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­is paper deals with a leaderless consensus of semilinear �rst-order hyperbolic partial di�erential equation-based multiagent
systems (HPDEMASs). A consensus controller under an undirected graph is designed. Dealing with di�erent convection as-
sumptions, two di�erent boundary conditions are presented, one right endpoint and the other left endpoint. Two su�cient
conditions for leaderless consensus of HPDEMAS are presented by giving the gain range in the case of the symmetric seminegative
de�nite convection coe�cient and the semipositive de�nite convection coe�cient, respectively. Two examples are presented to
show the e�ectiveness of the control methods.

1. Introduction

As one well-known group of dynamical behavior, multiagent
systems (MASs) received many researchers’ attention in the
last few decades [1]. ­ere are a number of applications for
MASs in engineering �elds, for instance, power engineering
[2], arti�cial intelligence [3], energy optimization [4], security
[5, 6], tra�c decision [7], and precision agriculture [8].

Consensus control of MASs is to derive agents to do a
designated task synchronously[9, 10]. Many meaningful
control methods have been presented, such as event-trig-
gered control [11, 12], containment control [13], pinning
control [14], impulsive control [15], sampled-data control
[16], and adaptive control [17].

To put it another way, the mentioned literature assumed
dynamics of MASs depending only on time. In practice,
dynamics of all processes depends on both time and space.
As a consequence, it is necessary to study spatio-temporal

MASs [18]. Qi et al. proposed boundary control for PDE-
modeled MASs(PDEMASs) under 3-D space with a control
delay [19] and formation control for PDEMASs on a cy-
lindrical surface [20]. An iterative learning algorithm was
proposed for the consensus of multiagent system PDEMASs
[21]. Yang et al. proposed several control methods for
the consensus of semilinear PDEMASs or partial integro-
di�erential equation-based MASs without and with time
delays [22–24]. Several iterative learning methods were
studied for the consensus of PDEMASs[21, 25–27].

Most of the above references are modeled by parabolic
PDE-based MASs, while there are few works considering
hyperbolic PDE-based MASs (HPDEMASs). ­e consensus
of HPDEMASs is meaningful and signi�cant, as a result of
existence of a number of hyperbolic PDE systems in practice
[28, 29], including gas dynamics [30], reactor [31], tra�c
£ow [32], and hyperbolic Hop�eld neural networks [33].
­ere are several important studies about consensus of
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HPDEMASs. For example, Fu et al. proposed the contain-
ment control method for the consensus of linear parabolic
PDEMASs and second-order HPDEMASs [34]. Wang and
Huang proposed the boundary control approach for the
finite-time consensus of HPDEMASs by assuming the
convection coefficient to be 1 [35]. Zhang et al. proposed
boundary control for the leader-following consensus of
MASs with input delays by assuming the convection coef-
ficient to be a positive definite diagonal matrix[36]. How-
ever, there are still technical difficulties in the consensus of
semilinear first-order HPDEMASs for the cases of the
convection coefficient to be symmetric seminegative definite
or semipositive definite, which are motives of this paper.

+is paper mainly studies leaderless consensus control of
a semilinear HPDEMAS with two sorts of boundary con-
ditions in one-dimensional space. +e contribution of this
paper contains (1) a class of HPDEMAS models is given,
assuming two sorts of conditions, one symmetric semi-
negative definite convection coefficient and the other
semipositive definite convection coefficient. (2) Dealing with
different convection assumptions, two different boundary
conditions are presented, one right endpoint and the other
left endpoint. (3) A consensus controller based on com-
munication is studied to drive HPDEMAS to reach lead-
erless consensus. (4) Dealing with two sorts of convection
coefficients, two sufficient conditions for the consensus of
the leaderless HPDEMAS are, respectively, reached.

Notations: Let I denotes the identity matrix with proper
order, λmax(min)(·) denotes the maximum (minimum) ei-
genvalue of ·, λ2(·) denotes the smallest nonzero eigenvalue
of ·, and the superscript T denotes the transpose.

2. Problem Formulation

+is paper studies a class of semilinear HPDEMASs with
time delays

zzi(ζ, t)

zt
� Θ

zzi(ζ, t)

zζ
+ Azi(ζ, t) + f zi(ζ, t)( 􏼁 + ui(ζ, t),

(1)

where (ζ, t) ∈ t[0, L]n × q[0,∞) are space and time, re-
spectively. zi(ζ, t), ui(ζ, t) ∈ Rn are the state and control
input, respectively. 0< L ∈ R, i ∈ 1, 2, . . . , N{ }, A,Θ ∈ Rn×n,
and f(·) are a nonlinear function.

+e boundary condition is

zi(0, t) � 0, (2)

or

zi(L, t) � 0. (3)

+e initial condition is

zi(ζ, t) � z
0
i (ζ, t). (4)

+is paper aims to study one controller ui(ζ, t) driving
HPDEMAS (1) to the leaderless consensus. Let consensus
error ei(ζ, t)≜ zi(ζ, t) − 1/N 􏽐

N
j�1 zj(ζ, t) and the controller

is designed as follows:

ui(ζ, t) � c 􏽘
N

j�1
gijΓ zj(ζ, t) − zi(ζ, t)􏼐 􏼑, (5)

where c is a control gain to be determined and Γ is symmetric
positive definite. Assume that the topological structure G �

(gij)N×N is defined gii � 0; gij � gji > 0(i≠ j) if the agent i

connects to j, otherwise gij � 0(i≠ j).

Remark 1. Compared with papers [35, 36] using the in-
formation of only one neighbor, this controller (5) considers
the whole communication information among all neighbors
and takes full advantage of that.

Definition 1. ([35]) HPDEMAS (1) reaches a consensus, if

limt⟶∞ zi(ζ, t) − z(ζ , t)
����

���� � 0, i ∈ 1, 2, . . . , N{ }, (6)

where z(ζ , t)≜ 1/N 􏽐
N
j�1 zj(ζ, t).

Lemma 1. ([37]) For the Laplacian matrix L, symmetric
positive definite P and y ∈ RNn such that 1T

Nny � 0, the
following inequality is satisfied:

λ2(L)y
T

IN ⊗P( 􏼁y≤y
T
(L⊗P)y. (7)

Assumption 1. ([23]) For any ζ1, ζ2 ∈ R, there exists
0<X ∈ R satisfying

f ζ1( 􏼁 − f ζ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤X ζ1 − ζ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (8)

3. Consensus of HPDEMASs with the
Seminegative Definite
Convection Coefficient

Assumption 2. Assume Θ is symmetric seminegative
definite.

Note that Assumption 2 is sort of classical, which is
extensively employed in the practice, see, e.g. [38, 39].

+e error system of HPDEMAS (1), (2), and (4) can be
obtained as follows

zϵ(ζ, t)

zt
� Θ

ze(ζ , t)

zζ
+ IN ⊗A( 􏼁e(ζ , t) + F(e(ζ , t))

−c(L⊗Γ)e(ζ , t),

e(0, t) � 0,

e(ζ, 0) � e
0
(ζ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where e0i (ζ)≜ z0
i (ζ) − 1/N 􏽐

N
j�1 z0

j(ζ), e(ζ, t)≜ [eT
1 (ζ, t),

eT
2 (ζ, t), . . . , eT

N(ζ, t)]T, F(ei(ζ, t))≜f(zi(ζ, t)) − 1/N 􏽐
N
j�1

f(zj(ζ, t)), F(e(ζ , t))≜ [FT(e1(ζ, t)), FT(e2(ζ, t)), . . .,
FT(eN(ζ, t))]T, L � D − G, D � diag d1, d2, . . . , dN􏼈 􏼉, di �

􏽐
N
j�1 gij, and so L is a Laplace matrix [37].
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Theorem 1. Suppose that Assumptions 1 and 2 hold. =e
leaderless HPDEMAS shown in equations (1), (2), and (4)
reaches the consensus under the controller (5), if

c>
λmax IN ⊗A + A

T/2 + χI􏼐 􏼑

λ2(L)λmin(Γ)
. (10)

Proof. We choose the Lyapunov functional candidate as
shown in the following equation:

V(t) � 0.5􏽚
L

0
e

T
(ζ, t)e(ζ , t)dζ . (11)

Taking the time derivative of V(t), we obtain

_V(t) � 􏽚
L

0
e

T
(ζ, t)

ze(ζ, t)

zt
dζ

� 􏽚
L

0
e

T
(ζ, t) IN ⊗Θ( 􏼁

ze(ζ , t)

zζ
d

+ 􏽚
L

0
e

T
(ζ, t) IN ⊗A − cL⊗ Γ( 􏼁e(ζ , t)dζζ

+ 􏽚
L

0
e

T
(ζ, t)F(e(ζ , t))dζ .

(12)

SinceL is a Laplace matrix and Γ is a symmetric positive
definite matrix, using Lemma 1, one has

− c 􏽚
L

0
e

T
(ζ, t)(L⊗Γ)e(ζ , t)dζ

⩽ − cλ2(L) 􏽚
L

0
e

T
(ζ, t) IN ⊗Γ( 􏼁e(ζ , t)dζ

⩽ − cλ2(L)λmin(Γ) 􏽚
L

0
e

T
(ζ, t)e(ζ , t)dζ ,

(13)

where 0 � λ1(L)< λ2(L)≤L≤ λN(L) [40].
For symmetric seminegative definite Θ, employing in-

tegrating by parts, one gets

􏽚
L

0
e

T
(ζ, t) IN ⊗Θ( 􏼁

ze(ζ , t)

zζ
dζ

� e
T
(ζ, t) IN ⊗Θ( 􏼁e(ζ , t)

ζ�L

ζ�0

− 􏽚
L

0

ze
T
(ζ, t)

zζ
IN ⊗Θ( 􏼁e(ζ, t)

� e
T
(L, t) IN ⊗Θ( 􏼁e(L, t)

− 􏽚
L

0
e

T
(ζ, t) IN ⊗Θ( 􏼁

ze(ζ , t)

zζ
dζ

≤ − 􏽚
L

0
e

T
(ζ, t) IN ⊗Θ( 􏼁

ze(ζ , t)

zζ
dζ,

(14)

which implies

􏽚
L

0
e

T
(ζ, t) IN ⊗Θ( 􏼁

ze(ζ, t)

zζ
dζ ≤ 0. (15)

Since 􏽐
N
i�0 􏽒

L

0 eT
i (ζ, t)[f(y(ζ, t)) − 1/N 􏽐

N
j�0 f

(yj(ζ, t))]dx � 0, under Assumption 1, we can get

􏽚
L

0
e

T
(ζ , t)F(e(ζ , t))dζ

� 􏽘
N

i�0
􏽚

L

0
e

T
i (ζ , t) f zi(ζ , t)( 􏼁 −

1
N

􏽘
N

j�1
f zj(ζ , t)􏼐 􏼑⎛⎝ ⎞⎠dζ

� 􏽘
N

i�0
􏽚

L

0
e

T
i (ζ , t) f zi(ζ , t)( 􏼁 −f(z(ζ , t)))dζ ≤ χ 􏽚

L

0
e

T
(ζ, t)e(ζ , t)dζ .􏼠

(16)

Substitution of (12), (14), (15) into (11), we obtain

_V(t)⩽􏽚
L

0
e

T
(ζ, t)Ψe(ζ , t)dζ , (17)

where Ψ≜ IN ⊗A + AT/2 + χI − cλ2(L)λmin(Γ)I.
It is obvious that (9) implies

Ψ< 0. (18)

Substitution of (17) into (16), we obtain _V(t)⩽
−λ‖􏽥e(·, t)‖⩽ −λ‖e(·, t)‖ for all nonzero e(ζ, t), implying
consensus of HPDEMAS (1). □

4. Consensus of HPDEMASs with the
Symmetric Semipositive Definite
Convection Coefficient

Assumption 3. Assume Θ is symmetric semipositive
definite.

Note that Assumption 3 is sort of classical, which is
extensively employed in practice, see, e.g. [35, 36].

+e error system of the HPDEMAS (1), (3), and (4) can
be obtained as follows:

zϵ(ζ, t)

zt
� Θ

ze(ζ , t)

zζ
+ IN ⊗A( 􏼁e(ζ , t)

+F(e(ζ , t)) − c(L⊗ Γ)e(ζ , t),

e(L, t) � 0,

e(ζ, 0) � e
0
(ζ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

Theorem 2. Suppose that Assumptions 1 and 3 hold. =e
leaderless HPDEMAS shown in equations (1), (3), and (4)
reaches the consensus under controller (5) if (9) holds.

Proof. We choose the same Lyapunov functional candidate
as in (10). Taking the time derivative of V(t), we obtain (11).
For the symmetric semipositive definite Θ> 0, employing
integrating by parts, one has
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∫
L

0
eT(ζ, t) IN ⊗Θ( )

ze(ζ, t)
zζ

dζ

� eT(ζ, t) IN ⊗Θ( )e(ζ, t)ζ�Lζ�0

− ∫
L

0

zeT(ζ, t)
zζ

IN ⊗Θ( )e(ζ , t)

� −eT(0, t) IN ⊗Θ( )e(0, t)

− ∫
L

0
eT(ζ, t) IN ⊗Θ( )

ze(ζ , t)
zζ

dζ

≤ − ∫
L

0
eT(ζ, t) IN ⊗Θ( )

ze(ζ , t)
zζ

dζ,

(20)

which implies

∫
L

0
eT(ζ, t) IN ⊗Θ( )

ze(ζ, t)
zζ

dζ ≤ 0. (21)

Substitution of (12), (15), (19) into (11), we obtain (16). It
is obvious that (9) implies

Ψ< 0. (22)

­e later part of the proof is similar to that of­eorem 2,
and so it is omitted. □

Remark 2. Di�erent from the control design for consensus
of parabolic PDEMASs in [41, 42], this paper deals with the
consensus of a class of HPDEMASs.

Remark 3. Consensus of HPDEMASs has been studied by
assuming the convection coe�cient to be 1 in [35] and to be
a positive de�nite diagonal matrix in [36]. Di�erent from
these results, this paper assumes the convection coe�cient to
be symmetric seminegative and semipositive de�nite.

5. Numerical Simulation

Example 1. ­is example considers one HPDEMAS (1) as
follows:

zzi(ζ, t)
zt

�
−0.8 0

0 −1.6



zzi(ζ, t)

zζ

+
5 2.6

−1.2 3.9


zi(ζ, t) + tanh zi(ζ, t)( ) + ui(ζ, t),

zi(0, t) � 0,

zi(ζ, t) � z
0
i (ζ, t),




(23)
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Figure 1: ­e open-loop pro�le of z(ζ, t).
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with random initial conditions. We get the following
parameters:

Θ �
−0.8 0

0 −1.6
[ ],

A �
5 2.6

−1.2 3.9
[ ],

L � 1, f(·) � tanh(·).

(24)

­e controller (5) is used with the following parameters:

Γ �
1 0

0 1
[ ],

gij � 1, for i, j � 1, 2, 3, 4 and i≠ j.
(25)

From Figure 1, it can be seen that HPDEMAS (1) cannot
reach the consensus without control. With ­eorem 1,
solving (9) by Matlab, c � 1.59 is obtained. Figure 2 shows
that the HPDEMAS (1) reaches the consensus under con-
troller (5) with c � 1.59. Controller (5) with the feedback
gain c � 1.59 is shown in Figure 3.

Example 2. ­is example considers one HPDEMAS (1) as
follows:

zzi(ζ, t)
zt

�
0.2 0

0 0.5



zzi(ζ, t)

zζ
+

5 2.6

−1.2 3.9


zi(ζ, t)

+tanh zi(ζ, t)( ) + ui(ζ, t),

zi(L, t) � 0,

zi(ζ, t) � z
0
i (ζ, t),




(26)

with random initial conditions.

We getΘ � 0.2 0
0 0.5[ ], and the other parameters are the

same as (22). ­e parameters Γ and gij of the controller (5)
are the same as (23).

From Figure 4, it can be seen that HPDEMAS (1) cannot
reach the consensus without control. With ­eorem 2,
solving (9) by Matlab, c � 1.59 is obtained. Figure 5 shows
that the HPDEMAS (1) reaches the consensus under con-
troller (5) with c � 1.59. ­e controller (5) with the feedback
gain c � 1.59 is shown in Figure 6.
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Figure 2: ­e closed-loop pro�le of z(ζ, t).
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6. Conclusion

­is paper has dealt with leaderless consensus control of a
class of semilinear HPDEMASs. One consensus controller of
HPDEMASs under the structure of undirected graphs,
making use of communication among agents, was estab-
lished. Firstly, for the case of the symmetric seminegative
de�nite convection coe�cient, the boundary condition of
the right endpoint was given. For the case of the symmetric
semipositive de�nite convection coe�cient, the boundary
condition of the left endpoint was given. Two su�cient
conditions for the consensus of HPDEMASs were obtained.
Two examples illustrated the e�ectiveness of developed
theoretical results. In future work, containment control,
event-triggered control, and many other factors will be
studied.
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