
“©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.”

ScaleG: A Distributed Disk-based System for
Vertex-centric Graph Processing (Extended Abstract)

Xubo Wang†, Dong Wen§, Lu Qin♮, Lijun Chang¶, Wenjie Zhang§

†Zhejiang Lab, China; §University of New South Wales, Australia
♮AAII, University of Technology Sydney, Australia; ¶The University of Sydney, Australia;

†wangxb@zhejianglab.com; §{dong.wen, wenjie.zhang}@unsw.edu.au;
♮lu.qin@uts.edu.au; ¶lijun.chang@sydney.edu.au

Abstract—Designing disk-based distributed graph systems has
drawn a lot of research due to the strong expressiveness of the
graph model and rapidly increasing graph volume. However,
several challenges still exist in achieving both high computational
efficiency and low network communication under the limitation
of memory. In this paper, we design a novel distributed disk-based
graph processing system, ScaleG, with a series of user-friendly
programming interfaces. We propose several techniques to reduce
both disk I/Os in each machine and message I/Os via the network.
We manage all messages in memory and bound the volume of
all messages by the number of vertices. We also carefully design
the data structure to support partial computation and automatic
vertex activation. We conduct extensive experiments on real-
world big graphs to show the high efficiency of our system.

I. INTRODUCTION

Efficiently processing graph data is essential in both re-
search and practice. Numerous research interests have been
shown on designing distributed graph systems to process big
graphs. However, most distributed vertex-centric graph sys-
tems store all data in main memory of machines, which brings
high efficiency but sacrifices scalability given the dramatic
increasing data volume. Due to some intermediate results,
messages, replicated vertices and edges, the memory usage
can be much larger than the input graph size. Several disk-
based (or called out-of-core) distributed graph systems have
been studied in the literature. Among them, GraphD [2] is
the state-of-the-art and follows the same programming model
as Pregel [1]. GraphD adopts the semi-streaming model and
only allows the vertex states resided in main memory of each
machine. The adjacency lists and messages are managed as
edge streams and message streams on disks, respectively.

There are still several challenges in GraphD. First, under the
memory usage limitation, GraphD saves all sending messages
and receiving messages on disks. Scanning and managing the
message streams on disks incurs a great deal of disk I/Os.
Second, several studies have shown that the volume of com-
munication messages can be very large given the power-law
degree distributions of real-world graphs. To handle such issue,
the pull-based computing model is studied in the literature
[3]. However, disk I/O is not considered in these in-memory
systems. More importantly, the pull-based method requires an
extra pull request to notify the corresponding neighbor. In
addition, based on the push model of Pregel, GraphD cannot
efficiently handle the partial computation in many fundamental

1.Compute

2.VoteToHalt or SendMessage

Combiner

Push
 m

es
sa

ge
2.Apply

1.Gather

3.Scatter

Pull request & respond

User View:

Pregel PowerGraph ScaleG

Neighborhood

Expression

Sync

Fig. 1. Representative system models

algorithms. For example, in the algorithm of distributed graph
coloring, only a small number of vertices are active and wait
to be colored in many iterations. To color a vertex u, we
need colors of all neighbors of u. Since each vertex can only
passively receive messages in Pregel-like systems, all vertices
have to send messages to their neighbors. Therefore, the main
challenges in this paper are how to effectively reduce the
communication messages and how to efficiently manage the
messages under the limitation of memory usage.

In this paper, we make the following two contributions in
designing a novel distributed disk-based system ScaleG for
large graph processing in response to the above challenges.
(1) Optimizations to reduce communication cost. We adopt a
compute-and-sync model (Fig. 1) in disk-based graph process-
ing system design. ScaleG provides O(n) message bounds for
each machine where n represents the number of vertices. This
allows ScaleG to keep messages in memory and offer high
communication efficiency. (2) I/O efficient computation with
limited memory usage. Based on our computing model, we
design a series of data structures to activate and compute all
necessary vertices in one round of disk scan with no inter-
machine communication cost. Memory usage is bounded by
O(n). In addition, ScaleG supports partial computation where
only a partial set of vertices are activated. Our implementation
avoids unnecessary message transmission and achieves high
I/O efficiency. We conduct extensive experiments compared
with several representative competitors to show the perfor-
mance of ScaleG.

II. SUMMARY OF OUR SYSTEM

In this section, we present the main components of our
distributed disk-based graph system ScaleG. Please refer to
our full paper [4] for more details.
Execution model. We observe that vertices in many vertex-
centric algorithms only communicate with neighbors. We

enforce such property in the system and adopt a compute-and-
sync programming model. The compute phase performs the
logic provided by the user, while the sync phase synchronizes
the vertex states in different machines and is hidden from
users. An illustration of our model is given in Fig. 1, with
Pregel [1] and PowerGraph [3] as comparisons. Thanks to our
computing model, all neighbors’ states are locally provided in
the compute phase. The programmer only needs to care about
how to update the vertex based on neighbors’ states and does
not need to concern any logic regarding message sending, re-
ceiving or combining. The simple API of ScaleG and different
algorithm implementation examples can be found in [4].
Implementation. We carefully design special data structures
and mechanisms to realize our model in a disk-based graph
processing system.

v1

v2 v3

v5

v7v6 v8

v9 Host Vertices

Guest Vertices

Fig. 2. An example of the graph structure in one machine

v1 v5 v9

v2 v5 v8v2 v3 v6 v7 v8

1 4

v3

v2 v3 v6 v7 v8
10

A A A A A A A A

…

Memory Disk

Hosts Guests Neighbors of Hosts

✓ ✓ ✕

ID

Activity

Attributes v6 v1 v9 v5

Fig. 3. The data structure for compute phase in machine 1

v5 v1 v9v5 v5 v1 v5 v9

1 2 4

Disk in Machine 1

6 8

Machine 1

v3Machine 3 v3

v9

v5
Activation

Sync

Inverted Neighbor List

10 11 13

v5 v9 v5v1v9

v3v2v1 …

Fig. 4. The data structure for the sync phase in machine 1
In ScaleG, a given graph is partitioned to different machines

in a cluster. We name the vertices assigned to a machine as
host vertices and the neighbors of boundary host vertices in
a worker as guest vertices. Similar to GraphD, ScaleG adopts
the semi-external setting and a compressed sparse row (CSR)
structure to maintain the states of host vertices in memory and
store the neighbors of each vertex on the disk. Unlike GraphD,
ScaleG additionally maintains the guest vertices in the memory
of each machine to support the locally neighborhood expres-
sion for host vertices. The rationale of in-memory message
management in ScaleG is supported by our computing model,
which bounds the number of messages by the number of
vertices in each machine. In each iteration of ScaleG, the
memory usage of an arbitrary machine W is bounded by
O(k·V (W)+N(W)) where k, V (W) and N(W) represent the
number of machines, hosts and guests in W respectively. Fig. 2
gives an example of a subgraph partitioned to one machine in
ScaleG. The corresponding data structure is given in Fig. 3.

In each iteration, we only sequentially read or skip items
in the neighbor list file from disk. The total disk I/O of all
machines in each iteration is bounded by O(m/B), where m
and B represent the number of edges in the data graph and the
block size for a single disk read/write operation respectively.

In addition, we propose detailed external-memory data
structure for vertex activation. The data structure for the sync

phase corresponding to Fig. 2 is given in Fig. 4. Unlike
GraphD, the messages with the same value would never be sent
repeatedly in all studied algorithms in ScaleG. For example,
in the implementation of graph coloring in ScaleG, colors of
all neighbors can be locally accessed by each vertex, and in
following iterations, only the changed colors will lead to an
update message. In each iteration of ScaleG, the communi-
cation cost of all machines is bounded by O(min(n · k,m))
where n is the number of vertices. We also design an adaptive
activation mechanism to further improve the system efficiency.

0.1

1

10

100

DB OR UK TW FR

T
im

e
 (

s
e
c
)

SG PRG PPL PG BLG GD GDIR

Fig. 5. Comparison with Existing Systems (Running Time)

10

100

1K

10K

100K

DB OR UK TW FR

C
o
m

m
u
n
ic

a
ti
o
n
 (

M
B

)

SG PRG PPL PG BLG GD GDIR

Fig. 6. Comparison with Existing Systems (Communication Cost)

III. EVALUATION

We compare ScaleG with the disk-based system GraphD
and also representative in-memory graph processing systems
running. In our experiments, ScaleG exhibits the best overall
performance over nine fundamental and various graph algo-
rithms on six large real-world graphs. Fig. 5 and Fig. 6 show
the running time and communication cost of compared systems
running breadth first search. ScaleG outperforms GraphD
because of no message disk I/O and less communication
cost. ScaleG also outperforms in-memory systems because
ScaleG saves communication cost from the message sending
incurred by high-degree vertices in push-based methods and
extra pull requests in pull-based methods. The extensive ex-
perimental results validate the superb efficiency of ScaleG on
large graphs. Please refer to our full paper [4] for detailed
experimental settings and more experimental results.

ACKNOWLEDGMENT

Xubo Wang is supported by China Postdoctoral Science Founda-
tion (2021M692958). Lu Qin is supported by ARC FT200100787.
Lijun Chang is supported by ARC FT180100256. Ying Zhang is
supported by ARC DP180103096 and FT170100128. Wenjie Zhang
is supported by ARC DP180103096 and ARC DP200101116.

REFERENCES

[1] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data. ACM, 2010, pp. 135–146.

[2] D. Yan, Y. Huang, M. Liu, H. Chen, J. Cheng, H.Wu, and C. Zhang,
“Graphd: distributed vertex-centric graph processing beyond the memory
limit,” IEEE Transactions on Parallel and Distributed Systems, vol. 29,
no. 1, pp. 99–114, 2018.

[3] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
ergraph: Distributed graph-parallel computation on natural graphs,” in
Presented as part of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12), 2012, pp. 17–30.

[4] X. Wang, D. Wen, L. Qin, L. Chang, Y. Zhang and W. Zhang,
”ScaleG: A Distributed Disk-based System for Vertex-centric Graph
Processing,” in IEEE Transactions on Knowledge and Data Engineering,
doi: 10.1109/TKDE.2021.3101057.

	2023 IEEE
	ScaleG A Distributed Disk-based System for Vertex-centric Graph Processing Extended Abstract

