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Abstract: Background: Skeletal muscle mass (SMM) has been suggested to be associated with
multiple health-related outcomes. However, the potential influence of SMM on asthma has not been
largely explored. Objective: To study the association between SMM and clinical features of asthma,
including asthma control and exacerbation, and to construct a model based on SMM to predict the
risk of asthma exacerbation (AEx). Methods: In this prospective cohort study, we consecutively
recruited patients with asthma (n = 334), classified as the SMM Normal group (n = 223), SMM Low

group (n = 88), and SMM High group (n = 23). We investigated the association between SMM and
clinical asthma characteristics and explored the association between SMM and asthma control and
AEx within a 12-month follow-up period. Based on SMM, an exacerbation prediction model was
developed, and the overall performance was externally validated in an independent cohort (n = 157).
Results: Compared with the SMM Normal group, SMM Low group exhibited more airway obstruction
and worse asthma control, while SMM High group had a reduced eosinophil percentage in induced
sputum. Furthermore, SMM Low group was at a significantly increased risk of moderate-to-severe
exacerbation compared with the SMM Normal group (relative risk adjusted 2.02 [95% confidence interval
(CI), 1.35–2.68]; p = 0.002). In addition, a model involving SMM was developed which predicted
AEx (area under the curve: 0.750, 95% CI: 0.691–0.810). Conclusions: Low SMM was an independent
risk factor for future AEx. Furthermore, a model involving SMM for predicting the risk of AEx
in patients with asthma indicated that assessment of SMM has potential clinical implications for
asthma management.

Keywords: asthma; skeletal muscle mass; exacerbation; clinical prediction model

1. Introduction

Asthma is a common chronic respiratory disease affecting 1–18% of the population
in different countries [1] Uncontrolled asthma may lead to reduced physical activity in
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daily life [2]. Lack of physical activity and other risk factors such as aging, nutritional
status, and chronic inflammation could contribute to progressive loss of skeletal muscle
mass (SMM) [3]. Reduced SMM is related to functional comorbidities, including mobility
disorders, risk of falls and fractures, and loss of physical independence in activities of
daily living for patients with asthma, which would increase the demand on the healthcare
system [3]. Bioelectrical impedance analysis (BIA), as an inexpensive and non-invasive
technique, provides measurements of SMM with little complexity [4].

SMM has been shown to affect health outcomes differentially. A decrease in muscle
mass has been linked to greater insulin resistance and protection against the development
of type 2 diabetes [5]. In contrast, lower amounts of SMM are associated with numerous
health problems. A recently published study suggested that a lower muscle mass leads
to an increased risk of cardiovascular events [6]. Moreover, the substantial loss of muscle
mass relative to fat mass, termed “sarcopenia”, has been found to have a negative effect on
the quality of life and survival of patients [7–9]. This relationship has been observed not
only in the elderly population and in cancer patients, in whom muscle loss is prevalent,
but also in the general population [3,10].

There is increasing evidence that the loss of SMM is associated with lung health [11,12].
This may be relevant to asthma and chronic obstructive pulmonary disease (COPD), both
of which are chronic inflammatory airway diseases [13]. Reduced SMM has been associated
with impaired lung function and poor health status in patients with COPD [14–16]. We and
others have shown that various extra-pulmonary traits, including obesity, are associated
with asthma control [17–19]. However, to date, no studies have specifically examined SMM
as a potential extra-pulmonary treatable trait in asthma outcome in future.

In this prospective cohort study, we explored whether reduced SMM was associated
with worse asthma control and exacerbation (AEx). Subsequently, a prediction model
involving SMM for identifying the risk of AEx was developed. The relative importance of
SMM for all screened predictors in the model for predicting AEx was also assessed.

2. Materials and Methods
2.1. Study Design and Patients

The ASAN (https://www.severeasthma.org.au, accessed on 3 December 2022) is a
multicenter clinical research network (Australia, Singapore, China, and New Zealand) in a
real-world setting. This prospective cohort study consecutively recruited adult patients
(aged ≥ 18 years) diagnosed with stable asthma at the West China Hospital, Sichuan
University. Asthma was diagnosed based on the Global Initiative for Asthma [1]. Stable
asthma was defined as no respiratory tract infections, asthma exacerbations, or systemic
corticosteroid (SCS) use in the previous 4 weeks. Patients who were unable to complete the
questionnaires, perform spirometry, perform the sputum induction, or were pregnant or
breastfeeding were excluded from the study.

We recruited 334 patients (recruitment period: March 2014 to October 2018). According
to the age, sex, height, and weight of the individual, the range of normal values for SMM in
Asian populations was calculated using a validated equation by multifrequency BIA and
classified as SMM Normal group [20,21]. SMM values lower than the 10th percentile of the
reference values were classified as SMM Low group and values of SMM equal to or higher
than the 90th percentile of the reference values were classified as SMM High group [20,21].
These patients were followed for 12 months to assess the occurrence of AEx. We used these
participants as the training cohort to explore the association between SMM and asthma and
construct a prediction model.

We independently recruited 157 patients as the validation cohort (recruitment period:
November 2018 to October 2020) to validate the prediction model established in the training
cohort (Figure 1). As in the training cohort, these patients were also followed up for
12 months to assess the occurrence of AEx. All patients (training and validation cohorts)
were included in this study satisfying the above inclusion/exclusion criteria.

https://www.severeasthma.org.au
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Figure 1. Flowchart for patient inclusion in the training and validation cohorts. SMM, skeletal
muscle mass.

All patients provided written informed consent before participating in the study. The
study was approved by the Institutional Review Board of West China Hospital, Sichuan
University (Chengdu, China) (2014-30) and registered in the Chinese Clinical Trial Registry
(ChiCTR-OOC-16009529; http://www.chictr.org.cn, accessed on 3 December 2022).

2.2. Data Collection and Clinical Assessments

Participants were followed up for 1 year with visits at baseline, 1 month, 3 months,
6 months, 9 months and 12 months.

Baseline data of the participants were collected, which included demographics, medi-
cations at/prior to study entry, asthma history, atopy, BMI, asthma control questionnaire-6
(ACQ-6), psychological status assessed using the Hospital Anxiety and Depression Scale
(HADS) [22]. And all included subjects underwent spirometry, sputum induction, fractional
exhaled nitric oxide (FeNO), blood sampling and body composition (BC).

2.3. Anthropometric and BCAssessments

SMM was measured as a parameter in BC assessments at baseline. BC was evaluated
using BIA (InBody S10 analyzer; Biospace Co., Ltd., Seoul, Republic of Korea) according
to the user manual [20]. Body resistance (R) was used to estimate the total body SMM
according to the method previously described by Janssen et al. as follows [21]:

SMM (kg) = [(Ht2/R × 0.401) + (sex × 3.825) + (age × −0.071)] + 5.102

where Ht is height in centimeters and R is BIA resistance in ohms; for sex, men = 1 and
women = 0, and age is in years.

Anthropometric and BC assessments were performed by trained nutritionists. The
patients had overnight fasting, emptied their bladder by urinating, removed their clothes,
and stood during the measurements, during which the ambient temperature remained
at 25 degrees centigrade. Height and weight were measured to the nearest 0.1 cm and
0.1 kg when wearing light clothing and no shoes [23]. BMI was calculated (BMI = weight
[kg]/height squared [m2]). Waist circumference and hip circumference were measured at
the navel and maximum posterior protuberance of the buttocks, respectively.

BC variables, including visceral fat area (VFA) (cm2), fat mass (FM) (kg), percentage
body fat (PBF), and SMM (kg), were estimated.

http://www.chictr.org.cn
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2.4. Spirometry and FeNO

Spirometry was performed at baseline according to the American Thoracic Soci-
ety/European Respiratory Society (ATS/ERS) standards using a spirometer (Med Graphics
CPES/D USB, St. Paul, MN, USA) [24]. Pre-bronchodilator FEV1 and pre-bronchodilator
forced vital capacity (FVC) were also measured. The largest pre-bronchodilator FEV1 and
FVC values from the three forced expiratory curves were used for analysis [24]. We mea-
sured FeNO before spirometry testing using a NIOX analyzer (Aerocrine, Solna, Sweden)
in accordance with the ATS/ERS recommendations [25].

2.5. Sputum and Blood Processing

Sputum induction, processing, and blood analyses were performed at baseline as
described in our previous studies [26,27]. The total and differential blood cell counts
and serum immunoglobulin E (IgE) levels were measured. Details are provided in the
Supplementary Materials.

2.6. Atopy

Atopy was confirmed at baseline by at least one positive skin prick test (SPT) of
common allergens, defined as a wheal diameter ≥ 3 mm after 15 min. The details are
provided in the Supplementary Materials [28].

2.7. Asthma Control

Asthma control was assessed using the ACQ-6 at baseline [29]. The ACQ score is the
mean of the six items and ranges from zero (totally controlled) to six (severely uncontrolled).
A mean score of ≥ 0.75 is indicative of partially controlled or uncontrolled asthma. In our
study, the patients were dichotomized into 2 groups on the basis of ACQ scores. We labeled
those with scores of less than 0.75 as the well-controlled asthma and those with scores of
more than 0.75 as the incompletely controlled asthma.

2.8. Asthma Exacerbation

We have collected the exacerbation history of all patients at baseline and follow-up for
1 year at 3 months, 6 months, 9 months and 12 months to assess exacerbations (face-to-face
visits or telephone calls if unable to attend). An asthma exacerbation was defined based on
ATS/ERS statement [30].

The definition of a severe asthma exacerbation for clinical trials should include at least
one of the following: (a) use of SCS (tablets, suspension, or injection), or an increase from
a stable maintenance dose, for at least 3 days. For consistency, courses of corticosteroids
separated by 1 week or more were treated as separate severe exacerbations and (b) a
hospitalization or emergency room (ER) visit because of asthma, requiring SCS [30].

The definition of a moderate asthma exacerbation included one or more of the fol-
lowing: deterioration in symptoms, deterioration in lung function, and increased rescue
bronchodilator use. These features lasted for 2 days or more, but not be severe enough to
warrant SCS use and/or hospitalization. ER visits for asthma (e.g., for routine sick care)
that do not require SCS were classified as moderate exacerbations [30].

2.9. Statistical Analyses

For categorical data, descriptive variables were presented as n (%). Continuous data
were presented as means with standard deviations or medians with interquartile ranges,
depending on the distribution assessed by the Kolmogorov–Smirnov test. Differences
in continuous data between the training and validation cohorts were assessed using the
Mann–Whitney U test. The differences between the three groups were evaluated using
one-way analysis of variance or Kruskal–Wallis H test for continuous variables, and the
Chi-square test or Fisher’s exact test for categorical variables, as appropriate.

In addition, post-hoc Bonferroni comparisons were performed, with the cutoff for
significance set at α/n (α = 0.05, where n is the number of comparisons). Logistic regression
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was used to assess the associations between SMM and asthma control at baseline (odds
ratio [OR], 95% confidence interval [95% CI]), SMM and AEx during follow-up (relative risk
[RR], 95% CI). Considering that COPD, obstructive sleep apnea, bronchiectasis, diabetes,
obesity, and gastroesophageal reflux disease (GERD) may be confounding factors in the
relationship between SMM and AEx [31–33], multivariable logistic regression by backward
elimination in a stepwise fashion and sensitivity analysis was used to explore the effect
of confounders on the results of the analysis. The above analyses were conducted using
SPSS version 26.0 (IBM Corp., Armonk, NY, USA). In all statistical analyses, a p value of
less than 0.05 was considered statistically significant.

2.10. Clinical Prediction Model for Predicting AEx
2.10.1. Selection of Variables and Clinical Prediction Model Establishment

We used a logistic model to select the variables to construct a prediction model [34].
We then calculated the area under the receiver operator characteristic (ROC) curve (AUC)
to determine how many candidate factors should be chosen [35]. The details are provided
in the Supplementary Materials [36].

Multivariable logistic regression was incorporated in the training cohort, combining
significant predictors from the least absolute shrinkage and selection operator (LASSO)
method into one final model [37]. This model displayed RR and 95% CI. Each predictor’s
contribution in the full model was measured as the partial chi-square statistic minus the
predictor degrees of freedom [38].

2.10.2. Nomogram Establishment of Predicting AEx

Relationships among predictors in the model were visualized using a nomogram [39],
which maps the predicted probabilities into points on a scale from 0 to 100 in a user-friendly
graphical interface [40]. In this study, we established a nomogram for predicting AEx,
named “AEx nomogram”. The details are provided in the Supplementary Materials.

2.10.3. Performance of the Model and Clinical Applicability of the Nomogram

The concordance index (C-index), Hosmer–Lemeshow (HL) goodness-of-fit test, and
calibration curve were performed in the training and validation cohorts to estimate the
prediction performance of the nomogram [41,42]. The internal and external validity of the
model was determined. Internal validation was performed using 1000 bootstrap samplings
to produce bias-corrected estimates of the model’s performance [43]. External validation
was performed on a validation cohort. We then set the two models to further explore
whether SMM improves the performance of the prediction model. Model 1 was adjusted
for all the predictors from a prediction model minus SMM, while Model 2 was adjusted
for all the predictors from a prediction model. The net reclassification improvement (NRI)
(>0) can be viewed as an improvement in discrimination by adding SMM to the training
and validation cohorts. Likewise, integrated discrimination improvement (IDI) (>0) was
considered an improvement in discrimination by adding SMM in the two cohorts.

Finally, decision curve analysis (DCA) was conducted to determine the clinical useful-
ness of the AEx nomogram by quantifying the net benefits at different threshold probabili-
ties in the training cohort [44,45]. To determine the applicability of SMM in the nomogram,
we built three models: (A) a model containing only one variable-SMM, (B) an AEx nomo-
gram with subtraction of SMM, and (C) an AEx nomogram. A clinical impact curve (CIC)
was developed based on the DCA of a model (C) to visually display the estimated number
of patients at a high risk of AEx for each risk threshold [46]. The details are provided in the
Supplementary Materials.

Model performance, validation, and applicability were performed using R software
(version 4.0.2; R Foundation for Statistical Computing, Vienna, Austria). The “glmnet”
package was used for binary LASSO method, “rms” for nomogram and calibration curve
plotting, “pROC” for AUC calculation, “PredictABEL” for NRI and IDI calculation, and
“DecisionCurve” for decision curve analysis.
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3. Results
3.1. Participant Characteristics

A total of 219 participants (65.6%) were female, with a median age of 44.0 (Q1, Q3: 35.0,
55.0) years and a median BMI of 23.02 (20.99, 25.02) kg/m2. The prevalence of family history
of asthma and atopy was 38.5% and 35.9%, respectively. The median scores of HADS-D
and HADS-A in these patients were 1.0 (0, 3.0) and 1.0 (0, 4.0), respectively; 6.6% (n = 22)
participants had anxiety symptoms, and 7.5% (n = 25) had depression symptoms. There
were 149 patients (44.6%) with incompletely controlled asthma and 96 patients (28.7%) had
experienced at least one severe exacerbation in the last 12 months. Rhinitis (53.6%) and
eczema (20.4%) were the most common comorbidities.

Of the 334 participants, 223 (66.8%) were classified into the SMM Normal group, 88
(26.3%) were classified into the SMM Low group, and 23 (6.9%) were classified into the
SMM High group. Compared with the SMM Low group, SMM High group had less airway
obstruction (1.64 [1.28, 2.49] vs. 2.32 [2.02, 2.65] L, p = 0.013 for pre-bronchodilator FEV1 in
liters and 66.0 [47.0, 82.5] vs. 92.0 [78.0, 104.0] %, p < 0.001 for FEV1% predicted) (Table 1).

Table 1. Demographic and clinical characteristics of the included patients grouped by SMM.

Variables SMM Normal SMM Low SMM High χ2/H p Value

n 223 88 23

Anthropometric/asthma data

Age, years, median (Q1, Q3) 44.5 (36.8, 62.0) 57.0 (40.0, 69.0) 47.5 (38.3, 53.0) 0.010 0.995

Female/male, n (%) 148 (66.4)/75 (33.6) 58 (65.9)/30 (34.1) 13 (56.5)/10 (43.5) 0.901 0.637

BMI

kg/m2, median (Q1, Q3) 24.09 (22.77, 26.37) 20.66 (19.46, 22.77) * 27.85 (27.29, 30.11) *, ** 111.165 <0.001

Normal/overweight/obese, n (%) 130 (58.3)/75
(33.6)/17 (7.6) 66 (75.0)/5 (5.7)/0 (0) * 3 (13.0)/8 (34.8)/12 (52.2) *, ** NA <0.001 §

WHR, median (Q1, Q3) 0.88 (0.84, 0.92) 0.83 (0.79, 0.90) * 0.93 (0.90, 0.95) *, ** 29.483 <0.001

Smoking history (n),
current/ex/never smoker 18/29/176 6/17/65 4/2/17 5.058 0.281

Pack years & median (Q1, Q3) 13.00 (2.50, 26.00) 21.50 (6.63, 32.00) 18.25 (3.50, 32.00) 1.276 0.528

Asthma duration (y), median (Q1, Q3) 5.0 (2.0, 20) 5.0 (2.0, 19.5) 9.0 (2, 25.0) 0.771 0.680

Early-onset asthma #, n (%) 38 (17.0) 14 (15.9) 6 (26.1) NA 0.024 §

Atopy status, n (%) 79 (38.3) 35 (44.9) 6 (30.0) 1.812 0.404

Previous upper respiratory infection-
induced asthma exacerbations, n (%) 155 (69.8) 67 (76.1) 15 (65.2) 1.652 0.438

Asthma family history, n (%) 73 (32.7) 37 (42.0) 14 (60.9) * NA 0.031 §

Spirometry

Pre-bronchodilator FEV1, L,
median (Q1, Q3) 2.06 (1.64, 2.85) 1.64 (1.28, 2.49) 2.32 (2.02, 2.65) ** 8.632 0.013

Pre-bronchodilator FEV1% predicted,
median (Q1, Q3) 76.0 (62.0, 90.0) 66.0 (47.0, 82.5) * 92.0 (78.0, 104.0) ** 15.684 <0.001

Pre-bronchodilator FEV1/FVC, %,
median (Q1, Q3) 66.01 (57.54, 76.79) 66.41 (55.23, 75.43) 74.43 (59.28, 82.21) 2.316 0.314

Asthma control

ACQ-6 scores, median (Q1, Q3) 0.5 (0, 1.3) 0.8 (0.3, 1.3) 0.2 (0, 0.6) ** 8.384 0.015

Incompletely controlled asthma, n (%) ‡ 95 (42.6) 49 (55.7) 5 (21.7) ** 9.599 0.008

Health status

HADS-A

Median (Q1, Q3) 1.0 (0, 4.0) 1.0 (0, 4.0) 1.0 (0, 2.0) 3.332 0.189

≥8, n (%) ¶ 15 (6.7) 6 (6.8) 1 (4.3) NA 1.000 §

HADS-D 0.504
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Table 1. Cont.

Variables SMM Normal SMM Low SMM High χ2/H p Value

Median (Q1, Q3) 1.0 (0, 3.0) 1.0 (0, 3.0) 0 (0, 2.0) 1.370 0.504

≥8, n (%) ¶ 16 (7.2) 8 (9.1) 1 (4.3) NA 0.780 §

Asthma-related medications

ICS (BDP equivalent) dose (µg/d),
median (Q1, Q3) 400.0 (400.0, 1000.0) 500.0 (400.0, 1000.0) 400.0 (200.0, 625.0) 4.064 0.131

ICS/LABA, n (%) 135 (60.5) 44 (50.0) 13 (56.5) 2.877 0.237

OCS use

n (%) 8 (3.6) 1 (1.1) 2 (8.7) NA 0.157 §

Days with OCS use for exacerbation,
median (Q1, Q3) 7.00 (6.50, 7.00) 7.00 6.00 (2.00, 10.00) 0.084 0.959

Daily doses of OCS equivalent to
prednisone †, mg, median (Q1, Q3) 20.00 (20.00, 32.50) 20.00 55.00 (30.00, 80.00) 3.598 0.165

Cumulative doses of OCS equivalent to
prednisone †, mg, median (Q1, Q3)

157.50 (140.00,
280.00) 140.00 430.00 (60.00, 800.00) 0.242 0.886

Leukotriene modifier, n (%) 74 (33.2) 24 (27.3) 9 (39.1) 1.584 0.453

Theophylline, n (%) 35 (15.7) 19 (21.6) 3 (13.0) NA 0.428 §

Exacerbation in the past year, n (%)

Severe exacerbation 57 (25.6) 29 (33.0) 10 (43.5) 4.303 0.116

Hospitalization 59 (26.5) 22 (25.0) 3 (13.0) 1.994 0.369

Emergency room visit 31 (13.9) 14 (15.9) 2 (8.7) NA 0.728 §

Unscheduled visit 68 (30.5) 28 (31.8) 5 (21.7) 0.899 0.638

Comorbidity, n (%)

Rhinitis 129 (57.8) 42 (47.7) 8 (34.8) 6.113 0.047

Bronchiectasis 11 (4.9) 4 (4.5) 0 (0.0) NA 0.825 §

Sleep apnea 3 (1.3) 0 (0.0) 0 (0.0) NA 0.646 §

GERD 14 (6.3) 4 (4.5) 1 (4.3) NA 0.922 §

Eczema 45 (20.2) 17 (19.3) 6 (26.1) NA 0.750 §

COPD 11 (4.9) 11 (12.5) 0 (0.0) NA 0.037 §

Diabetes 7 (3.1) 1 (1.1) 1 (4.3) NA 0.346 §

Abbreviations: SMM, skeletal muscle mass; BMI, body mass index; WHR, waist-to-hip ratio; FEV1, forced
expiratory volume in 1 s; FVC, forced vital capacity; ACQ, asthma control questionnaire; HADS-A, Hospital
Anxiety and Depression Scale-Anxiety; HADS-D, Hospital Anxiety and Depression Scale-Depression; ICS, inhaled
corticosteroid; BDP, beclomethasone dipropionate; LABA, long-acting beta-agonist; OCS, oral corticosteroid;
GERD, gastroesophageal reflux disease; COPD, chronic obstructive pulmonary disease; NA, not applicable; Q1,
first quartile; Q3, third quartile. & Never smokers were excluded from the analysis of pack-years. Pack years:
the number of cigarettes smoked per day × years of smoking. ‡ Incompletely controlled asthma: ACQ mean
scores ≥ 0.75. ¶ Depression or anxiety disorders was defined as a score ≥ 8 on the respective HADS-D or HADS-A
domains. # Early-onset asthma (onset before 12 years of age). † The calculations based on the patients of using
OCS in the past year. * p < 0.05 vs. SMM Normal, ** p < 0.05 vs. SMM Low. The significance level is 0.05. Significance
values have been adjusted by the Bonferroni correction for multiple tests. § Fisher’s exact probability.

In addition, we explored the differences in inflammatory variables among the three
groups. Participants with the SMM High group had fewer sputum eosinophils (0 [0, 0.25]
vs. 0.25 [0, 3.50] %, p = 0.016) than those with the SMM Normal group. The peripheral blood
cell counts showed no significant differences among the three groups (all p > 0.05). The
IgE (p = 0.217) and FeNO (p = 0.464) levels did not differ significantly among the three
groups (Table S1).

3.2. Anthropometric and BC Assessments

Compared with the SMM Normal group, SMM High group had a significantly higher
waist-to-hip ratio (WHR) and BMI. The SMM Low group had a significantly lower WHR
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and BMI, while the SMM Low group had a significantly lower FM, PBF, and VFA than
patients in the SMM Normal group (Table S2).

3.3. Asthma Control

There were significant differences in asthma control among the three groups. SMM High

group had better asthma control than SMM Low group (ACQ-6 median scores,
0.2 [0, 0.6] vs. 0.8 [0.3, 1.3], p = 0.005). Logistic regression modeling showed that SMM Low

group was at a significantly increased risk of incompletely controlled asthma (OR adj 1.67
[95% CI: 1.01–2.75], p = 0.045) (Table 2).

Table 2. Association of SMM with incompletely controlled asthma (ACQ ≥ 0.75) using multivariable
logistic regression with adjustment for confounders.

Group β SE for β OR adj 95% CI for OR adj p Value

Lower Upper

SMM Normal Reference

SMM High −0.983 0.523 0.374 0.134 1.044 0.060

SMM Low 0.512 0.255 1.668 1.012 2.749 0.045
Abbreviations: SMM, skeletal muscle mass; ACQ, asthma control questionnaire; OR, odds ratio. Adjusted for
age, sex, BMI, ICS/LABA, cumulative doses of OCS equivalent to prednisone, smoking status, severe asthma
exacerbation in the past year, forced expiratory volume in 1 s% predicted.

3.4. Asthma Exacerbation

Compared with the SMM Normal group, SMM Low group had a greater proportion of
participants experiencing severe AEx (13.6% vs. 24.4%, p = 0.006) and moderate-to-severe
AEx (25.8% vs. 40.2%, p = 0.022) (Table 3).

Table 3. Asthma exacerbation within the 12-month follow-up period grouped by SMM in the
training cohort.

Variables SMM Normal Group SMM Low Group SMM High Group Total χ2/H p Value

n 213 82 23 318

Moderate-to-severe
exacerbation

n (%) 55 (25.8) 33 (40.2) * 4 (17.4) 92 7.595 0.022

Mean ± SD 0.61 ± 1.40 0.94 ± 1.53 * 0.52 ± 1.24 0.65 ± 1.40 7.149 0.028

Severe exacerbation

n (%) 29 (13.6) 20 (24.4) 0 (0) ** 49 NA 0.006 §

Mean ± SD 0.27 ± 0.84 0.43 ± 0.96 0 ± 0 ** 0.28 ± 0.83 9.399 0.009

Abbreviations: SMM, skeletal muscle mass; SD, standard deviation; NA, not applicable. * p < 0.05 vs. SMM Normal,
** p < 0.05 vs. SMM Low. The significance level is 0.05. Significance values have been adjusted by the Bonferroni
correction for multiple tests. § Fisher’s exact probability.

We further established logistic regression models to analyze the risk of AEx in the three
groups. As a result, the SMM Low group had an increased risk of moderate-to-severe AEx
adjusting for age, sex, BMI, smoking status, inhaled corticosteroids (ICS)/long-acting beta-
agonist (LABA), cumulative doses of OCS equivalent to prednisone, pre-bronchodilator
FEV1% predicted and moderate-to-severe asthma exacerbation last year (SMM Normal group
as the reference; RR adj 2.02 [95% CI: 1.35–2.68]; p = 0.002) (Figure 2).

Likewise, the SMM Low group was still significantly associated with moderate-to-severe
AEx compared with the SMM Normal group adjusting confounders including age, sex, BMI,
smoking status, ICS/LABA, cumulative doses of OCS equivalent to prednisone, pre-bro-
nchodilator FEV1% predicted and severe asthma exacerbation last year, COPD, sleep apnea,
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bronchiectasis, diabetes, obesity, and GERD using multivariate logistic regression analysis
with stepwise backward elimination (RR adj 1.72 [95% CI: 1.19–2.29]; p = 0.006) (Table S3).
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Figure 2. Associations of the SMM (skeletal muscle mass) with (A) severe exacerbation; univariate lo-
gistic regression analysis, (B) moderate-to-severe exacerbation, univariate logistic regression analysis.
(C) severe exacerbation; multiple logistic regression analysis. Adjusted for age, sex, BMI, smoking
status, ICS/LABA, cumulative doses of OCS equivalent to prednisone, severe exacerbation in the
past year, pre-bronchodilator forced expiratory volume in 1 s% predicted (D) moderate-to-severe
exacerbation, multiple logistic regression analysis, with normal SMM as the reference. Adjusted
for age, sex, BMI, smoking status, ICS/LABA, cumulative doses of OCS equivalent to prednisone,
severe exacerbation in the past year, pre-bronchodilator forced expiratory volume in 1 s% predicted.
CI, confidence interval; RR, relative risk; RR adj, adjusted relative risk. Blue, SMM High; Orange,
SMM Low; Black, SMM Normal.

Additionally, after excluding the patients with COPD, sleep apnea, bronchiectasis,
diabetes, obesity, and GERD, our sensitivity analysis indicated that this did not change
the association between reduced SMM and AEx in the asthmatics (RR adj 1.77 [95% CI:
1.06–2.53]; p = 0.032) (Table S4).

3.5. Clinical Prediction Model
3.5.1. Selection of Variables and Establishment of a Clinical Prediction Model

In the training cohort, there were 17 variables with missing data (missing rates: 0.2% to
40.1%) (Table S5). The associations between 28 potential risk factors are shown in Table S6.
Seven variables with nonzero coefficients in the LASSO method remained and were then
included in the final multivariate logistic regression model (Figure S1), including low SMM
(categorical variable) (RR 2.21 [95% CI: 1.12–3.66]; p = 0.019), VFA (categorical variable) (RR
1.78 [95% CI: 1.03–3.08]; p = 0.039), sputum eosinophils (continuous variable, %) (RR 1.01
[95% CI: 0.99–1.03]; p = 0.078), exacerbation in the past year (categorical variable) (RR 2.21
[95% CI: 1.28–3.81]; p < 0.001), rhinitis (categorical variable) (RR 1.42 [95% CI: 0.83–2.44];
p = 0.114), previous upper respiratory infection-induced asthma attack (categorical variable)
(RR 2.47 [95% CI: 1.20–5.09]; p = 0.001), and HADS-D scores (continuous variable, score)
(RR 1.06 [95% CI: 0.97–1.15]; p = 0.116) (Figure 3).

3.5.2. Nomogram of Predicting AEx

A nomogram containing the seven variables in the logistic regression model was
constructed (Figure 4). The importance of each variable in the full model is illustrated
(Figure S2). The SMM level had the third-largest predictive value among the seven variables.
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Figure 4. Asthma future exacerbation nomogram. The asthma future exacerbation nomogram
was developed on the basis of established multivariable regression models in the whole cohort
population. Using the nomogram, the probability of future asthma exacerbation in the following year
can be estimated as follows. First, the judgment on predictor variables (e.g., yes or no, SMM Low or
SMM High) can be obtained from patients. Second, if a predictor is judged as “Yes”, the value of the
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predictor can be designated by drawing an upward straight line from “Yes” up to the “Points” line.
Third, add up the points of all the predictors assessed as “Yes” to get the total points. Finally, the
probability of future asthma exacerbation in the following year can be obtained by drawing a straight
line from the “Total Points line” down to the “Risk of exacerbation in the following year” line. SMM,
skeletal muscle mass; VFA, visceral fat area; D, HADS-D; SEO, sputum eosinophils; URI, previous
upper respiratory infection induced asthma attack.

3.5.3. Performance of the Prediction Model and Clinical Applicability of the Nomogram

There were no significant differences in sociodemographic characteristics between the
training and validation cohorts (Tables S7 and S8). The C-indices of the nomogram in the
training and validation cohorts were 0.750 (95% CI: 0.691–0.810) and 0.793 (0.704–0.882),
respectively (Figure 5), indicating moderate accuracy. The p values of the HL tests (training
cohort: p = 0.531; validation cohort: p = 0.465) indicated a lack of significance, suggesting
no evidence of poor goodness-of-fit for the prediction model in the two cohorts. Likewise,
the calibration curves, showed that the observed and predicted future risk of moderate-
to-severe AEx in the final multivariate model were in good agreement in the training and
validation cohorts (Figure S3). The NRI and IDI values indicated that SMM offered a
significant statistical improvement in the performance of the prediction model in both the
training and validation cohorts. The NRI was 0.285 (95% CI: 0.061–0.508; p = 0.013) in the
training cohort (Table S9), whereas in the validation cohort, the NRI was 0.481 (0.100–0.861,
p = 0.013). Similar results were obtained using IDI.
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Figure 5. Receiver operating characteristic (ROC) curve for the prediction model for AEx in the
training (A) and validation (B) cohorts. The x-axis, labeled specificity, represents the true-negative
rate. The y-axis, labeled sensitivity, represents the true-positive rate. The area under the curve (AUC)
and the 95% confidence interval (CI) are shown in the graph. AEx, asthma exacerbation.

Finally, the decision curve showed that using the AEx nomogram model (C) to predict
AEx added more benefits than either model (A) or model (B) with different threshold
probabilities (Figure S4A). In addition, with a threshold of 0.1 to 0.65, model (C) had the
maximum benefits range, as shown in the DCA curve, indicating that SMM played a critical
role in the clinical applicability of the prediction model.

The CIC visually shows the proportion of those with true AEx. The CIC also showed that
real patients who were at high risk of AEx are included by estimating the number of patients
with the risk threshold of 0.1 to 0.65 with the acceptable cost: benefit ratio (Figure S4B).
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4. Discussion

To the best of our knowledge, this is the first study to investigate the association
between SMM and asthma outcome in future. Even though previous studies have explored
the relationship between muscle and asthma [47,48], they aimed to evaluate the peripheral
muscle strength or the mechanism of reduced SMM in the patients with asthma, and did
not observe the association between SMM and asthma-related outcomes in future.

Our study indicated that patients in the SMM Low group had a lower BMI and more
airway obstruction. Moreover, low SMM as an independent risk factor was associated with
poor asthma control and an increased risk of AEx. In contrast, SMM High group patients
had less airway obstruction and sputum eosinophils, in association with better asthma
control. Additionally, the prediction model involving SMM for predicting AEx established
in our study had moderate discrimination, calibration, and clinical utility and demonstrated
that SMM played a critical role in the prediction model. Our study indicated that SMM
played an important role in asthma control and exacerbation, and reduced SMM could be a
potential extra-pulmonary treatable trait to target in clinical asthma management.

In this study, the SMM Low group had more airway obstruction, demonstrated by
reduced pre-bronchodilator FEV1% predicted, compared to the SMM High group. How-
ever, there was no difference in pre-bronchodilator FEV1/FVC, which is consistent with
previously published studies [49]. This could be explained by the fact that FEV1 represents
the expiration flow rate; therefore, FEV1 could be reduced in participants with low SMM
because they may have a weakened ability to inflate and deflate their lungs. However, the
ratio of FEV1/FVC may remain constant regardless of the muscle mass.

Previous study indicated that medication use, ICS in particular, significantly reduced
sputum eosinophils [50]. Although no significant difference was found in medication use
in the three groups, our study still found that the SMM High group had a lower sputum
eosinophils percentage. Two issues that can be explained as follows: SMM myocytes
express and secrete numerous cytokines such as IL-6. Steensberg et al. demonstrated that
physiological concentrations of IL-6 induce an anti-inflammatory response in humans [51].
Therefore, although we did not measure inflammatory cytokines, according to previous
relevant studies, we speculated that the SMM High group would have increased levels
of anti-inflammatory cytokines in circulation, which could inhibit the recruitment of in-
flammatory cells in the airway [52]. Conversely, the SMM Low group patients with higher
eosinophilic inflammation needed more ICS, indicating that there may be more severe
asthma. Hence, further studies are needed to elucidate the mechanisms by which SMM
reduces inflammation in asthma.

Low SMM can be considered a potential extra-pulmonary treatable trait because it is
clinically relevant, identifiable, measurable, and treatable [53]. It has been shown that most
myokines that are regulated by exercise counteract the detrimental effects of adipokines and
have beneficial effects on glucose and lipid metabolism and inflammation [54]. In contrast,
physical inactivity and muscle disuse lead to the loss of muscle mass and, consequently, to
the activation of a network of inflammatory pathways, which promotes the development
of a cluster of chronic diseases. Therefore, SMM could potentially provide an important
target for clinicians to guide the non-pharmacological treatment of patients with asthma.
For example, increasing physical activity can be used to increase SMM, thereby improving
asthma control and reducing exacerbations. This is in agreement with a study by McDonald
et al. [18], which identified sarcopenia as a potentially treatable trait of asthma.

As is well known, chronic intake of OCS and ICS induced clinically significant mus-
cle hypotrophy for daily treatment [55]. Furthermore, systemic and oral beta-agonists
could increase SMM while there has been no evidence to prove the association between
inhaled beta-agonists and SMM [56]. Therefore, ICS/LABA and cumulative doses of OCS
equivalent to prednisone, as two important confounders, were adjusted to relevant lo-
gistic models. We still found the SMM Low group was still significantly associated with
moderate-to-severe AEx. Accordingly, medication use had no effect on the results. This
study has several limitations that need to be addressed. Firstly, BC was measured using
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BIA only. Dual-energy X-ray absorptiometry is considered a more reliable method for
BC assessment. Nevertheless, previous reports have confirmed that multifrequency BIA
systems can provide accurate muscle mass and fat mass values that are comparable to those
measured using dual-energy X-ray absorptiometry in various populations [57,58]. Sec-
ondly, this was a population-based cohort study in China that was specific to the Chinese
population. Therefore, the clinical prediction model requires further external validation
in multiple centers and different races. Thirdly, although we did not deny that low SMM
also could be a consequence of incompletely controlled asthma leading to less physical
activity, which formed a vicious circle [2], our prospective cohort study design enabled
us to determine the causation that SMM was an exposure factor and AEx were taken as
outcomes. Finally, the imbalance of the sample size of a statistical test among the three
groups leads to influence the power of a statistical test [59]. Therefore, we calculated the
power of the multiple logistic regression for the risk of AEx between the SMM Low and
SMM Normal groups. However, the power of the multiple logistic regression was 0.8992.
Commonly, the value of power is required to be greater than 0.8 [60]. Thus, the imbalance
of sample size was not found to have an influence on the power of the risk of AEx between
the SMM Low and SMM Normal groups in our study.

5. Conclusions

We demonstrated that low SMM, as a potential extra-pulmonary treatable trait, is
an independent risk factor for asthma control and exacerbation. Furthermore, our model
involving SMM for predicting the risk of exacerbation in patients with asthma suggests
that SMM may be a suitable therapeutic target for clinical asthma management.
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