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A B S T R A C T

Background: There is an increasing trend of Metabolic syndrome (MetS) prevalence, which has been considered as
an important contributor for cardiovascular disease (CVD), cancers and diabetes. However, there is often a long
asymptomatic phase of MetS, resulting in not diagnosed and intervened so timely as needed. It would be very
helpful to explore tools to predict the probability of suffering from MetS in daily life or routinely clinical practice.
Objective: To develop models that predict individuals’ probability of suffering from MetS timely with high efficacy
in general population.
Methods: The present study enrolled 8964 individuals aged 40–75 years without severe diseases, which was a part
of the REACTION study from October 2011 to February 2012. We developed three prediction models for different
scenarios in hospital (Model 1, 2) or at home (Model 3) based on LightGBM (LGBM) technique and corresponding
logistic regression (LR) models were also constructed for comparison. Model 1 included variables of laboratory
tests, lifestyles and anthropometric measurements while model 2 was built with components of MetS excluded
based on model 1, and model 3 was constructed with blood biochemical indexes removed based on model 2.
Additionally, we also investigated the strength of association between the predictive factors and MetS, as well as
that between the predictors and each component of MetS.
Results: In this study, 2714 (30.3%) participants suffer from MetS accordingly. The performances of the LGBM
models in predicting the probability of suffering from MetS produced good results and were presented as follows:
model 1 had an area under the curve (AUC) value of 0.993 while model 2 indicated an AUC value of 0.885. Model
3 had an AUC value of 0.859, which is close to that of model 2. The AUC values of LR model 1 and 2 for the
scenario in hospital and model 3 at home were 0.938, 0.839 and 0.820 respectively, which seemed lower than
that of their corresponding machine learning models, respectively. In both LGBM and logistic models, gender,
height and resting pulse rate (RPR) were predictors for MetS. Women had higher risk of MetS than men (OR 8.84,
CI: 6.70–11.66), and each 1-cm increase in height indicated 3.8% higher risk of suffering from MetS in people
over 58 years, whereas each 1- Beat Per Minute (bpm) increase in RPR showed 1.0% higher risk in individuals
younger than 62 years.
n).
ntributing equally.

rm 16 June 2022; Accepted 6 December 2022
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:cheria_chen@126.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2022.e12343&domain=pdf
www.sciencedirect.com/science/journal/24058440
http://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2022.e12343
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.heliyon.2022.e12343


X. Hu et al. Heliyon 8 (2023) e12343
Conclusion: The present study showed that the prediction models developed by machine learning demonstrated
effective in evaluating the probability of suffering from MetS, and presented prominent predicting efficacies and
accuracies. Additionally, we found that women showed a higher risk of MetS than men, and height in individuals
over 58 years was important factor in predicting the probability of suffering from MetS while RPR was of vital
importance in people aged 40–62 years.
1. Introduction

Metabolic syndrome (MetS) is a constellation of multiple metabolic
abnormalities, including glucose intolerance, central obesity, dyslipide-
mia, and hypertension [1]. These conditions may group in one individual
simultaneously, which are the causative factors for diabetes and
cardio-cerebrovascular diseases. MetS is often associated with other
health problems, such as fatty liver, cholesterol gallstones, obstructive
sleep apnea, gout, depression, musculoskeletal disease, and polycystic
ovarian syndrome [2]. Notably, the prevalence of MetS is rapidly
increasing worldwide, affecting more than 20% of the population in the
USA, China and Europe [3, 4, 5], and imposing a substantial health
economic burden on the world. It is reported MetS is associated with a
2-fold increase in the risk of cardio-cerebrovascular disease, and a
1.5-fold increase in the risk of all-cause mortality [6]. Therefore, it is
increasingly considered that it is imperative to pay more attention to
improving preventive and therapeutic strategies to achieve a better
control. Noteworthy, there is often a long asymptomatic phase, which
easily make MetS miss diagnosis. Moreover, a large number of people do
not know whether they are susceptible to MetS and its subsequent
complications. Therefore, it is vital for medical practitioners and in-
dividuals to timely and accurately assess the probability of suffering from
MetS, which is important for early diagnosis and intervention of these
high-probability people, as well as alleviation of their probable health
and economic burden.

It is increasingly considered that the etiology of MetS is complex and a
series of risk factors were involved such as rapidly changes in lifestyle,
socio-economics, races [7, 8, 9], sex- and age-related determinants [10,
11] which are concluded by using logistic regression methods previously.
However, there might be more potential factors associating with MetS.
Additionally, it seems a little difficult to filter a large number of predictive
factors from numerous factors and simultaneously evaluate their strength
of association by traditional statistical approaches [12]. It is reported that
the predictive models established by traditional statistical methods (such
as logistic regression, Cox regression) and shallow machine learning al-
gorithms (Shallow Learning) have great accuracy [13]. There are still
some important concerns of the multicollinearity and interaction of var-
iables, which may affect the predictive ability of the model. Moreover, the
internal correlation of repeated observation data for the same individual is
somewhat difficult to separate by classical methods, and the information
of high-dimensional features might not to be mined and exploited effec-
tively enough [14]. Recently, artificial intelligence (AI) is widely utilized
due to the explosively increasing amount of data and the effective per-
formance of intelligent technologies to handle the massive information
[15]. There are an increasing number of studies using machine learning
applied to medical imaging to assist in diagnosis, such as pattern recog-
nition which has been used in clinical practice [16, 17, 18]. Numerous
studies indicated that machine learning method has an efficient and
impressive predictive power using gradient boosting technique to increase
robustness and reduce variance of predictions [19, 20]. Among multitu-
dinous techniques, LightGBM (LGBM) is new Gradient Boosting Decision
Tree (GBDT) implementation, which is a popular machine learning al-
gorithm and speeds up the training process of conventional GBDT by up to
over 20 times while achieving almost the same accuracy [21] and has a
great advantage in dealing with large number of data instances and large
number of features, which is commonly involved in MetS.

Thus, we test to use LGBM to develop models to predict the proba-
bility of suffering from MetS in different scenarios (in daily life at home
2

or in clinical practice in hospital) and investigate the new probable
predicators.

2. Materials and methods

2.1. Study design and population

The present study was part of the Risk Evaluation of cAncers in Chi-
nese diabeTic Individuals: a lONgitudinal (REACTION) population-based
cohort study performed from October 2011 and February 2012 in Yi
Chang reported previously [22]. In this study, aged 40 and 75 years were
enrolled in view that people aged over 40 years are at higher risk of
developing metabolic syndrome [23], and the risk of participating in the
investigation might be a somewhat higher in people over 75 years old,
which is very close to the average life expectancy of Chinese people [24].
Data were taken by trained staff using a standard questionnaire and
clinical measurements in the selected communities. The study was
approved by the Ethics Committee of Huazhong University of Science
and Technology, and all participants gave signed informed consent.

A flow chart illustrated the inclusion and exclusion of study subjects
(Supplementary Figure 1). Overall, the original sample comprises 10186
participants. We excluded 687 participants who had severe illness
(tumor, myocardial infarction, cardiovascular disease and stroke) or
were unable to attend questionnaire survey and physical examination,
and 525 participants for lacking anthropometric data, and 8964 in-
dividuals were includes in the final analytical sample.
2.2. Questionnaire, physical examination, laboratory results and
diagnostic criteria

A questionnaire including demographic information, behavioral fac-
tors, personal medical history, and living habits was administered by
trained staff, and physical examination and laboratory investigation were
performed are described previously [25]. Height-to-weight ratio (H/W)
and the homeostasis model assessment of insulin resistance (HOMA-IR)
were calculated as described previously [26] and the natural logarithm of
HOMA-IR (lnHOMA-IR) was employed for later analysis. The features in
the original questionnaire were selected based on the risk factors of MetS
investigated by the convincing literatures and some accessible and po-
tential indicators suggested by clinical practice [27, 28].

According to the revised National Cholesterol Education Program
Expert Panel on Detection, Evaluation, and Treatment of High Blood
Cholesterol in Adults (NCEP-ATP III 2005) for Asians [2]. MetS was
defined as the presence of three or more of the following five criteria
proposed: 1) Central obesity: waist circumference (WC) � 90 cm in men
or WC � 80 cm in women; 2) Hypertriglyceridemia: triglyceride (TG) �
1.70 mmol/L; 3) Low high density lipoprotein-cholesterol (HDL-C): HDL
<1.03 mmol/L in men or 1.29 mmol/L in women; 4) High blood pressure
(BP): systolic and (or) diastolic blood pressure (SBP/DBP) � 130/85
mmHg or taking anti-hypertensive drugs; 5) High fasting plasma glucose
(FPG): FPG �5.6 mmol/L.
2.3. Statistical analysis

We used t-test for continuous variables with normal distributions and
Mann-Whitney test for continuous variables with skewed distributions.
Chi-squared test or Fisher exact test was employed with expects less than
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10 for categorical variables to compare demographic characteristics and
variables between groups.

Our primary analysis constructed different prediction models and
generated a variable importance plot to assess the relative contribution of
each variable for the prediction of MetS using LGBM techniques. Among
the participants, 7000 (78.1%) were allocated to the training set, and
1964 (21.9%) were allocated to the test set. With the emergence of large
data, LGBM trains them in sequence [29]. In each iteration, LGBM learns
the decision trees by fitting the negative gradient [21]. We compared the
predictive discrimination of models using the receiver operating char-
acteristic (ROC) curve, and applied AUC to assess how well a model
predicts the progression of MetS. Complementary machine learning
models were developed separating men and women to account for
different relative importance of predictors by gender. Furthermore, we
used machine learning to investigate the strength of association between
predictors and the components of MetS.

Additionally, we used a stepwise algorithm to select variables auto-
matically for a stepwise logistic regression model to predict the proba-
bility of suffering from MetS. The data set was divided into training set
and a test set (partitioned 75/25 percent). Categorical variables were
excluded from the model fitting when collinearity was detected using a
variable inflation factor (VIF) that was >10 [30]. Features selection
process was implemented using backward elimination to rank the vari-
ables by weight starting from the model involving all variables. This
process was performed to get the best simplified model by removing one
variable at a time, while calculating the accuracy of the model after each
removal until the accuracy's change was<0.01 [31]. The model with the
lowest value of Akaike information criterion (AIC) is preferred, which
assesses goodness-of-fit of the model. Predictors of MetS were estimated
with adjusted odds ratios (ORs) with 95% confidence intervals (CIs)
using backwards stepwise logistic regression.

The set of all variables extracted includes questionnaire responses,
demographic information and laboratory results (Supplementary
Table 1). The numbers of variables with uncertain or missing values for
smoking status, drinking status, weight change, snore, milk-drinking, tea-
drinking in the past year, culture, occupation were 306 (3.4%), 1179
(13.2%), 498 (5.6%), and 3670 (40.9%), 1135 (12.7%), 634 (7.1%), 344
(3.8%) and 446 (5.0%) individually. To reduce bias and increase statis-
tical efficacy, we imputed missing data with multiple imputation by
chained equations (MICE) [32] based on 5 replications in the R MI
packages. We combined multiple analyses' results by Rubin's Rules [33]
and performed sensitivity analyses using complete case for comparison
(Supplementary Table 2). Since the results were similar before and after
the imputation, all analyses were performed using the imputed data
(Supplementary Table 3).

Data analyses were conducted with SPSS (version 22.0) software, R
(version 3.4.3) and EmpowerStats (R) (www.empowerstats.com, X&Y so-
lutions, Inc., Boston, MA). P< 0.05 was considered statistically significant.

3. Results

3.1. Study population characteristics

2714 (30.3%) individuals in total population were identified as
suffering from MetS, 672 (21.2%) and 2042 (35.3%) in male and female,
respectively. 1052 (11.7%) did not have any component of MetS. 3564
(39.8%) were overweight (BMI�24 kg/m2). 576 (6.4%) had history of
diabetes. 1047 (64.8%) (95% confidence interval [CI] 62.4–67.2%) had
newly detected diseases in 1616 diabetics group. 625 (6.9%) had history
of hypertension. In a group of 5830 hypertensive patients, 5195 (89.1%)
(95% CI 88.3–89.9%) had newly detected hypertension. And 116 (1.3%)
had history of hyperlipidemia (Table 1). 2583 (95.7%) (95% CI
94.9–96.4%) were undetected in all 2699 participants with
hyperlipidemia.

In males, the most commonly observedMetS component was elevated
BP levels (67.5%), followed by elevated FPG level (59.1%) and high TG
3

(24.5%), while elevated BP level (63.7%) was also the most common
component in females, followed by elevated FPG levels (58.2%) and high
WC (42.4%) (Supplementary Table 4).

3.2. Development and comparison of prediction models for the scenarios in
hospital and at home

We imputed all 38 variables (Supplementary Table 1) into the LGBM
machine learning technique to develop model 1 for the application in
hospital (Figure 1A). Variables which were components for the diagnosis
of MetS (TG, FPG, WC, SBP, DBP, HDL-C) were removed from model 1 to
generate model 2 (Figure 1B) and to investigate the predicting efficacy of
the rest factors. Considering that it was inconvenient for most people to
get clinical test in daily life, we developed a prediction model 3 (home
model) without blood biochemical indexes such as 2h-plasma glucose
(P2hPG), lnHOMA-IR, FIns, TC, LDL-C, serum creatinine (Scr), glutamate
transaminase (ALT), aspartate transaminase (AST), gamma-glutamyl
transpeptidase (GGT) for people who were unlikely to participate in a
health check-up timely (Figure 1C). Model 1 showed the highest AUC
value (AUC ¼ 0.993) among these three models, reflecting the best
discriminative ability, and no obvious difference was observed in male
and female (Table 2). The predicting efficacy of model 2 (AUC ¼ 0.885)
decreased a lot after removing the diagnostic variables of MetS.
Remarkably, the predicting efficacy of model 3 was close to model 2
(AUC ¼ 0.859) after blood biochemical indexes removed (Figure 2).

3.3. Predicting efficacy of the predictors for MetS, for components of MetS
and in gender-separate models

The predicting efficacy of variables, which was investigated by LGBM
machine learning technique, indicated that the six variables with highest
importance values were all components of MetS which accorded with the
diagnostic standard (Figure 1A). Our results also demonstrated that
gender had high importance value in prediction model 1. The present
study illustrated that factors related to dysglycemia (e.g. lnHOMA-IR,
FIns and P2hPG) and obesity (waist-to-hip ratio (WHR) and waist-to-
height ratio (WHTR)) had high predicting potency in model 2
(Figure 1B). In model 3 (Figure 1C), the results indicated that sex, height
and RPR were important predictive factors.

Our results analyzed by machine learning indicated that lnHOMA-IR
and FIns were the most important predictors for the MetS components of
low HDL-C, high TG, high FPG and high WC after removing the variables
directly associated with each component, respectively. Additionally, age
and FPG was the best predictor for high SBP (Supplementary Figure 2).

Considering it is illustrated that gender had a high important value in
predicting the probability of MetS in all models, we attempted to
investigate whether the efficacy of the predictors differed in models
developed by machine learning with male or female only. Our results
indicated that the AUC of these gender-separate models were both lower
compared with the models with the total population (Table 2). TG, FPG,
SBP, DBP remained predictors with high efficacy in these gender-
separate models. Remarkably, WHtR seemed to be a predictor with
higher efficacy than WC in the models with male only (Supplementary
Figure 3A). After removing the variables of MetS components, the pre-
dicting efficacy of WHtR, lnHOMA-IR, P2hPG and TC remained high in
these gender-separate models (Supplementary Figure 3B), and these
predictors had similar priority of predicting efficacy in these gender-
separate models to those with total population (Supplementary
Figure 3C).

3.4. Logistic regression prediction model for MetS

The current study also built three logistic regression (LR) models
corresponding to the three machine learning models of model 1, model 2
and model as described above. The AUC values of LR model 1, 2 and 3
were 0.938, 0.839, 0.820, respectively (Table 3). The efficacy was much
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Table 1. Baseline characteristics of study participants.

Male (n ¼ 3177) Female (n ¼ 5787)

Normal (n ¼ 2505) MetS (n ¼ 672) Normal (n ¼ 3745) MetS (n ¼ 2042) P value for sex difference

Demographics:

Age, years 55.8 (8.6) 54.7 (8.1) z 52.8 (8.2) 55.7 (7.7) * <0.001

Weight, kg 59.3 (8.6) 70.2 (9.7) y 52.9 (7.7) 60.0 (8.3) * <0.001

Height, cm 162.7 (6.1) 164.3 (6.2) y 153.2 (5.5) 153.7 (5.5) ** <0.001

WC, cm 76.9 (8.1) 88.8 (8.0) y 74.5 (7.7) 84.2 (7.6) * <0.001

HC, cm 88.9 (5.9) 94.8 (6.4) y 89.2 (6.2) 94.6 (6.7) * <0.001

WHR, cm/m 86.5 (6.6) 93.7 (6.5) y 83.5 (6.1) 89.0 (6.1) * <0.001

WHtR, cm/m 47.3 (4.9) 54.1 (4.7) y 48.6 (5.0) 54.8 (5.0) * <0.001

BMI, kg/m2 22.4 (2.8) 26.0 (3.0) y 22.6 (2.9) 25.4 (3.1) * <0.001

H/W, cm/kg 2.8 (0.4) 2.4 (0.3) y 2.9 (0.4) 2.6 (0.3) * <0.001

Resting pulse rate, bpm 79.5 (13.3) 82.9 (13.8) y 82.4 (12.3) 84.4 (12.7) * <0.001

Examination results:

SBP, mmHg 135.8 (20.2) 148.4 (18.5) y 132.3 (20.6) 147.6 (19.9) * 0.028

DBP, mmHg 79.5 (12.0) 87.5 (11.6) y 76.6 (11.6) 83.2 (11.5) * <0.001

FPG, mmol/L 5.8 (1.4) 6.7 (1.9) y 5.7 (1.3) 6.6 (1.9) * 0.689

P2hPG, mmol/L 7.3 (3.3) 9.1 (4.4) y 7.3 (2.9) 9.3 (4.3) * <0.001

HbA1c 5.6 (0.8) 6.0 (1.1) y 5.5 (0.8) 6.0 (1.1) * 0.018

Scr, μmmol/L 76.6 (21.3) 80.8 (16.5) y 62.9 (12.2) 65.8 (11.7) * <0.001

HDL-C, mmol/L 1.8 (0.5) 1.4 (0.4) y 1.8 (0.3) 1.5 (0.3) * 0.017

LDL-C, mmol/L 2.9 (0.8) 3.1 (0.8) y 2.9 (0.8) 3.2 (0.9) * <0.001

TC, mmol/L 5.2 (0.9) 5.5 (1.1) y 5.3 (0.9) 5.6 (1.1) * <0.001

TG, mmol/ 1.1 (0.7) 2.7 (2.1) y 1.2 (0.6) 2.2 (1.4) * 0.039

ALT, IU/L 21.6 (13.6) 27.8 (16.2) y 16.4 (11.5) 19.1 (12.8) * <0.001

AST, IU/L 29.4 (13.5) 32.1 (20.8) z 24.5 (10.3) 25.1 (14.2) <0.001

GGT, IU/L 36.5 (57.2) 70.9 (127.4) y 20.0 (20.8) 27.8 (25.0) * <0.001

FIns, μU/ 5.0 (4.7) 8.6 (5.1) y 6.4 (5.0) 9.5 (5.9) * <0.001

lnHOMA-IR 0.1 (0.6) 0.8 (0.6) y 0.4 (0.5) 0.9 (0.5) * <0.001

Questionnaire results:

Occupation <0.001

Government 32 (1.4) 24 (3.9) y 19 (0.5) 7 (0.4) *

Medical or education 17 (0.7) 22 (3.6) 29 (0.8) 14 (0.7)

Merchant 109 (4.6) 42 (6.8) 120 (3.3) 46 (2.4)

Manual worker 2013 (85.2) 442 (71.6) 2930 (81.6) 1531 (78.6)

Housewife 5 (0.2) 0 (0) 226 (6.3) 170 (8.7)

Unemployed 188 (8.0) 87 (14.1) 265 (7.4) 180 (9.2)

Culture <0.001

Illiteracy 954 (39.7) 201 (31.7) y 1843 (50.8) 1158 (59.2) *

Primary or junior 1414 (58.8) 404 (63.7) 1741 (48.0) 792 (40.5)

⩾Senior high sch 38 (1.6) 29 (4.6) 41 (1.1) 5 (0.3)

Smoking status <0.001

Never 879 (35.8) 282 (43.3) y 3418 (95.2) 1854 (94.3) **

Current 777 (31.7) 158 (24.3) 100 (2.8) 51 (2.6)

Former 796 (32.5) 211 (32.4) 71 (2.0) 61 (3.1)

Drinking status <0.001

Never 886 (39.6) 208 (35.1) z 2877 (89.8) 1561 (89.0)

Current 517 (23.1) 132 (22.3) 138 (4.3) 68 (3.9)

Former 832 (37.2) 253 (42.7) 189 (5.9) 124 (7.1)

Tea in past 1 year 0.018

Never 1367 (58.6) 350 (56.5) 2895 (83.1) 1559 (82.3)

Former 58 (2.5) 13 (2.1) 55 (1.6) 35 (1.8)

Current 908 (38.9) 257 (41.5) 533 (15.3) 300 (15.8)

Milk-drinking habit 0.035

Yes 1492 (68.8) 375 (65.9) 2260 (68.0) 1171 (66.3)

Weight change per year 0.056

Loss 264 (11.2) 76 (12.4) y 399 (11.2) 212 (11.0)

Gain 193 (8.2) 75 (12.2) 350 (9.8) 219 (11.4)

Stable 1350 (57.3) 355 (57.8) 1987 (55.7) 1029 (53.3)

(continued on next page)
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Table 1 (continued )

Male (n ¼ 3177) Female (n ¼ 5787)

Normal (n ¼ 2505) MetS (n ¼ 672) Normal (n ¼ 3745) MetS (n ¼ 2042) P value for sex difference

Demographics:

Unclear 551 (23.4) 108 (17.6) 829 (23.3) 469 (24.3)

Snore <0.001

Mostly 152 (10.1) 58 (14.6) z 86 (3.9) 105 (8.9) *

Occasionally 254 (16.9) 86 (21.7) 347 (15.7) 224 (19.0)

Never 707 (46.9) 162 (40.8) 1203 (54.3) 532 (45.2)

Unclear 393 (26.1) 91 (22.9) 578 (26.1) 316 (26.8)

Physical active 176 (7.0) 52 (7.7) 258 (6.9) 113 (5.5) ** 0.132

History of hypertensionsion 117 (4.7) 82 (12.2) y 169 (4.5) 257 (12.6) * 0.051

History of hyperlipidemia 5 (0.2) 43 (6.4) y 3 (0.1) 65 (3.2) * 0.178

History of diabetes 108 (4.3) 100 (14.9) y 155 (4.1) 213 (10.4) * <0.001

Age difference_child <0.001

�14, <22 46 (4.9) 13 (4.5) 318 (20.4) 185 (22.5)

�22, <30 794 (85.0) 249 (87.1) 1162 (74.4) 598 (72.6)

�30, �34 94 (10.1) 24 (8.4) 82 (5.2) 41 (5.0)

Age difference_mate 0.048

<3 1226 (59.9) 328 (59.4) 1760 (58.3) 903 (56.0)

�3, <10 784 (38.3) 210 (38.0) 1185 (39.3) 660 (40.9)

�10, �35 37 (1.8) 14 (2.5) 74 (2.5) 50 (3.1)

Abbreviations: WC, waist circumferenc; HC, hip circumference; WHR, waist-to-hip circumferenc ratio; WHtR, waist-to-height circumference ratio; H/W, height-to-
weight ratio; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FIns, fasting plasm insulin; FPG, fasting plasma glucose;, 2h plasma
glucose after 75g oral glucose tolerance test; HbA1c, Hemoglobin A1c; TG, triglycerides; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-
density lipoprotein cholesterol; AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, gamma-glutamyl transferase; serum creatinine; lnHOMA-IR,
natural logarithm of homeostasis model assessment of insulin resistance. Age difference_mate/child, age differences between subjects and their mate/first kid.
Data: mean (SD) for continuous variables or n (%) for categorical variables.
yp < 0.001 and zp < 0.05 compared with normal subjects in men, *p < 0.001 and **p < 0.05 compared with normal subjects in women.
p values are calculated for difference by t-test or Mann–Whitney test and χ2 test or Fisher exact test.
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better in LR model 1 than the other two (model 2 and model 3), which
had similar AUC values.

We analyzed the correlations of variables to screen them to develop
logistic regression models and find the independent risk factors. The
results showed that the correlation was high (rho¼ 0.852) between total
cholesterol (TC) and LDL-C. Moreover, hip circumference (HP), WC,
WHtR, BMI and weight revealed strong positive correlations (rho�0.7)
with each other. Correlations was also high (rho ¼ 0.798) between
lnHOMA-IR and fasting insulin. The interplay of FPG, P2hPG and HbA1c
were observed in the analysis (Supplementary Table 5). After excluding
those strongly correlated variables, the final model developed by step-
wise logistic regression included the following factors: age, sex, drinking
status, history of hyperlipidemia, RPR, SBP, HDL-C, TG, GGT,WC, height,
FIns and FPG (Table 4).

Notably, in this study, we also found that former drinking habit was
an important predictive factor for MetS in sex- and age-adjusted analysis
(OR, 1.17; 95% CI, 1.01–1.34; Table 4) and multivariate analysis (OR,
1.35; 95% CI, 1.06–1.73). In addition, results revealed that sex was
closely associated with MetS, and a higher risk of MetS was observed in
female (OR, 8.84; 95% CI, 6.70–11.66). Additionally, lnHOMA-IR was a
remarkable predictive factor on logistic regression analysis (OR, 2.47;
95% CI, 2.07–2.94; P < 0.0001) after adjustment for age, sex, drinking
status, history of hyperlipidemia, RPR, SBP, HDL-C, TG, GGT, WC, height
and FPG. It is also manifested that RPR was an important risk factor for
MetS (OR, 1.01; 95% CI, 1.00–1.02; P ¼ 0.0025) and there was a 1.0%
rise in the probability of MetS with every 1-bpm increase of RPR. We also
demonstrated that there was a 1.4% higher probability of MetS for each
1-cm increase of height (OR, 1.01; 95% CI, 1.00–1.03; P ¼ 0.0536) in the
multivariable logistic regression model, though the effect was marginally
significant. Noteworthy, all variables of MetS components (SBP, TG,
HDL, WC, FPG) were important risk factors for MetS. Moreover, it was
demonstrated that the probability for MetS decrease with every 1-mmol/
L increase of HDL-C (OR, 0.29; 95% CI, 0.23–0.39; Table 4).
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As for sex difference, pre- and postmenopausal women both had
higher risk for MetS than men after full adjustment (pre: OR, 3.77; 95%
CI, 2.24–6.35; P < 0.0001; post: OR, 6.71; 95% CI, 4.48–10.05; P <

0.0001). No significant association was observed between height, RPR
and MetS in total population after full adjustment. However, in the
subpopulation over 58 years, there was a 3.8% higher risk of MetS for
each 1-cm increase of height (OR, 1.04; 95% CI, 1.00–1.07; P ¼ 0.0319)
after full adjustment, and the effect was especially significant in men.
Meanwhile, people less than 62 years had a fully adjusted 1.0% higher
risk of MetS per unit increase of RPR (OR, 1.01; 95% CI, 1.00–1.02; P ¼
0.0358; Supplementary Table 6).

3.5. Comparison among LGBM and LR models

We imputed the same variables filtered out by logistic regression
mentioned above into the corresponding machine learning models to
compare the predictive efficacy of these two approaches. The AUC values
were 0.993 for the scenario in hospital with all variables (model 1), 0.885
for the scenario in hospital with the variables of MetS components
removed (model 2), 0.859 for the scenario at home without biochemical
indexes (model 3) respectively by machine learning and 0.938, 0.839,
0.820 individually by logistic regression. The results revealed that ac-
curacy, specificity in machine learning models were also higher than
their corresponding LR models (Table 3).

4. Discussion

In this study, we developed prediction models for MetS in general
population using machine learning. The model for the scenario in hos-
pital with variables of laboratory tests, lifestyles and anthropometric
measurements (Model 1) showed a best predicting efficacy and accuracy.
Surprisingly, the model for the scenario in hospital with the variables of
MetS components removed (Model 2) still exhibited a great performance



Figure 1. Relative importance of predictive factors ac-
cording to the machine learning (LGBM) models. A.
Model 1 with all 38 variables. B. Model 2 without vari-
ables which were components for the diagnosis of MetS
(triglyceride, fasting blood glucose, waist circumference,
systolic blood pressure, diastolic blood pressure, HDL-
cholesterol) from model 1. C. Model 3 without blood
biochemical indexes such as 2h-plasma glucose, lnHOMA-
IR, fasting insulin, total cholesterol, LDL-cholesterol,
serum creatinine, glutamate transaminase, aspartate
transaminase, gamma-glutamyl transpeptidase. Relative
importance represents the strength of variables' predic-
tion ability in each model. Abbreviation: aspartate
transaminase (AST), gamma-glutamyl transpeptidase
(GGT).
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Table 2. Performance comparison among various machine learning models for predicting the probability of suffering from metabolic syndrome.

Total Male Female

AUC SP SN AC AUC SP SN AC AUC SP SN AC

Model 1 0.993 0.988 0.974 0.984 0.984 0.941 0.949 0.943 0.993 0.992 0.975 0.986

Model 2 0.885 0.826 0.791 0.816 0.877 0.836 0.772 0.824 0.859 0.802 0.746 0.782

Model 3 0.859 0.822 0.776 0.809 0.856 0.838 0.715 0.816 0.843 0.787 0.744 0.772

AUC ¼ area under the curve.AC, accuracy; SP, specificity; SN, sensitivity. The threshold for the calculation of sensitivity and specificity was 0.5.
Attributes for each model.
Model 1: all variables; Model 2: variables in Model 1 without WC, SBP, DBP, TG, HDL, FPG; Model 3: variables in Model 2 without P2hPG, lnHOMA-IR, FIns, TC, LDL-C,
Scr, AST, ALT, GGT.

Figure 2. Receiver operating characteristic (ROC) curves for three models
developed by machine learning in total population. Blue line represents model
1. Orange line represents model 2. Green line refers to model 3. The area under
the curve represents the predictive ability of the models.
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value and the Model designed for the scenario of daily life at home
without biochemical indexes (Model 3) demonstrated approximately the
same predicting efficacy and accuracy as model 2. Furthermore, these
LGBM machine learning models had superior efficacies and accuracies
than those established by logistic regression. Our findings also illustrated
first time that gender, height in the subpopulation over 58 years and RPR
in the subpopulation younger than 62 years were important predictors
for MetS.

In recent years, the demand for more efficient healthcare delivery and
health management of non-communicable chronic diseases such as MetS
has been increasing in many countries including China [34]. Thus, it is
very important for us to evaluate the predictors and make opportune
diagnosis and intervention of these disease. Actually, logistic regression
has been widely used in data analysis in this field in recent decades.
However, logistic regression is being challenged with data explosion and
the increasing number of features, and machine learning method has
shown superior performance and accuracy in previous study ([35, 36]).
Exhilaratingly, great progress has been achieved in machine learning
algorithms over the past decade and these methods has been increasingly
employed in many intelligent scenarios, especially in data mining for big
Table 3. Comparison among LGBM and logistic regression methods.

Logistic regression

AC AUC SN SP

Model 1 0.857 0.938 0.907 0.83

Model 2 0.745 0.839 0.822 0.71

Model 3 0.746 0.820 0.755 0.74

Variables included in three LGBM models developed above.
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data [37]. The combination of big data resources and new
machine-learning technologies is potentially helpful to confront the dif-
ficulties by exploring new predictive strategies to detect potential pa-
tients such as MetS timely for proper diagnosis and intervention [38].
The prediction models developed by machine learning are able to take
lots of information into account to reach a decision, which is very similar
to the conventional way adopted by physicians to make diagnostic de-
cisions [39]. Inspiringly, a prediction model using artificial neural
network (ANN), which is a common machine learning algorithm based
on the structure of the brain tissue [40, 41], is developed by Darko Iva-
novic et al. [42] for the diagnosis of MetS, implying that the prediction of
MetS diagnosis using machine learning seems feasible and is likely to be
implemented in clinical practice. Later, prediction models using machine
learning was developed to identify the risk of suffering from MetS in
Japan for individuals classified as high-risk who are not able to partici-
pate in a health intervention program [35] and in Korea for nonobese
population [36]. However, there is no developed model by machine
learning to predict the probability of suffering from MetS based on large
population study. Remarkably, in statistics and machine learning,
ensemble methods were developed using multiple learning algorithms to
obtain better predictive performance than that could be obtained from
any of the constituent learning algorithms alone [43]. Among them, the
method of decision tree (DT) has an inherent function that is ranking the
importance of variables [44], which are of great help for us the develop
the prediction model by assessing the priority of features in the model.
Hyper parameter optimization was applied to LGBM and XGBoost algo-
rithms to increase classification performance. However, LGBM classifier
surpassed XGBoost classifier in terms of performance and processing time
[45]. Therefore, the present study used LGBM method, which is
enhanced framework of DT ensemble learning and shows strong pre-
dictive efficiency and robustness. Herein, considering that the prevention
screening tool is expected to be universal for general population and the
biomedical indexes in these models are a little bit inaccessible for
self-assessment in daily life, in the present study, we constructed pre-
diction models with easily-obtained indicators at home for
self-assessment with a large, random sampling, population-based study
of 8964 individuals in the urban and rural areas of central China, and
potential risk factors are also involved as comprehensive as possible for
further modelling and analysis.

In the present study, the reliability and accuracy of the predictive
models for MetS was confirmed by LGBM model 1 with all MetS com-
ponents used to diagnose MetS, in which the performance was almost
LGBM

AC AUC SN SP

5 0.985 0.993 0.975 0.989

2 0.816 0.885 0.791 0.826

2 0.810 0.860 0.777 0.822



Table 4. Association between variables and MetS by unadjusted analysis, age- and sex-adjusted analysis, and multivariate stepwise logistic regression analysis.

Baseline variable Unadjusted Covariates Age- and Sex-Adjusted Covariates Fully Adjusted Model (stepwise regression)

Age, years 1.02 (1.02, 1.03) * 1.02 (1.01,1.03) *

Women 2.03 (1.84, 2.25) * 8.84 (6.70,11.66) *

Smoking status

Never Reference Reference

Current 0.50 (0.43, 0.58) * 0.74 (0.62, 0.88) *

Former 0.64 (0.55, 0.74) * 0.97 (0.82, 1.16) 0.7619

Drinking status

Never Reference Reference Reference

Current 0.66 (0.56, 0.77) * 0.95 (0.80, 1.13) 0.5710 0.79 (0.58,1.08)0.1406

Former 0.78 (0.69, 0.88) * 1.17 (1.01, 1.34) 0.0311 1.35 (1.06,1.73)0.0150

Milk-drinking habit (no) 1.11 (1.01, 1.22) 0.0347 1.10 (1.00, 1.21) 0.0506

Weight change per year

Loss Reference Reference

Gain 1.17 (0.97, 1.41) * 1.21 (1.00, 1.47) 0.0491

Stable 0.91 (0.79, 1.05) * 0.91 (0.79, 1.06) 0.2211

Unclear 0.91 (0.77, 1.07) * 0.86 (0.73, 1.01) 0.0647

Snore

Mostly Reference Reference

Occasionally 0.80 (0.67, 0.95) 0.0116 0.74 (0.62, 0.88) *

Never 0.63 (0.54, 0.74) * 0.56 (0.48, 0.65) *

Unclear 0.66 (0.56, 0.78) * 0.59 (0.50, 0.70) *

Resting pulse rate, bpm 1.02 (1.01, 1.02) * 1.01 (1.01, 1.02) * 1.01 (1.00,1.02)0.0025

SBP, mmHg 1.03 (1.03, 1.04) * 1.03 (1.03, 1.04) * 1.04 (1.03,1.04) *

DBP, mmHg 1.05 (1.04, 1.05) * 1.05 (1.05, 1.06) *

FPG, mmol/L 1.49 (1.43, 1.56) * 1.48 (1.42, 1.55) * 1.29 (1.23,1.36) *

P2hPG, mmol/L 1.16 (1.14, 1.17) * 1.15 (1.14, 1.17) *

HbA1c, % 1.66 (1.56, 1.76) * 1.64 (1.54, 1.74) *

Scr, μmol/L 1.00 (1.00, 1.01) 0.0043 1.01 (1.01, 1.02) *

HDL-C, mmol/L 0.10 (0.08, 0.11) * 0.07 (0.06, 0.08) * 0.29 (0.23,0.39) *

LDL-C, mmol/L 1.47 (1.39, 1.55) * 1.42 (1.34, 1.50) *

TC, mmol/L 1.39 (1.33, 1.46) * 1.34 (1.28, 1.40) *

TG, mmol/L 5.13 (4.71, 5.58) * 5.20 (4.77, 5.67) * 3.87 (3.42,4.38) *

ALT, IU/L 1.02 (1.01, 1.02) * 1.03 (1.02, 1.03) *

AST, IU/L 1.00 (1.00, 1.01) 0.2574 1.01 (1.00, 1.01) 0.0015

GGT, IU/L 1.01 (1.00, 1.01) * 1.01 (1.01, 1.01) * 1.00 (1.00,1.00)0.0120

FIns, μU/ml 1.24 (1.22, 1.26) * 1.23 (1.22, 1.25) * 1.01 (1.00,1.03)0.0743

lnHOMA-IR 7.89 (7.08, 8.80) * 7.82 (7.00, 8.73) *

Weight, kg 1.09 (1.08, 1.09) * 1.14 (1.13, 1.14) *

Height, cm 0.99 (0.98, 0.99) * 1.04 (1.03, 1.05) * 1.01 (1.00, 1.03) 0.0536

WC, cm 1.17 (1.16, 1.17) * 1.19 (1.18, 1.20) * 1.17 (1.16,1.19) *

HC, cm 1.15 (1.14, 1.16) * 1.15 (1.14, 1.16) *

WHR, cm/m 1.30 (1.28, 1.31) * 1.29 (1.28, 1.31) *

WHtR, cm/m 1.14 (1.13, 1.15) * 1.17 (1.16, 1.18) *

BMI, kg/m2 1.40 (1.37, 1.43) * 1.42 (1.40, 1.45) *

H/W, cm/kg 0.07 (0.06, 0.08) * 0.04 (0.03, 0.05) *

History of diabetes 3.14 (2.81, 3.51) * 3.15 (2.81, 3.53) *

History of hypertension 2.98 (2.53, 3.51) * 2.77 (2.34, 3.27) *

History of hyperlipidemia (no) 0.03 (0.02, 0.06) * 0.03 (0.01, 0.05) * 0.01 (0.00,0.03) *

Data are presented as the OR (95% CI) p value. *p< 0.001. The analysis initially considered all the covariates that were statistically significant on age- and sex-adjusted
analysis.
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perfect. The existence of TG, FPG, WC, SBP, HDL-C and DBP, which all
present high relative importance in this model, makes LGBM model 1
acquire excellent prediction accuracy. Notably, a relatively good efficacy
was observed in LGBMmodel 2 without six indexes of MetS components,
which is probably due to the great contributions of other crucial risk
factors associated with MetS. It suggests that model 2 is feasible in the
hospital to predict MetS without diagnostic variables of MetS. In this
model, it is demonstrated that HOMA-IR and FIns are efficacious factors
in predicting MetS as well as obesity, dyslipidemia and hyperglycemia.
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These results implied that insulin resistance is pivotal and dominant in
the association with MetS. That insulin resistance mediates the increases
in gluconeogenesis and lipogenesis [46], and consequently induces hy-
perglycemia and dyslipidemia, might be important mechanistic expla-
nations. Herein, early evaluation of insulin sensitivity or fasting plasma
insulin level may be of great help for clinicians to predict the probability
of suffering from MetS and identify undiagnosed MetS patients timely
from the high-probability individuals, though the complexity might be
far beyond our current understanding and further research is necessary.
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Most physicians are convinced that laboratory test results are indis-
pensable and the other indicators not generated from clinical labora-
tories, except WC and SBP/DBP, are of limited value in prediction or
diagnosis of MetS [39, 47]. Marvelously, LGBMmodel 3 developed in the
present study, trained without any biomedical indexes and using
non-invasive variables (routine lifestyle indicators that are the most
frequently used by people), was almost the same effective in predicting
MetS as LGBM model 2. It implied that the LGBM model 3 can help cli-
nicians to screen MetS patient smore easily, not always relying on the
laboratory assays, especially in primary care clinics or hospitals, in which
clinical laboratory testing is not available. Moreover, the LGBM model 3
could be particularly useful for individuals who are not medical pro-
fessionals, to evaluate the possibility of suffering fromMetS in their daily
life for opportune further medical consult and decision making [39].

Our result illustrated that these models developed by LGBM exhibited
higher AUC value, sensitivity, specificity and accuracy, indicating a
greater predicting efficacy compared with the models generated by lo-
gistic regression method, which is consistent with the work of Akihiro
Shimoda et al. [35]. The superiorities of the LGBM models are faster
training efficiency, higher accuracy and it is considered that machine
learning models has an inherent excellence to assess complex interaction
effects between all features [21], compared to the models developed by
logistic regression. Based on this fact, Yang et al. concerns with a ma-
chine learning-aided longitudinal study on risk prediction of MetS by
using a total of three consecutive years examination records of 67,730
individuals which is shown that the proposed risk prediction model
yields a higher performance in comparison with the state-of-the-art
methods [48]. These results suggested that a machine learning
approach could work very efficiently with easily-obtained information
imputed, which is consistent with the results of Darko Ivanovic et al.
[42]. Furthermore, it might be greatly improved to become an integral
part of medical professional systems [39] and provide new ideas for
developing healthcare decision support systems based on large-scale,
digital databases of patient information that might change the model
of healthcare.

Moreover, it is demonstrated that some potential variables might
have implications for MetS in our LGBM models. Height was shown to
be a risk factor in elderly people in the present study. It is reported by
Heymsfield et al. [49] that body fat percentage is scaled positively to
height in Mexican American men in their study and tall Mexican
American men in National Health and Nutrition Examination Survey
(NHANES) have a higher fat percentage compared with their short
counterparts, implying that fat would associate with height. Arvedsen
et al. studied that 24-h ambulatory mean arterial pressure significantly
increased in taller males [50]. Furthermore, it is recently reported that
body height is closely related with the risk of cardiovascular diseases
[51], atrial fibrillation and mitral valve prolapse [52]. These studies
suggested that height might be an unexplored contributing factor to
metabolic abnormalities which guide the search for much-needed
effective therapies in this population. Our results also indicated that
RPR is likely to be a new predictor for MetS. In general, resting heart
rate and resting pulse rate are consistent in people without severe heart
diseases. It is reported that higher RHR is associated with increases in
fat, blood pressure and serum glucose, afferent neuronal signals to the
brain leading to modulation of sympathetic tonus [53, 54], which is
attributed to the elevation of level of oxidative stress and
pro-inflammation cytokines, decreased arterial compliance and disten-
sibility, and consequently results in metabolic and cardiovascular dis-
orders [55]. It is reported that elevated RHR is associated with
increased systemic inflammation and endothelial dysfunction [56],
which are the major features of the metabolic and cardiovascular ab-
normalities including MetS and cardiometabolic disorders [57]. A
meta-analysis reported that the risk of suffering from MetS may elevated
with the increases of resting heart rate (RHR) [58], which is concordant
with our findings in this study. Anyhow, the exact mechanisms were
unclear and further research is needed.
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Noteworthy, it is demonstrated that WHtR and WHR, which were
easy-to-obtain and cost-effective anthropometric markers of obesity,
were high in the ranking of variable weights in model 3. It is reported
that WHtR was a good screening tool for MetS [59, 60] andWHR was the
anthropometric index that showed the highest predictive value for MetS
components [61], which might be important explanations of our findings
in this study. Additionally, it is also illustrated in this study by using
LGBM that sex difference is potentially predictive of the probability of
suffering fromMetS. Actually, the gender differences in the prevalence of
metabolic syndrome vary in different studies. Our regression analysis in
the present study showed that being female was a risk factor for MetS,
which is consistent with the results of some previous studies [4, 9, 11, 62,
63]. More and more studies hypothesize that menopause-related hor-
monal changes affect the prevalence of MetS [64, 65], in which the
physiological changes during menopause leading to hormonal homeo-
static dysregulation [66] may explain that the female has higher risk of
MetS. Nevertheless, our study shows that premenopausal women also
have higher risk of suffering from MetS than men, which suggests that
hormonal changes in the menopause may not be the only key risk factor
in the sex-specific differences in the prevalence of MetS. Differences in
regional and ethnic variations, socio-economic, cultural behaviors, edu-
cation levels, dietary habits disparities and physical activity levels are
likely to influence this gender differences in MetS prevalence [4, 62, 63,
67]. It is reported in NHANES that a greater relative increase in the
prevalence of MetS have was observed in women compared to men (22.8
vs. 11.2%) in the USA [67]. Low education, low socio-economic status
and physical inactive significantly increased the odds for MetS [64, 68]
while women were prone to these traits in their study. The
gender-specific prevalence of MetS might also be attributed to other
important factors such as genetic differences [69]. Anyhow, gender dif-
ferences in the prevalence of MetS should be taken into account in
clinical practice or research, which would be helpful in the early detec-
tion of MetS in the general Chinese population aged 40–75 years.

Our results showed components of MetS had a high rate of missed
diagnoses previously, and the prediction models developed by machine
learning could be helpful for the screening of these undetected disorders
and have high efficacy and accuracy in predicting the probability of
suffering from MetS. These approaches are probably helpful for in-
dividuals, who are unable to participate in a health check-up promptly, to
have a preliminary knowledge of their probabilities of suffering from
MetS and get opportune healthcare such as well-timed diagnosis and
treatment if needed. These models are potentially widely used for
convenient and non-invasive self-assessment in general population in
their daily life without any medical tests, which could be of great help in
the prevention and control of MetS for its remarkable improvement of
accessibility in health estimation. Furthermore, this model could help
individuals at high-risk of MetS pay more attention and further initiate
health examinations and intervention with healthy lifestyle.

4.1. Strengths and limitations

In this study, we constructed different models using machine learning
technique in the set of various scenarios which is probably of great help
to predict the probability of suffering from MetS in population and to
fulfil early diagnosis and timely intervention, which is very important for
their healthcare and health management. Additionally, more variables
were included in the analysis andmore predictors could be filtered out by
LGBM compared with that by logistic regression. Moreover, our results
demonstrated that the LGBM machine learning technique is of great help
to improve the efficacy and accuracy in the predicting the probability of
suffering from MetS in individuals.

Yet, it should be noted that the present study did not include people
who were under 40 or more than 75 years old, in whom our findings
herein were probably not applicable. Actually, there were still some
missing data in the large population-based study whichmight cause some
bias, though we had tried our best to collect as much information as we
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can. However, the number of the cases are 8964 individuals from a large,
random sampling, population-based study in the urban and rural areas
which is helpful to make our models more stable and credible. Addi-
tionally, since machine learning methods have been developing rapidly,
it is likely that the models instigated in the present study could be further
improved and more accurate and efficacious models could be developed
to predict MetS in the future.

Notwithstanding these limitations, the prediction models developed
by machine learning in the present study were effective in evaluating the
probability of suffering from MetS, and presented prominent predicting
efficacy and accuracy for distinguishing potential patients of MetS. These
models would be of great help to predict the probability of suffering from
MetS in individuals accurately, as well as subsequently fulfil well-timed
diagnosis and initiate intervention as early as possible. Moreover, our
results indicated that gender, height and RPR were important factors in
predicting the probability of suffering from MetS.
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