
“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for

all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.”

Efficient Personalized Maximum Biclique Search
Kai Wang†, Wenjie Zhang†, Xuemin Lin†, Lu Qin?, Alexander Zhou‡

†University of New South Wales, ?University of Technology Sydney, ‡Hong Kong University of Science and Technology
kai.wang@unsw.edu.au, {zhangw, lxue}@cse.unsw.edu.au, lu.qin@uts.edu.au, atzhou@cse.ust.hk

Abstract—Bipartite graphs are naturally used to model rela-
tionships between two different types of entities. On bipartite
graphs, maximum biclique search is a fundamental problem
that aims to find the complete bipartite subgraph (biclique)
with the maximum number of edges and is widely adopted for
many applications such as anomaly detection in E-commerce and
social network analysis. However, maximum biclique search only
identifies the biclique whose size is globally maximum, whereas
fast microscopic (personalized) analysis is needed in many real-
world scenarios. For instance, when a suspected user is identified
in an E-commerce network (e.g., a user-product network), it
is important to quickly find the anomalous group containing
the user and send the group of users for further human
expert investigation. To fill this research gap, for the first time,
we study the efficient personalized maximum biclique search
problem, which aims to find the maximum biclique containing a
specific query vertex in real-time. Apart from online computation
algorithms, we explore index-based approaches and propose the
PMBC-Index. With the PMBC-Index, the query algorithm is up
to five orders of magnitude faster than the baseline algorithms.
Furthermore, effective pruning strategies and parallelization
techniques are devised to support efficient index construction.
Extensive experiments on 10 real-world graphs validate both the
effectiveness and the efficiency of our proposed techniques.

I. INTRODUCTION

Bipartite graphs are naturally used to model relationships
between two different types of entities, such as user-product
[1], author-paper [2] and user-page [3]. On bipartite graphs,
a maximum biclique [4] is the complete bipartite subgraph
(biclique) with the maximum number of edges. It has been
demonstrated to be useful in many applications such as
anomaly detection [3], [5], gene expression analysis [6]–[8]
and social recommendation [5], [7], [9]. Consequently, given
a bipartite graph G(V =(U,L), E), maximum biclique search
(i.e., finding the maximum biclique C∗ in G) is a popular
research problem [5], [10]–[13]. Notably, it has been studied
by the Alibaba Group and the techniques has been utilized
on their anomaly detection system recently [5]. In addition,
to provide the users with more flexibility to control the size
of each layer of the biclique or avoid returning a too skewed
biclique, size constraints τU and τL are imposed on each layer
of C∗ (i.e., |U(C∗)| ≥ τU and |L(C∗)| ≥ τL) in maximum
biclique search [5]. However, maximum biclique search only
finds the biclique with the globally maximum size, while
fast microscopic (personalized) analysis is required in many
real-world scenarios. For instance, when a suspected user is
identified in a user-product network, it is important to find
the anomalous group of this suspected user and report the
group of users to human experts for further investigation. In
such cases, the result returned by maximum biclique search

may not include the suspected user and the user’s distinctive
anomalous group. Moreover, as pointed out by the Seattle Re-
port [14], “high latency reduces the rate at which users make
observations”. Thus, the response efficiency when handling
such cases is also critical.

u1 u2 u3 u4

v1 v2 v3

u5

v4

u6

v5

u7

v6

Fig. 1: A user-product network

To fill the above-mentioned research gap, for the first
time, we study the efficient personalized maximum biclique
search problem, which aims to find the maximum biclique
containing a query vertex in real time. Specifically, given a
bipartite graph G, a query vertex q, and size constraints τU
and τL, we aim to find the personalized maximum biclique
CqτU ,τL that satisfies q ∈ CqτU ,τL , |U(CqτU ,τL)| ≥ τU and
|L(CqτU ,τL)| ≥ τL, with the maximum number of edges.
Consider the user-product network in Figure 1. We can find
Cu1

1,1 (i.e., the subgraph induced by {u1, u2, u3, u4, v1, v2, v3}
in red) for the query q = u1, τU = 1, τL = 1 and Cu7

1,1 (i.e.,
the subgraph induced by {u5, u6, v7, v4, v5, v6} in blue) for
the query q = u7, τU = 1, τL = 1.
Applications. Efficiently finding personalized maximum bi-
cliques has many real-world applications. One typical applica-
tion is anomaly detection in many scenarios including finance,
insurance and online shopping networks. For instance, on E-
commerce platforms like eBay, Alibaba, and Amazon, user-
product bipartite networks are prevalent [1] where each edge
represents an interaction between a user and a product. On
these platforms, the popularity of a product is heavily influ-
enced by its ratings, reviews and previous sales numbers [15].
This phenomenon motivates many store-owners to mislead
their users by providing fake ratings, reviews or transactions.
As studied in the literature, these malicious users and the
products they promote often form a closely-connected group,
which is very likely to be a maximum biclique [5]. In addition,
nowadays, many fraud detection techniques require a query
seed (i.e., a confirmed risky account) as the input [3], [16],
[17], where the seeds can be obtained by user reporting or

other security mechanisms (e.g. monitoring accounts that make
a large number of fake transactions within a short time period).
When a seed is detected for any reason, other users in the
personalized maximum biclique of this seed become highly
suspicious and should be investigated by a human expert.
Consider the example in Figure 1. If user u1 is identified as a
seed (i.e., a suspicious user), the system manager can perform
personalized maximum biclique search and should thus check
whether users u2, u3 and u4 are also anomalies.

Personalized maximum biclique search can also be useful in
many other application scenarios such as customized recom-
mendation in user-movie networks (to find users with similar
taste) [9] and gene expression analysis in gene-condition
bipartite networks (to identify the group of genes that exhibit
similar expression patterns) [6], [8].
Challenges. Although there exist a broad spectrum of ap-
plications, the problem itself is very challenging. Since the
maximum biclique search problem is NP-hard [5], the per-
sonalized maximum biclique search problem is naturally also
NP-hard. Given query parameters q, τU , and τL, it is observed
that the size of q’s personalized maximum biclique in G is
equal to the size of the maximum biclique in Hq , where Hq
is the subgraph induced by the one-hop and two-hop neighbors
of q. Based on this fact, an online computation algorithm
PMBC-OL can be designed which first shrinks the search
space by obtaining Hq . Then, the state-of-the-art algorithm
[5] for maximum biclique search is performed on Hq to find
the result. Although PMBC-OL can be finished in reasonable
time in many cases, this totally online computation approach
cannot satisfy the real-time requirements in many scenarios
where queries are frequently posted and responses are quickly
needed. As a result, we resort to index-based solutions to
solve the personalized maximum biclique search problem
in a more efficient way. In this problem, a straightforward
index can be built by enumerating all q, τU , τL combinations
and obtaining all the personalized maximum bicliques using
PMBC-OL. This idea is clearly impractical since for a query
vertex q ∈ U(G), the valid τU and τL values can reach deg(q)
and maxu∈N(q) deg(u), respectively. Here deg(q) denotes the
degree of a vertex q, and N(q) denotes the neighbor set of
q. Thus, it is cost-prohibitive to compute the results of all
combinations of q, τU , and, τL values. To make the ideas
of indexing practical, we need to address the following main
challenges:

• Challenge 1. How to design a size-bounded index which
allows both efficient construction and query processing.

• Challenge 2. How to further reduce the indexing time via
cost-sharing and optimization techniques.

Our approaches. To address Challenge 1, we propose the
PMBC-Index by refining unique personalized maximum bi-
cliques. The fundamental insight underlying the PMBC-Index
is that each unique personalized maximum biclique of a vertex
v can cover the result of multiple query combinations. Based
on this observation, the PMBC-Index can be built by taking
the coverage scope of each personalized maximum biclique

into consideration and identifying the critical τU , τL combina-
tions (which need to be computed with PMBC-OL) for each
vertex. In this manner, it can be built without examining all
combinations of q, τU , and τL values. Such an index can also
support efficient query processing with a bounded size.

To address Challenge 2, we propose further optimizations
for the PMBC-Index construction. Firstly, we explore cost-
sharing among the construction process of different vertices
based on the fact that queries for different vertices can
lead to the same personalized maximum biclique. Secondly,
since the construction process need to invoke PMBC-OL to
compute each personalized maximum biclique, we propose
upper bounding techniques to further accelerate PMBC-OL.
Additionally, by leveraging the advantages of multi-core archi-
tecture, shared-memory parallelization techniques are devised
to achieve a significant speedup.
Contributions. Our principal contributions are as follows:
• The First Work to Study Personalized Maximum Biclique

Search. To the extent of our knowledge, this is the first
work to study this important problem on bipartite graphs.
Although the problem is NP-hard, we aim to devise
solutions to efficiently answer a user query in practice.

• A Light-weight Index Structure with Bounded Index Size.
We propose a light-weight PMBC-Index which allows
for both efficient construction and query processing.
As evaluated in our experiments, our index-based al-
gorithm is up to five orders of magnitude faster than
the baseline algorithms. Additionally, we theoretically
prove that the index-based query can be answered within
O(deg(q)+ |CqτU ,τL |) time and the index size is bounded
by O(

∑
q∈V (G) deg(q) · (deg(q) + maxu∈N(q) deg(u))),

with it being much smaller in practice.
• Effective Techniques for Efficient Index Construction. We

study how to efficiently construct the PMBC-Index by
exploring the relations of results with different combina-
tions of parameters. Effective optimization techniques are
proposed by exploring cost-sharing among vertices and
upper bounds. In addition, a significant speedup ratio can
be achieved by utilizing our parallelization techniques.

• Extensive Empirical Studies on Real-world Graphs. We
conduct comprehensive experimental evaluations on 10
real-world bipartite graphs. Experimental results validate
both the effectiveness and efficiency of our query algo-
rithms and indexing techniques.

Organization. The rest of the paper is organized as follows.
Section II reviews the related work. Section III presents the
problem definition. Section IV introduces the background and
baselines. Section V presents the PMBC-Index for efficient
personalized maximum biclique search. Section VI introduces
the index construction techniques. Section VII reports the
experimental results. Section VIII concludes the paper.

II. RELATED WORK

In this section, we review the related works on finding
bicliques in the literature, including maximum biclique search
and maximal biclique enumeration.

Maximum Biclique Search. The maximum (edge) biclique
search problem aims to find the biclique with the maximum
number of edges, which is the most relevant to our problem
since they both aim to maximize the number of edges in a
biclique. In the literature, integer programming based methods
are proposed for both bipartite [11], [12] and general graphs
[18] but they are not scalable to large graphs. [10] presents
a probabilistic algorithm based on subspace clustering, which
can find the optimal solution with a fixed probability. Recently,
a practically efficient exact algorithm is proposed in [5], which
adopts a progressive bounding framework to gradually adjust
the search space for the optimal solution.

Existing works also have other different ways of defining
“maximum”, notably the maximum balanced biclique (MBB)
and maximum vertex biclique (MVB). The MVB problem
aims to maximize the number of vertices in a biclique and
is polynomial-time solvable via reduction to the integer linear
programming problem or the maximum matching problem [4].

The MBB problem aims to find the largest biclique with
an equal number of vertices in each layer which is NP-
hard [4]. Due to its hardness, most solutions are heuristic
algorithms [19], [20] that reduce the problem to an instance
of the maximum balanced independent set problem on the
complement bipartite graph by devising vertex deletion rules.
Also, the local-search-based [20], [21], the swap-based [22],
and the tube-search-based [23] approaches are not guaranteed
to find the optimal solution. Few exact algorithms are proposed
to solve the MBB problem. [24] adopts a branch-and-bound
framework with upper-bound-based pruning and [25] further
tightens the upper bounds. Recently, [26] presents a near
polynomial-time algorithm to solve the MBB problem on large
bipartite graphs. Large sparse bipartite graphs are treated as
a collection of size-restricted dense subgraphs to improve the
efficiency of the algorithm.
Maximal Biclique Enumeration. A biclique is maximal if it
is not contained in any other bicliques. Given a bipartite
graph, enumerating all maximal bicliques is a fundamental
problem (hereafter denoted as MBE). Since the number of
maximal bicliques can be exponential to the graph size, the
MBE problem cannot be solved in polynomial time [27], [28].
Most works devoted to the MBE problem focus on exhaustive
search [28]–[31]. [28] proposes a consensus algorithm (MICA)
that initializes a set of bicliques and iteratively applies trans-
formations to them to find the maximal bicliques. [29] uses
a divide-and-conquer approach (MineLMBC) and exploits the
size constraints to efficiently prune the non-maximal or du-
plicate biclique. [31] improves upon MineLMBC by reduction
techniques and proposes the FMBE algorithm. [30] adopts a
branch and bound framework with backtracking (iMBEA) to
limit the search space for maximal bicliques. Another class of
algorithms for MBE rely on graph inflation [32], [33], which
adds edges to the bipartite graph and then applies maximal
clique enumeration algorithms. There are also attempts to
reduce the MBE problem to the classic frequent closed itemset
mining problem [34]–[38]. In addition, [31] studies parallel
algorithms for MBE and [39] proposes a change-sensitive

algorithm to maintain the maximal bicliques on dynamic
bipartite graphs. However, the techniques proposed in the
above works cannot be directly used to solve our problem since
they do not focus on finding personalized maximum bicliques.

III. PROBLEM DEFINITION

In this section, we formally introduce the notation and
definitions. Mathematical notations used throughout this paper
are summarized in Table I.

TABLE I: The summary of notations
Notation Definition

G a bipartite graph
V (G)/E(G) the vertex/edge set of G
U(G)/L(G) the upper/lower layer of G

|G| the size of G = |E(G)|
u, v, q a vertex in a bipartite graph
(u, v), e an edge in a bipartite graph
N(u) the set of neighbors of u
deg(u) the degree of u
Hq the two-hop subgraph of q in G
C,C∗ a biclique
τU , τL size constraints of bicliques
CqτU ,τL a personalized maximum biclique of q

Tq the search tree of q in the PMBC-Index
N a tree node in a search tree
A the biclique array of the PMBC-Index
n,m the number of vertices and edges in G (m > n)

Our problem is defined over an undirected, unweighted
bipartite graph G(V =(U,L), E), where U(G) denotes the
set of vertices in the upper layer, L(G) denotes the set
of vertices in the lower layer (U(G) ∩ L(G) = ∅) and
V (G) = U(G) ∪ L(G) denotes the vertex set. E(G) denotes
the edge set. An edge e between two vertices u and v in G
is denoted as (u, v) or (v, u). We use n and m to denote the
number of vertices and edges in G respectively and we assume
each vertex has at least one incident edge. The size of G is
denoted as |G| = |E(G)|. The set of neighbors of a vertex u
in G is denoted as N(u) = {v ∈ V (G) | (u, v) ∈ E(G)}, and
the degree of u is denoted as deg(u) = |N(u)|.

Before formally defining the problem, we introduce the
following critical concepts.

Definition 1 (Biclique). Given a bipartite graph G, a biclique
C in G is a complete bipartite subgraph (i.e., for each pair
of vertices u ∈ U(C) and v ∈ L(C), (u, v) ∈ E(C)). We
also call a biclique with |U(C)| = a and |L(C)| = b an
(a× b)-biclique.

Definition 2 (Maximum Biclique [5]). Given a bipartite graph
G, and a pair of integers τU and τL, a biclique CτU ,τL is the
maximum biclique in G if |U(CτU ,τL)| ≥ τU , |L(CτU ,τL)| ≥
τL, and |CτU ,τL | is maximized.

In this paper, we aim to find the biclique with the maximum
size containing a query vertex. In addition, size constraints can
provide the users with more flexibility to control the size of
each layer of the biclique [5]. Now we define the personalized
maximum biclique as following.

(b) 𝐶𝜏𝑈,𝜏𝐿
𝑞

with 𝑞 = 𝑢1, 𝜏𝑈 = 1, 𝜏𝐿 = 1 (c) 𝐶𝜏𝑈,𝜏𝐿
𝑞

with 𝑞 = 𝑢1, 𝜏𝑈 = 5, 𝜏𝐿 = 1 (d) 𝐶𝜏𝑈,𝜏𝐿
𝑞

with 𝑞 = 𝑢7, 𝜏𝑈 = 1, 𝜏𝐿 = 1

u1 u2 u3 u4

v1 v2 v3

U(G)

L(G)

u5

v4

u6

v5

(a) A bipartite graph G

u7

v6

u1 u2 u3 u4

v1 v2 v3

u5

v4

u6

v5

u7

v6

u1 u2 u3 u4

v1 v2 v3

u5

v4

u6

v5

u7

v6

u1 u2 u3 u4

v1 v2 v3

u5

v4

u6

v5

u7

v6

Fig. 2: A bipartite graph G and personalized maximum bicliques in G

Definition 3 (Personalized Maximum Biclique). Given a
bipartite graph G, a query vertex q, and a pair of integers τU
and τL, a biclique CqτU ,τL in G is the personalized maximum
biclique if q ∈ CqτU ,τL , |U(CqτU ,τL)| ≥ τU , |L(CqτU ,τL)| ≥ τL,
and |CqτU ,τL | is maximized.

Problem Statement. Given a bipartite graph G, a query vertex
q, and a pair of integers τU and τL, the personalized maxi-
mum biclique search problem aims to find the personalized
maximum biclique CqτU ,τL in G.

Example 1. Considering the bipartite graph G in Figure
2(a), we show three examples of personalized maximum bi-
cliques in Figures 2(b)-(d). As shown in Figure 2(b), when
performing the search with q = u1, τU = 1 and τL = 1 on
G, the returned personalized maximum biclique Cu1

1,1 is the
subgraph induced by {u1, u2, u3, u4, v1, v2, v3}. In addition,
Cu1

5,1 is the subgraph induced by {u1, u2, u3, u4, u5, v1, v2} as
shown in Figure 2(c), and Cu7

1,1 is the subgraph induced by
{u5, u6, u7, v4, v5, v6} as shown in Figure 2(d).

IV. BACKGROUND AND BASELINE SOLUTIONS

Background and the online algorithm PMBC-OL. As dis-
cussed in Section II, the maximum (edge) biclique search and
maximal biclique enumeration problems are highly related to
our problem. Notably, the state-of-the-art maximum (edge)
biclique search algorithm in [5] follows a branch&bound
paradigm, which is adapted from the maximal biclique enu-
meration algorithm in [30] and prunes branches not leading
to the maximum biclique. Since we aim to obtain the person-
alized maximum biclique of a query vertex, it is intuitive to
design an approach which can firstly shrink the search space
according to the query vertex and then apply the state-of-the-
art maximum biclique search algorithm in [5].

To propose an efficient online algorithm, we first introduce
the following basic concepts.

Definition 4 (Two-hop Subgraph). Given a bipartite graph
G and a query vertex q, the two-hop subgraph of q, de-
noted by Hq , is the subgraph induced by the vertices in
N(q)

⋃
∀v∈N(q)N(v) (i.e., the one-hop and two-hop neigh-

bors of q).

Based on Definition 2 and Definition 4, it is immediate
that the personalized maximum biclique CqτU ,τL must be a
subgraph of the two-hop subgraph of q (i.e., CqτU ,τL ⊆ Hq).
In addition, the following lemma can be derived.

Lemma 1. Given a bipartite graph G, a query vertex q, and
size constraints τU and τL, |CqτU ,τL | = |C

∗|, where CqτU ,τL is
the personalized maximum biclique in G, and C∗ denotes the
maximum biclique in Hq .

Proof. (1) |CqτU ,τL | ≤ |C
∗|. According to Definition 2, for

any biclique C with |U(C)| ≥ τU and |L(C)| ≥ τL in Hq ,
|C| ≤ |C∗|. Then, |CqτU ,τL | ≤ |C

∗| is obvious; (2) |C∗| ≤
|CqτU ,τL |. According to Definition 4, it is easy to see that q ∈
C∗ (otherwise, C∗ ∪ q will be a larger biclique). Then, based
on Definition 3, we have |C∗| ≤ |CqτU ,τL |. Combining (1) and
(2), we have |CqτU ,τL | = |C

∗|, and this lemma holds.

Based on Lemma 1, computing the personalized maximum
biclique of q is equivalent to compute the maximum biclique
in Hq . Thus, we propose the online computation algorithm
PMBC-OL to retrieve the personalized maximum biclique
as shown in Algorithm 1. Firstly, we obtain the two-hop
subgraph Hq of q (Line 1). Then, we perform the state-of-
the-art maximum biclique search algorithm [5] to obtain the
maximum biclique in Hq . A progressive bounding framework
is adopted that iteratively adjusts the search space for CqτU ,τL .
It starts with a sub-optimal solution C∗0 obtained using a
greedy strategy. Specifically, it first initializes C∗0 as {q} and
then iteratively adds a vertex from V (G) that maximizes
|C∗0 |. In each iteration, the search space for CqτU ,τL (bounded
by τk+1

U and τk+1
L) is updated such that the algorithm is

guaranteed to finish within logarithmic iterations (Lines 4 -
5). In addition, the procedure Branch&Bound is invoked
to calculate the maximum biclique subject to size constraints
τk+1
U and τk+1

L . Branch&Bound takes in four disjoint ver-
tex sets (P,W,RW , XW) and a sub-optimal solution C∗ as
parameters. P and W represent the upper and lower vertices
of the current largest biclique found, respectively. RW includes
all the candidate lower vertices that can be added to W , and
XW contains all the lower vertices that cannot be in the
maximum biclique. The procedure Branch&Bound explores
each vertex v∗ in RW to find possible larger bicliques which
satisfy the size constraints, and the four vertex sets are updated
accordingly (Lines 14 - 20). Note that v∗ is added to XW

at the end of each iteration (Line 21). PMBC-OL also uses
the following pruning strategies proposed in [5] to accelerate
the Branch&Bound procedure. (1) Using one-hop (degree-
based) and two-hop (wedge-based) reductions to prune invalid
vertices before running Branch&Bound (Line 6); (2) Pruning
non-maximal bicliques when running Branch&Bound. Note

that the time complexity of PMBC-OL is the same as the
complexity of the algorithm proposed in [5].

Algorithm 1: PMBC-OL
Input: G, q, τU , τL, C∗0 : a biclique found by the greedy

approach
Output: CqτU ,τL

1 Hq ← the two-hop subgraph of q;
2 k ← 0; τ0L ← the maximum degree of upper vertices in Hq;
3 while τkL > τL do
4 τk+1

U ← max(b |C
∗
k |
τk
L

c, τU);

5 τk+1
L ← max(b τ

k
L
2
c, τL);

6 H∗q ← the maximum biclique preserved subgraph of Hq;
7 C∗k+1 ←

Branch&Bound(U(H∗q), ∅, L(H∗q), ∅, C∗k , τk+1
U , τk+1

L);
8 k ← k + 1;
9 return C∗k ;

10 Procedure Branch&Bound(P , W , RW , XW , C∗, τU , τL);
11 if |P | ≥ τU and |W | ≥ τL and |P | × |W | > |C∗| then
12 C∗ ← the biclique induced by P and W ;
13 while RW 6= ∅ do
14 v∗ ← RW .pop();
15 P ′ ← {u ∈ P |(u, v∗) ∈ E(Hq)};
16 W ′ ←W ∪ {v∗} ∪ {v ∈ RW |P ′ ⊆ N(v,Hq)};
17 R′W ← {v ∈ RW \W ′| |N(v,Hq) ∩ P ′| ≥ τP };
18 X ′W ← {v ∈ XW | |N(v,Hq) ∩ P ′| ≥ τU};
19 if P ′, W ′, R′W and X ′W can lead to a biclique larger

than C∗ then
20 Branch&Bound(P ′,W ′, R′W , X

′
W , C

∗);
21 XW ← XW ∪ {v∗};
22 return C∗;

Basic index-based approaches. Due to the NP-hardness of the
problem, the online computation algorithm cannot efficiently
answer queries which require fast responses. Thus, index-
based approaches are essential for this problem since an index
can be built offline to reduce the costs of online queries.
Straightforwardly, we can construct a basic index structure by
computing all valid personalized maximum biclique searches
with PMBC-OL and storing the results. In this manner, the
query can be efficiently answered by directly returning the
desired biclique. However, the scalability of such index is
limited in practice since the combinations of q, τU , τL can
reach O(n3) in the worst case. A simple observation is that
given a specific vertex q, if we change τL by fixing τU ,
CqτU ,τL remains the same biclique in a fixed region. Based
on this observation, we can use binary search to decide the
boundary of the region and skip computing some τU , τL
combinations. However, it still incurs a large number of
computations of q, τU , τL combinations and brings additional
verification costs. As a result, our objective in this paper is
to design a practical index which can be constructed without
enumerating numerous q, τU , τL combinations and can support
efficient query processing.

V. THE PMBC-Index

In this section we propose a novel index structure, the
Personalized Maximum BiClique Index (PMBC-Index) which

(3, 4)
∅

(6, 1)

∅

(5, 3)

∅

(1, 4) 𝐶2
∗=(2 × 4)

𝐶1
∗ 𝐶2

∗ 𝐶3
∗ 𝐶4

∗ … …

The array 𝒜

(1, 6)
∅

(2, 5)
∅

(1, 1) 𝐶1
∗=(4 × 3)

𝐶3
∗=(5 × 2)(5, 1)

(1, 5) 𝐶4
∗=(1 × 5)

1

4

2 3

Fig. 3: The search tree Tu1 of u1 and the array A

5

6

4

3

2

1 2 3 4 5 6
(5,1)

(1, 4)

(1, 1)

(1, 5)

𝐶1
∗

𝐶2
∗

𝐶4
∗

𝐶3
∗

1

4

2

3

Fig. 4: Illustrating the rationale of the PMBC-Index

can enable both efficient index construction and query pro-
cessing. The fundamental insight underlying the PMBC-Index
is that given a vertex q, each personalized maximum biclique
of q can be the result of multiple q, τU , τL combinations. By
identifying the coverage scope of each personalized maximum
biclique, we can build the index by only considering these
critical combinations.
The structure of the PMBC-Index. The PMBC-Index consists
of two parts: (1) the forest T which contains a set of search
trees, and (2) the array A which contains a set of personalized
maximum bicliques. In the forest T , a search tree Tq is built
for each vertex q . For example, Figure 3 shows the search
tree Tu1 of u1 derived from the bipartite graph G in Figure 2.
Each tree node N ∈ Tq contains the following information:
• two integers τU and τL;
• a pointer pc which points to the address of CqτU ,τL in A;
• two pointers pl and pr which point to N ′s children in
Tq .

Specifically, the root node of Tq stores two integers τU = 1
and τL = 1, and the address of Cq1,1 in A. In addition, a tree
node N ′ ∈ Tq is a child of another node N if it satisfies one
of the following two conditions:

τ ′U = |U(CqτU ,τL)|+ 1, τ ′L = τL; (1)

τ ′U = τU , τ
′
L = |L(CqτU ,τL)|+ 1. (2)

Here τ ′U (τ ′L) =N ′.τU (N ′.τL) and τU (τL) =N .τU (N .τL),
respectively. Note that we store the pointer pc instead of the
entire personalized maximum biclique (i.e, CqτU ,τL) in a tree
node. This is because multiple query vertices may share the
same instance of a personalized maximum biclique, meaning
significant savings in space. For example, the result of queries

q = u1, τU = 1, τL = 1 and q = v1, τU = 1, τL = 1 are both
the (4× 3)-biclique in Figure 2(b).

Example 2. Consider the bipartite graph G in Figure 2.
Figure 3 shows the search tree of u1 and a part of the array
A. We can see that Tu1 organizes four personalized maximum
bicliques of u1 with different τU and τL. Note that A also
contains other personalized maximum bicliques in G such as
Cu7

1,1 in Figure 2(d), we omit them due to the short of space.

The Rationale of the PMBC-Index. In this part, we show the
rationale of the PMBC-Index with the following lemmas.

Lemma 2. Given a bipartite graph G and a query vertex q,
we have |CqτU ,τL | ≥ |C

q
τ ′U ,τ

′
L
| if τU ≤ τ ′U and τL ≤ τ ′L.

Proof. We prove this lemma by contradiction. Given τU ≤ τ ′U
and τL ≤ τ ′L, suppose |CqτU ,τL | < |C

q
τ ′U ,τ

′
L
|. Then, according

to Definition 3, CqτU ,τL should be replaced by Cqτ ′U ,τ ′L
since

τU ≤ τ ′U and τL ≤ τ ′L. Therefore, this lemma holds.

Lemma 3. Given a bipartite graph G and a query vertex q,
|CqτU ,τL | = |C

q
τ ′U ,τ

′
L
| if τU ≤ τ ′U ≤ |U(CqτU ,τL)| and τL ≤

τ ′L ≤ |L(CqτU ,τL)|.

Proof. This lemma directly follows Lemma 2.

Lemma 4. Given a bipartite graph G, a query vertex q, and
two pairs of integers (τU , τL), (τ ′U , τ ′L) where τU ≤ τ ′U and
τL ≤ τ ′L. If |CqτU ,τL | 6= |C

q
τ ′U ,τ

′
L
|, one of the following two

conditions must hold: (1) τ ′U ≥ |U(CqτU ,τL)|+1 and τ ′L ≥ τL;
or (2) τ ′U ≥ τU and τ ′L ≥ |L(CqτU ,τL)|+ 1.

Proof. This lemma follows Lemma 2 and Lemma 3.

Lemma 2 and Lemma 3 illustrate the intuition behind
PMBC-Index as we know that the size of personalized maxi-
mum bicliques can only increase as the parameters τU and τL
decrease and multiple (τU , τL) combinations may lead to the
same personalized maximum biclique. For example, consider
the search tree of u1 in Figure 3. We illustrate the idea of
our indexing techniques in Figure 4. In this example, the
personalized maximum biclique of q = u1, τU = 1, τL = 1 is
a (4× 3)-biclique. Thus, for the query vertex u1, the answer
of any query size constraints (τ ′U , τ ′L) dominated by (4, 3)
(i.e., τ ′U ≤ 4 and τ ′L ≤ 3) is the (4 × 3)-biclique C∗1 as
illustrated in Figure 4. On the other hand, there must exist no
personalized maximum bicliques of u1 with size large than
4 × 3 since τU = 1, τL = 1. As shown in Figure 4, to cover
the rest of the solution spaces where there may exist a new
personalized maximum biclique, we continue searching with
parameters (τU = 5, τL = 1) and (τU = 1, τL = 4) according
to Lemma 4. Finally, all the valid solution spaces are covered
by personalized maximum bicliques as shown in Figure 4.
Queries on the PMBC-Index. Given a query vertex q, size
constraints τU and τL, Algorithm 2 illustrates the query
process of the personalized maximum biclique (i.e., CqτU ,τL)
based on the PMBC-Index. We start from the root of Tq and
use N to denote the current processing tree node (Line 2).
Utilizing the address stored in N .pc, we verify the size of the

Algorithm 2: PMBC-IQ
Input: G, q, τU , τL, T , A
Output: CqτU ,τL

1 CqτU ,τL ← ∅;
2 N ← Tq.root;
3 while N is not null do
4 if |U(A[N .pc])| ≥ τU and |L(A[N .pc])| ≥ τL then
5 CqτU ,τL ← A[N .pc];
6 return;
7 foreach child N ′ of N in Tq do
8 if N ′.τU ≤ τU and N ′.τL ≤ τL then
9 N ← N ′;

10 break;
11 return CqτU ,τL ;

personalized maximum biclique C∗ = A[N .pc]. If it satisfies
that |U(C∗)| ≥ τU and |L(C∗)| ≥ τL, we return C∗ as the
result. Note that we only need to use the size of C∗ to do
the verification and retrieve the entire personalized maximum
biclique only if it satisfies the size constraints. Otherwise, we
process the child N ′ of N which satisfies N ′.τU ≤ τU and
N ′.τL ≤ τL to find the result in the next level of the search
tree. We return empty if no valid result can be found from the
search tree.

Example 3. Consider the bipartite graph G in Figure 2. We
show how to find the personalized maximum biclique for q =
u1, τU = 2, τL = 4 based on the search tree Tu1

of u1 in
Figure 3. Firstly, we obtain the root node of Tu1 and verify
the size of Cu1

1,1 (which is denoted as C∗1 in Figure 3). Since
|L(C∗1)| = 3 < τL = 4, C∗1 cannot be the result. Then, we
check the children of the root node and continue searching
the child with N ′.τU = 1,N ′.τL = 4. We find that C∗2 is a
(2 × 4)-biclique which satisfies the query constraints. Thus,
we return C∗2 as the result.

Analysis of the PMBC-Index. In this part, we provide theo-
retical analysis of the PMBC-Index.

Theorem 1. Given a bipartite graph G, a query vertex q, and
a pair of integers τU and τL, Algorithm 2 correctly computes
CqτU ,τL based on the PMBC-Index of G.

Proof. According to Lemma 2, in each level of the search tree
Tq , the size of the personalized maximum biclique in the next
level is no larger than the size of the personalized maximum
biclique in the current level. Thus, we can return the first
personalized maximum biclique found in Tq that satisfies the
size constraints. In addition, according to Lemma 4, each valid
combination of τU and τL which can lead to a personalized
maximum biclique is covered by the PMBC-Index. Therefore,
this theorem holds.

Lemma 5. Given a bipartite graph G and a vertex q, the
number of tree nodes in Tq is O(deg(q)).

Proof. In the search tree Tq of q, each tree node contains
two distinctive size constraints τU and τL. Thus we only need
to prove that there exists at most O(deg(q)) combinations of

(τU , τL) in Tq . According to the structure of the PMBC-Index,
the (τU , τL) combination in non-leaf nodes should lead to
a distinctive personalized maximum biclique of q. Without
loss of generality, we suppose q is an upper layer vertex (i.e.,
q ∈ U(G)). Since q has deg(q) neighbors, according to the
definition of the personalized maximum biclique, there exist
at most deg(q) distinctive personalized maximum bicliques
where the number of their lower layer vertices is chosen from
[1, deg(q)]. Thus, the number of non-leaf nodes is O(deg(q)).
In addition, since each non-leaf node has at most 2 children,
the number of leaf nodes is also bounded by O(deg(q)).
Therefore, the number of tree nodes in Tq is O(deg(q)), and
this lemma holds.

Theorem 2. Given a bipartite graph G and a query vertex q,
Algorithm 2 computes CqτU ,τL in O(deg(q) + |CqτU ,τL |) time.

Proof. The first term of the time complexity is for traversing
the search tree, and the second term is for retrieving the
personalized maximum biclique from the tree node. As the
second term is obvious we only need to prove the first term.
In each level of the search tree Tq , we only need to choose
one child to proceed based on Lemma 4, and each tree node
will not be processed more than one time. Thus, according to
Lemma 5, the total number of tree nodes we need to traverse
is bounded by O(deg(q)). In addition, according to Algorithm
2, we only need O(1) time to examine the size constraints in
each tree node and retrieve the entire personalized maximum
biclique only once. Therefore, this theorem holds.

Theorem 3. Given a bipartite graph G, storing the PMBC-
Index T of G needs O(

∑
q∈V (G) deg(q) · |Hq|) space. Here

Hq is the two-hop subgraph of q and O(|Hq|) = O(deg(q)+
maxv∈N(q) deg(v)).

Proof. According to Definition 3 and Definition 4, CqτU ,τL ⊆
Hq . Thus, the size of each personalized maximum biclique of
q is bounded by O(|Hq|). Since each tree node of the search
tree Tq contains at most one personalized maximum biclique,
according to Lemma 5, this theorem holds.

VI. CONSTRUCTION OF THE PMBC-Index

In this section, we present our techniques for constructing
the PMBC-Index.

A. The Main Framework

Given a bipartite graph G, the main process of constructing
the PMBC-Index is to build the search tree for each vertex q
(i.e., Tq) along with the array A which stores the correspond-
ing personalized maximum bicliques. When computing the
tree nodes of Tq , we need to retrieve personalized maximum
bicliques under different thresholds τU and τL. Given two
nodes N and N ′ ∈ Tq , we suppose N ′ is a child of N .
In addition, we denote N ′.τU (N ′.τL) as τ ′U (τ ′L) and N .τU
(N .τL) as τU (τL), respectively. From Lemma 2, we can get
that |Cqτ ′U ,τ ′L | ≤ |C

q
τU ,τL |. In other words, if we traverse the

search tree from the root to the leaves, the size of personalized
maximum bicliques (of the visited nodes) is non-increasing.

Algorithm 3: PMBC-IC
Input: G
Output: T , A

1 foreach vertex q ∈ V (G) do
2 create the root node N on Tq;
3 N .τU ← 1; N .τL ← 1;
4 Q← N ;
5 while Q is not empty do
6 N ← Q.pop();
7 C∗ ←a biclique found by the greedy approach;
8 PMBC-OL (G, q, N .τU , N .τL, C∗) with Lemma 6

applied;
9 if C∗ is not null then

10 if C∗ /∈ A then
11 store C∗ into A;
12 N .pc ← the address of C∗ in A;
13 create two children N ′ and N ′′ of N on Tq;
14 N .pl ← the address of N ′;
15 N .pr ← the address of N ′′;
16 N ′.τU ← |U(C∗)|+ 1;N ′.τL ← N .τL;
17 N ′′.τU ← N .τU ;N ′′.τL ← |L(C∗)|+ 1;
18 push N ′ and N ′′ into Q if the size constraints

are satisfied;
19 return T , A;

This observation uncovers an upper bound of |Cqτ ′U ,τ ′L | (of a
child node) from |CqτU ,τL | (of its parent). Note that for the tree
nodeN and its childN ′, we either have τ ′U = |U(CqτU ,τL)|+1,
or τ ′L = |L(CqτU ,τL)| + 1 according to Lemma 4. Thus, the
following lemma also holds.

Lemma 6. If τ ′U = |U(CqτU ,τL)| + 1, then |L(Cqτ ′U ,τ ′L)| <
|L(CqτU ,τL)|; If τ ′L = |L(CqτU ,τL)| + 1, then |U(Cqτ ′U ,τ ′L

)| <
|U(CqτU ,τL)|.

Proof. This lemma directly follows Lemma 2.

The details of the index construction algorithm PMBC-IC
are shown in Algorithm 3. For each vertex q ∈ V (G), we first
create the rootN of Tq and set bothN .τU andN .τL as 1 (lines
1-3). Then, we obtain the personalized maximum biclique C∗

using PMBC-OL. Note that the constraints in Lemma 6 are
applied when performing PMBC-OL for non-root nodes. If a
non-empty result is found and C∗ /∈ A, we store C∗ into A.
After that, we create two children of the current processing
node if they satisfy the size constraints (according to Lemma
2). We repeat this process until no valid tree node can be
created.

Example 4. Consider the bipartite graph G in Figure 2. We
illustrate how to create the search tree of u1 and (a part of) the
array A as shown in Figure 3. Firstly, we create the root node
N of Tu1

. We assign N .τU = 1 and N .τL = 1. Then, we use
PMBC-OL to find the personalized maximum biclique under
q = u1, τU = 1, τL = 1. We push the result (i.e., the 4 × 3-
biclique C∗1) into A and assign N .pc as the address of C∗1 in
A. Then, according to Lemma 4, we create the childrenN ′ and
N ′′. We then process each child and store their personalized
maximum bicliques (C∗2 and C∗3) into A. By iteratively running
this process, the search tree of u1 and the array A are built.

Theorem 4. Given a bipartite graph G, Algorithm 3 correctly
builds the PMBC-Index of G.

Proof. According to Algorithm 3 lines 1-4, each search tree
is processed and starts from the root node N with N .τU = 1
and N .τL = 1. For each tree node, its personalized maximum
biclique is correctly computed by PMBC-OL according to
Lemma 1. Then, based on Lemma 4, each child node is
correctly generated and each valid (τU , τL) combination of
the child node will be examined during the index construction
process. Therefore, Algorithm 3 builds the PMBC-Index of G
correctly.

Theorem 5. Given a bipartite graph G, the time complexity of
Algorithm 3 is O(

∑
q∈V (G) deg(q) · TC(PMBC-OL)), where

TC(PMBC-OL∗) denotes the time complexity of PMBC-OL.

Proof. In Algorithm 3, we run PMBC-OL to compute the
personalized maximum biclique for each tree node in the
search tree Tq . According to Lemma 5, the total number of
tree nodes in Tq is bounded by O(deg(q)). Therefore, this
theorem holds.

B. Cost-sharing across Different Search Trees

Utilizing the PMBC-IC algorithm, the PMBC-Index can be
correctly constructed. When we examine the algorithm, we
observe that in the process of computing a search tree (of
a vertex), its tree nodes may contain results from previously
built search trees. Naturally, we wish to use these previously
computed results to accelerate the construction of the current
search tree. We thus propose a light-weight auxiliary structure
to achieve this goal.
Preserving skyline maximal bicliques. Firstly, we give the
following lemma.

Lemma 7. Given two query vertices u and v, and a pair of
integers τU and τL, if a personalized maximum biclique C∗ of
u contains v and satisfies |U(C∗)| ≥ τU and |L(C∗)| ≥ τL,
then the personalized maximum biclique CvτU ,τL of the query
v, τU and τL must satisfy |CvτU ,τL | ≥ |C

∗| (i.e., |C∗| is the
lower bound of |CvτU ,τL |).

Proof. Suppose we have a |CvτU ,τL | < |C
∗|. However C∗

contains v which contradicts the fact that CvτU ,τL is the
personalized maximum biclique of v. Thus, |CvτU ,τL | ≥ |C

∗|,
and this lemma holds.

Based on Lemma 7, when constructing a search tree, it is
possible to utilize the previous results by storing the computed
personalized maximum bicliques. Specifically, we build an
inverted index S[v] for each vertex v, which stores a set of
IDs of bicliques containing the vertex v. To effectively achieve
this goal, S[v] only stores the skyline maximal bicliques of v,
which is defined as follows.

Definition 5 (Skyline Maximal Biclique). Given a bipartite
graph G, a vertex v and the auxiliary index S, a biclique
C is a skyline maximal biclique of v if there does not exist

any biclique C ′ ∈ S[v] s.t. |U(C ′)| ≥ |U(C)| and |L(C ′)| ≥
|L(C)|.

Using the inverted index S, we can provide a lower bound
result C∗ from the previous computed bicliques before running
PMBC-OL. In addition, we do not need to insert C∗ into A
again if C∗ is the final result after running PMBC-OL. Note
that the auxiliary index S is light-weight, as illustrated in the
following lemma.

Lemma 8. Given a bipartite graph G and a vertex v ∈ V (G),
|S[v]| ≤ deg(v), where |S[v]| is the number of elements in
S[v].

Proof. Without loss of generality, we suppose v ∈ U(G).
Since each biclique C ∈ S[v] is a skyline maximal biclique
containing v, |L(C)| ∈ [1, deg(v)]. According to Definition
5, there does not exist a biclique C ′ ∈ S[v] with |U(C ′)| ≥
|U(C)| and |L(C ′)| ≥ |L(C)|. Thus, for each |L(C)| value,
there can only exist one |U(C)| value accordingly. Therefore,
the number of elements in the auxiliary index S is at most
deg(v), and this lemma holds.

Algorithm 4: PMBC-IC∗

Input: G
Output: T , A

1 initialize S[v] as empty for each v ∈ V (G);
2 foreach vertex q ∈ V (G) do
3 run Algorithm 3 Lines 2 - 4;
4 while Q is not empty do
5 N ← Q.pop();
6 C∗ ←a biclique found by the greedy approach;
7 if there exists C ∈ S[q] s.t. |U(C)| ≥ N .τU and

|L(C)| ≥ N .τL and |C| ≥ |C∗|; then
8 C∗ ← C;
9 PMBC-OL (G, q, N .τU , N .τL, C∗) with Lemma 6

applied;
10 if C∗ is not null then
11 if C∗ /∈ A then
12 store C∗ into A;
13 foreach vertex v ∈ C∗ do
14 S[v].update(C∗);
15 run Algorithm 3 Lines 12 - 18;
16 return T , A;

The PMBC-IC∗ algorithm. Utilizing the above observations,
the details of the PMBC-IC∗ algorithm are shown in Algorithm
4. We first initialize S[v] as empty for each v ∈ V (G). Then,
for each vertex q ∈ V (G), we create the root of Tq and set
both τU and τL as 1. Before running PMBC-OL, we search
S[q] to obtain a lower bound result C∗. If C∗ is the final result,
we link the address of C∗ to N .pc, and C∗ does not need to
be inserted into A. Otherwise, we store C∗ into A and update
S according to Definition 5. After that, we create two children
of the current processing node and keep this process until no
valid tree node can be created. The time complexity of PMBC-
IC∗ is the same as the PMBC-IC algorithm since it only use
the additional light-weighted inverted index to provide cost-
sharing across different search trees.

Algorithm 5: PMBC-OL∗

Input: G, q, τU , τL, C∗0 : a biclique found by the greedy
approach

Output: CqτU ,τL
1 // the following three lines can be completed offline
2 compute zv for each vertex v ∈ V (G); //Lemma 9
3 compute

←
zu [i] = maxα∈[1,i] α · sa(u, α) for each vertex

u ∈ U(G) and i ∈ [1, deg(u)];
4 compute

→
zv [i] = maxβ∈[i,deg(u)] β · sb(u, β) for each vertex

v ∈ L(G) and i ∈ [1, deg(v)];
5 Hq ← the two-hop subgraph of q;
6 k ← 0; τ0L ← the maximum degree of upper vertices in Hq;
7 while τkL > τL do
8 τk+1

U ← max(b |C
∗
k |
τk
L

c, τU);

9 τk+1
L ← max(b τ

k
L
2
c, τL);

10 prune the vertex v ∈ V (Hq) with zv ≤ |C∗k |; //Lemma 9
11 H∗q ← the maximum biclique preserved subgraph of Hq;
12 C∗k+1 ←

Branch&Bound(U(H∗q), ∅, L(H∗q), ∅, C∗k , τk+1
U , τk+1

L);
13 k ← k + 1;
14 return C∗k ;
15 Procedure Branch&Bound(P , W , RW , XW , C∗, τU , τL);
16 run Algorithm 1 Lines 12 - 22, skip v∗ if

→
zv∗ [|W |] ≤ |C∗|

after Line 15, prune the vertex u ∈ P ′ with
←
zu [|P |] ≤ |C∗| in Line 16;

17 return C∗;

C. Upper Bounding Techniques for PMBC-OL

Since the index construction algorithms invoke PMBC-
OL to compute the personalized maximum bicliques, in this
subsection, we explore how to further accelerate PMBC-OL.
Note that PMBC-OL actually follows a branch&bound frame-
work. Under this framework, the bounding ability significantly
affects the performance of the algorithm. Thus, we propose
upper bounding techniques for improving PMBC-OL. We first
present the definition of (α, β)-core as follows.

Definition 6 ((α, β)-core). Given a bipartite graph G and
degree constraints α and β, a subgraph Rα,β is an (α, β)-
core of G if (1) deg(u,Rα,β) ≥ α for each u ∈ U(Rα,β) and
deg(v,Rα,β) ≥ β for each v ∈ L(Rα,β); (2) Rα,β is maximal
(i.e., any supergraph G′ ⊃ Rα,β is not an (α, β)-core).

Based on the degree constraints of (α, β)-core, obviously,
a (β × α)-biclique is also a subgraph of the (α, β)-core. This
observation is already used to prune some invalid vertices in
PMBC-OL (i.e., the one-hop reduction introduced in [5]). Here
we give the definition of α-/β-offsets and further derive a
lemma based on the definition.

Definition 7 (α-/β-offset). Given a vertex u ∈ U(G) and an α
value, its α-offset, denoted as sa(u, α), is the maximal β value
where u can be contained in an (α, β)-core. Symmetrically,
the β-offset sb(v, β) of v ∈ L(G) is the maximal α value
where v can be contained in an (α, β)-core.

Based on Definition 7, we define the upper bounds zu
and zv as follows. Given a vertex u ∈ U(G), zu =

maxα∈[1,deg(u)] α · sa(u, α). Similarly, given a vertex v ∈
L(G), zv = maxβ∈[1,deg(v)] β · sb(u, β). The following lemma
can then be derived.

Lemma 9. Given a vertex u ∈ U(G), for any biclique C
containing u, |C| ≤ zu. Similarly, given a vertex v ∈ L(G),
for any biclique C containing v, |C| ≤ zv .

Proof. Given a vertex u ∈ U(G), suppose it is contained
in a biclique C with size larger than zu (i.e., |U(C)| +
|L(C)| > zu). According to Definition 1 and Definition 6, a
(β×α)-biclique is a subgraph of the (α, β)-core. Additionally,
according to Definition 7, the maximum (α× β) value of the
(α, β)-core (and subsequent biclique) where u can exist is zu.
There thus exists a contradiction, and this lemma holds.

Example 5. Consider the bipartite graph G in Figure 2. The
upper bounds (zu for each vertex u ∈ U(G) and zv for each
vertex v ∈ L(G)) are shown in Figure 5. Taking u5 and v5 as
an example, we illustrate how to compute the upper bounds.
The α-offset for u5 regarding each α is shown in the right side
of Figure 2. Correspondingly, zu5 = 12 which is the maximal
α × α-offset value of u5. Similarly, zv5 = 12 which is the
maximal β × β-offset value of v5.

12

12

12

12

52 31 4
𝑧𝑢
u1 u2 u3 u4 u5

𝛼-offset
𝛼

𝛼 𝛼-offset

52 31 4
𝛽-offset

𝛽

𝛽 𝛽-offset

15 35 3

510 95

15 35 3

510 95

v1 v2 v3 v4 v5

12 12 12 12 10 10
u6 u7

v6
12 12 12 12 10𝑧𝑣

Fig. 5: Illustrating the upper bound

Lemma 9 uncovers the size constraints provided by the
(α, β)-core model that can be used to further prune invalid
vertices. Given a sub-optimal solution C∗, if zu ≤ |C∗| (or
zv ≤ |C∗|), then u ∈ U(G) (or v ∈ L(G)) does not exist in
a biclique with size larger than |C∗| and can be pruned. For
instance, suppose we perform the query with q = u1, τU = 1,
and τL = 1 on the bipartite graph G in Figure 2. If |C∗| = 10,
then vertices u6, u7, and v6 can be pruned in further iterations
since they cannot exist in a larger biclique. In addition, we
observe that the Branch&Bound procedure iteratively adds
one lower vertex v∗ ∈ L(G) to W as shown in Algorithm
1 Line 14 (i.e., |W | increments in each iteration). Thus, if
v∗ cannot belong to a larger biclique with more than |W |
lower vertices, we can skip adding v∗ into W ′. To utilize this
observation, for each vertex v ∈ L(G) and i ∈ [1, deg(v)], we
can pre-compute

→
zv [i] = maxβ∈[i,deg(v)] β · sb(v, β). Then,

we can prune the vertex v∗ if
→
zv∗ [|W |] ≤ |C∗|. In addition,

the number of upper vertices (|P |) in the current expanding bi-
clique is non-increasing as the number of iterations increases.
Thus, we can also compute

←
zu [i] = maxα∈[1,i] α · sa(u, α)

for each vertex u ∈ U(G) and i ∈ [1, deg(u)] to prune the
upper vertex u with

←
zu [|P |] ≤ |C∗|. Note that the α-/β-

offsets can be pre-computed in O(δ · m) time by using the
decomposition algorithm proposed in [40]. The arrays derived
from α-/β-offsets such as zv for each vertex v can be computed
in linear time. Here, δ is the maximal value where the (δ, δ)-
core is non-empty in a bipartite graph G, where δ is bounded
by
√
m.

Algorithm 5 details our improved baseline PMBC-OL∗

using the optimizations discussed above. Firstly, we compute
the auxiliary structures (which can be conducted offline). Then,
before running the Branch&Bound procedure, we prune
each vertex v ∈ Hq where zv ≤ |C∗k | (Line 10). In addition,
utilizing the arrays

←
z and

→
z , invalid upper and lower vertices

are also pruned when running the Branch&Bound procedure.
Note that in PMBC-OL∗, we skip checking whether the current
biclique is maximal since a non-maximal biclique is easily
discarded by the above (α, β)-core-based pruning strategies.

D. Shared-memory Parallelization

In PMBC-IC∗, the most time-consuming part is building the
search trees, which is actually an independent procedure for
each vertex in V (G). In other words, PMBC-IC∗ does not
need to update any data structures shared with other vertices
when building the search trees. This observation motivates us
to speed up Algorithm 4 with shared-memory parallelization
(i.e., handling different vertices simultaneously with multiple
threads). Since the array of bicliques A and the inverted index
S are shared by multiple vertices (i.e., threads), write conflicts
can occur when updating them. In other words, if several
threads try to add new elements into A or S simultaneously,
the size of the array will become ambiguous without handling
the conflicts. To solve this issue, we first give the following
lemma to estimate the sizes of these index structures.

Lemma 10. Given a bipartite graph G, the total num-
ber of personalized maximum bicliques in G is at most∑
v∈V (G) deg(v).

Proof. This lemma can be proved similarly as Lemma 5.

Based on the above lemma, the number of elements in A
is at most

∑
v∈V (G) deg(v). Thus, the space usage of A is at

most
∑
v∈V (G) deg(v) · size(C∗), where size(C∗) denotes the

maximal size of a personalized maximum biclique instance
which can be computed according to Theorem 3. In addition,
the space usage of S[q] is at most deg(q) · size(C∗) for each
vertex q ∈ V (G) (according to Lemma 8). Based on the
above facts, we can allocate enough memory to these arrays
before processing each vertex. After that, when adding a new
element into the array A or S, we only need to atomically
increase the value of an integer which represents the current
array size to allocate a location for this element. This atomic
addition can be implemented by the atomic fetch-and-add1

operation. Then, we can write the element into the allocated
location of the array without conflict. In this manner, we

1The fetch-and-add operation atomically adds a value to an existing value
at a specified memory location. This operation is directly supported by most
modern machines.

transform the atomic element writing operations into light-
weight atomic fetch-and-add operations. In addition, since the
workload for each vertex is different, we use the dynamic
scheduling strategy in OpenMP 2 to support workload balance.

We show details of the parallel index construction algorithm
in Algorithm 6. We first allocate enough memory for A and S
as discussed above (Lines 1-2). The values which represent the
number of elements in the arrays are initialized as zero (Line
3). Then, we process each vertex q ∈ V (G) the way same as in
Algorithm 4. Before running PMBC-OL∗, we search S[q] for
a lower bound result. Note that we need to atomically obtain
the size of S[q] to avoid conflicts. After running PMBC-OL∗,
we store C∗ into A and update S atomically. Since Algorithm
6 does not need additional heavy data structures to support
parallelization, the time complexity of Algorithm 6 (under the
one core environment) is the same as Algorithm 4. Note that
the techniques introduced in this subsection can also be used to
parallelize PMBC-IC and the basic index discussed in Section
IV in a similar way.

Algorithm 6: PMBC-IC∗ in parallel
Input: G
Output: T , A

1 allocate memory of size
∑
v∈V (G) deg(v) to A;

2 allocate memory of size deg(q) to S[q] for each q ∈ V (G);
3 zA ← 0; zS [q]← 0 for each q ∈ V (G);
4 foreach q ∈ V (G) in parallel do
5 run Algorithm 3 Lines 2 - 4;
6 while Q is not empty do
7 N ← Q.pop();
8 C∗ ←a biclique found by the greedy approach;
9 if there exists C ∈ S[q] s.t. |U(C)| ≥ N .τU and

|L(C)| ≥ N .τL and |C| ≥ |C∗| then
10 C∗ ← C;
11 PMBC-OL∗ (G, q, N .τU , N .τL, C∗) with Lemma

6 applied;
12 if C∗ is not null then
13 if C∗ /∈ A then
14 zA ← zA + 1 in atomic;
15 store C∗ into A[zA];
16 foreach vertex v ∈ C∗ do
17 zS [v]← zS [v] + 1 in atomic;
18 add the address of C into S[v][zS [v]];
19 run Algorithm 3 Lines 12 - 18;
20 return T , A;

VII. EXPERIMENTS

A. Experimental Settings

Algorithms. Our empirical studies are conducted against the
following designs:
Query algorithms: 1) The online computation algorithms
PMBC-OL introduced in Section IV and PMBC-OL∗ intro-
duced in Section VI-C; 2) The PMBC-Index-based query
algorithm PMBC-IQ proposed in Section V.
Index-based techniques: 1) The naive index discussed in
Section IV. 2) The PMBC-Index proposed in Section V. We

2https://www.openmp.org/

TABLE II: Summary of Datasets

Dataset Category |U(G)| Type of U |L(G)| Type of L |E(G)| Type of E
Writers Authorship 89,355 Writer 46,213 Work 144,340 Authorship

YouTube Affiliation 94,238 User 30,087 Group 293,360 Membership
Github Authorship 56,519 User 120,867 Project 440,237 Membership

BookCrossing Rating 105,278 User 340,523 Book 1,149,739 Rating
StackOverflow Rating 545,195 User 96,678 Post 1,301,942 Favorite

Teams Affiliation 901,130 Athlete 34,461 Team 1,366,466 Membership
ActorMovies Affiliation 127,823 Movie 383,640 Actor 1,470,404 Appearance

Wikipedia Feature 1,853,493 Article 182,947 Category 3,795,796 Inclusion
Amazon Rating 2,146,057 User 1,230,915 Product 5,743,258 Rating
DBLP Authorship 1,425,813 Author 4,000,150 Publication 8,649,016 Authorship

report the construction time and size of the index as well
as evaluate the optimization and parallelization strategies for
PMBC-Index construction in Section VI.

The algorithms are implemented in C++, and the experi-
ments are run on a Linux server with 2 × Intel Xeon E5-2698
processor (2.20GHz, 40 Cores) and 512GB main memory. We
terminate an algorithm if the running time is more than 104

seconds by default.
Datasets. In our experiments, we use 10 real-world datasets,
which are Writers, Youtube, Github, BookCrossing,
StackOverflow, Teams, ActorMovies, Wikipedia,
Amazon, and DBLP. All the datasets used here can be found
in KONECT 3. The summary of datasets is shown in Table
II. |U(G)| and |L(G)| denote the number of vertices in each
vertex layers, and |E(G)| represents the number of edges. The
types of vertices and edges are also shown in the table. In these
datasets, all the vertices with degree equal to zero are removed.

B. Performance of Query Algorithms

In this subsection, we evaluate the performance of query al-
gorithms (PMBC-OL, PMBC-OL∗, and PMBC-IQ) for search-
ing personalized maximum bicliques. In each test, we ran-
domly select 200 query vertices from the top-500 high degree
vertices with the reported results being the average.

Writers
YouTube

Github
BookCrossing

StackOverflow

Teams
ActorMovies

Wikipedia
Amazon

DBLP

Datasets

10 4
10 3
10 2
10 1
100
101
102
103
104
105
106

Ti
m

e(
m

s)

OL OL* IQ

Fig. 6: Evaluating query time

Evaluating query time. In Figure 6, we evaluate the per-
formance of PMBC-OL, PMBC-OL∗, and PMBC-IQ on all
datasets by setting τU = 5 and τL = 5, which are also the

3http://konect.cc/

largest τU and τL settings in [5]. We can see that benefiting
from the PMBC-Index, PMBC-IQ significantly outperforms
the online computation algorithms PMBC-OL and PMBC-OL∗

by up to 5 orders of magnitude. On all the datasets, the PMBC-
IQ algorithm can answer the queries within milliseconds. In
addition, PMBC-OL∗ outperforms PMBC-OL as expected due
to the upper bounding techniques.

(3,3) (4,4) (5,5)
(U, V)

10 4

10 3

10 2

10 1

100

101

102

103
Ti

m
e(

m
s)

OL OL * IQ

(a) YouTube

(3,3) (4,4) (5,5)
(U, V)

10 4
10 3
10 2
10 1
100
101
102
103
104
105

Ti
m

e(
m

s)

OL OL * IQ

(b) Github

(3,3) (4,4) (5,5)
(U, V)

10 4
10 3
10 2
10 1
100
101
102
103
104
105

Ti
m

e(
m

s)

OL OL * IQ

(c) BookCrossing

(3,3) (4,4) (5,5)
(U, V)

10 4
10 3
10 2
10 1
100
101
102
103
104

Ti
m

e(
m

s)
OL OL * IQ

(d) StackOverflow

Fig. 7: Query CqτU ,τL , varying τU and τL

Evaluating effect of the query parameters τU and τL. In
Figure 7, we vary query parameters τU and τL on datasets
Actor, Wikipedia, Amazon, and DBLP. We can see
that when τU and τL increases, the query time for all the
query algorithms increases slightly. As expected, PMBC-IQ
significantly outperforms PMBC-OL and PMBC-OL∗ under
all settings.

C. Evaluation of Indexing Techniques

In this subsection, we evaluate our indexing techniques.
Firstly, we report the index construction time and index size.
Secondly, we evaluate the effect of the number of threads t.
We set t as 48 by default. Then, we evaluate the scalability of

our index construction algorithms. Note that since PMBC-OL∗

outperforms PMBC-OL as evaluated above, we invoke PMBC-
OL∗ instead of PMBC-OL when computing the indexes.

TABLE III: Evaluating indexing time and index size

Dataset Index Time (s) Graph & Index Size (MB)
IC IC∗ |G| |T | |A|

Writers 0.35 0.27 1.10 3.79 2.59
YouTube 7.70 7.51 2.24 4.96 8.20
Github 120.33 99.21 3.36 6.77 13.85

BookCrossing 235.65 228.74 8.77 16.04 31.17
StackOverflow 21.12 19.77 9.93 19.91 25.18

Teams 7.69 6.95 10.43 28.12 25.63
ActorMovies 7.14 3.62 11.22 17.71 21.91

Wikipedia 111.08 56.47 28.96 67.66 65.29
Amazon 107.58 40.88 43.82 100.38 103.06
DBLP 733.88 20.27 65.99 185.41 148.27

Evaluating indexing time and index size. In Table III,
we list index construction times and index sizes on different
datasets. We can see that the PMBC-Index can be efficiently
constructed on all the datasets. In addition, with the cost-
sharing optimizations proposed in Section VI-B, PMBC-IC∗

outperforms PMBC-IC most notably on large datasets such as
Wikipedia, Amazon, and DBLP. In addition, the total size
of the complete PMBC-Index (i.e., |T | + |A|) constructed by
PMBC-IC∗ is only 3.5×-6.1× to the graph size (i.e., |G|).
Note that, the basic index discussed in Section IV is also
evaluated with the same setting in this part. The experimental
results show that it cannot be built within 104 seconds on all
the datasets except Writers (which needs 1.5 seconds and
takes 15.8MB space). Thus, we omit it in Table III and the
following experiments.

1 16 32 48
t

100

101

102

103

Ti
m

e(
s)

IC IC *

(a) Actor

1 16 32 48
t

101

102

103

Ti
m

e(
s)

IC IC *

(b) Wikipedia

1 16 32 48
t

101

102

103

104

Ti
m

e(
s)

IC IC *

(c) Amazon

1 16 32 48
t

101

102

103

104

Ti
m

e(
s)

IC IC *

(d) DBLP

Fig. 8: Index construction, varying t

Evaluating effect of the number of threads t. Here we
evaluate the parallelization algorithms by varying the number
of threads t on four datasets Actor, Wikipedia, Amazon,

and DBLP. As shown in Figure 8, the parallelization tech-
niques significantly improve the efficiency of PMBC-IC and
PMBC-IC∗ on all these datasets. Notably, it can achieve 23.3×
speedup for PMBC-IC∗ with 48 threads on Actor. Note that
PMBC-IC∗ outperforms PMBC-IC on all these datasets with
or without the parallelization techniques.

20% 40% 60% 80% 100%
m

10 1

100

101

Ti
m

e(
s)

IC IC *

(a) Actor

20% 40% 60% 80% 100%
m

100

101

102

Ti
m

e(
s)

IC IC *

(b) Wikipedia

20% 40% 60% 80% 100%
m

100

101

102

Ti
m

e(
s)

IC IC *

(c) Amazon

20% 40% 60% 80% 100%
m

100

101

102

103

Ti
m

e(
s)

IC IC *

(d) DBLP

Fig. 9: Index construction, varying m

Scalability of index construction algorithms. Evaluating the
effect of graph size. In Figure 9, we study the scalability of
PMBC-IC and PMBC-IC∗ by varying the graph size m on
datasets Actor, Wikipedia, Amazon, and DBLP. When
varying m, we randomly sample 20% to 100% edges of the
original graphs. We observe that the algorithms PMBC-IC and
PMBC-IC∗ are scalable. Unsurprisingly, the computation costs
of all algorithms increase as the percentage of vertices in-
creases. As discussed before, PMBC-IC∗ outperforms PMBC-
IC as expected.

VIII. CONCLUSION

In this paper we study the efficient personalized maximum
biclique search problem. An online computation algorithm
PMBC-OL is proposed by taking the advantages of the state-
of-the-art solution for maximum biclique search [5]. To solve
the problem more efficiently, we resort to index-based tech-
niques and propose the novel PMBC-Index. With the PMBC-
Index, query performance improves by several orders of
magnitude compared with online computation approaches. In
addition, effective optimizations and parallelization techniques
are designed to accelerate the index construction process.
Extensive experiments on 10 real-world graphs validate both
the effectiveness and the efficiency of our query processing
and indexing techniques. Furthermore, solutions for solving
this problem under a dynamic environment is an interesting
research direction for future studies.

REFERENCES

[1] J. Wang, A. P. de Vries, and M. J. T. Reinders, “Unifying user-based and
item-based collaborative filtering approaches by similarity fusion,” in
SIGIR 2006: Proceedings of the 29th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval,
Seattle, Washington, USA, August 6-11, 2006, E. N. Efthimiadis, S. T.
Dumais, D. Hawking, and K. Järvelin, Eds. ACM, 2006, pp. 501–508.
[Online]. Available: https://doi.org/10.1145/1148170.1148257

[2] M. Ley, “The DBLP computer science bibliography: Evolution, research
issues, perspectives,” in String Processing and Information Retrieval,
9th International Symposium, SPIRE 2002, Lisbon, Portugal, September
11-13, 2002, Proceedings, ser. Lecture Notes in Computer Science,
A. H. F. Laender and A. L. Oliveira, Eds., vol. 2476. Springer, 2002,
pp. 1–10. [Online]. Available: https://doi.org/10.1007/3-540-45735-6 1

[3] A. Beutel, W. Xu, V. Guruswami, C. Palow, and C. Faloutsos,
“Copycatch: stopping group attacks by spotting lockstep behavior in
social networks,” in 22nd International World Wide Web Conference,
WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013, D. Schwabe,
V. A. F. Almeida, H. Glaser, R. Baeza-Yates, and S. B. Moon, Eds.
International World Wide Web Conferences Steering Committee /
ACM, 2013, pp. 119–130. [Online]. Available: https://doi.org/10.1145/
2488388.2488400

[4] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[5] B. Lyu, L. Qin, X. Lin, Y. Zhang, Z. Qian, and J. Zhou,
“Maximum biclique search at billion scale,” Proc. VLDB Endow.,
vol. 13, no. 9, pp. 1359–1372, 2020. [Online]. Available: http:
//www.vldb.org/pvldb/vol13/p1359-lyu.pdf

[6] A. Tanay, R. Sharan, and R. Shamir, “Discovering statistically significant
biclusters in gene expression data,” Bioinformatics, vol. 18, no. suppl 1,
pp. S136–S144, 2002.

[7] J. Liu and W. Wang, “Op-cluster: Clustering by tendency in high
dimensional space,” in Proceedings of the 3rd IEEE International
Conference on Data Mining (ICDM 2003), 19-22 December 2003,
Melbourne, Florida, USA. IEEE Computer Society, 2003, pp. 187–194.
[Online]. Available: https://doi.org/10.1109/ICDM.2003.1250919

[8] S. C. Madeira and A. L. Oliveira, “Biclustering algorithms for
biological data analysis: A survey,” IEEE ACM Trans. Comput. Biol.
Bioinform., vol. 1, no. 1, pp. 24–45, 2004. [Online]. Available:
https://doi.org/10.1109/TCBB.2004.2

[9] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, “Trawling
the web for emerging cyber-communities,” Comput. Networks,
vol. 31, no. 11-16, pp. 1481–1493, 1999. [Online]. Available:
https://doi.org/10.1016/S1389-1286(99)00040-7

[10] E. Shaham, H. Yu, and X. Li, “On finding the maximum edge biclique
in a bipartite graph: a subspace clustering approach,” in Proceedings
of the 2016 SIAM International Conference on Data Mining, Miami,
Florida, USA, May 5-7, 2016, S. C. Venkatasubramanian and
W. M. Jr., Eds. SIAM, 2016, pp. 315–323. [Online]. Available:
https://doi.org/10.1137/1.9781611974348.36

[11] M. Dawande, P. Keskinocak, J. M. Swaminathan, and S. R. Tayur,
“On bipartite and multipartite clique problems,” J. Algorithms,
vol. 41, no. 2, pp. 388–403, 2001. [Online]. Available: https:
//doi.org/10.1006/jagm.2001.1199

[12] M. Sözdinler and C. C. Özturan, “Finding maximum edge biclique
in bipartite networks by integer programming,” in 2018 IEEE
International Conference on Computational Science and Engineering,
CSE 2018, Bucharest, Romania, October 29-31, 2018, F. Pop, C. Negru,
H. González-Vélez, and J. Rak, Eds. IEEE Computer Society, 2018, pp.
132–137. [Online]. Available: https://doi.org/10.1109/CSE.2018.00025

[13] R. Peeters, “The maximum edge biclique problem is np-complete,”
Discret. Appl. Math., vol. 131, no. 3, pp. 651–654, 2003. [Online].
Available: https://doi.org/10.1016/S0166-218X(03)00333-0

[14] D. Abadi, A. Ailamaki, D. Andersen, P. Bailis, M. Balazinska, P. Bern-
stein, P. Boncz, S. Chaudhuri, A. Cheung, A. Doan et al., “The seattle
report on database research,” ACM SIGMOD Record, vol. 48, no. 4, pp.
44–53, 2020.

[15] C. Wang, Y. Li, X. Luo, Q. Ma, W. Fu, and H. Fu, “The effects of money
on fake rating behavior in e-commerce: electrophysiological time course
evidence from consumers,” Frontiers in neuroscience, vol. 12, p. 156,
2018.

[16] J. Ma, D. Zhang, Y. Wang, Y. Zhang, and A. Pozdnoukhov, “Graphrad:
a graph-based risky account detection system,” in Proceedings of ACM
SIGKDD conference, London, UK, 2018, p. 9.

[17] S. Pandit, D. H. Chau, S. Wang, and C. Faloutsos, “Netprobe: a fast
and scalable system for fraud detection in online auction networks,” in
Proceedings of the 16th international conference on World Wide Web,
2007, pp. 201–210.

[18] S. Shahinpour, S. Shirvani, Z. Ertem, and S. Butenko, “Scale reduction
techniques for computing maximum induced bicliques,” Algorithms,
vol. 10, no. 4, p. 113, 2017.

[19] A. A. Al-Yamani, S. Ramsundar, and D. K. Pradhan, “A defect
tolerance scheme for nanotechnology circuits,” IEEE Trans. Circuits
Syst. I Regul. Pap., vol. 54-I, no. 11, pp. 2402–2409, 2007. [Online].
Available: https://doi.org/10.1109/TCSI.2007.907875

[20] B. Yuan and B. Li, “A fast extraction algorithm for defect-free
subcrossbar in nanoelectronic crossbar,” ACM J. Emerg. Technol.
Comput. Syst., vol. 10, no. 3, pp. 25:1–25:19, 2014. [Online]. Available:
https://doi.org/10.1145/2517137

[21] Y. Wang, S. Cai, and M. Yin, “New heuristic approaches for maximum
balanced biclique problem,” Inf. Sci., vol. 432, pp. 362–375, 2018.
[Online]. Available: https://doi.org/10.1016/j.ins.2017.12.012

[22] M. Li, J. Hao, and Q. Wu, “General swap-based multiple neighborhood
adaptive search for the maximum balanced biclique problem,”
Comput. Oper. Res., vol. 119, p. 104922, 2020. [Online]. Available:
https://doi.org/10.1016/j.cor.2020.104922

[23] Y. Zhou and J. Hao, “Tabu search with graph reduction for
finding maximum balanced bicliques in bipartite graphs,” Eng.
Appl. Artif. Intell., vol. 77, pp. 86–97, 2019. [Online]. Available:
https://doi.org/10.1016/j.engappai.2018.09.017

[24] C. McCreesh and P. Prosser, “An exact branch and bound algorithm
with symmetry breaking for the maximum balanced induced biclique
problem,” in Integration of AI and OR Techniques in Constraint
Programming - 11th International Conference, CPAIOR 2014, Cork,
Ireland, May 19-23, 2014. Proceedings, ser. Lecture Notes in Computer
Science, H. Simonis, Ed., vol. 8451. Springer, 2014, pp. 226–234.
[Online]. Available: https://doi.org/10.1007/978-3-319-07046-9 16

[25] Y. Zhou, A. Rossi, and J. Hao, “Towards effective exact methods for
the maximum balanced biclique problem in bipartite graphs,” Eur. J.
Oper. Res., vol. 269, no. 3, pp. 834–843, 2018. [Online]. Available:
https://doi.org/10.1016/j.ejor.2018.03.010

[26] L. Chen, C. Liu, R. Zhou, J. Xu, and J. Li, “Efficient exact
algorithms for maximum balanced biclique search in bipartite graphs,”
in SIGMOD ’21: International Conference on Management of Data,
Virtual Event, China, June 20-25, 2021, G. Li, Z. Li, S. Idreos, and
D. Srivastava, Eds. ACM, 2021, pp. 248–260. [Online]. Available:
https://doi.org/10.1145/3448016.3459241

[27] D. Eppstein, “Arboricity and bipartite subgraph listing algorithms,” Inf.
Process. Lett., vol. 51, no. 4, pp. 207–211, 1994. [Online]. Available:
https://doi.org/10.1016/0020-0190(94)90121-X

[28] G. Alexe, S. Alexe, Y. Crama, S. Foldes, P. L. Hammer, and
B. Simeone, “Consensus algorithms for the generation of all maximal
bicliques,” Discret. Appl. Math., vol. 145, no. 1, pp. 11–21, 2004.
[Online]. Available: https://doi.org/10.1016/j.dam.2003.09.004

[29] G. Liu, K. Sim, and J. Li, “Efficient mining of large maximal bicliques,”
in Data Warehousing and Knowledge Discovery, 8th International
Conference, DaWaK 2006, Krakow, Poland, September 4-8, 2006,
Proceedings, ser. Lecture Notes in Computer Science, A. M. Tjoa and
J. Trujillo, Eds., vol. 4081. Springer, 2006, pp. 437–448. [Online].
Available: https://doi.org/10.1007/11823728 42

[30] Y. Zhang, C. A. Phillips, G. L. Rogers, E. J. Baker, E. J. Chesler,
and M. A. Langston, “On finding bicliques in bipartite graphs: a novel
algorithm and its application to the integration of diverse biological
data types,” BMC Bioinform., vol. 15, p. 110, 2014. [Online]. Available:
https://doi.org/10.1186/1471-2105-15-110

[31] A. Das and S. Tirthapura, “Shared-memory parallel maximal biclique
enumeration,” in 26th IEEE International Conference on High
Performance Computing, Data, and Analytics, HiPC 2019, Hyderabad,
India, December 17-20, 2019. IEEE, 2019, pp. 34–43. [Online].
Available: https://doi.org/10.1109/HiPC.2019.00016

[32] A. Gély, L. Nourine, and B. Sadi, “Enumeration aspects of maximal
cliques and bicliques,” Discret. Appl. Math., vol. 157, no. 7, pp.
1447–1459, 2009. [Online]. Available: https://doi.org/10.1016/j.dam.
2008.10.010

[33] K. Makino and T. Uno, “New algorithms for enumerating all maximal
cliques,” in Algorithm Theory - SWAT 2004, 9th Scandinavian
Workshop on Algorithm Theory, Humlebaek, Denmark, July 8-10, 2004,
Proceedings, ser. Lecture Notes in Computer Science, T. Hagerup and

https://doi.org/10.1145/1148170.1148257
https://doi.org/10.1007/3-540-45735-6_1
https://doi.org/10.1145/2488388.2488400
https://doi.org/10.1145/2488388.2488400
http://www.vldb.org/pvldb/vol13/p1359-lyu.pdf
http://www.vldb.org/pvldb/vol13/p1359-lyu.pdf
https://doi.org/10.1109/ICDM.2003.1250919
https://doi.org/10.1109/TCBB.2004.2
https://doi.org/10.1016/S1389-1286(99)00040-7
https://doi.org/10.1137/1.9781611974348.36
https://doi.org/10.1006/jagm.2001.1199
https://doi.org/10.1006/jagm.2001.1199
https://doi.org/10.1109/CSE.2018.00025
https://doi.org/10.1016/S0166-218X(03)00333-0
https://doi.org/10.1109/TCSI.2007.907875
https://doi.org/10.1145/2517137
https://doi.org/10.1016/j.ins.2017.12.012
https://doi.org/10.1016/j.cor.2020.104922
https://doi.org/10.1016/j.engappai.2018.09.017
https://doi.org/10.1007/978-3-319-07046-9_16
https://doi.org/10.1016/j.ejor.2018.03.010
https://doi.org/10.1145/3448016.3459241
https://doi.org/10.1016/0020-0190(94)90121-X
https://doi.org/10.1016/j.dam.2003.09.004
https://doi.org/10.1007/11823728_42
https://doi.org/10.1186/1471-2105-15-110
https://doi.org/10.1109/HiPC.2019.00016
https://doi.org/10.1016/j.dam.2008.10.010
https://doi.org/10.1016/j.dam.2008.10.010

J. Katajainen, Eds., vol. 3111. Springer, 2004, pp. 260–272. [Online].
Available: https://doi.org/10.1007/978-3-540-27810-8 23

[34] J. Li, H. Li, D. Soh, and L. Wong, “A correspondence between
maximal complete bipartite subgraphs and closed patterns,” in
Knowledge Discovery in Databases: PKDD 2005, 9th European
Conference on Principles and Practice of Knowledge Discovery in
Databases, Porto, Portugal, October 3-7, 2005, Proceedings, ser.
Lecture Notes in Computer Science, A. Jorge, L. Torgo, P. Brazdil,
R. Camacho, and J. Gama, Eds., vol. 3721. Springer, 2005, pp.
146–156. [Online]. Available: https://doi.org/10.1007/11564126 18

[35] G. Fang, Y. Wu, M. Li, and J. Chen, “An efficient algorithm for
mining frequent closed itemsets,” Informatica (Slovenia), vol. 39,
no. 1, 2015. [Online]. Available: http://www.informatica.si/index.php/
informatica/article/view/754

[36] C. Lucchese, S. Orlando, and R. Perego, “Fast and memory
efficient mining of frequent closed itemsets,” IEEE Trans. Knowl.
Data Eng., vol. 18, no. 1, pp. 21–36, 2006. [Online]. Available:
https://doi.org/10.1109/TKDE.2006.10

[37] Y. Tong, L. Chen, and B. Ding, “Discovering threshold-based frequent
closed itemsets over probabilistic data,” in IEEE 28th International

Conference on Data Engineering (ICDE 2012), Washington, DC, USA
(Arlington, Virginia), 1-5 April, 2012, A. Kementsietsidis and M. A. V.
Salles, Eds. IEEE Computer Society, 2012, pp. 270–281. [Online].
Available: https://doi.org/10.1109/ICDE.2012.51

[38] J. Wang, J. Han, and J. Pei, “CLOSET+: searching for the best strategies
for mining frequent closed itemsets,” in Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, Washington, DC, USA, August 24 - 27, 2003, L. Getoor, T. E.
Senator, P. M. Domingos, and C. Faloutsos, Eds. ACM, 2003, pp.
236–245. [Online]. Available: https://doi.org/10.1145/956750.956779

[39] A. Das and S. Tirthapura, “Incremental maintenance of maximal
bicliques in a dynamic bipartite graph,” IEEE Trans. Multi Scale
Comput. Syst., vol. 4, no. 3, pp. 231–242, 2018. [Online]. Available:
https://doi.org/10.1109/TMSCS.2018.2802920

[40] B. Liu, L. Yuan, X. Lin, L. Qin, W. Zhang, and J. Zhou, “Efficient (α,
β)-core computation: An index-based approach,” in The World Wide
Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17,
2019, L. Liu, R. W. White, A. Mantrach, F. Silvestri, J. J. McAuley,
R. Baeza-Yates, and L. Zia, Eds. ACM, 2019, pp. 1130–1141.
[Online]. Available: https://doi.org/10.1145/3308558.3313522

https://doi.org/10.1007/978-3-540-27810-8_23
https://doi.org/10.1007/11564126_18
http://www.informatica.si/index.php/informatica/article/view/754
http://www.informatica.si/index.php/informatica/article/view/754
https://doi.org/10.1109/TKDE.2006.10
https://doi.org/10.1109/ICDE.2012.51
https://doi.org/10.1145/956750.956779
https://doi.org/10.1109/TMSCS.2018.2802920
https://doi.org/10.1145/3308558.3313522

	Introduction
	Related Work
	Problem Definition
	Background and Baseline Solutions
	The PMBC-Index
	Construction of the PMBC-Index
	The Main Framework
	Cost-sharing across Different Search Trees
	Upper Bounding Techniques for PMBC-OL
	Shared-memory Parallelization

	Experiments
	Experimental Settings
	Performance of Query Algorithms
	Evaluation of Indexing Techniques

	Conclusion
	References

