
Quantum computation on a 19-qubit wide 2d nearest neighbour qubit
array.

Alexis T. E. Shaw∗ and Michael J. Bremner
Centre for Quantum Computation and Communication Technology

Centre for Quantum Software and Information
School of Computer Science and

Faculty of Engineering & Information Technology,
University of Technology Sydney, NSW 2007, Australia

Alexandru Paler
Aalto University, 02150 Espoo, Finland

Daniel Herr
d-fine GmbH, An der Hauptwache 7, 60213, Frankfurt, Germany.

Simon J. Devitt
Centre for Quantum Software and Information

School of Computer Science and
Faculty of Engineering & Information Technology,

University of Technology Sydney, NSW 2007, Australia
(Dated: December 15, 2022)

In this paper, we explore the relationship between the width of a qubit lattice constrained in one
dimension and physical thresholds for scalable, fault-tolerant quantum computation. To circumvent
the traditionally low thresholds of small fixed-width arrays, we deliberately engineer an error bias at
the lowest level of encoding using the surface code. We then address this engineered bias at a higher
level of encoding using a lattice-surgery surface code bus that exploits this bias, or a repetition code
to make logical qubits with unbiased errors out of biased surface code qubits. Arbitrarily low error
rates can then be reached by further concatenating with other codes, such as Steane J7, 1, 3K code
and the J15, 7, 3K CSS code. This enables a scalable fixed-width quantum computing architecture
on a square qubit lattice that is only 19 qubits wide, given physical qubits with an error rate of
8.0 × 10−4. This potentially eases engineering issues in systems with fine qubit pitches, such as
quantum dots in silicon or gallium arsenide.

I. INTRODUCTION

Quantum processor architectures have
evolved significantly since their first con-
ception, just over a quarter of a century
ago [8, 29, 39, 58]. They started with early
discussions on how to build basic gates with
two-level systems [39] and have evolved into
recent plans for machines with millions of
physical qubits [29, 36, 48]. Architecture
design must work around the peculiarities of
their constituent qubits. Physical limitations
on qubit size, gate speed, decoherence rates,
temperature, control wiring, and infrastruc-

∗ alexis@alexisshaw.com

ture all have a major effect on the potential
scalability of a given architecture [8, 36, 58].

Quantum dot qubits in silicon and gal-
lium arsenide (GaAs) present interesting con-
straints when investigating quantum architec-
ture. They have demonstrated relatively low
decoherence rates [61, 63], high operation tem-
perature [62], and high gate speeds [27]. Sig-
nificantly, they offer the potential of high qubit
density and ease of manufacture for large sys-
tems on a single wafer [3, 57, 63]. Yet, the size
and small qubit pitch that could allow for high
qubit density come with significant drawbacks.

Running control wires into gates that have
qubit spacings on the order of nanometers
in a two-dimensional geometry is extremely
challenging. This is especially important be-

ar
X

iv
:2

21
2.

01
55

0v
2

 [
qu

an
t-

ph
]

 1
4

D
ec

 2
02

2

mailto:alexis@alexisshaw.com

cause architectures using the highest thresh-
old quantum error correcting codes, such as
the surface or honeycomb codes, tend to as-
sume two-dimensional lattices of unrestricted
size [37, 38, 58]. In response, quantum archi-
tectures that utilize three-dimensional fabrica-
tion have been proposed [58], even though the
expected fabrication complexity is formidable.
One approach to solving this is to restrict the
width of the array, which limits the intercon-
nect density because the system grows only in
one dimension.

The idea of minimizing the width of a qubit
array is certainly not new. Since the early
days of fault tolerance, people have consid-
ered fixed or minimal-width arrays of qubits.
However, previous approaches have always re-
quired undesirable tradeoffs, either increasing
qubit requirements or requiring long-distance
qubit interactions. For example, CSS codes
were leveraged in the paper by Veldhorst et.
al. [53], and the subsequent threshold was ex-
tremely small (less than 10−5) due to the costs
involved in interacting non-adjacent qubits in
a nearest-neighbour array. Other examples in-
clude specific investigations into linear nearest
neighbours in silicon [31] with a threshold of
about 10−4 and the use of resonators to fold a
square lattice into a bi-linear array [40]. Un-
fortunately, the latter approach required long
resonators for interaction between qubits, and
these resonators had unknown manufactura-
bility and performance in spin systems given
their length and complexity.

In this paper, we present a method of reduc-
ing the array width without requiring a lower
error threshold or long-distance qubit interac-
tions. Instead, we propose a coding structure
that provides good reductions of width for re-
alistic error rates, with a threshold array width
as low as 19 qubits for a physical error rate of
8×10−4. It locally has the same nearest neigh-
bour interactivity and the same threshold er-
ror rate as the surface code. Of course, this
comes at the cost of significantly more qubits;
however, this may be an acceptable trade-off
for certain technologies, such as silicon quan-
tum dots, where qubits are hoped to be rela-
tively cheap.

We primarily consider two schemes that are
based on combining the surface code with

techniques for long-range gate compilation and
CSS codes. The basic idea is that the surface
code can be used to decrease errors enough to
allow techniques for longer distance interac-
tions. Subsequently, CSS codes are used in
a fixed width array. In section III, we ex-
amine the performance of the surface code
for rectangular patches for each type of error.
These results are then used in section IV to
evaluate the performance of a lattice surgery
scheme for remote qubit interaction using a
very narrow width strip of surface code qubits
that we call the surface code bus. In sec-
tion V, we consider the performance of the
Steane J7, 1, 3K and J15, 7, 3K CSS codes when
using the flag qubit compilation approach of
Reichardt [15, 47] and a shared long-distance
interaction capacity, like that provided by the
bus of section IV. We then combine the results
of section IV and V and determine the per-
formance of the concatenated scheme in sec-
tion VI. Finally, in section VII, we examine
the possibility of using the rectangular patches
evaluated in section III to engineer a logical
error bias that can then be concatenated with
the repetition code to create a memory with
unbiassed errors and high enough logical fi-
delity that a CSS code could be concatenated
above it. This enables us to reduce lattice
width further, giving a minimum width of 27
for a threshold physical error rate of 1.5×10−3,
19 for a threshold error rate of 8 × 10−4, and
11 for a threshold error rate of 2× 10−4.

II. BACKGROUND

In this section, for the sake of completeness
and in order to guide the reader, we summarise
material and definitions and provide references
to further resources.

II.1. Errors

The threshold and performance of a code
are usually quoted in terms of an error rate
given an error model. In this work, we assume
a standard error model with balanced single-
qubit depolarising noise channels. That is,
each single-qubit physical operation, including

2

leaving qubits idle, is acted on by the single-
qubit depolarising channel

E1 = (1− p)ρ+
p

3
(XρX + Y ρY + ZρZ) (1)

before each gate and measurement, as well as
after each initialisation. Two-qubit gates are
assumed to be operated on by the two-qubit
depolarising channel

E2(ρ) = (1− p)ρ +
p

15

∑
P∈{I,X,Y,Z}⊗2\{I⊗I}

PρP † (2)

before each gate. We assume that there are
no correlated higher-order interactions or cor-
related events apart from those generated by
these channels.

A common assumption for existing architec-
ture designs is that the physical error rate of
a quantum computer should be approximately
one order of magnitude below the threshold
for the surface code, that is p = 10−3, which
we take as the highest value in our analy-
sis [41, 44]. However, we also provide esti-
mates for lower physical error rates, down to
10−4, to inform the reader of the trade-offs be-
tween reducing physical errors and handling
higher interconnect density.

In this paper, the logical error rate is the
probability of a logical error when performing
a single logical CNOT gate, unless otherwise
stated. The maximum tolerable logical er-
ror rate for computation of several significant
early quantum algorithms has been estimated
in the order of 10−14 − 10−18 [38, 44, 48]. We
use the logical error rate of 10−15 as a bench-
mark for each proposed architecture, as it re-
flects these estimates. An attempt has been
made to create a rough equivalence for the dif-
ference in quantum operations; however, com-
pilation differences between the examined op-
tions mean that this is still a loose comparison.

II.2. Stabilizer Codes

One of the key theoretical improvements to-
ward quantum error correction was the devel-
opment of the quantum stabilizer code [2, 12,

51, 52]. By measuring a collection of non-
local multi-body Pauli operators, it is possi-
ble to “stabilise” a logical space that is not
within the span of the space of those opera-
tors. In effect, the measurement of those op-
erators forces the remaining state to be within
a subspace of the total Hilbert space [32]. If
low-weight errors are uniquely identifiable by
the stabilising operators, then this provides a
way to correct for those errors.

The repetition code is the simplest of the
stabiliser codes, and perhaps the simplest er-
ror correction code. In the classical vari-
ant, n copies of the message are made and
then compared against each other. The quan-
tum bit-flip repetition code encodes the state
α |0〉+β |1〉 as α |0 · · · 0〉+β |1 · · · 1〉 [42, Chap-
ter 10.1.1]. A quantum repetition code cannot
correct for all possible errors, as it can only
correct for either bit-flip or phase-flip errors,
but not for both. Even so, quantum repetition
codes have the highest possible code capacity,
with the ability to correct for at most n−1

2 er-
rors of that one type. We use this to improve
performance to the required level in Section IV
and VII.

In order to implement our concatenation
scheme efficiently, we need an efficient imple-
mentation of a block code that has good qubit
density and a relatively high threshold. In
order to obtain this, we leverage the recent
advances in flagged syndrome extraction [13–
15, 47], discussed in section II.3. We consider
the Steane J7, 1, 3K code and the J15, 7, 3K code
for use as higher level codes in this work as
they appear to have a good mix of performance
and density, as well as having flagged extrac-
tion circuits.

The Steane J7, 1, 3K code is a self-dual
CSS code defined using the 7-bit hamming
code [52], and has stabiliser generators listed
in Table I. This code can correct for a single
error, and is the smallest of the self-dual codes.

The J15, 7, 3K self-dual CSS code is defined
using the 15-bit hamming code [13], and has
stabiliser generators listed in Table II. This
code can also correct for a single error, however
it encodes logical qubits significantly more ef-
ficiently than the Steane code, at the expense
of a greater number of more complicated sta-
bilisers.

3

1 IIIXXXX
2 IIIZZZZ
3 IXXIIXX
4 IZZIIZZ
5 XIXIXIX
6 ZIZIZIZ

TABLE I: Stabiliser generators for the Steane
J7, 1, 3K code

1 IIIIIIIXXXXXXXX
2 IIIIIIIZZZZZZZZ
3 IIIXXXXIIIIXXXX
4 IIIZZZZIIIIZZZZ
5 IXXIIXXIIXXIIXX
6 IZZIIZZIIZZIIZZ
7 XIXIXIXIXIXIXIX
8 ZIZIZIZIZIZIZIZ

TABLE II: Stabiliser generators for the
Steane J15, 7, 3K code

II.3. Flaged Syndrome Extraction

Flagged syndrome extraction is a newly pro-
posed technique for the fault-tolerant mea-
surement of stabilisers in quantum error cor-
recting codes [13–15, 45, 47]. It enables signifi-
cantly lower extraction circuit complexity and
lowers the number of ancillae required com-
pared to previous techniques for fault-tolerant
stabiliser measurement.

Earlier methods of fault-tolerant syndrome
extraction assumed that error-amplification
caused by stabiliser measurement led to severe
degradation of code performance. It was as-
sumed that an error with weight beyond the
code capacity was uncorrectable, hence strin-
gent measures were proposed in order to pre-
vent error amplification during syndrome ex-
traction. Shor’s proposed method [50] was
to create a GHZ state the size of the stabi-
lizer to be measured, verify it by interacting
each element with one of the qubits supported
by the stabiliser, and then measure the GHZ
state. This would require both increased cir-
cuit depth and a substantially greater num-
ber of ancilla qubits than what would be re-
quired by a non-fault-tolerant stabiliser mea-
surement circuit. In addition to the increase

in resources, this method also leads to a lower
threshold for the code, as there is more time
and space for potential errors in each round of
syndrome measurements.

Flagged syndrome extraction capitalises on
a realisation that some temporary amplifica-
tion of errors can be allowed, so long as any
higher weight errors can be uniquely distin-
guished and corrected given enough rounds of
syndrome extraction. This loosening of re-
quirements allows a notable reduction in the
number of ancilla qubits required, with only
two ancilla qubits required for weight-3 codes.
Further, in some cases, it is possible to perform
this extraction with zero additional gates over
a basic extraction (such as in the circuit de-
scribed in Figure 13a). This is achieved by the
careful ordering of otherwise commuting gates,
as well as through inserting detection gadgets
to disambiguate different error channels. The
main downside of this approach is that the
circuit and decoder designs are substantially
more difficult than in earlier forms of fault-
tolerant extraction. This is because the faults
identified must be propagated forward through
the extraction circuit so that the higher weight
errors as well as the extraction of other syn-
dromes may be corrected [13], whilst the ear-
lier methods do not introduce additional data
qubit errors during syndrome extraction, and
so only need a simple hamming-code decoder.

II.4. The Surface Code

The surface code is one of a family of sta-
biliser codes that has physically local stabilis-
ers. Here, the qubits that make up the sta-
bilisers are supported by qubits that are phys-
ically close to each other. In a surface code
such as in Figure 1 the plane is tiled with two
sets of square plaquettes [9, 21]. The X pla-
quettes, and the Z plaquettes, are represented
here as dark and pale diamonds. For historical
reasons, the Z plaquettes are also called faces
and the X plaquettes are called vertices [33].
However, the diamond presentation used here
shows that they are completely symmetrical,
with the exception of the ancilla initialisation
and measurement.

The logical operators in the surface code

4

Z-Stabiliser X-Stabiliser

1

2

3

4

|0〉

1

2

3

4

|0〉 H H

FIG. 1: A dX = 3, dZ = 7 surface code. One Z logical operator is highlighted in blue, and an
X operator is highlighted in yellow.

run from one boundary of a type to the other
boundary of that type. The type of the log-
ical operator is determined by the plaquette
type on the boundary, with an X-boundary
having partial X-plaquettes on the boundary,
and similarly for Z-boundaries. For the same
reason used to determine plaquette names, Z-
type boundaries are often called rough bound-
aries, and X-type logical boundaries are called
smooth boundaries. To measure a logical op-
erator, you measure qubits in the appropriate
basis along that logical operator.

Physical errors are always correctable if the
length of the longest error chain is less than
half the distance between two boundaries of
the same type. That is, the code distance is
equal to the smallest number of code qubits
between two boundaries of the same type.
This makes these codes have a significantly
lower density than other stabiliser codes (for
example the J7, 1, 3K code needs 9 total qubits
for fault tolerance [14], but the rotated d = 3
surface code uses at least 13 qubits, and the

non-rotated surface code uses 25 [54], quan-
tum LDPC codes have even higher densi-
ties [10, 29]). However, as a trade-off, their
small stabiliser circuit sizes and physical lo-
cality means that syndrome extraction is ex-
tremely fast and relatively easy to perform.
Further, the low circuit depth and locality of
errors lead to one of the highest thresholds of
any quantum error-correcting code.

In many ways, the discovery of the surface
code is what may make the development of
practical digital quantum computers possible.
Simulations have put the logical error rate of
a surface code of distance d at approximately

plbus ∼ 0.3(70p)b
d+1
2 c (3)

per round of syndrome extraction [18], and a
threshold of over 1% [59].

5

II.5. Lattice Surgery

Lattice surgery is the most space efficient
manner of fault-tolerant 2-qubit interaction
between surface code qubits that is currently
known [29, 38]. When combined with faulty
state injection and state distillation, it enables
the surface code to perform fault-tolerant uni-
versal quantum computation [29, 37, 38].

The key operations used in lattice surgery
are merging two adjacent surface code patches
into one larger patch and taking a large patch
and then splitting it into smaller ones.

Patches are merged by measuring new sta-
bilisers between two surface code patches, as
shown in the first operation of Figure 2. The
logical state of the new patch is a function of
the logical states of the two patches before the
merger, the type of boundaries merged, and
the parity of the new and modified stabilis-
ers after measurement. The parity of these
new measurements encodes a coherent logi-
cal parity measurement between the logical
qubits. If the parity is zero after this measure-
ment, then the operation encodes the mapping
|0〉L 〈00|L+|1〉L 〈11|L. Otherwise, a correction
must be made that is equivalent to choosing
one of the patches and flipping it before the
merge. The correction forces the measurement
to be parity zero, and so the mapping for the
parity zero measurement can be used.

A patch is split by modifying the stabilis-
ers to separate the patches, as shown in the
second operation of Figure 2, and then mea-
suring the data-qubits that are between the
patches. This operation creates an entan-
gled state, which is described by the mapping
|00〉L 〈0|L + |11〉L 〈1|L.

The combination of these two operations al-
low circuits to be compiled far more space-
efficiently than other techniques, such as
braiding [20]. Proposed compilation ap-
proaches have only a 50% space penalty when
compared to quantum memory alone [37]. The
combination of a merge followed by a split
and a Pauli-correction results in a parity mea-
surement between the two patches, with the
measured operator determined by the types of
boundaries merged. By combining two differ-
ent parity measurements and one ancilla sur-
face code patch, it is possible to implement

either a CNOT or CZ gate (see Figure 3).

II.6. The ZX-Calculus

The ZX-calculus was developed as a graphi-
cal system for reasoning about quantum linear
maps. It represents quantum operations with
tagged graphs that are manipulated using a
collection of simplification rules [16, 60]. Ev-
ery quantum circuit can be efficiently mapped
to a ZX diagram, and the graphs can be used
to prove the properties of those circuits.

In this work, we use ZX-calculus to show
the correctness of the surface code bus in
Section IV.2. It is especially useful for dis-
cussing the logical effect of lattice surgery op-
erations [6], as the operations of merging and
splitting of the surface code map neatly and
naturally to the ZX-calculus. Some care is
needed, however, to understand the action of
joint measurements in the lattice surgery. The
ZX-calculus can even be said to be complete,
in the sense that the diagram re-writing rules
are sufficient to convert any two diagrams that
represent the same linear map to the same di-
agram [5, 30].

Here we reproduce some basic definitions
and results that are used in this work. Specif-
ically, we use the fact that state preparation
and measurements are represented by degree-
one nodes

|+〉 = , 〈+|Rz(α) = α ;

that a Z-flip, or other Z-rotation, is repre-
sented by a degree-2 Z-node

|0〉 〈0|+ eiα |1〉 〈1| = α ;

that a smooth split is represented by a Z-
spider

SS = |00〉 〈0|+ |11〉 〈1| = ,

and that a rough merge is an X-spider with
a correction on one leg that depends on the
parity measurement result [6]

MS =
bπ

,

6

FIG. 2: Illistration of a smooth lattice surgery merge followed by a smooth split, implementing
an XX parity measurement. The qubits in green are initialised in the |+〉 state. Then the new
stabilisers, shown in yellow, are measured, and the stabilisers in blue are expanded. Finally, the

stabilisers in red are reduced, and the qubits in red are measured in the X basis.

|c〉

|t〉

=

m1

m2 m3

|c〉 Z Zm2

|+〉 Z X

|t〉 X Xm1+m3

(a) Circuit for CNOT

|c〉

|t〉

=

m1

m2 m3

|c〉 Z Zm2

|+〉 Z X

|t〉 Z Zm1+m3

(b) Circuit for CZ

FIG. 3: CNOT and CZ gates implemented using parity measurements.

where b is the measurement outcome of the
merge. Finally, we note that the CNOT gate
can be represented as a Z-spider connected to
an X-spider,

= .

In addition to these definitions, we use the
spider-merge simplification rule, which states
nodes of the same type can be merged as long
as their rotations are summed modulo 2π.

7

III. RECTANGULAR SURFACE
CODES

III.1. Motivation

In rectangular surface codes with a small
X or Z distance, edge effects necessarily have
a greater impact than when dimensions get
larger. Because of this, the simple scaling rules
for taking the well-studied performance of
square surface codes [11, 22, 26, 41, 46, 54, 59]
to derive the performance of a rectangular sur-
face code patch are expected to break down on
high aspect ratio codes. Hence. direct analysis
and simulations are required to study narrow
rectangular surface code patches.

While there has been some recent work in
this area [4, 35], this work does not separately
evaluate how rectangular patches bias the rate
of logical X and Z errors. In this paper, we
manage the biassing effect of these rectangu-
lar patches on logical error rates to reduce the
minimum required width for a scalable qubit
array. This requires us to perform new sim-
ulations to understand and characterise these
impacts, which is especially important for de-
termining the performance of the surface code
bus in Section IV.

III.2. Simulations of biased surface codes

We performed simulations of rectangular
surface codes for dZ surface code syndrome
extraction cycles for dX ∈ {3, 5, 7} with in-
creasing odd values of dZ . We then measured
the data qubits. These simulations were per-
formed with the patches initialised in both
the |0〉 and |+〉 logical states using the high-
performance simulator Stim developed by Gid-
ney [23]. This tool uses a tableau representa-
tion similar to that of the CHP simulator [1] of
Aaronson et.al. which we re-implemented for
our simulations of parity codes in section III.

In order to determine errors, the Pauli basis
was updated for each round of stabiliser using
a Minimum Weight Perfect Matching decoder,
as described by Fowler [59], and then the mea-
surements were interpreted accordingly. Al-
though not an optimal decoder, the Minimum
Weight Perfect Matching decoder is signifi-

cantly better than a hamming-distance lat-
tice decoder, and it does not require signifi-
cant extra implementation complexity. In our
implementation, the matching graphs created
were solved using the Blossom V maximum
matching algorithm implementation of Kol-
mogorov [34].

To evaluate the performance of the decoder,
simulations were also performed on square
lattices and compared with pre-existing re-
sults [22, 59]. These results were largely the
same with only some very minor differences.
As such, we don’t expect major improvements
with better decoders. The results in figure 4
demonstrate the upper bound on the perfor-
mance of the surface code given by this de-
coder.

III.3. Evaluation of results

A fitting function was necessary in order
to extrapolate the performance of these sur-
face codes and enable further analysis. These
fitting functions needed to have a form that
made sense given the expected theoretical be-
haviour of the codes, as well as provide a good
fit for the simulation data. The available com-
puting resources limited the number of simu-
lations that could be performed and, in turn,
restricted the number of widths (i.e. values of
dX) we could analyse. This made it difficult
to determine a single fitting function, so we
derived separate fits for each of the pZ and pX
error rates, and for each dX . This gave fits in
good agreement with the simulation as shown
by the dotted lines in Figure 4.

Our fits for the Z error rates pZ are of the

form αdX−0.5dZ−0.5 dZ(βp)b
dz+1

2 c. This was chosen

by taking the expected α(βp)b
dz+1

2 c error per
time step, multiplying it by dZ to account for
the number of syndrome extractions required
to perform a lattice surgery operation, and
then adding a correction factor of dX−0.5dZ−0.5 . The
correction factor was empirically found to pro-
vide for a better fit. The fitting parameters α
and β are given in Table IIIa for each dX .

Fits for the X error rate pX of the form

fdX (dZ) · pb
dX+1

2 c were also found, where
f(x) is some quadratic polynomial in dZ . A

8

10−4 10−3 10−2
10−9

10−7

10−5

10−3

10−1

dZ = 3

dZ = 5

dZ = 7

dZ = 9

dZ = 11

dZ = 13

dZ = 15

dZ = 17

dZ = 19

(a) pZ with dX = 3, 109 samples per point.

10−4 10−3
10−5

10−4

10−3

10−2

10−1

100

dZ = 3

dZ = 5

dZ = 7

dZ = 9

dZ = 11

dZ = 13

dZ = 15

dZ = 17

dZ = 19

dZ = 21

dZ = 23

dZ = 25

dZ = 27

(b) pX with dX = 3, 108 samples per point.

10−4 10−3 10−2
10−8

10−6

10−4

10−2

100
dZ = 3

dZ = 5

dZ = 7

dZ = 9

dZ = 11

dZ = 13

(c) pZ with dX = 5, 108 samples per point.

10−4 10−3 10−2
10−6

10−5

10−4

10−3

10−2

10−1

100

dZ = 3

dZ = 5

dZ = 7

dZ = 9

dZ = 11

dZ = 13

dZ = 15

dZ = 17

dZ = 19

dZ = 21

dZ = 23

(d) pX with dX = 5, 106 samples per point.

10−4 10−3 10−2
10−6

10−5

10−4

10−3

10−2

10−1

100

dZ = 3

dZ = 5

dZ = 7

dZ = 9

dZ = 11

dZ = 13

dZ = 15

dZ = 17

dZ = 19

dZ = 21

dZ = 23

(e) pZ with dX = 7, 106 samples per point.

10−4 10−3 10−2
10−8

10−6

10−4

10−2

100
dZ = 3

dZ = 5

dZ = 7

dZ = 9

dZ = 11

dZ = 13

dZ = 15

dZ = 17

dZ = 19

dZ = 21

dZ = 23

(f) pX with dX = 7, 106 samples per point.

FIG. 4: Plots of the Logical error rates in both the Z and X directions over dZ rounds of a
biased rectangular surface code.

9

quadratic was chosen because the number of
error channels grows approximately propor-
tionally to the number of surface code extrac-
tions multiplied by the length of the surface
code patch, that is as the square of dZ . A
generic quadratic was chosen as this improved
the fit over a more restrictive function and
seemed to be a physically plausible way to ac-
count for edge effects. These polynomial fits
were found for each dX , and are given in Ta-
ble IIIb.

IV. THE SURFACE CODE BUS

IV.1. The GHZ state Bus

The preprint by Herr et. al. [28] proposed a
method that used a narrow single-qubit wide
bus to interconnect two d × d surface code
patches to determine the parity between them,
which they called the surface code data bus.
This used the procedure we reproduce as Al-
gorithm 1. A visual representation of their
proposed bus is presented in Figure 5. Sadly,
this procedure is not fault-tolerant (however
we show a modified version that is fault tol-
erant in the next section), because at line 9
the parity measured is not protected by the
repetition code, meaning any Z error that oc-
curs on any of the data qubits will flip the X
parity, taking the GHZ state prepared at line
3 from |0 · · · 0〉+ |1 · · · 1〉 to |0 · · · 0〉 − |1 · · · 1〉.
As both of these have the same values for the
XX operators checked in line 5, any such er-
ror in the time/space volume is uncorrectable.
Further, any single measurement error on line
9 will also be undetectable.

The size of the GHZ state depends on the
distance between the two qubit patches, as
well as their code distance. Together, this
means the GHZ state will be Nd qubits wide
in the worst case, where N is the number of
patches along the surface code bus (where the
minimum is 2, in the case of adjacent patches),
and d is the surface code distance. To detectX
errors in the preparation of the GHZ state, it is
necessary to perform step 5 d times, with each
step taking t ≥ 4 steps. The total time/space
volume of the parity check must be then at
least Ntd2. This means that Ntd2p needs

to be below 0.5 for the protocol to be fault-
tolerant, as the code capacity for the repeti-
tion code is 0.5. This allows for N ≤ 13 when
p = 0.1% and d = 3; it allows N ≤ 4 when
d = 5, and only adjacent patches may be in-
teracted fault-tollerantly when d ≥ 7. Further,
the number of repetitions in this bus could be
substantial depending on how close the sys-
tem is to the code capacity of the repetition
code. An increase in code distances might be
required in order to meet the required error
rate for higher-level protocols and algorithms.

IV.2. The Folded Surface Code Bus

The above technique can be made fault tol-
erant for any code distance or spacing by us-
ing lattice surgery over biassed surface code
patches to replace the GHZ state [43]. This
modified fault-tolerant procedure is presented
in Algorithm 2 with a visualisation of the logi-
cal operators shown in Figure 7. The visual
representation is especially useful in under-
standing the possible error chains and the lo-
cations and interactions of various boundaries.
Also useful in understanding the algorithm is
the schematic view of the surface code regions
shown in Figure 6. We call this the folded sur-
face code bus because it can be understood as
folding a temporally thin lattice surgery parity
measurement along the time axis so that it is
narrow in space.

The lattice-surgery operations in Algo-
rithm 2 create a logical bell pair

|α1α3〉 =
1√
2

(|00〉+ |11〉)

on lines 3-8. On lines 9 to 13, each half of this
bell pair is merged with one of the input logi-
cal qubits, measuring both the parity between
φ and α1 and the parity between ψ and α3.
As α1 and α3 encode a bell pair, the parity
between these measurements is the parity be-
tween the two input logical qubits. In addition
to those lattice surgery operations, we have to
measure the stabilisers for multiple periods to
allow for error detection; compute an updated
estimate of the Pauli frame, and correct the
observed measurements before the final parity
calculations are performed.

10

dX α β

3 0.09 95
5 0.06 110
7 0.03 125

(a) Parameterd for the pZ fit

dX fdX (dZ)

3 f(x) = 500x2 − 700x+ 250
5 f(x) = 26399x2 − 57295x+ 18522
7 f(x) = 2.87× 106x2 − 1.55× 107x+ 2.75× 107

(b) Functions for the pX fit

TABLE III: Parameters for chosen fits.

Algorithm 1 GHZ Surface Code Bus

1: procedure UnprotectedBus(d× d qubit SC patches ψ, φ indexed as θ[i,j])
2: for i ∈ {1 . . . d} do
3: Create an 2d+m quantum register b which is initialised to the GHZ state 1√

2
(|0 · · · 0〉+ |1 · · · 1〉)

4: for j ∈ {1 . . . d} do
5: Check for errors by measuring the operator Xb[k]

Xb[k+1]

for k ∈ {1 . . . (2n+m− 1)}
6: end for
7: Update Pauli frame to correct errors in GHZ state.
8: Perform a CNOT gate between the GHZ state and SC patch Z boundaries using

d⊗
k=1

CNOTb[k],ψ[1,k]
⊗ CNOTb[k],φ[1,k]

9: Measure b in the X basis and compute the parity pi of the result.
10: end for
11: Compute the majority vote over all pj , the parity XX over ψ and φ and return.
12: end procedure

FIG. 5: Visual representation of the interaction between the GHZ state, and the two d = 3
surface code patches in the Unprotected GHZ surface code bus ZZ measurement.

11

(a) Z Logical Operators (b) X Logical Operators

FIG. 6: Logical operators for the Folded Surface Code Bus for XX. In these diagrams the
vertical direction represents time, with the cross-section at each point of time representing the
surface code at that point in time. The marked surfaces represent some of the possible logical

operators at each point.

FIG. 7: Layout and position of surface code
patches for the folded surface code bus.

The choice of period of stabiliser measure-
ments within the loop at line 4 ensures that
the ancilla patches are in either a |Φ+〉 or a
|Ψ+〉 bell state, so that no error can propagate
to the input patches during the subsequent
merges. Further, the choice of period of sta-
biliser measurements within the loop at line 11
determines that the uncertainty of the parity
measurement due to errors in the merged par-
ity is no greater than that due to the width of
the bell preparation ancilla.

We now have to show that the method pre-
sented here is, in fact, fault-tolerant. There
are two different approaches, and we present
both here. The first is to note that the only
surface code errors that can occur with a dis-
tance w probability are X errors in the cre-
ation of the bell state and errors in the de-
termination of the parity between each of the
biased logical bell-state patches. Figure 7 de-
picts a single iteration of the loop at Line 2,
which shows that there are no other possible
short error chains. The only short error chains
are:

1. Z-error chains in the initialisation of the
SC patch α;

2. Z-error chains between initialisation of
SC patch α and the splitting of the SC
patch into α1, α2, and α3;

3. Z-error chains when measuring α2;

4. parity measurement error-chains along
the time axis in performing the rough
merges between α1 and φ and α3 and ψ.

12

Algorithm 2 Fault-Tolerant Surface Code Bus XX measurement of width w

1: procedure ProtectedBus-w(d× d qubit SC patches ψ, φ indexed as θ[i,j])
2: for i ∈ {1 . . . d} do
3: Create a dx = 2d+m and dz = w qubit surface code patch α, initialised to the logical

|+〉 = 1√
2
(|1〉+ |0〉) state. (if w = 1, this is exactly the GHZ state from Algorithm 1)

4: for j ∈ {1 . . . d} do
5: Measure and record the stabiliser operators of all 3 surface code patches.
6: end for
7: Split the surface code patch α into 3 patches with dz = w, in order α1 with dx = d, α2 with

dx = m and α3 with dx = d, recording the measurements from the boundaries. (This leaves us
in the logical GHZ state 1√

2
(|111〉+ |000〉)).

8: Measure the surface code patch α2 in the Z basis leaving the logical state α1α3 = 1√
2
(|11〉+ |00〉)

9: Merge Surface code patch ψ with surface code patch α1 along their rough boundaries creating

ψβ1α1. Where β1 is initialised as
⊗d−1

k=1 |+〉 and is the boundary.

10: Merge Surface code patch φ with surface code patch α3 along their rough boundaries creating

φβ2α3. Where β2 id initialised as
⊗d−1

k=1 |+〉 is the boundary.
11: for j ∈ {1 . . .m} do
12: Measure and record the stabiliser operators of both surface code patches ψα1 and ψα3.

and record all results.
13: end for
14: Restore the SC patches α and β to their original size by measuring out the area that was β1α1

and β2α3.
15: for j ∈ {1 . . . d} do . (You may merge this loop with that on line 4 of the

following enclosing loop
iteration (line 2) where it exists.)

16: Measure and record the stabiliser operators of both φ and ψ.
17: end for
18: Update the Pauli frame predictions to correct for the split, and measure in lines 7-8 accounting

for detectable errors.

19: Determine the logical parity measurement pi1 associated with the merge on line 9 accounting for
detectable errors.

20: Determine the logical parity measurement pi2 associated with the merge on line 10 accounting
for detectable errors.

21: Compute pi = pi1 ⊕ pi2
22: end for
23: Compute the majority vote over all pi, that is the parity XX over ψ and φ; update the final Pauli

Frame, and return.
24: end procedure

The ZX-calculus has been proposed as a lan-
guage for the description of lattice surgery op-
erations [6]. It can be used to show that this
algorithm implements a parity measurement
and that all errors appear as errors in the par-
ity measurement, see the diagram in Figure 8.

E1π E2π E3π Mα2π

E41π MXXα1φπ

E42π MXXα1ψπ

FIG. 8: A ZX-calculus diagram showing the
effect of the possible short error chains on the
result of the parity measurement.

13

This diagram is equivalent to one of the loop
iterations of the procedure in Algorithm 2,
with all short error chain error possibilities in-
cluded as rotations on the Z-nodes. These er-
rors can be merged into a single Z-spider, with
weight

(E1 + E2 + E3 + E41 + E42+

Mα2 +MXXα1φ +MXXα1ψ)π.
(4)

Compare this to the diagram in Figure 9,
which shows the ZX-diagram of an XX par-
ity measurement with a possible error in mea-
surement. Both these diagrams are equivalent
under the mapping error

E = E1 + E2 + E3 + E41 + E42 mod 2

and parity measurement

M = Mα2
+MXXα1φ +MXXα1ψ mod 2

because both can be contracted into a single
Z-spider.

|±〉
|+〉 E

= Eπ Mπ

FIG. 9: ZX-calculus diagram of the measure-
ment of the XX-parity between two qubits
using CNOTs and an ancilla with a possible
logical error.

The probability of an unrecoverable error
in the quantum bus in any loop iteration
is proportional to the probability of an un-
correctable short-edge error within the bus
time/space volume during the course of a sin-
gle bus cycle. Hence, the error is approximated
as the probability of the second and fourth er-
ror channels, as the quantum space/time vol-
ume of this region is significantly larger than
any other short error channel. Whether this
error exceeds the repetition code’s code capac-
ity for a certain code distance, error likelihood
or bus length determines the minimum practi-
cal width of the bus.

IV.3. Surface code bus performance

The performance of the surface code bus is
understood through the analysis of the error
behaviour of each inner parity measurement.
This is done by determining the rates for each
term in Equation 4. Terms E1, E2 and E3

correspond to uncorrectable Z-errors in the
rectangular surface code patch that spans the
width of the bus. Likewise, Terms E41 and E42

correspond to uncorrectable errors in smaller
rectangular surface code time/space volumes.
The sum of the rates of these errors is then
the probability of an inner parity measurement
failing.

These error rates are exactly what was sim-
ulated in Section III. From these results, the
rate of errors that occur in a single folded
bus section can be determined. As the rep-
etition code has a threshold of 0.5, it is trivial
to check differing combinations of bus lengths,
bus widths and surface code distances to deter-
mine if each bus operation is below this thresh-
old. This check was performed, and the results
are presented in Figure 10.

Whilst it is true that the total code pre-
sented in Algorithm 2 will be of distance d, the
error rates on the bus will strongly depend on
the width and the length of the bus. In order
to ensure that the rate of errors on the bus is
the same or lower than the rate of errors in the
data logical qubits, we have evaluated the per-
formance of the surface code bus at differing
bus lengths, widths and surface code distances,
and then determined the minimum number of
repetitions that ensures the probability of an
error on the bus is lower than the probability
of a memory error. The results of this calcu-
lation are shown in Figure 11.

V. PARITY CODES FOR THE BUS

Our first attempt to reduce the width of
lattice required to perform universal quantum
computing by using the fault-tolerant surface
code bus introduced in Section IV to mediate
the interactions of logical qubits so that an-
other code may be concatenated above it as
illustrated in Figure 12.

With a single bus, such a layout should give

14

3 13 23 33 43
Square Patch Distance

101

102

103

M
ax

im
um

 B
us

 p
at

ch
 le

ng
h

(in
 p

at
ch

 d
ist

an
ce

s)

dx = 3
dx = 5
dx = 7

FIG. 10: Maximum bus lengths, for differing bus widths, and patch dimensions. Providing
space between patches for bus access to each side as in Figure 12.

that code a threshold lower than when com-
plete connectivity at the logical layer is pos-
sible but higher than what is required if the
logical architecture of the qubits were to be
nearest-neighbour linear interactions. This is
because while we can interact any two qubits
with each other, each linear section of the bus
can only be used for one interaction at a time.

To determine whether this technique could
have applicability, codes were selected to eval-
uate, for both performance and ease of imple-
mentation. A fault tolerance scheme was cho-
sen for each code, and a decoder was designed
as described below. Then the performance of
each code was simulated using these choices
under the timing constraints of the surface
code bus lower layer. It is worth noting here,
that while the bus can implement multi-qubit
parity measurements, it is not known whether
these can be used fault-tolerantly in this con-
catenation scheme, so parity measurements on
the bus were limited to weight 2 in this con-
sideration.

V.1. Choice of codes

There were three main considerations in
choosing which block codes to test: the ex-
pected threshold of the different codes; the
ease of implementing the codes, and the
amount of scholarly literature that exists on
the code performance. The flag-qubit method
for fault-tolerance described in the section II.3
showed significant benefits in terms of reduced
qubit count and circuit simplicity, which en-
abled a reduced threshold [14]. This choice
left three codes with flag-qubit circuits within
the published literature that could be easily
tested: the J5, 1, 3K five qubit code; Steane’s
J7, 1, 3K code, and the J15, 7, 3K CSS code. As
the five-qubit code historically demonstrated
a much lower threshold than the other two
codes [17], we analysed the threshold per-
formance of both the J7, 1, 3K code and the
J15, 7, 3K code to examine the tradeoff between
qubit density and the total width of the pro-
cessor array, w.

To choose which syndrome extraction cir-
cuit should be used for each code, we evalu-
ated the total bus latency to extract all syn-
dromes for each of the flagged extraction cir-
cuits found in the literature [14, 47]. The

15

101

101

102
Bu

s r
ep

et
iti

on
s R

eq
ui

re
d

d = 3
d = 5
d = 7
d = 9
d = 11
d = 13
d = 15
d = 17

101

102

103

Ti
m

e
fo

r B
us

 O
pe

ra
tio

n
(S

C
ro

un
ds

)

d = 3
d = 5
d = 7
d = 9
d = 11
d = 13
d = 15
d = 17

101

Bus Length (Square Patches)

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Er
ro

r R
at

es

d = 3
d = 5
d = 7
d = 9
d = 11
d = 13
d = 15
d = 17

(a) w = 3

FIG. 11: Performance of the Surface code bus for w ∈ {3, 5, 7}. In the top plot of each group
we have the number of repetitions to make the short-edge error equal to the patch error for one
bus cycle. In the middle Graph we have the total number of surface code cycles required for a
single bus parity measurement. The lower graph shows the effective error rate on the surface

code patch (solid), and bus operation(dotted) when using the number of repetitions.

16

101 102

100

101

102

103

Bu
s r

ep
et

iti
on

s R
eq

ui
re

d

d = 3
d = 5
d = 7
d = 9
d = 11
d = 13
d = 15
d = 17
d = 19
d = 21
d = 23
d = 25
d = 27
d = 29

101 102

101

102

103

104

Ti
m

e
fo

r B
us

 O
pe

ra
tio

n
(S

C
ro

un
ds

)

d = 3
d = 5
d = 7
d = 9
d = 11
d = 13
d = 15
d = 17
d = 19
d = 21
d = 23
d = 25
d = 27
d = 29

101 102

Bus Length (Square Patches)

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

Er
ro

r R
at

es

d = 3
d = 5
d = 7
d = 9
d = 11
d = 13
d = 15
d = 17
d = 19
d = 21
d = 23
d = 25
d = 27
d = 29

(b) w = 5

FIG. 11: continued. Performance of the Surface code bus for w ∈ {3, 5, 7}. In the top plot of
each group we have the number of repetitions to make the short-edge error equal to the patch
error for one bus cycle. In the middle Graph we have the total number of surface code cycles

required for a single bus parity measurement. The lower graph shows the effective error rate on
the surface code patch (solid), and bus operation(dotted) when using the number of repetitions.

17

101 102 103

100

101

102

103

Bu
s r

ep
et

iti
on

s R
eq

ui
re

d

d = 3
d = 5
d = 7
d = 9
d = 11
d = 13
d = 15
d = 17
d = 19
d = 21
d = 23
d = 25
d = 27
d = 29

101 102 103

101

102

103

104

Ti
m

e
fo

r B
us

 O
pe

ra
tio

n
(S

C
ro

un
ds

)

d = 3
d = 5
d = 7
d = 9
d = 11
d = 13
d = 15
d = 17
d = 19
d = 21
d = 23
d = 25
d = 27
d = 29

101 102 103

Bus Length (Square Patches)

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

Er
ro

r R
at

es

d = 3
d = 5
d = 7
d = 9
d = 11
d = 13
d = 15
d = 17
d = 19
d = 21
d = 23
d = 25
d = 27
d = 29

(c) w = 7

FIG. 11: continued. Performance of the Surface code bus for w ∈ {3, 5, 7}. In the top plot of
each group we have the number of repetitions to make the short-edge error equal to the patch
error for one bus cycle. In the middle Graph we have the total number of surface code cycles

required for a single bus parity measurement. The lower graph shows the effective error rate on
the surface code patch (solid), and bus operation(dotted) when using the number of repetitions.

18

A0 1 2 3 4 5 6 7 A1 C1C0

Data Qubit Patch

CNOT Ancilla Patch

Code Ancilla Patch

Surface Code Bus

FIG. 12: An descriptive illustration of what the Steane J7, 1, 3K code on top of d = 5 surface
code patches connected with a w = 2 bus might look like.

Steane J7, 1, 3K code circuit in figure 13a had
the lowest complexity by far, requiring only 18
bus cycles. There were two candidate circuits
for the J15, 7, 3K. Both had the same bus la-
tency, so the circuit in 13b was chosen because
it was slightly easier to develop its decoder.

V.2. Decoder design

A decoder had to be designed for each of
the top-level block codes after the codes and
circuits had been chosen. As each code was
distance three, a brute force analysis was fea-
sible. We evaluated all weight-one Pauli er-
rors after initialisation, on idle qubits, and be-
fore measurements, and all weight-two Pauli
errors before CNOT gates for all gates in a
round of fault-tolerant syndrome extraction.
The measured error syndrome is recorded for
each error, and the errors propagated through
the syndrome extraction to create a decoder.
The decoder has to provide a unique correction
for each error syndrome, or at least leave an
error that can be corrected in the next cycle.

For the Steane J7, 1, 3K CSS code, a fault-
tolerant round of syndrome extraction consists
of either two or three complete sets of syn-
drome extraction. Each syndrome extraction
is made up of three copies of the circuit in
figure 13a, with the qubits permuted to ex-
tract syndromes 1 and 2 first, followed by syn-
dromes 3 and 4, and finally syndromes 5 and
6. If two sets of measurements return identi-
cal syndromes, then the procedure is complete.
Otherwise, an additional set of measurements
is taken to complete the round of fault-tolerant
extraction. The decoder for this fault-tolerant
syndrome extraction was calculated manually,
given the relatively short size of the decision
tree required. The correctness of the decoder
was checked automatically with an exhaustive
search.

For the J15, 7, 3K CSS code, a fault-tolerant
round of syndrome extraction only involves
one or two complete sets of syndrome extrac-
tion. Each is made up of four copies of the
circuit in figure 13b, with the qubits permuted
to extract the syndromes in ordered pairs, first
with syndromes 1 and 2, then syndromes 3 and
4, and so on. In this case, a single set of mea-

19

|±〉

4

5

6

7

|0〉

|+〉

(a) J7, 1, 3K flag circuit for one X and Z
syndrome [47]

|±〉

|±〉

8

9

10

11

12

13

14

15

|0〉

|+〉

|+〉

(b) J15, 7, 3K flag circuit for one X and Z
syndrome [47]

FIG. 13: Flag qubit extraction circuits used for J7, 1, 3K and J15, 7, 3K codes

surements is required if the syndromes all re-
turn unchanged values (zero/plus), otherwise
two sets of measurements were made. For this
code, the decoder was too large to consider op-
timizing manually, so an automatic routine to
extract and verify a decoding table was cre-
ated.

V.3. Simulation Design

The codes were simulated with the balanced
error model described in section II.1 to evalu-
ate their performance. As the bus operations
take d2 time steps, the error rate in this simu-
lation assumes that measurement and initial-
isation of logical ancilla patches are error-free
operations, as they effectively take one round
of syndrome extraction on the surface code
layer. This is because initialization requires d
rounds of syndrome extraction in the surface
code to be fault-tolerant. However, these can
occur simultaneously with the first bus opera-
tion, so do not introduce any additional errors
or computation time.

The simulation for these codes was per-
formed with a custom CHP simulator. We
ran repeated syndrome extractions with per-
fect corrections applied between them until an
uncorrectable error occurred. When evaluat-
ing the Steane J7, 1, 3K code after each round of
syndrome extraction and correction, a copy of
the simulated state was placed back into a +1

eigenstate of all the surface code stabilisers by
performing syndrome extraction with errors
disabled. The parity of the logical operator,
in the appropriate basis, was then measured
and compared to the initial state. To correct
all order one errors, we determined that three
rounds of syndrome extraction were required
prior to measuring the eigenstate of the logical
operator and compared it to the initial value
for this implementation of the J15, 7, 3K code.
In both cases, the mean and standard devia-
tion of the number rounds before failure were
computed and used to find the logical error
rate.

The ±1 eigenstates of Pauli-X, Pauli-Y
or Pauli-Z were chosen as our initial en-
coded states for the J7, 1, 3K code. The states

|0〉⊗7,|1〉⊗7,|+〉⊗7,|−〉⊗7,|i+〉⊗7, and |i−〉⊗7
were chosen as our initial encoded states
for the J15, 7, 3K code, with the restriction
of states here due to limited computing re-
sources.

V.4. Simulation Results

For each physical error rate, 900 simula-
tions to failure were computed. Then the
mean of these gaussian samples was used to
compute an estimator for the Bernoulli trials.
The maximum likelihood estimator and the
Bayesian posterior mean of the posterior dis-
tribution were both evaluated, and they pro-

20

Initialise

Extract Syndromes

Measure Syndrome
with Flags x N x 2/3

Correct Results

Check if Correctable error

Copy Correct

Yes

Correctable
Compare

state

Halt

No

FIG. 14: Flow chart for simulation of block code performance simulation.

duced almost identical results. The posterior
mean and 3σ confidence interval were calcu-
lated assuming a uniform prior distribution,
with the results presented in Figure 15. As
initially expected, the 3σ confidence interval
is approximately ±10% around the estimate.
From these parameter estimates, a polynomial
fit was manually extracted to degree-4 for each
code. These are

pJ7,1,3K(p) = 2.23× 104p2 − 3.5× 106p3

+ 1.7× 108p4

(5)
for the J7, 1, 3K code and

pJ15,7,3K(p) = 8.00× 105p2 − 6.0× 108p3

+ 14× 1010p4

(6)
for the J15, 7, 3K code, which are also depicted
in Figure 15.

From these plots, we can see that the Steane
J7, 1, 3K code has a pseudo-threshold of ap-
proximately p = 4.52 × 10−5 when used with
the surface code bus. Similarly the pseudo-
threshold for the J15, 7, 3K code is approxi-
mately p = 1.25× 10−6.

VI. PERFORMANCE OF THE
CONCATENATED CODES

To evaluate the concatenated quantum error
correcting codes, we must:

• Determine the performance of the base
surface code layer, and evaluate the per-
formance of two-qubit interactions.

• Determine a compilation scheme at the
first layer for the J7, 1, 3K or J15, 7, 3K
codes above the surface code.

• Determine a scheme to concatenate ad-
ditional levels of the code above this in
a self-similar manner.

• Calculate the performance of this
scheme using these compilation strate-
gies recursively.

We must set a target for final logical error
performance to make width and area compar-
isons. We have chosen an error rate of 10−15

for a logical CNOT or parity measurement op-
eration between two adjacent qubits as our
target in this work.

The performance is evaluated at several
physical error rates between 10−3 and 10−4,
which represent both near, and intermediate-
term physical error targets. We then deter-
mine the required architecture size for these
rates. These results are presented in Table IV
and are calculated using the procedures de-
scribed in the remainder of this section.

21

10 7 10 6 10 5 10 4 10 3 10 2 10 1
10 11

10 9

10 7

10 5

10 3

10 1

101
estimating polynomial
break even
7-1 code logical rate Baysean Estimator

(a) J7, 1, 3K code

10 7 10 6 10 5 10 4 10 3 10 2 10 1
10 10

10 8

10 6

10 4

10 2

100

break even
estimate
15-7 code logical rate Baysean Estimator

(b) J15, 7, 3K code

FIG. 15: The logical error rates for the J7, 1, 3K and J15, 7, 3K codes

22

dsc db w pl block size qubit density

Surface Code - No Bus 27 NA 107 5.49× 10−16 5778 5778
Surface Code - Bus 31 5 71 1.66× 10−16 5112 5112

1L J7, 1, 3K on SC + Bus 21 7 55 3.96× 10−17 3.39× 104 3.39× 104

2L J7, 1, 3K on SC + Bus 15 7 43 1.91× 10−16 1.87× 105 1.87× 105

3L J7, 1, 3K on SC + Bus 13 7 39 4.64× 10−16 1.39× 106 1.39× 106

7L J7, 1, 3K on SC + Bus 11 7 35 8.27× 10−21 7.37× 109 7.37× 109

1L J15, 7, 3K on SC + Bus 23 7 59 2.74× 10−17 7.08× 104 1.01× 104

2L J15, 7, 3K on SC + Bus 21 7 55 2.50× 10−20 1.11× 106 2.26× 104

3L J15, 7, 3K on SC + Bus 19 7 51 9.73× 10−21 1.72× 106 5.01× 104

4L J15, 7, 3K on SC + Bus 17 7 47 3.84× 10−17 2.63× 108 1.10× 105

(a) p = 1.0 × 10−3

dsc db w pl block size qubit density

Surface Code - No Bus 21 NA 83 3.23× 10−16 3652 3652
Surface Code - Bus 23 5 55 3.26× 10−16 2450 2450

1L J7, 1, 3K on SC + Bus 15 5 39 5.11× 10−16 1.72× 104 1.72× 104

2L J7, 1, 3K on SC + Bus 11 5 35 3.56× 10−16 9.82× 104 9.82× 104

4L J7, 1, 3K on SC + Bus 9 5 27 4.31× 10−19 6.06× 106 6.06× 106

1L J15, 7, 3K on SC + Bus 17 5 43 6.59× 10−17 3.78× 104 5.41× 103

2L J15, 7, 3K on SC + Bus 15 5 39 2.94× 10−18 5.62× 105 1.15× 104

4L J15, 7, 3K on SC + Bus 13 5 35 4.34× 10−16 8.16× 106 2.38× 104

(b) p = 4.7 × 10−4

dsc db w pl block size qubit density

Surface Code - No Bus 17 NA 67 2.48× 10−16 2278 2278
Surface Code - Bus 19 3 43 1.40× 10−16 1892 1892

1L J7, 1, 3K on SC + Bus 13 3 31 5.07× 10−17 1.09× 104 1.09× 104

2L J7, 1, 3K on SC + Bus 9 5 27 6.43× 10−18 7.48× 104 7.48× 104

4L J7, 1, 3K on SC + Bus 7 5 23 9.82× 10−22 4.43× 106 4.43× 106

1L J15, 7, 3K on SC + Bus 13 5 35 1.50× 10−16 2.52× 104 3.60× 103

2L J15, 7, 3K on SC + Bus 13 3 31 1.54× 10−19 3.57× 105 7.29× 103

3L J15, 7, 3K on SC + Bus 11 3 27 3.26× 10−17 4.90× 106 1.43× 104

(c) p = 2.2 × 10−4

dsc db w pl block size qubit density

Surface Code - No Bus 15 NA 59 2.59× 10−17 1770 1770
Surface Code - Bus 15 3 35 4.93× 10−16 1260 1260

1L J7, 1, 3K on SC + Bus 11 3 27 2.46× 10−18 8.32× 103 8.32× 103

2L J7, 1, 3K on SC + Bus 7 3 23 6.78× 10−16 3.76× 104 3.76× 104

9L J7, 1, 3K on SC + Bus 5 3 19 5.10× 10−22 1.14× 1011 1.14× 1011

1L J15, 7, 3K on SC + Bus 11 3 27 1.67× 10−16 1.51× 104 2.16× 103

3L J15, 7, 3K on SC + Bus 9 3 23 1.44× 10−20 3.58× 105 1.04× 104

(d) p = 1.0 × 10−4

TABLE IV: Error rates for different code concatenation configurations, parameters, and physical error rates.
In this figure dsc is the surface code distance, db is the bus width distance, w is the width of the lattice, and pl

is the logical error rate of the concatenated code.

23

VI.1. Performance of the surface code,
and the surface code bus.

The performance of the surface code is de-
termined to provide a base for comparison,
which is required when establishing the per-
formance of the concatenated codes. Here, we
estimate the error rate of the surface code us-
ing the fit in Equation 3 multiplied by d+1, the
number of rounds required for a lattice surgery
operation.

We use the procedure described in Sec-
tion IV.3 to calculate the estimate of the bus
error rate using the simplifying assumption
that all bus operations have the worst-case
length. These bus operations are then used
as the underlying physical error rate for con-
catenated codes, which will result in slightly
higher logical error rates than a tighter analy-
sis using exact lengths.

VI.2. Compilation of the Steane J7, 1, 3K
code

A scheme for concatenation is required when
concatenating multiple layers of the Steane
J7, 1, 3K code with the surface code bus. Log-
ical CNOTs are performed transversally be-
tween the two logical blocks at each level of
concatenation below the surface code. This
requires at least three CNOT gates between
qubits in the two logical blocks. There are sev-
eral ways of doing this including those shown
in Figure 16.

1. For one level (1L) of concatenation of the
Steane code above the surface code, we
use the bus to perform logical CNOTs
between surface code patches. We ar-
range the qubits as in Figure 12, with
CNOT ancillae adjacent to each parity
ancilla. This layout enables some mi-
nor parallel bus operations. We allocate
additional time to enable CNOTS be-
tween patches in different logical blocks
and perform transversal CNOTs gates
between logical patches as in Figure 16.
The existing ancillae, both CNOT ancil-
lae and code ancillae, are reused for this
purpose.

2. For two levels (2L) of concatenation, log-
ical operations at both levels are per-
formed using the bus. We allocate ade-
quate time in each L1 syndrome extrac-
tion to perform a long-distance bus op-
eration between any two of the L1 qubits
within the block, as described above.
CNOTs between two adjacent L2 CNOT
qubits are performed using long bus op-
erations, as are CNOT gates between
adjacent 2L qubits. Swaps between 2L
qubits are performed by using transver-
sal quantum teleportation of 1L qubits.
This ensures that no single bus error can
create more than a weight-1 logical error
at layer 3 of concatenation.

3. For three levels (3L) of concatenation
or higher, a swap network of sufficient
length is used to make interacting lower-
level qubits adjacent to each other in
each concatenated layer. This swap pro-
cedure is then applied recursively.

In our analysis, we increase the error rate of
the code at each layer of concatenation in pro-
portion to the additional time required to per-
form operations between blocks. This provides
an estimate of the error rate with these inter-
actions. We then apply the equation of fit for
the performance of the J7, 1, 3K code. This pro-
cedure is performed recursively. To determine
the minimum possible combined lattice width
that meets the 10−15 performance target, we
iteratively tried each possible bus width and
code distance. For each of these, we then de-
termined if it was possible to reach the target
and, if so, how many layers of concatenation
were required. The narrowest lattices for each
number of layers of concatenation that reach
our target were then recorded.

VI.3. Compilation of the J15, 7, 3K CSS
code

A concatenation scheme for multiply con-
catenating the J15, 7, 3K code must be deter-
mined in order to concatenate the J15, 7, 3K
code above the surface code with bus multiple
times. We have chosen the simplest scheme in
this work, where we concatenate fifteen (15)

24

A0 7 6 5 4 3 2 1 A1 C1C0 A1 1 2 3 4 5 6 7 A0 C0C1

(a) Patch interactions required to perform logical Steane operations using the XXXIIII or ZZZIIII
logical operator, between adjacent Steane arrays.

A1 1 2 3 4 5 6 7 A0 C0C1 A0 7 6 5 4 3 2 1 A1 C1C0

(b) Patch interactions required to perform logical Steane operations using the XIIIIXX or ZIIIIZZ
logical operator, between adjacent Steane arrays.

FIG. 16: Logical operators between order reversed Steane qubits on the bus.

level one (L1) code blocks together into a new
L2 code block of 7 × 7 = 49 Level zero L0
logical surface code qubits. This is possible
because a transversal CNOT operation of fif-
teen (15) pairs of qubits between two blocks is
equivalent to performing a CNOT between all
corresponding logical qubits in each block [13].
This work does consider CNOT gates between
differing forty-nine (49) L0 logical qubit code
blocks on the same qubit. However, we have
not considered how to fault-tolerantly imple-
ment the internal Clifford group (that is the
Clifford group on the seven qubits within a
single J15, 7, 3K code block) at any level of
concatenation, and the implementation of this
may reduce the threshold for this code.

The concatenation scheme is then as follows.

1. For the first level of concatenation, we
perform CNOT operations between code
blocks by performing CNOTs in parallel,
reusing the ancilla qubits for the syn-
drome extraction in order to increase
bus utilization and perform a CNOT be-
tween two L1 code blocks. This can
be done in eighteen (18) bus operations.
When concatenated again for a higher
level code, we perform swaps using the
bus to teleport into the ancilla qubits be-
tween the blocks, this can be done in
thirty-six (36) bus operations. This is
done so that no operation can cause a

weight 2 error.

2. For the second and higher levels of con-
catenation, a swap network of sufficient
length is then used to make interact-
ing lower-level qubits adjacent in each
concatenated layer. After swapping, the
CNOT is applied transversally, and then
the qubits are swapped back. This swap
procedure is applied recursively at each
successive layer.

As with the Steane code, to determine the
performance of the concatenated code, the er-
ror rate of each layer of concatenation is in-
creased proportionately with the additional
time required to perform two qubit interac-
tions before applying the equation of fit. After
which, a search was performed to determine
the performance of the code.

VI.4. Evaluation of results

It can be seen from the results in Table IV
that, in most cases, the overall width w can
be reduced by about half that required for the
surface code with bus, or about a third of the
surface code alone. This required the number
of qubits per block to increase by about three
orders of magnitude when the physical error
rate is 10−3. By increasing the width slightly,

25

to about 70% of that required for the surface
code with bus, this penalty is reduced substan-
tially, to only a factor of four over the standard
approach. It is possible to have a reduction
whilst retaining more density through the use
of the J15, 7, 3K, at the cost of more complex
compilation and a larger smallest unit size. It
may be possible to increase density or width
further with different choices of block codes.

VII. REPETITION CODES ABOVE
BIASSED SURFACE CODES

The approach of applying a quantum block
code directly above the surface code appears to
be insufficient for further reduction of the ar-
ray width w, and so a new approach is required
for further improvement. As you increase the
length of a surface code patch, one error type is
suppressed exponentially, while the other only
grows linearly. It is known [7, 35, 55, 56] that
highly biased error models can greatly increase
the performance of error correction. A further
reduction in width may be possible by engi-
neering a highly biased logical error model us-
ing a highly asymmetric surface code patch
and then concatenating it with a repetition
code. These rectangular surface code patches
can be much narrower, as the threshold of the
repetition code is much higher than that of a
code that corrects for all possible quantum er-
rors.

Whilst we might think of looking at more
complicated codes than the quantum repeti-
tion code because we wish to minimise array
widths, we are limited by the complexity of
more advanced codes. The most space-efficient
method to mediate long-distance interactions
between these patches is a single surface code
bus. Such a bus must grow in width as in-
teraction distance increases, and each bus can
only perform one stabiliser measurement at a
time. By measuring the parity of neighbour-
ing qubits, the quantum repetition code can
be implemented in constant time for increasing
code distance. This reduces the requirements
for the performance of the biassed surface code
patches in our proposed architecture, allowing
the patches to be narrower.

VII.1. Rectangular surface codes and
creating biased logical errors

The repetition code is a classical code, and
so only corrects for one type of quantum
error—either of type X, or of type Z. An
error of the other type in any classical error-
correcting code is never corrected. To be able
to use the repetition code as a layer two code,
one type of error must be suppressed well be-
low the target rate of the layer three code.
This is precisely what we engineer using a
highly asymmetric surface code layer, forcing
one of the error rates to be many orders of
magnitude lower than the other.

This may be achieved using a highly rect-
angular surface code. The probability of a
logical error in a surface code decreases expo-
nentially with the length of the shortest pos-
sible uncorrectable error chain. As this length
scales proportionally to the length of the short-
est logical operator, we can engineer an ex-
ponential bias in logical error rates by using
rectangular surface patches. Assume, without
loss of generality, that the Z logical opera-
tor is along the longer edge of a rectangular
surface code patch. The effect of increasing
this longer patch is to reduce the possibility
of a Z logical error exponentially due to the
increased number of errors required to form
an error chain. The probability of an X logi-
cal error only increases linearly though, as the
length of the X error chains required to form
a logical error does not change, only the num-
ber of possible chains does. This means that
the probability of an X error is approximately
dZ
dX
· plX (dX , dX) [38] for a rectangular surface

code patch. This does, however, ignore some
edge effects, so the simulations of III are re-
quired for more accurate analysis.

The rectangular surface codes may then be
concatenated with the repetition code using
lattice surgery. This is a delicate task, how-
ever, as it is essential that you never reduce
the minimum distance between two Z bound-
aries when working with rectangular surface
code patches, which increases the probability
of a logical Z error exponentially. Nonetheless,
it is possible to measure the logical Z parity
of two adjacent surface code patches within a
repetition code. In Appendix A we present a

26

scheme for performing such a parity measure-
ment, and we also offer an analysis of the time
needed to perform a parity measurement be-
tween two adjacent rectangular surface code
qubits in approximately 9dZ time steps. Us-
ing the surface code bus, each syndrome mea-
surement takes at least dZ(dZ + 1) + 1 time
steps. This results in a total code time of
2(d2Z + dZ + 1), as we require two sets of mea-
surements to implement the repetition code.

As we can engineer rectangular surface code
patches with biased logical errors and can
perform logical parity measurements between
them, we are able to implement a repeti-
tion code on top of these biased surface code
patches. By then concatenating these logi-
cal repetition code qubits with other codes,
such as the Steane J7, 1, 3K code, we are
able to reach an arbitrary logical error rate.
As Hadamard and phase gates are difficult
to perform on these rectangular qubits in
a fault-tolerant way, compilation above the
error-correcting code level is expected to be
performed using either gate teleportation or
measurement-based techniques [37]. The rep-
etition code level would result in a scheme de-
picted in Figure 17.

VII.2. Evaluation of results

To evaluate the performance of this scheme,
we must understand the effect of different val-
ues of dZ and dX on the time required to ex-
tract one round of parity measurements in the
repetition code.

We assume that a lattice surgery is used
when performing an operation between two
repetition codes. To measure the ZZ parity
between two repetition codes, we must move
the patches so that the qubits of one repeti-
tion code are interdigitated with those of the
other whilst simultaneously extracting the rep-
etition code stabilizers. The two overlapping
syndrome extractions are required when per-
forming a logical CNOT gate or swapping two
repetition code qubits.

For bussed extraction, this takes at least
5(d2Z + dZ + 1) cycles in the worst case, where
two logical qubits must be moved past each
other during a computation. (A computa-

tion consists of two parity extractions plus
one quantum teleportation [19]). For the non-
bussed method, it takes 18dZ surface code cy-
cles to perform a round of syndrome extrac-
tion in the same situation. This is due to
the complicated series of moves that must be
performed to enable qubits to move past each
other while simultaneously performing each of
the two repetition codes. A description of the
lattice surgery operations can be found in Ap-
pendix A.

We then multiply the per-time-step rates
for each surface code patch during the lattice
surgery procedures to determine the expected
logical rates for one cycle of syndrome extrac-
tion of the repetition code. We call this the
effective pX and pZ for a given configuration
of bussed/non-bussed operation, and code dis-
tances dX and dZ .

We then use these error rates to calculate
the probability of an error in the repetition
code of distance drc, which is made up of drc
patches. To estimate the logical fidelity of the
X errors after the repetition code, we use the
CDF of the binomial probability for having
more than dn/2e − 1, or more errors within
the repetition code block. We do this for each
block size until the repetition code has a lower
logical X error probability than the Z errors.
To estimate the rate of Z errors, we multiply
the effective pZ by drc, as the repetition code
is only correcting for X errors. Then, to get
an effective error rate per CNOT gate, we have
to multiply this by 2drc + 1, as it takes that
many repetition code cycles to perform a log-
ical CNOT operation.

If we evaluate the results for each value of
dX , we can determine a physical error rate
that enables both X and Z errors to be below
the threshold for the Steane J7, 1, 3K code pre-
sented earlier. You can see the extrapolated
logical CNOT error rate for the non-bussed
implementation after the repetition code in
Figure 18. If we take p = 10−6 as the thresh-
old on this architecture, then the threshold for
dX = 3 is approximately 2×10−4; for dX = 5,
it is approximately 8× 10−4, and for dX = 7,
it is approximately 1.5 × 10−3. Architectures
for these can be implemented in arrays with
widths of 11, 19, and 27 respectively. Whilst
the number of qubits required is extremely

27

(a) Physical qubits, pX = 10−4, pZ = 10−4, Perhaps silicon quantum dot qubits similar to these [25]
(Image used with the permission of the authors)

(b) A rectangular surface code patch with d = 2 bus, dX = 3, dZ = 19, 369 qubits total. With the
qubits in Fig 17a pX < 0.158, pZ < 6.91× 10−21.

1 2 123122

(c) A repetition code made up of surface code patches, with 123 surface patches as in Fig 17b,
px < 1.39× 10−16, pZ < 2.10× 10−16.

FIG. 17: An example of concatenation levels for biased repetition code, with one possible
configuration of height and physical error rate.

high at the threshold, it comes down quickly
as you move away from that point. If you com-
pare these values to those estimated for stan-
dard CSS codes on square surface code patches
presented in Section VI, you can see that nar-
rower widths are possible at a given physical
error rate and, at certain widths, fewer qubits
are required for the same logical error rate.
This is traded against the unknown complex-
ity of compiling for this architecture.

VIII. CONCLUSION

In this work, we have investigated the pos-
sibility of reducing interconnect density by re-
stricting the maximum width w of the required
qubit array that is needed to accommodate the
surface code lattice. Previous attempts to deal
with the problem of interconnect density ei-
ther required more complicated long-distance
interactions [40] or had a much lower code
threshold [31, 53] than found in this work.

28

10−4 10−3

10−22

10−19

10−16

10−13

10−10

10−7

10−4

10−1

dZ = 5

dZ = 7

dZ = 9

dZ = 11

dZ = 13

dZ = 15

dZ = 17

dZ = 19

dZ = 21

dZ = 23

dZ = 25

dZ = 27

(a) Regularized pl for dX = 3

10−4 10−3

103

104

105

106

dZ = 5

dZ = 7

dZ = 9

dZ = 11

dZ = 13

dZ = 15

dZ = 17

dZ = 19

dZ = 21

dZ = 23

dZ = 25

dZ = 27

(b) Qubit counts for dX = 3

10−4 10−3

10−20

10−17

10−14

10−11

10−8

10−5

10−2

101

dZ = 7

dZ = 9

dZ = 11

dZ = 13

dZ = 15

dZ = 17

dZ = 19

dZ = 21

dZ = 23

(c) Regularized pl for dX = 5.

10−4 10−3

103

104

105

106

dZ = 7

dZ = 9

dZ = 11

dZ = 13

dZ = 15

dZ = 17

dZ = 19

dZ = 21

dZ = 23

(d) Qubit counts for dX = 5.

10−4 10−3

10−20

10−17

10−14

10−11

10−8

10−5

10−2

101

dZ = 9

dZ = 11

dZ = 13

dZ = 15

dZ = 17

dZ = 19

dZ = 21

dZ = 23

(e) Regularized pl for dX = 7

10−4 10−3

103

104

105

dZ = 9

dZ = 11

dZ = 13

dZ = 15

dZ = 17

dZ = 19

dZ = 21

dZ = 23

(f) Qubit counts for dX = 7

FIG. 18: Plots of the regularized CNOT fidelity and qubit counts after the repetition code for
differing biassed patch distances.

29

Here we chose to investigate using the surface
code as a base layer for other codes.

In order to evaluate this, we first simu-
lated the performance of rectangular surface
code patches, giving a collection of polyno-
mial fits. We then, in section IV, presented a
fully fault-tolerant version of a folded surface
code bus that enables long-distance qubit par-
ity measurements with much lower overhead
than other methods. We used the rectangu-
lar simulations of Section III to evaluate the
performance of this in differing contexts.

We then determined the performance of
both the J15, 7, 3K and Steane J7, 1, 3K codes
with the recently described flag-qubit fault-
tolerance technique. We simulated these
codes with randomised depolarised noise. We
then evaluated the results to determine the
expected performance of architectures using
these codes directly concatenated with the sur-
face code, where long-distance CNOTs be-
tween surface code patches are mediated by
the folded surface code bus. This gave an ar-
ray width of 35 when the error rate p = 10−3,
and 19 when p = 10−4, compared to widths of
71 and 35 respectively without concatenation.

Finally, we explored the performance when
deliberately biassing the logical error rate and
then regularising the logical errors, estimating
the width of the minimum qubit performance
required to meet the threshold of higher level
codes. This showed that at p < 1.5 × 10−3

and p < 0.8× 10−3 array widths of 27 and 19
respectively should suffice.

We also developed several tools for the
evaluation of quantum error correcting codes.
While better tools have become available dur-
ing the progress of this work, especially the ex-
cellent stim tool and the increasingly good py-
matching decoder, the tools used along with
all data we have generated are available from
the authors upon request[49].

The authors would have liked to evaluate
other codes, especially the J23, 1, 7K Golay
code, LDPC codes, and concatenated J4, 1, 2K

subsystem codes. However, the difficulty of
defining efficient flagged fault-tolerant extrac-
tions meant that this would have to be done in
future work. Similarly, it would be interesting
to investigate the compilation and evaluation
of the performance of the logical codes above
the repetition code above deliberately biased
surface codes, as well as the evaluation of the
performance of other topological codes in place
of the surface code, such as the XZZX code [7]
and the honeycomb code [24], and their im-
pact on minimum bus width and interconnect
density.

ACKNOWLEDGEMENTS

We thank Craig Gidney, Daniel Litinski for
their assistance in developing the surface code
quantum bus system, specifically the folded
design. Alexis Shaw was supported by an Aus-
tralian Government Research Training Pro-
gram Scholarship, the ARC Centre of Excel-
lence for Quantum Computation and Commu-
nication Technology (CQC2T), project num-
ber CE170100012, and a scholarship top-up
and extension from the Sydney Quantum
Academy. Michael Bremner was supported by
the Australian Research Council (ARC) Cen-
tre of Excellence for Quantum Computation
and Communication Technology (CQC2T),
project number CE170100012, as well as by
Google Inc. Simon Devitt and Michael Brem-
ner supported were with funding from the De-
fense Advanced Research Projects Agency [un-
der the Quantum Benchmarking (QB) pro-
gram under award no. HR00112230007 and
HR001121S0026 contracts]. The views, opin-
ions and/or findings expressed are those of the
authors and should not be interpreted as rep-
resenting the official views or policies of the
Department of Defense or the U.S. Govern-
ment.

[1] Aaronson, S.and Gottesman, D., Phys. Rev.
A 70, 052328 (2004).

[2] Aharonov, D.and Ben-Or, M., in Proceed-
ings of the Twenty-Ninth Annual ACM Sym-

30

https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1145/258533.258579
https://doi.org/10.1145/258533.258579
https://doi.org/10.1145/258533.258579

posium on Theory of Computing , STOC ’97
(Association for Computing Machinery, New
York, NY, USA, 1997) p. 176–188.

[3] Ansaloni, F., Chatterjee, A., Bohuslavskyi,
H., Bertrand, B., Hutin, L., Vinet, M., and
Kuemmeth, F., Nature Communications 11,
6399 (2020).

[4] Azad, U., Lipińska, A., Mahato, S., Sachdeva,
R., Bhoumik, D., and Majumdar, R., IET
Quantum Communication 3, 174 (2022).

[5] Backens, M., New Journal of Physics 16,
093021 (2014).

[6] de Beaudrap, N.and Horsman, D., Quantum
4, 218 (2020).

[7] Bonilla Ataides, J. P., Tuckett, D. K.,
Bartlett, S. D., Flammia, S. T., and Brown,
B. J., Nature Communications 12, 2172
(2021).

[8] Bourassa, J. E., Alexander, R. N., Vasmer,
M., Patil, A., Tzitrin, I., Matsuura, T., Su,
D., Baragiola, B. Q., Guha, S., Dauphinais,
G., Sabapathy, K. K., Menicucci, N. C., and
Dhand, I., Quantum 5, 392 (2021).

[9] Bravyi, S., Englbrecht, M., König, R., and
Peard, N., npj Quantum Information 4, 55
(2018).

[10] Breuckmann, N. P.and Eberhardt, J. N.,
PRX Quantum 2, 040101 (2021).

[11] Cai, Z., Fogarty, M. A., Schaal, S., Patomäki,
S., Benjamin, S. C., and Morton, J. J. L.,
Quantum 3, 212 (2019).

[12] Calderbank, A. R.and Shor, P. W., Phys.
Rev. A 54, 1098 (1996).

[13] Chao, R.and Reichardt, B. W., npj Quantum
Information 4, 42 (2018).

[14] Chao, R.and Reichardt, B. W., Phys. Rev.
Lett. 121, 050502 (2018).

[15] Chao, R.and Reichardt, B. W., PRX Quan-
tum 1, 010302 (2020).

[16] Coecke, B.and Duncan, R., in Automata,
Languages and Programming, edited by
L. Aceto, I. Damg̊ard, L. A. Goldberg,
M. M. Halldórsson, A. Ingólfsdóttir, and
I. Walukiewicz (Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008) pp. 298–310.

[17] Cross, A. W., Divincenzo, D. P., and Terhal,
B. M., Quantum Info. Comput. 9, 541–572
(2009).

[18] Devitt, S. J., Greentree, A. D., Stephens,
A. M., and Van Meter, R., Scientific Reports
6, 36163 (2016).

[19] Erhard, A., Poulsen Nautrup, H., Meth, M.,
Postler, L., Stricker, R., Stadler, M., Neg-
nevitsky, V., Ringbauer, M., Schindler, P.,
Briegel, H. J., Blatt, R., Friis, N., and Monz,
T., Nature 589, 220 (2021).

[20] Fowler, A. G.and Gidney, C., “Low overhead
quantum computation using lattice surgery,”
(2018).

[21] Fowler, A. G., Mariantoni, M., Martinis,
J. M., and Cleland, A. N., Phys. Rev. A 86,
032324 (2012).

[22] Fowler, A. G., Whiteside, A. C., McInnes,
A. L., and Rabbani, A., Phys. Rev. X 2,
041003 (2012).

[23] Gidney, C., Quantum 5, 497 (2021).
[24] Gidney, C., Newman, M., Fowler, A., and

Broughton, M., Quantum 5, 605 (2021).
[25] Gilbert, W., Tanttu, T., Lim, W. H., Feng,

M., Huang, J. Y., Cifuentes, J. D., Serrano,
S., Mai, P. Y., Leon, R. C. C., Escott, C. C.,
Itoh, K. M., Abrosimov, N. V., Pohl, H.-J.,
Thewalt, M. L. W., Hudson, F. E., Morello,
A., Laucht, A., Yang, C. H., Saraiva, A., and
Dzurak, A. S., “On-demand electrical control
of spin qubits,” (2022).

[26] Hakkaku, S., Mitarai, K., and Fujii, K., Phys.
Rev. Research 3, 043130 (2021).

[27] He, Y., Gorman, S. K., Keith, D., Kranz, L.,
Keizer, J. G., and Simmons, M. Y., Nature
571, 371 (2019).

[28] Herr, D., Paler, A., Devitt, S. J., and
Nori, F., “Time versus hardware: Reducing
qubit counts with a (surface code) data bus,”
(2019), arxiv:1902.08117, arXiv:1902.08117

[quant-ph].
[29] Horsman, C., Fowler, A. G., Devitt, S., and

Meter, R. V., New Journal of Physics 14,
123011 (2012).

[30] Jeandel, E., Perdrix, S., and Vilmart, R., in
Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science,
LICS ’18 (Association for Computing Ma-
chinery, New York, NY, USA, 2018) p.
559–568.

[31] Jones, C., Fogarty, M. A., Morello, A., Gyure,
M. F., Dzurak, A. S., and Ladd, T. D., Phys.
Rev. X 8, 021058 (2018).

[32] Kempe, J., Bacon, D., Lidar, D. A., and
Whaley, K. B., Phys. Rev. A 63, 042307
(2001).

[33] Kitaev, A., Annals of Physics 303, 2 (2003).
[34] Kolmogorov, V., Mathematical Programming

Computation 1, 43 (2009).
[35] Lee, J., Park, J., and Heo, J., Quantum In-

formation Processing 20, 231 (2021).
[36] Lekitsch, B., Weidt, S., Fowler, A. G.,

Mølmer, K., Devitt, S. J., Wunderlich, C.,
and Hensinger, W. K., Science Advances 3,
e1601540 (2017).

[37] Litinski, D., Quantum 3, 128 (2019).
[38] Litinski, D., Quantum 3, 205 (2019).

31

https://doi.org/10.1145/258533.258579
https://doi.org/10.1038/s41467-020-20280-3
https://doi.org/10.1038/s41467-020-20280-3
https://doi.org/https://doi.org/10.1049/qtc2.12042
https://doi.org/https://doi.org/10.1049/qtc2.12042
https://doi.org/10.1088/1367-2630/16/9/093021
https://doi.org/10.1088/1367-2630/16/9/093021
https://doi.org/10.22331/q-2020-01-09-218
https://doi.org/10.22331/q-2020-01-09-218
https://doi.org/10.1038/s41467-021-22274-1
https://doi.org/10.1038/s41467-021-22274-1
https://doi.org/10.22331/q-2021-02-04-392
https://doi.org/10.1038/s41534-018-0106-y
https://doi.org/10.1038/s41534-018-0106-y
https://doi.org/10.1103/PRXQuantum.2.040101
https://doi.org/10.22331/q-2019-12-09-212
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1038/s41534-018-0085-z
https://doi.org/10.1038/s41534-018-0085-z
https://doi.org/10.1103/PhysRevLett.121.050502
https://doi.org/10.1103/PhysRevLett.121.050502
https://doi.org/10.1103/PRXQuantum.1.010302
https://doi.org/10.1103/PRXQuantum.1.010302
https://doi.org/10.1038/srep36163
https://doi.org/10.1038/srep36163
https://doi.org/10.1038/s41586-020-03079-6
https://doi.org/10.48550/ARXIV.1808.06709
https://doi.org/10.48550/ARXIV.1808.06709
https://doi.org/10.48550/ARXIV.1808.06709
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevX.2.041003
https://doi.org/10.1103/PhysRevX.2.041003
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.22331/q-2021-12-20-605
https://doi.org/10.48550/ARXIV.2201.06679
https://doi.org/10.48550/ARXIV.2201.06679
https://doi.org/10.1103/PhysRevResearch.3.043130
https://doi.org/10.1103/PhysRevResearch.3.043130
https://doi.org/10.1038/s41586-019-1381-2
https://doi.org/10.1038/s41586-019-1381-2
https://doi.org/10.48550/ARXIV.1902.08117
https://doi.org/10.48550/ARXIV.1902.08117
https://doi.org/10.48550/ARXIV.1902.08117
https://arxiv.org/abs/1902.08117
https://arxiv.org/abs/1902.08117
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.1145/3209108.3209131
https://doi.org/10.1145/3209108.3209131
https://doi.org/10.1103/PhysRevX.8.021058
https://doi.org/10.1103/PhysRevX.8.021058
https://doi.org/10.1103/PhysRevA.63.042307
https://doi.org/10.1103/PhysRevA.63.042307
https://doi.org/https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1007/s12532-009-0002-8
https://doi.org/10.1007/s12532-009-0002-8
https://doi.org/10.1007/s11128-021-03130-z
https://doi.org/10.1007/s11128-021-03130-z
https://doi.org/10.1126/sciadv.1601540
https://doi.org/10.1126/sciadv.1601540
https://doi.org/10.22331/q-2019-03-05-128
https://doi.org/10.22331/q-2019-12-02-205

[39] Lloyd, S., Science 261, 1569 (1993).
[40] Mohiyaddin, F., Li, R., Brebels, S., Simion,

G., Dumoulin Stuyck, N. I., Godfrin, C., She-
hata, M., Elsayed, A., Gys, B., Kubicek, S.,
Jussot, J., Canvel, Y., Massar, S., Weckx, P.,
Matagne, P., Mongillo, M., Govoreanu, B.,
and Radu, I. P., in 2021 IEEE International
Electron Devices Meeting (IEDM) (2021) pp.
27.5.1–27.5.4.

[41] Nagayama, S., Fowler, A. G., Horsman, D.,
Devitt, S. J., and Meter, R. V., New Journal
of Physics 19, 023050 (2017).

[42] Nielsen, M. A.and Chuang, I. L., Quan-
tum Computation and Quantum Information:
10th Anniversary Edition (Cambridge Uni-
versity Press, 2010).

[43] This method was determined in discussions
involving the authors of the Herr paper and
Craig Gidney, and is presented here with their
consent.

[44] O’Gorman, J.and Campbell, E. T., Phys.
Rev. A 95, 032338 (2017).

[45] Prabhu, P.and Reichardt, B. W., in 16th
Conference on the Theory of Quantum Com-
putation, Communication and Cryptography
(TQC 2021), Leibniz International Proceed-
ings in Informatics (LIPIcs), Vol. 197, edited
by M.-H. Hsieh (Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, Dagstuhl, Germany,
2021) pp. 5:1–5:13.

[46] Raussendorf, R.and Harrington, J., Phys.
Rev. Lett. 98, 190504 (2007).

[47] Reichardt, B. W., Quantum Science and
Technology 6, 015007 (2020).

[48] Roetteler, M., Naehrig, M., Svore, K. M.,
and Lauter, K., in Advances in Cryptology –
ASIACRYPT 2017, edited by T. Takagi and
T. Peyrin (Springer International Publishing,
Cham, 2017) pp. 241–270.

[49] Shaw, A., “Tools and data for the paper
”quantum computation on a 19-qubit wide
2d nearest neighbour qubit array.”.” https:

//github.com/alexisshaw/RibbonPaper

(2022).
[50] Shor, P., in Proceedings of 37th Conference on

Foundations of Computer Science (1996) pp.
56–65.

[51] Shor, P. W., Phys. Rev. A 52, R2493 (1995).
[52] Steane, A. M., Phys. Rev. Lett. 77, 793

(1996).
[53] Stephens, A. M.and Evans, Z. W. E., Phys.

Rev. A 80, 022313 (2009).
[54] Tomita, Y.and Svore, K. M., Phys. Rev. A

90, 062320 (2014).
[55] Tuckett, D. K., Bartlett, S. D., and Flammia,

S. T., Phys. Rev. Lett. 120, 050505 (2018).

[56] Tuckett, D. K., Darmawan, A. S., Chubb,
C. T., Bravyi, S., Bartlett, S. D., and Flam-
mia, S. T., Phys. Rev. X 9, 041031 (2019).

[57] Vandersypen, L. M. K., Bluhm, H., Clarke,
J. S., Dzurak, A. S., Ishihara, R., Morello, A.,
Reilly, D. J., Schreiber, L. R., and Veldhorst,
M., npj Quantum Information 3, 34 (2017).

[58] Veldhorst, M., Eenink, H. G. J., Yang, C. H.,
and Dzurak, A. S., Nature Communications
8, 1766 (2017).

[59] Wang, D. S., Fowler, A. G., and Hollenberg,
L. C. L., Phys. Rev. A 83, 020302 (2011).

[60] van de Wetering, J., “Zx-calculus for the
working quantum computer scientist,”
(2020), arxiv:2012.13966, arXiv:2012.13966
[quant-ph].

[61] Xue, X., Russ, M., Samkharadze, N., Und-
seth, B., Sammak, A., Scappucci, G., and
Vandersypen, L. M. K., Nature 601, 343
(2022).

[62] Yang, C. H., Leon, R. C. C., Hwang, J. C. C.,
Saraiva, A., Tanttu, T., Huang, W., Cami-
rand Lemyre, J., Chan, K. W., Tan, K. Y.,
Hudson, F. E., Itoh, K. M., Morello, A.,
Pioro-Ladrière, M., Laucht, A., and Dzurak,
A. S., Nature 580, 350 (2020).

[63] Zwerver, A. M. J., Krähenmann, T., Wat-
son, T. F., Lampert, L., George, H. C.,
Pillarisetty, R., Bojarski, S. A., Amin, P.,
Amitonov, S. V., Boter, J. M., Caudillo,
R., Correas-Serrano, D., Dehollain, J. P.,
Droulers, G., Henry, E. M., Kotlyar, R., Lo-
dari, M., Lüthi, F., Michalak, D. J., Mueller,
B. K., Neyens, S., Roberts, J., Samkharadze,
N., Zheng, G., Zietz, O. K., Scappucci,
G., Veldhorst, M., Vandersypen, L. M. K.,
and Clarke, J. S., Nature Electronics 5, 184
(2022).

Appendix A: A lattice surgery
construction for non-bus repetiton codes

on rect patches.

In order to perform non-bussed extraction of
the repetition code in approximately 9dZ + 4
time steps × qubit area per qubit patches ,
one can use the series of lattice surgery in the
figure below, one logical qubit is indexed by
roman numerals, the other with letters. The
sequence has the effect of shifting the repeti-
tion code qubits to the right every extraction.
By taking the mirror image of the sequence a
shift to the left could be achieved. To have

32

https://doi.org/10.1126/science.261.5128.1569
https://doi.org/10.1109/IEDM19574.2021.9720606
https://doi.org/10.1109/IEDM19574.2021.9720606
https://doi.org/10.1088/1367-2630/aa5918
https://doi.org/10.1088/1367-2630/aa5918
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1103/PhysRevA.95.032338
https://doi.org/10.1103/PhysRevA.95.032338
https://doi.org/10.4230/LIPIcs.TQC.2021.5
https://doi.org/10.4230/LIPIcs.TQC.2021.5
https://doi.org/10.4230/LIPIcs.TQC.2021.5
https://doi.org/10.4230/LIPIcs.TQC.2021.5
https://doi.org/10.1103/PhysRevLett.98.190504
https://doi.org/10.1103/PhysRevLett.98.190504
https://doi.org/10.1088/2058-9565/abc6f4
https://doi.org/10.1088/2058-9565/abc6f4
https://github.com/alexisshaw/RibbonPaper
https://github.com/alexisshaw/RibbonPaper
https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevLett.77.793
https://doi.org/10.1103/PhysRevLett.77.793
https://doi.org/10.1103/PhysRevA.80.022313
https://doi.org/10.1103/PhysRevA.80.022313
https://doi.org/10.1103/PhysRevA.90.062320
https://doi.org/10.1103/PhysRevA.90.062320
https://doi.org/10.1103/PhysRevLett.120.050505
https://doi.org/10.1103/PhysRevX.9.041031
https://doi.org/10.1038/s41534-017-0038-y
https://doi.org/10.1038/s41467-017-01905-6
https://doi.org/10.1038/s41467-017-01905-6
https://doi.org/10.1103/PhysRevA.83.020302
https://doi.org/10.48550/ARXIV.2012.13966
https://doi.org/10.48550/ARXIV.2012.13966
https://arxiv.org/abs/2012.13966
https://arxiv.org/abs/2012.13966
https://doi.org/10.1038/s41586-021-04273-w
https://doi.org/10.1038/s41586-021-04273-w
https://doi.org/10.1038/s41586-020-2171-6
https://doi.org/10.1038/s41928-022-00727-9
https://doi.org/10.1038/s41928-022-00727-9

no-net movement extractions should alternate
between these two sets. The sequence also
only extracts the repetition code for one of the
two sets of qubits, to perform the extraction
for both one should perform the sequence once
for each of the repetition code qubits this then

takes 18dZ + 8.
To perform a cnot one then inter-digitates

two repetition codes using the lattice surgery
procedure, and performs either an XX or ZZ
parity measurement between each of the indi-
vidual sub-patches in the lattice.

33

Data 1 Data 2 Data A Data B Data 3 Data 4

Data 1 Data 2 Data A Data B Data 4Data 3

Data 1 Data 2 Data A Data B Data 4Data 3

Data 2 Data A Data B Data 4

Data 1 Data 3

Data 2 Data A Data B Data 4

Data 1 Data 3

Data 1 Data A Data B Data 3

Data 2 Data 4

Data 1 Data A Data B Data 3

Data 2 Data 4Data 0

Data 1 Data A Data B Data 3

Data 0 Data 2

Data 0 Data A Data B Data 2

Data 1 Data 3

Data 0 Data A Data B Data 2

Data 1 Data 3

Data 0 Data 1 Data A Data B Data 2 Data 3

Data 1 Data A Data B Data 3

Data 0 Data 2

Data 0 Data A Data B Data 2

Data 1 Data 3

FIG. 19: Lattice surgery instructions pt 1

34

	Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array.
	Abstract
	I Introduction
	II Background
	II.1 Errors
	II.2 Stabilizer Codes
	II.3 Flaged Syndrome Extraction
	II.4 The Surface Code
	II.5 Lattice Surgery
	II.6 The ZX-Calculus

	III Rectangular Surface Codes
	III.1 Motivation
	III.2 Simulations of biased surface codes
	III.3 Evaluation of results

	IV The Surface Code Bus
	IV.1 The GHZ state Bus
	IV.2 The Folded Surface Code Bus
	IV.3 Surface code bus performance

	V Parity codes for the bus
	V.1 Choice of codes
	V.2 Decoder design
	V.3 Simulation Design
	V.4 Simulation Results

	VI Performance of the concatenated codes
	VI.1 Performance of the surface code, and the surface code bus.
	VI.2 Compilation of the Steane 7,1,3 code
	VI.3 Compilation of the 15,7,3 CSS code
	VI.4 Evaluation of results

	VII Repetition codes above biassed surface codes
	VII.1 Rectangular surface codes and creating biased logical errors
	VII.2 Evaluation of results

	VIII Conclusion
	 Acknowledgements
	 References
	A A lattice surgery construction for non-bus repetiton codes on rect patches.

