph on the diagonal of the output
tensor Xouti,i,:. After the calculation of attention score in the graph pooling layer,
the most representative substructure is selected by finding the top-dγne vertices with
the highest attention scores. A hyperparameter γ ∈ (0, 1] to is used as the pooling
ratio to determine the number of vertices dγne that are selected.

idx = top(s,dγne), smask = sidx

Xsel = X � smask
(8)

where top denotes the function selecting the vertices that have top dγne attention
scores as in [20]; smask denotes a mask vector decided by the attention score; � is
the column-wise product for masking; and Xsel denotes the feature vectors of the
chosen nodes within a local graph. Afterward, the readout layer, which contains sum
and mean pooling, is performed on the representations of the chosen nodes Xsel to
learn the graph-level hidden feature vector xsel for the diagonal elements from the
tensor Xout. As for the off-diagonal elements in the tensor Xout, max pooling is
applied to produce the hidden feature xoff ∈ Rdoff for the local graph. The hidden
feature xfeat is the concatenation of xsel and xoff . Hence, PGON can identify the
substructures which contribute significantly in graph interactions, and represent the
local graph using these substructures.

4.3 Interaction Graph Neural Network

In the graph analysis tasks, the interactions between the graphs are always ignored.
However, it is crucial for graph analysis to obtain the information of the interaction
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graph because the information enables the model to capture high-order interactiv-
ity relationships. Therefore, PGON has a better ability to preserve the characteristic
molecule substructures synergistically which benefits both graph classification and
graph interaction prediction tasks.

We perform the GNN on the interaction graph based on the following obser-
vations: firstly, the type of the involved molecules in an interaction determines the
type of interaction. For example, Diels-Alder reaction is a kind of organic chemi-
cal reaction between a conjugated diene and a substituted alkene. Specifically, the
Diels-Alder reaction is between the two double bonds in the conjugated diene and the
double bond in the substituted alkene. Therefore, we use the graph neural network to
aggregate the neighbor information, and eventually conclude the types of molecules
involved in the interaction graph. Secondly, in order to model the frequency and sig-
nificance of the interactions, the significance score is assigned to each interaction of
the graph. For instance, reducibility and acidity are main properties of vitamin C.
Because of the properties, vitamin C can never be taken with procarbazine and su-
cralfate due to their oxidization and alkalinity respectively. In a much rarer situation,
VC reduces the therapeutic effect of inosine due to their multiplex reactions. As a
result, an attention-based graph isomorphism network [42] is applied to preserve the
significance and importance of the graph interactions, reduce the influence of biased
observations of the interaction graph and maintain the representation power of the
model. Specifically, the edge-aggregation GNN is exploited for the DDI graph with
edge attributes.
Attention-based GIN. We add the attention coefficients on the original GIN [42] to
assign importance values to graph interactions. With the output local graph hidden
feature vector xGL

and interaction graph GI = {N,EI} as the input, the attention-
based graph isomorphism network perform the neighbor aggregation as follows:

xkGi
=MLP k((1 + εk)xk−1Gi

+
∑

Gj∈N (Gj)

akijx
k−1
Gj

). (9)

In the equation, ε is a learnable parameter to adjust the importance of the graph
representation, and akij is the attention coefficient between two graphs Gi and Gj .
The attention coefficient is calculated by the following equation:

aij =
exp(LeakeyRelu(a[WxGi

] ‖ [WxGj
]))

Σn∈ηGi
exp(LeakeyRelu(a[WxGi

] ‖ [WxGn
]))

(10)

where a denotes a learnable vector indicating the attention weights and ‖ denotes
the concatenation operation.
Edge Aggregation Network. In the drug-drug interaction graph, each edge has an
attribute vector erij which is determined by the side effect type r of the drug com-
bination (Gi, Gj). To capture the edge attributes [36], an edge aggregation GNN is
proposed. The network aggregates the neighbor information together with the edge
attribute:

xl+1
Gi

= σ(W lxlGi
+
∑
r

(
∑

Gj∈ηrGi

xlGj
· hWe(e

r
ij))) (11)
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where hWe denotes the multi-layer perceptron with matrix We which linearly
transforms the edge feature representation erij ∈ Rh×1 into a real number τ rij ∈ R.
PGON shares the parameters for all types of side effects which is different from
Decagon [49] whose parameters are set for each side effect specifically. Therefore,
PGON is the model that has better generalization and robustness.

4.4 PGON Model Training

The parameters in the model are optimized by task-specific loss functions.
Graph Classification. We apply MLPs with activations to transfer the learned graph
representations xGi

into the labels:

yGi = σ(W l · σ(· · ·W 1 · xGi)), (12)

where σ denotes the activation function such as softmax, and W is the weight matrix
in MLP. With the obtained class labels, the cross-entropy is proven to be a good
choice to measure the loss of the predicted labels:

Lclass =
∑

Gi∈Glabeled

J (ŷGi
, yGi

), (13)

where J is the cross-entropy loss and ŷGi is the ground truth labels of the labeled
graphs. The classification model is trained by minimizing the above loss function.
Chemical Interaction Prediction. The CCI prediction is modeled as a link predic-
tion task. We simulate the probability of linkage between two graphs by the dot prod-
uct of two graph embedding vectors.

pij = σ(xTGi
· xGj ) (14)

where σ denote the activation function such as tanh which constraints pij ∈ (0, 1). It
is natural that the existing edges should have higher significance scores compared to
the random non-edges. For this purpose, negative sampling is utilized. Given a posi-
tive edge pair (Gi, Gj), a random negative edge (Gi, Gm) is sampled by selecting a
local graph Gm randomly. The cross-entropy loss function is used for the optimiza-
tion of the model

LCCI =
∑

(Gi,Gj)∈GCCI

−log(pij)− Em∼Pj log(1− pim) (15)

Drug Interaction Prediction. Because there are many kinds of adverse effects in
drug-drug interaction graph. The DDI prediction task is modeled as a multirelational
link prediction problem. The following cross-entropy loss function is utilized to op-
timize the parameters in this task

prij = σ((WrxGi)
T · (WrxGj )) (16)

Lrij = −log(prij)− Em∼P r
j
log(1− prim) (17)
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LDDI =
∑

(Gi,r,Gj)∈GDDI

Lrij (18)

where Wr is a weight matrix for the linear transformation of xGi
w.r.t. the side effect

type r. For an existing triplet (Gi, r,Gj) denoting two drug graphs Gi and Gj which
cause a side effect r, we choose the negative sample Gm randomly according to
sampling distribution P rj [31] and replace Gj by Gm during the training process.

5 Analysis

In this section, we analyze the expressive power of PGON. We prove that our model
is more powerful than other graph of graphs neural network.

5.1 Framework of PGON

The framework of PGON shown in Equation 3 can distinguish the non-isomorphic
graphs. This simple structure with multiple MLP blocks can achieve great expressive
power equivalents to the 3-WL test. In this subsection, we introduce how PGON
implements the 2-FWL graph isomorphism test algorithm which has the equivalent
expressive power as the 3-WL test algorithm.

Theorem 1 Given two graphs G = (V,E, x) and G′ = (V ′, E′, x′). If these two
graphs can be distinguished by the 3-WL isomorphism test, there exists a graph neu-
ral network F so that F (G) 6= F (G′)

Proof To prove the framework of the proposed PGON has the 3-WL test expressive
power, we show that the model can implement the 2-FWL algorithm which has the
equivalent distinguish power as 3-WL isomorphism test algorithm.

With the given G = (V,E, x), the input tensor is built as X ∈ Rn2×(e+2), where
X:;:;e+1 encodes the adjacency matrix ofG and Xi;i;1:e encodes the feature vector of
each vertex vi ∈ V , the elements outside the diagonal Xj;k;1:e, j 6= k are all zeros,
and X:;:;e+1 is the identity matrix. First, we need to build the 2-FWL initialization
that colors the 2-tuples by their isomorphism type. With the given adjacency matrix
A = X:;:;e+1, and input features H = X:;:;1:e, the tensor C ∈ Rn2×(4e+1) is
constructed using the following colors matrices. A ·H:,:,j , (11T −A) ·H:,:,j , H:,:,j ·
A, H:,:,j · (11T − A), where j ∈ [e] and 11T − A is the adjacency matrix of the
complement graph. The last channel indicates whether vi1 = vi2 .

To follow the 2-FWL update steps, we perform each update step in the following
way. As mentioned in Section 3.4, when the matrix B ∈ Rn×2a is given, where
Bj;: = (Xj;i2;:,Xi1;j;:). We would like to compute the output tensor Xout ∈
Rn2×b, where Xout

i1,i2,:
has been proven in [28] that can be calculated by the network

based on the MLPs.

Xout
i1,i2,l :=

n∑
j=1

m1(Xj;i2;l)m2(Xi1;j;l) (19)
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After this, we concatenate X and Xout to pair the multiset with the input color of
each k-tuple.

The block introduced above could perform the 2-FWL test update. With sufficient
update steps we can produce the tensor that can be used to distinguish the graphs.
Our final goal is to calculate a representation tensor for each graph that indicates
the histogram of its k-tuples’ color. In [28], PPGN applies invariant max pooling-
based operator by concatenating the max values among the diagonal and off-diagonal
elements on Xout to produce the graph representations. The expressive power of the
representations is proven both theoretically and empirically in [28].

5.2 Invariance of pooling and GIN operators

Though the operator in PPGN is invariant which can ensure expressive power, we
find that simply applying the operator has a limitation in representing the importance
of the nodes in the local graph. Therefore, the concatenation of max pooling on the
off-diagonal elements and the self attention pooling mentioned in Equation 8 on the
diagonal elements is used to produce the representations for the local graphs. Note
that when the pooling ratio γ = 1, i.e., all the diagonal elements are used for the self
attention pooling, our pooling operator is same as that in PPGN. Our pooling method
can filter out the nodes with low importance in graph analytic tasks by adjust the
pooling ratio while preserving expressive power. Then, we apply the attention-based
graph isomorphic neural network to further gather information from the neighbors in
the interaction graph to enhance the performance of our model. In this subsection,
we prove the invariance of self-attention-based pooling and the attention-based graph
isomorphic neural network which are used to calculate the graph representations. In
the following, we prove the invariance of this operator FGIN (Fpool(Xout)).

Corollary 1 For two mapping functions f, g, if f and g are invariant, f ◦ g is invari-
ant.

Proof Given invariant mapping f and g, by definition, we have f(X) = f(P T
1 ·X ·

P1) and g(X) = g(P T
2 ·X · P2), where Pi denotes the permutation matrix. The

following result is immediate.

f(P T
1 · g(P T

2 ·X · P2) · P1) = f(P T
1 · g(X) · P1)

= f(g(X)) = f ◦ g(X).
(20)

Therefore, we can prove the invariance of the pooling operation and GIN sepa-
rately. The proof is also immediate. The pooling operation is based on the max pool-
ing which is not sensitive to the node orders, hence, the representation for each graph
is independent of the order of the nodes in the graph. The graph isomorphic neural
network in Equation 9 is a message passing-based neural network which sums up the
representations from the neighboring nodes with attention coefficients. It is obvious
that GIN is independent of the order of nodes. Therefore, we proved the invariance of
the pooling operator and attention-based GIN, which eventually infers the invariance
of the calculation operator formed by these two parts.

Finally, we have proved that the PGON with the framework in Equation 3 has the
expressive power equivalent to 2-FWL and 3-WL test.
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6 Experiment

We evaluate our model with the graph classification and graph interaction prediction
tasks on real-life datasets. In this part, we detail our experiment settings for these
tasks and the results that indicate the superior performance of PGON.

6.1 Datasets

We evaluate our model on three real-life chemical interaction and protein interaction
graphs. The local graphs in these three datasets are the chemicals or the proteins. The
global graphs contain the interactions between the chemicals and the proteins. The
datasets used are shown as follows:

– Proteins [1] is a benchmark graph dataset where vertices are elements within
protein molecules and edges indicate that two nodes are neighbors in the amino-
acid sequence or in 3D space.

– D&D [7] is a set of structures of enzymes and non-enzymes proteins, where nodes
are amino acids, and edges represent spatial closeness between nodes.

– MUTAG [5] is a well-known graph classification benchmark dataset. Different
from the preprocessed data in [16], we build the interaction graph with given
chemicals based on the interaction score in the CCI dataset, and build more de-
tailed molecule graphs using the description in [5].

We build the interaction graphs on the Proteins and D&D dataset using the PPI
dataset. Two proteins are linked in the interaction graph if they are connected or at
least have two common neighbors in the PPI network.

For the CCI and DDI prediction tasks, we use the following datasets.

– CCI. The CCI dataset contains the interaction probabilities between the chemical
molecules. A interaction score from 0 to 999 is assigned to each interaction to
indicates the probability of this interaction. Given a threshold value, we can split
the datasets into CCI900 and CCI950 whose probability scores are all over 900
and 950 respectively. CCI900 has 14343 chemicals and 110078 chemical inter-
action edges, and CCI950 has 7606 chemicals and 34412 chemical interaction
edges.

– DDI. DDI dataset is used for the drug adverse effect prediction experiment. The
DDI dataset is originally proposed in DeepDDI [35] which contains 86 types of
side effects, 1704 drugs and 191400 drug interaction edges. A vector representa-
tion ser ∈ R128 is assigned to each side effect produced by a pre-trained BERT
model [6] using the name of the adverse effect.
The molecules are transformed from the SMILE strings [41] into graphs by the
open-source rdkit [19]. An initial feature vector xa ∈ R32 is assigned for every
atom. The edges in the molecule graphs are weighted by the type of bonds.
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6.2 Baselines and Metrics

For the graph classification task, the baseline models include graph neural network
based classifiers and GNN-based approaches from the graph of graphs perspective:

– GIN [42] is the model that is as expressive as the Weisfeiler-Lehman graph iso-
morphism test.

– PPGN [28] is the simple and scalable GNN model that has a provable 3-WL ex-
pressive power. PPGN interleaves applications of standard Multilayer-Perceptron
(MLP) applied to the feature dimension and matrix multiplication.

– ISONN [30] is a GNN-based model that contains two main components: graph
isomorphic feature extraction component and classification component.

– SEAL-CL [22] is the neural network on hierarchical graphs for graph classifica-
tion.

– GoGNN [40] is the graph neural network model built on the hierarchical graph
structure, which focuses on the entity interaction prediction task.

– DGCN [15] is the dual graph convolutional network that learns compound rep-
resentations from both the compound graphs and the inter-compound network in
an end-to-end manner.

For the interaction prediction task, the following state-of-the-art baseline methods
are compared:

– DeepCCI [18] is the CNN based model for predicting the interactions between
the chemicals.

– DeepDDI [35] is the model designs a feature called structural similarity pro-
file(SSP) combined with traditional MLP for DDI prediction.

– MR-GNN [43] is an end-to-end graph neural network with multi-resolution ar-
chitecture that produces interaction between pairs of chemical graphs.

– MLRDA [3] is the multitask, semi-supervised model for DDI prediction.
– SEAL-CL [22] is the neural network on hierarchical graphs for graph classifica-

tion.
– DGCN [15] and GoGNN [40].

We used the public code of the baselines and keep the settings of the models
the same as discussed in the original papers. We modified the code of GoGNN and
DGCN for the classification tasks. SEAL-CL is reimplemented for the interaction
prediction task.

The evaluation settings in [22] are used for the classification task, and 10-fold
cross validation is performed. The average accuracy is reported. For the CCI and DDI
prediction task, the settings in GoGNN [40] are used to familiarize the comparison.
We detail settings in the following subsections.

6.3 Classification Result

Settings. To familiarize the comparison, we divided the dataset on a 90%-10% basis
for training and testing respectively. The dimensions for the graph hidden feature and
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Proteins D&D MUTAG

GIN 76.28% 79.91% 89.41%
PPGN 77.20% 79.97% 90.55%
ISONN 75.12% 76.28% 88.79%

SEAL-CL 76.89% 80.10% 88.17%
GoGNN 74.62% 77.69% 88.53%
DGCN 75.27% 78.94% 87.91%
PGON 78.87% 81.54% 91.15%

Table 1: Accuracy of the graph classification task.

output graph representations are set to 384 and 256 respectively. For the classification
tasks, the pooling ratio is set to 1, which means all the node representations are used to
produce the graph hidden feature. The average accuracy for classification is reported
for evaluation.
Results. As shown in Table 1, PGON outperforms the other baseline models on all
three datasets. The superior experiment results indicate that the interaction network
information integrated in the PGON enhances the classification accuracy significantly
compared to the models which only use the graph feature and structural information.
Further, on the real-world chemical and biological dataset, the heterogeneous na-
ture of the molecule graphs is usually ignored, and the molecule graphs are always
modeled as a homogeneous graph. Our preprocess procedure assigns a simple but ef-
fective one-hot feature to each kind of atom in the molecule graphs, which also helps
PGON achieve better performance. PGON also outperforms GoGNN and DGCN
which shows the improvement in classification accuracy as a result of the higher ex-
pressive power of PGON.

6.4 CCI Prediction Result

Settings. As the setting in [40], CCI datasets is devided into training and testing sets
with a proportion 9:1, and 10% data is randomly chosen for validation. The dimen-
sions of local graph hidden representation, and the output local graph embedding
vector are set to 384, 256, respectively. The learning rate is set to 0.01, and the pool-
ing ratio is set to 0.5. As for the evaluation metrics, we choose area under the ROC
curve(AUC) and average precision score(AP).

Results. The experiment result is shown in Table 2, PGON improves the accuracy
on the CCI prediction task compared to other baseline methods. The improvement
proves that PGON can capture more abundant information on multiple scales by the
attribute aggregation and selection in a graph of graphs perspective compared to the
baseline models which only optimize the model with molecule graph inputs pair-
wisely or individually. The quality of graph representations is much better with the
help of the self-attention pooling layer which identifies and captures the significance
of chemical subgraphs and molecular interactions. Further, the framework that fol-
lows the 2-FWL algorithm enhances the model’s expressive power, and eventually
improve the performance of PGON compared to GoGNN.
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CCI900 CCI950

AUC AP AUC AP

DeepCCI 0.925 0.918 0.957 0.957
DeepDDI 0.891 0.886 0.916 0.915
MR-GNN 0.927 0.921 0.934 0.924
MLRDA 0.922 0.907 0.959 0.948

SEAL-CL 0.894 0.886 0.941 0.937
DGCN 0.931 0.930 0.952 0.954

GoGNN 0.937 0.932 0.963 0.962
PGON 0.939 0.936 0.968 0.965

Table 2: Result of chemical-chemical interaction prediction task.

DDI

AUC AP

DeepCCI 0.862 0.856
DeepDDI 0.915 0.912
MR-GNN 0.932 0.922
MLRDA 0.931 0.926

SEAL-CL 0.925 0.921
DGCN 0.924 0.919

GoGNN 0.943 0.933
PGON 0.946 0.937

Table 3: Result of drug-drug interaction prediction task.

6.5 DDI Prediction Result

Settings. Following the previous study, the DDI dataset is divided for training, test-
ing, validation with ratio 6:2:2. The dimensions of local graph hidden representation,
and the output local graph embedding vector are set to 384, 256, respectively. The
learning rate is set to 0.001, and the pooling ratio is set to 0.5. We choose AUC and
average precision(AP) as the evaluation metrics.

Results. Table 3 shows the experimental results for the adverse side effect prediction
task. It is illustrated by the results that PGON outperforms the baseline methods with
regard to the performance of drug-drug interaction prediction task. The improvement
is attributed to the abundant information brought by the graph of graphs architecture
and edge-filtered aggregation.

6.6 Ablation Experiment

In order to determine the effectiveness of graph of graphs framework and the ex-
pression power of the model. We conduct the ablation experiments which replace the
component of our proposed model with other conventional components. The follow-
ing variants of the PGON are tested for the ablation experiment.
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Fig. 3: Ablation experiment result for graph classification.
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Fig. 4: Ablation experiment result for graph interaction prediction.

noLocal is the variant that only applies the attention-based graph isomorphism net-
work on the graph interaction network while skipping the representation learning for
the local graphs.
noInter is the variant that only learns the representations for local graphs while ig-
noring the interaction graph between the local graphs.
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Fig. 5: Parameter sensitivity experiment results for graph classification

LocalGCN denotes the variant that replace the local graph neural network with con-
ventional graph convolutional neural network [17].
InterGCN denotes the variant that uses GCN for the message passing between the
graphs on the interaction network.

The results are shown in Fig. 3 and 4, which prove the effectiveness of the graph
of graphs architecture and the expressive power of the entire model. Among all the
variants, LocalGCN and noLocal have the most significant performance gaps be-
tween PGON, which indicates that the expressive power of PGON is the key factor
in improving the performance for both classification and prediction tasks.

6.7 Parameter Sensitivity Analysis

Parameter sensitivity is analyzed in the experiment. Hidden feature dimensions, final
representation dimensions, pooling ratio and learning rate are tested for both graph
classification and link prediction tasks to demonstrate how the parameters influence
the performance of the model. For the graph classification task, we test different
parameter settings of parameters on all three datasets, while for graph interaction
prediction task, the parameters are tested on the CCI950 dataset.

The results are summarized in Fig. 5 and 6. Overall, the impact of the hyper-
parameter variations is insignificant. The results indicate the salient point for each
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hyper-parameter. Therefore, the best settings for the hyper-parameters are selected as
mentioned in Section 6.3, 6.4 and 6.5.
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Fig. 6: Parameter sensitivity experiment results for graph interaction prediction

7 Conclusion

In this paper, we propose the graph neural network model PGON that can be applied
to both graph classification and graph interaction prediction tasks. PGON is able to
preserve the structure and feature information of the graph of graphs, which empir-
ically enhances the performance on link prediction and graph classification. PGON
also has the provably great expressive power which helps the model to distinguish
the structure of different graphs. The extensive experiments show the effectiveness of
PGON on multiple graph analysis tasks.



Powerful Graph of Graphs Neural Network for Structured Entity Analysis 21

References

1. Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S.V.N., Smola, A.J., Kriegel, H.: Protein
function prediction via graph kernels. In: Proceedings Thirteenth International Conference on Intelli-
gent Systems for Molecular Biology 2005, Detroit, MI, USA, 25-29 June 2005, pp. 47–56 (2005)
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