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Executive Summary 
 
This report presents results from Georges River, one of the estuaries selected as part of Stage 
1 of the NSW Oyster Industry Transformation Project 2017-2021. To predict the impact of 
rainfall on potentially pathogenic bacteria, Harmful Algal Blooms (HABs) and oyster disease, 
precise environmental data with a high temporal frequency were collected and modelled. 
Combined with state-of-the-art molecular genetic methods, this information will help to 
improve efficiency and transparency in food safety regulation, provide predictive information 
and provide insights for more informed and responsive management of shellfish aquaculture.  
 
We installed a real-time sensor in the Quibray Bay harvest area, Georges River, recording 
high-resolution temperature, salinity and depth data. Oyster farmers collected weekly 
biological samples (618 environmental DNA samples and 291 deployed/retrieved oysters for 
growth assessment) from the sensor site. We developed a rapid molecular qPCR (quantitative 
polymerase chain reaction) assay for E. coli, which could directly compare to the currently 
used plate count by commercial laboratories. We also developed specific qPCR assays that 
could determine which animals were contributing to the E. coli load in the river system. We 
used these assays to observe trends in faecal pollution and modelled these in relation to 
environmental variables (salinity, temperature, rainfall, nutrients etc.), to develop predictive 
models. Finally, we developed an additional model to link oyster growth with environmental 
variables and assessed its predictive capability.  
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1. Introduction 
 
1.1 Transforming Australian Shellfish Production 
The Transforming Australian Shellfish Production Project (TASPP) follows on from the success 
of the NSW Oyster Industry Transformation Project (NSWOITP), which is a UTS led, 
multidisciplinary collaboration between oyster farmers (NSW Farmers Association), 
researchers (UTS, DPI Aquaculture and Fisheries), regulators (DPI Biosecurity and Food Safety) 
and the Food Agility CRC. The project uses real time, high-resolution salinity, temperature and 
depth sensing, combined with novel molecular genetic methods (eDNA), to model oyster food 
safety, pathogenic bacteria, harmful algae, and oyster growth and disease, with the aim of 
improving production and harvest management and to reduce harvest closure days for 
farmers.  
 
As filter feeders, shellfish like oysters and mussels actively remove particles from surrounding 
waterways. Following high-risk events such as heavy rainfall or harmful algal blooms, 
regulators like the NSW Food Authority implement precautionary harvest area closures to 
manage potential food safety risks or implement shellfish movement restrictions to manage 
potential biosecurity risks. Shellfish farmers in Australia are not currently able to predict the 
likelihood of a harvest area closure due to these high-risk events. If farmers were aware of 
imminent closure, they could take meaningful action such as harvesting early, or moving stock 
to lower risk areas. The same environmental variables that influence food safety can also 
impact on oyster health and can increase the risk of certain diseases. Understanding these 
relationships and monitoring these variables could be used to reduce the risk and severity of 
disease outbreaks. 
 
This project will deliver functioning, estuary-specific models relating to oyster growth, disease 
risk, harmful algal bloom risk, sources of contamination, and other supporting factors 
influencing industry productivity. Each of these models will relate biological data to high 
frequency water quality metrics as measured by real-time sensors deployed in situ. 
 
Stage 1 (2017-2021) of the project has been successfully completed, with ~5000 water and 
3000 oyster samples collected across 13 NSW estuaries engaged in the project. Stage 2 (2021-
2024) is now underway, with two further NSW estuaries engaged, and expansion of the 
project into Western Australia. Sample processing, data analysis and report writing will 
continue during this second phase, with modelling to predict oyster growth and mortality 
rates, including key oyster diseases such as Marteilia sydneyi (QX) and Winter Mortality, and 
the intensity of harmful algal blooms planned. As part of these analyses, novel qPCR assays 
for E. coli (bird, cow, human) and harmful algal species (Pseudo-nitzschia spp., Dinophysis 
spp., P. minimum), which were developed during Phase 1, will also be implemented. 
 
Preliminary results from this high frequency data have already demonstrated the link 
between salinity levels related to rainfall and E. coli levels. In 2019, the NSW Shellfish 
Program's Annual Sanitary Survey Report (DPI) stated that using this real-time, high frequency 
environmental data, the project provided the basis for a change to the management plans for 
the Pambula River harvest area and the Cromarty Bay harvest area (Port Stephens). These 
management plan changes mean that harvest area openings and closures can be based on 
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salinity-only data, with unnecessary extra harvest closure days avoided. As early adopters of 
the technology for harvest area management, an independent economic assessment by NSW 
DPI completed in January 2021 evaluated Pambula River and Cromarty Bay. The report 
highlighted positive benefits for industry using salinity-based management plans. Focusing on 
the six-month period where oysters were at peak marketable condition, it was estimated that 
up to two extra weeks of harvest could be achieved, with a projected annual net profit boost 
of $15,344 (Cromarty Bay) and $95,736 (Pambula River) for the study areas, based on current 
lease area used. The full report is available on the NSW Food Authority website.  
 
Across the NSW shellfish industry, the potential economic benefit from the use of real-time 
sensors for harvest area management is conservatively estimated at up to $3 million annual 
farm gate value. Increased revenue will improve the confidence of the industry to further 
invest and drive more growth. As of August 2022, seventeen salinity-only management plans 
had been offered for harvest areas in participating NSW estuaries, with six being taken up and 
the remaining eleven under consideration. 

1.2 Georges River 

Georges River (-34.0153° S, 151.1847° E) is the main tributary leading into Botany Bay, Sydney. 
It is a highly modified drowned river valley, with a catchment area of 931 km2, total estuary 
area of ~27 km2 and a flushing rate of ~63 days (Roy et al. 2001, Roper et al. 2011) (Fig. 1). 
Botany Bay, on the other hand, has a catchment area of 55 km2, a total estuary area of ~40 
km2, and a flushing rate of ~40 days (Roper et al. 2011). Both systems support seagrass (2, 5.3 
km2 respectively), mangroves (4, 2 km2), and saltmarsh (~1 km each) areas (Roper et al. 2011).  
Both Georges River and Botany Bay are surrounded by urban development and are 
susceptible to stormwater pollution and faecal contamination (DPE 2022). Both the Georges 
River and Botany Bay also support a range of recreational and commercial uses. Recreational 
fishing is notably popular in the Georges River, with species caught including bass, bream, 
whiting, yellowtail, jewfish and flathead. 
 
1.3 Oyster Production in Georges River 

The Georges River has a long history of (non-indigenous) oyster farming, with leases 
established as far back as the 1870s, whereby oysters were grown for their meat and the 
shells used in lime production for building (Ogburn 2011, Barclay et al. 2017). With adaptation 
to challenges such as winter mortality and mudworm, the 1970s saw the peak of oyster 
production in this river, one of the top producing estuaries in NSW at this time. Since then 
however, an increasing in disease, including QX, winter mortality, and Pacific Oyster Mortality 
Syndrome, have significantly reduced the productivity of oysters in this river.  
 
Today only one commercial oyster farm exists in the Botany Bay area (Quibray Bay), and 
detailed production value is not available due to confidentiality reasons (≤ 5 current permit 
holders in the estuary). Total production value across 11 estuaries with ≤ 5 permit holders is 
estimated to be ~224,672 dozens and valued at ~$2,208,619 (NSW DPI Aquaculture 
Production Report 2021/22). 
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2. Findings 
 
2.1. The data assessment from this report supports implementing a harvest area management 
plan based on sensor salinity data for Quibray Bay harvest area, Georges River, subject to 
agreement by the local shellfish industry. Available data indicated that ten harvest area 
closures could have potentially been avoided between October 2017 and March 2022.   
 
2.2. We developed rapid, efficient, and sensitive qPCR assays for E. coli, cow, bird, and human 
faecal indicators, and used these rapid genetic tools to track these sources of pollution in the 
Georges River over the biological sampling period, September 2018 to September 2020. 
 
2.3. The real time sensor data showed a higher predictive capacity than rainfall data for one 
(bird) out of the four faecal indicator bacteria.  
 
2.4. The maximum predictive capability for each bacterial group were 52% for E. coli, 94% for 
cow, 53% for bird, and 92% for human at the sensor site. 
 
2.5 Where the models were highly predictive (>90%), they suggested bacterial abundance 
dramatically increased with increasing rainfall and associated nutrients. 
 
2.6. The greatest increase in shell length in Georges River was recorded from February to 
August 2019.  Georges River had the heaviest oysters (68.5 g) overall when compared to all 
other estuary monitoring sites measured for this project. None of the environmental variables 
measured/modelled were predictive of oyster growth.  
 
2.7. No oyster mortality events that exceeded background farming Sydney Rock Oyster 
mortality (approximately 10% per annum) occurred in Georges River and no winter mortality 
disease was detected over the period from August 2018 to February 2020.  
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4. Feedback 
In May 2018, the Oyster Transformation Team held information workshops to allow farmers 

to have their say in the project. The workshops were held in Pambula (Pambula Fishing Club) 

and Bateman’s Bay (Catalina Country Club). 

Farmers were asked to rate the following factors in order of importance and benefit to their 

business operations (Fig. 4.1). In order of importance (highest to lowest) was the potential to 

predict algal blooms, longer harvest opening times, reduced stock mortality/disease, 

forecasting of harvest area closures, and access to real time tidal and monitoring data.    

Group discussions followed, whereby additional issues that farmers raised were: the 

suitability of the sensor location and BOM rainfall gauge; and the breakdown of bacterial data 

into human and animal sources. 

 

 

 

Figure 4.1. The importance of factors as rated by farmers in relation to their business operations. Green is 
most important and brown is least important.  
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5. Results 
5.1 High resolution temperature and salinity data 

High-resolution real time data summaries for the Georges River for the period 12 Oct 2017 to 
31 Mar 2021 are shown in Figs. 5.1A-C. Data between 09/08/2019 and 8/10/2019 was 
removed from 'working data' due to sensor fault/odd salinity data and there was a data gap 
from 28 June - 23 July 2020 due to technical issues. Depth recordings ranged from 0 m (17 
Dec 2020) to 2.5 m (2 Jan 2018). The lowest and highest daily average salinity recordings were 
9.6 ppt (11 Feb 2020) and 36.7 ppt (28 Dec 2019) respectively, while the lowest and highest 
daily average temperature recordings were 11.3℃ (17 Jul 2018) and 29.3℃ (1 Feb 2020) 
respectively.  

 

Figure 5.1A-C. Real time sensor data from Georges River sensor 12 Oct 2017 to 31 Mar 2021 A. Depth (m); B. 

Daily average salinity (ppt); and C. Daily average temperature (C). 
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The maximum daily rainfall at the BOM San Souci Public School rainfall gauge occurred on 10 

Feb 2020 and was reported as 100 mm (Fig. 5.2).  

 

 

Figure 5.2. Daily rainfall (mm) from Bureau of Meteorology site number 66058 (~-33.99oS, 151.13oE) from Oct 
2017 to March 2021. 

5.2 Management Plan  

Data analysed during the 2021 and 2022 annual reviews of Quibray Bay harvest area indicated 
that there could have been fewer harvest area closures since the sensor was installed, if 
closures were based on salinity sensor data. Sixteen harvest area rainfall closures occurred 
between October 2017 and March 2022. Based on a management plan closure limit of 30 ‰, 
harvest area closures were modelled based on available salinity sensor data and shellfish 
program microbiological results since October 2017. Eighty-seven harvest closure days 
occurred over ten rainfall closures, although salinity sensor data did not decline below 30 ‰ 
and microbiological results from samples collected between 2-19 days post closure met 
Restricted harvest criteria. Time periods where salinity is slower to recover may require 
additional sampling to meet management plan requirements. 

5.3 Bacterial source tracking  

A total of 618 water samples and 291 oysters were collected over a two-year period (a subset 
of the entire sensor data collection time) from Sept 2018 to Sept 2020 from the sensor 
location in the Georges River (Fig. A1).  

For the Georges River the maximum E. coli reached 144,865 gene copies 100 mL-1 on 19 Sept 
2019, 7,588 copies 100 mL-1 for Helicobacter (bird) on 28 Nov 2019, 529,176 gene copies 100 
mL-1 for bovine faecal pollution (cow) on 19 Sept 2019, and finally, 452,515 copies 100 mL-1 
for human faecal pollution also on 19 Sept 2019 (Fig. 5.3 A-D).   
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Figure 5.3 A-D. Weekly E. coli data from the sensor location, Georges River, using A. E. coli assay; B. Bird assay; 

C. Cow assay; C2. Cow assay with different y-axis scale to show low levels of bovine contamination across 

sampling period; and D. Human assay. Dotted lines in Fig. A at 14 and 70 cfu/100 mL are the operational limits 

for direct or restricted (oysters must meet depuration requirement) harvest, respectively, depending on 

individual harvest area classification. Quibray Bay Harvest area is classified as Conditionally Restricted.  

https://www.foodauthority.nsw.gov.au/sites/default/files/_Documents/industry/shellfish_industry_manual.p

df.  

 

 

https://www.foodauthority.nsw.gov.au/sites/default/files/_Documents/industry/shellfish_industry_manual.pdf
https://www.foodauthority.nsw.gov.au/sites/default/files/_Documents/industry/shellfish_industry_manual.pdf
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Figure 5.4A-B Weekly faecal coliform counts (cfu/100 mL) from water samples collected by DPI Food Authority 

at four sites in the Georges River compared to Oyster Transformation Project weekly sampling results. Dotted 

lines at 14 and 70 cfu/100 mL (Fig. 5.4B) are the operational limits for direct or restricted (oysters must meet 

depuration requirement) harvest, respectively, depending on individual harvest area classification (see above). 

 

Sampling days with elevated faecal coliform counts reported from CRC project did not 

correspond to sampling days by the DPI Food Authority. On the other hand, samples collected 

on the same days by both DPI Food Authority and CRC generally were within the normal range 

of variability found between sites (Fig. 5.4A-B).  



20 
 

5.4 Phytoplankton enumeration and HAB events  

The maximum phytoplankton cell concentration across the sampling period (Oct 2017 to 
March 2021) occurred on 16 Nov 2020 (Fig. 5.5). Total cell concentrations reached 2.5E +06 
cells L-1 and the sample was dominated by planktonic diatoms (Cerataulina, Leptocylindrus 
Dactyliosolen and Chaetoceros) with some benthic diatoms (Cylindrotheca) and small 
flagellates (dinoflagellates). This bloom did not coincide with any significant rainfall event. 

Other potentially harmful bloom events across the sampling period exclusively were due to 
the toxic dinoflagellate Alexandrium pacificum. This species reached elevated cell densities 
(above trigger level – see below) during Oct-Nov 2017 (max cell count of 250 cells L-1), Jan 
2018 (350 cells L-1), Nov 2018 (2,600 cells L-1), Jan – Feb 2019 (350 cells L-1), Oct 2019 (300 
cells L-1), Jan 2020 (850 cells L-1), and Oct – Nov 2020 (2400 cells L-1). Dinophysis acuminata 
cell densities were elevated on 21 Aug 2020 at 500 cells L-1. NSW Food Authority trigger levels 
for flesh testing are 200 cells L-1 for Alexandrium pacificum and 500 cells L-1 for Dinophysis 
acuminata (NSWFA 2015). A positive detection of paralytic shellfish toxins (PSTs) of 0.64 
saxitoxin equivalent (STX eq.) mg/kg total PST was reported in a shellfish sample collected 1 
Oct 2019. Shellfish samples collected 13 Jan 2020 and 26 Oct 2020 reported detections of 
PSTs reported at 0.032 and 0.035 STX eq. mg/kg total PST, respectively.  

 

Figure 5.5 Log abundance of total phytoplankton sampled approximately fortnightly from 12 Oct 2017 to 31 
Mar 2021. 

5.5 Nutrients 

A total of 195 nutrient samples were collected over the sampling period, 24 Oct 2018 to 5 
Mar 2020. Mean phosphate concentrations ranged from as low as the detection limit, to a 
maximum of 19.13 µg L-1 on 19 Sept 2019. Similarly, mean NOx concentrations ranged from 
the detection limit to a maximum of 200.1 µg L-1, also on 19 Sept 2019. Nitrite concentrations 
ranged from the detection limit to a maximum of 8.8 µg L-1 on 11 April 2019. Significant 
correlations were observed between E. coli and phosphate (r = 0.8) and E. coli and NOx (r 
=0.8); cow bacteria with phosphate (r = 0.8) and with NOx (r = 0.9); and human bacteria with 
phosphate (r = 0.8) and with NOx (r = 0.9). No bacterial indicators correlated with nitrite 
concentrations (Fig. 5.6 A-D).  
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Where phytoplankton and nutrient samples were collected over the same 24-hour period, 
correlations were calculated. Total phytoplankton and total Pseudo-nitzschia spp. both had 
significant, negative correlations with phosphate (r = -0.5 and -0.6 respectively), while A. 
pacificum had a significant, positive correlation with phosphate (r = 0.5). Total Dinophysis spp. 
had a significant, positive correlation with NOx (r = 0.5) (Fig. 5.6 E-I). 
 
A. 

 

B. 
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C. 

 

D. 
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E. 

 

F. 
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G. 

 

H. 
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I. 

 

Figure 5.6 A-D Abundance of E. coli, bird, cow, and human bacteria; and Figure 5.6 E-I Total phytoplankton, 
total Alexandrium spp., A. pacificum, total Pseudo-nitzschia spp., and total Dinophysis spp., each with nutrient 
concentrations (phosphate and NOx) over the sampling period (2018-2020) in the Georges River.  

5.6 Oyster Growth and Mortality  

5.6.1 Oyster Growth  

Average oyster whole weight increased by 45.9 g from deployment in August 2018 to June 
2020 (Fig. 5.7 A).  Oyster whole weight was 68.5 ± 6.3 g at the end of the experiment (June 
2020). Oysters deployed in Georges River attained a large size grade where average shell 
length was > 70 mm in July 2019 and exceeded 50 g whole weight in approximately October 
2019.  The age of oysters at each of these milestones was 31 mo and 34 mo, respectively.  

Oyster shell length was 57 ± 2 mm at the start of the experiment and increased to 77 ± 3 mm 
in June 2020 (Fig. 5.7 B). The greatest increase in shell length in Georges River was recorded 
from February to August 2019. The increase in size through this period was 24 mm. Shell 
lengths were measured more frequently than whole weight and fluctuated throughout the 
experiment. Periods of shell length decreases were recorded between October and December 
2018, January and February 2019 as well as August and November 2019.    

5.6.2 Mortality  

From August 2018 to February 2020, cumulative oyster mortality was 16% in Georges River.  
Low levels of mortality were recorded throughout the experiment (Fig 5.7 C-D). The month 
that had the highest level of mortality recorded was December 2019, however, mortality on 
this date was less than 5%.  Oyster mortality over the study period in Georges River was less 
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than the background Sydney Rock Oyster farming mortality level which is estimated to be 
approximately 10% per annum.  Oysters from this site remain frozen for future analyses.    

 

Figure 5.7 A-D. Oysters deployed at the sensor site, Georges River. A. whole weight; B. shell height; C. 
cumulative mortality, and D. monthly mortality.  

5.7 Modelling   

5.7.1 Modelling of E. coli data   

Summary statistics for all bacterial concentrations and environmental variables used in the 
general additive models are shown in Appendix 2. Correlation coefficients were calculated 
among every pair of environmental variables and suggested one strong positive relationship 
with E. coli and bird bacteria (r = 0.85). A total of 4 models were developed for each of the 
bacterial sources: sensor + nutrients only; sensor, nutrients and total phytoplankton (logged 
or unlogged); rainfall and nutrients only; and rainfall, nutrients and total phytoplankton 
(logged or unlogged). Depth and week were included as response variables in all models. The 
maximum predictive capability for each bacterial group at the sensor site were: 52% for E. coli 
(rainfall + total phytoplankton), 94% for cow (rainfall + total phytoplankton), 53% for bird 
(sensor + total phytoplankton) and 92% for human (rainfall + total phytoplankton) (Table 1A). 
The models for cow and human bacteria were run again, this time without nutrient data, 
which allowed for a longer time series to be examined, and to investigate the contribution 
that nutrients had on the initial model results (Table 1B). 

The abundance of E. coli at the sensor site was best explained by the rainfall data compared 
to the sensor data (52% deviance explained as compared to 33%) and was strongly linked to 
rainfall over the past 72 hours with a concomitant increase in NOx concentrations (Table 1A, 
Figures 5.8 A-D, 5.9 A-D). 
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Cow bacterial abundance was better predicted using rainfall data compared to sensor data 
(94% compared to 37% with sensor data), with rainfall over the past 24 hours being an 
important predictor variable along with nutrients (phosphate, NOx and nitrite) (Table 1A, 
Figures 5.8 A-D, 5.9 A-D). When the model was run again without nutrients, the rainfall model 
reduced marginally from 94% deviance explained to 92%, while the sensor model significantly 
increased from 37% (with nuts) to 76% (without) (Table 1B). 

Faecal contamination from birds at the sensor site was best explained by the salinity model 
(53% deviance explained, compared to 11% using rainfall data), with a peak salinity around 
31 ppt, a temperature of ~21℃, and nutrient peaks of phosphate ~4 µg L-1 and NOx ~40 µg L-

1 (Table 1A, Figures 5.8 A-D, 5.9 A-D). 

An increase in human bacteria abundance was best explained by the rainfall data (92% 
compared to sensor data 59%), and was strongly linked to rainfall over the past 24 hours and 
nutrient load (Table 1A, Figures 5.8 A-D, 5.9 A-D). When the model was run again without 
nutrients, the rainfall model reduced from 92% deviance explained to 84%, while the sensor 
model reduced marginally from 59% to 57% (Table 1B). 

5.7.2 Modelling of oyster growth and mortality  

While there was insufficient oyster weight data to model (only 4 data points across the 
sampling period), there was sufficient shell length data to model. The modelling process was 
carried out on both the raw scale, and the growth of the oysters as a ratio of the last 
measurement. The best model to explain oyster shell length explained 48% of the deviance, 
with the daily maximum salinity (maximum growth at <34 ppt and >36 ppt), and a decreasing 
rainfall over the past week being the best predictive variables of oyster growth. 
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Table 1A. Modelling results (including nutrient data) for bacterial source tracking at the sensor 

site in the Georges River. Only significant variables are shown for each model.  

Bacteria Variables No. of 
observations 

Significant Variables Deviance 
Explained 

E. coli Salinity, Depth, Temp, 
Phosphate, NOx, Nitrite 

47 Depth72**, Salinity72***, 
Temp72***, Phosphate***, 
NOx*** 

29.6% 

E. coli Salinity, Depth, Temp, 
Phosphate, NOx, Nitrite 
logPhytoplankton 

47 logPhytoplankton ***, 
depth**, salinity***, 
temp***, Phosphate***, 
NOx***, Nitrite*** 

 33% 

E. coli Rainfall72, 
Phosphate, NOx, Nitrite 

54 Rainfall72***, 
Phosphate***, NOx***, 
Nitrite***  

51.7% 

E. coli Rainfall72, Phosphate, 
NOx, Nitrite 
logPhytoplankton 

54 Rainfall72***, Phosphate*, 
NOx***, Nitrite*** 

 51.9% 

Bird Salinity, Depth, Temp, 
Phosphate, NOx, Nitrite 

47 Salinity***, Depth***,  
Temp***, Phosphate***, 
NOx***, Nitrite*** 

51.5% 

Bird Salinity, Depth, Temp, 
Phosphate, NOx, Nitrite 
logPhytoplankton 

47 Salinity***, Depth***, 
Temp***, Phosphate***, 
NOx***, Nitrite***, 
logPhytoplankton *** 

52.5% 

Bird Rainfall72, Phosphate, 
NOx, Nitrite 

54 Rainfall72***, Phosphate***, 
NOx***, Nitrite*** 

10.1% 

Bird Rainfall72, Phosphate, 
NOx, Nitrite 
logPhytoplankton 

54 Rainfall72***,  
Phosphate***, NOx***, 
Nitrite***, 
logPhytoplankton*** 

11% 

Cow Salinity, Depth, Temp, 
Phosphate, NOx, Nitrite 

47 Salinity***, Depth***, 
Temp***, NOx***, 
Nitrite*** 

36.7 % 

Cow Salinity, Depth, Temp, 
Phosphate, NOx, Nitrite 
logPhytoplankton 

47 Salinity***, Depth***, 
Temp***, Phosphate***, 
NOx***, Nitrite***, 
logPhytoplankton*** 

37.0% 

Cow Rainfall24, Phosphate, 
NOx, Nitrite 

54 Rainfall24***, Phosphate***, 
NOx***, Nitrite*** 

93.8% 

Cow Rainfall24, Phosphate, 
NOx, Nitrite 
logPhytoplankton 

54 Rainfall24***,  
Phosphate***, NOx***, 
Nitrite***, 
logPhytoplankton*** 

94.2% 

Human Salinity, Depth, Temp, 
Phosphate, NOx, Nitrite 

49 Salinity***, Depth***, 
Temp***, Phosphate***, 
NOx***, Nitrite*** 

58.6% 

Human Salinity, Depth, Temp, 
Phosphate, NOx, Nitrite 
logPhytoplankton 

49 Salinity***, Depth***, 
Temp***, 
logPhytoplankton*** 

58.7% 
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Human Rainfall24 Phosphate, 
NOx, Nitrite 

54 Rainfall24***, Phosphate***, 
NOx***, Nitrite*** 

91.5% 

Human Rainfall24, Phosphate, 
NOx, Nitrite 
logPhytoplankton 

54 Rainfall24***, Phosphate***, 
NOx***, Nitrite**, 
logPhytoplankton*** 

91.5% 

 

Table 1B. Modelling results (without nutrient data) for bacterial source tracking at the sensor 

site in the Georges River. Only significant variables are shown for each model.  

Bacteria Variables No. of 
observations 

Significant Variables Deviance 
Explained 

Cow Rainfall24, 
logPhytoplankton 

78 Rainfall24***, 
logPhytoplankton*** 

92.4% 

Cow Salinity, Depth, 
Temp, 
logPhytoplankton 

86 logPhytoplankton ***, 
depth**, salinity***, 
temp*** 

76.4% 

Human Rainfall24, 
logPhytoplankton 

78 Rainfall24***, 
logPhytoplankton*** 

84.3% 

Human Salinity, Depth, 
Temp, 
logPhytoplankton 

92 logPhytoplankton ***, 
depth**, salinity***, 
temp*** 

57.4% 
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Figure 5.8 A-D. Data points (black dots), average (blue line) and standard error (shaded area) of A. E. coli, B. 

Bird, C. Cow, and D. Human bacterial load as measured by weekly sampling at the sensor site, Georges River.  
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Figure 5.9 A-D. Data points (black dots), average (blue line) and standard error (shaded area) of A. Rainfall, B. 

Depth, C. Salinity, and D. Temperature values measured in at the sensor site, Georges River.  
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6. Discussion  
 

6.1 High Resolution Sensor Data and Management Plan  
 

Analysis of sensor data during the annual review process demonstrated that there is potential 
to implement a salinity sensor-based management plan for Quibray Bay harvest area. Based 
on the available data, up to ten harvest area closures could have potentially been avoided 
between 12 October 2017 and 31 March 2022. During the initial implementation of such a 
management plan change, rainfall events would continue to be monitored to increase the 
database to support the change. Georges River Shellfish Program (GRSP) were consulted 
about the option of a salinity-only management plan for Quibray Bay harvest area following 
the 2021 annual review, but a decision has not yet been reached. If GRSP did not wish to 
pursue the implementation of a management plan that is based on sensor salinity, or if the 
salinity sensor data were not accessible, the Quibray Bay harvest area management plan 
would revert to the current management plan that is based on both rainfall and salinity 
closure limits.  
 
6.2 Phytoplankton and HABs  
 
The most common HAB species that bloomed in the Georges River during this study was the 
toxic dinoflagellate Alexandrium pacificum. Approximately 33 species of Alexandrium have 
been recorded worldwide, of which around 10 species can potentially produce Paralytic 
Shellfish Toxins (PSTs). These are A. affine, A. andersonii, A. pacificum (= A. catenella Group 
IV ribotype); A. australiense (= A. tamarense Group V ribotype), A. minutum, A. ostenfeldii, A. 
catenella, A. tamiyavanichii and A. taylori (Anderson et al. 2012, Tomas et al. 2012, John et 
al. 2014). PSP was first reported in Australia in 1935, when typical PSP symptoms were 
observed following the consumption of wild mussels collected from Batemans Bay, NSW (Le 
Messurier et al. 1935). In 1986, the first PSP outbreak in Australia was recorded in Port Philip 
Bay, Victoria, with A. pacificum (as A. catenella) as the causative organism (Hallegraeff et al. 
1992). A. pacificum is also the main causative agent of PSTs in NSW (Ajani et al. 2013). In 
October 2016, high cell densities of this species were detected in the coastal waters of 
Twofold Bay, NSW, an unprecedented event for this location in south eastern Australia. With 
a maximum cell density (89,000 cells L-1) and a concentrations of 7.2 mg/kg PST STX equivalent 
in blue mussels (Mytilus galloprovincialis) from the bay, a four-month shellfish harvest closure 
ensued (Barua et al. 2020). Another unprecedented bloom of this species occurred early in 
Tasmania in 2010. This toxic event led to a worldwide product recall and it was estimated that 
this toxic event cost the Australian industry AUD ~$23 M in lost revenue (Campbell et al. 
2013). 
 
Another HAB group which was observed in the Georges River samples belonged to the toxic 
dinoflagellate genus Dinophysis. Species belonging to this genus (and more rarely benthic 
Prorocentrum) are the most problematic Diarrhetic Shellfish Toxin (DSTs) producers 
worldwide. With over 100 species represented worldwide, ten have been unambiguously 
found to be toxic (Dinophysis acuminata, D. acuta, D. caudata, D. fortii, D. infundibulum, D. 
miles, D. norvegica, D. ovum, D. sacculus and D. tripos), producing DSTs (okadaic acid and 
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dinophysistoxins) even at low cell densities (<103 cells L-1) (Reguera et al., 2014; Reguera et 
al., 2012; Simoes et al., 2015).  
 
Dinophysis is common in Australian waters, with 36 species reported (Ajani et al., 2011; 
Hallegraeff and Lucas, 1988; McCarthy, 2013). Toxic species include D. acuminata, D. acuta, 
D. caudata, D. fortii, D. norvegica, and D. tripos. There have been three serious human DSP 
poisoning events in Australia. The first episode was caused by contamination of Pipis 
(Plebidonax deltoides) in New South Wales in 1997 (NSW) by D. acuminata (Quaine et al., 
1997). One hundred and two people were affected and 56 cases of gastroenteritis reported. 
A second episode occurred again in NSW in March 1998, this time with 20 cases of DSP 
poisoning reported (Madigan et al., 2006). The final event occurred in Queensland in March 
2000, when an elderly woman became seriously ill after eating local Pipis (Burgess and Shaw, 
2001). While no human fatalities from DSP are known globally, DSTs continue to be a major 
food safety challenge for the shellfish industry. In response to elevated cell densities of a toxic 
algal species Dinophysis in February 2019 in the Manning River, we have also successfully 
developed a rapid qPCR assay to detect species belonging to the genus Dinophysis in 
environmental samples (Ajani et al. 2022).  
 
Another HAB group to watch is Pseudo-nitzschia. Although this did not occur in significantly 
high numbers during our sampling period, Pseudo-nitzschia is a high-risk HAB group in SE 
Australia for the shellfish aquaculture industry, and both estuaries and coastal waters in this 
area remain under threat (Ajani et al., 2013, 2020). Blooms within the Hawkesbury River 
estuary (330 km south of Wallis River), a high-risk area in SE Australia for HAB events, recently 
experienced a very dense bloom of P. delicatissima gp., with one out of seven strains isolated 
to produce domoic acid (Ajani, 2020). Fifteen years of modelled data in the Hawkesbury River 
estuary revealed that Pseudo-nitzschia was linked to an increase in soluble reactive 
phosphorus and a decrease in nitrogen at all six sites sampled (via rainfall/nutrient runoff). 
There is contrasting evidence, however, of which environmental conditions promote the 
blooming of the different species complexes (Dermastia et al., 2020). In response to a toxic 
bloom of Pseudo-nitzschia delicatissima gp. (dominated by P. cf. cuspidata) in Wagonga Inlet 
in April 2019, we have now successfully developed a rapid, sensitive and efficient quantitative 
real-time polymerase chain reaction (qPCR) assay to detect P. pseudodelicatissima complex 
Clade I, to which P. cf. cuspidata belongs (Ajani et al. 2021). 
 
Quantitative PCR is an efficient and powerful tool to identify and enumerate HAB species, 
especially those that are difficult to distinguish using routine methods (Handy et al. 2008, 
Penna and Galluzzi 2013). For this reason, this method is used routinely in certain monitoring 
programs around the world (Clarke & Gilmartin 2020). We have now developed qPCR assays 
for Alexandrium (sxtA gene) (Ruvindy et al. 2018), Dinophysis spp. (Ajani et al. 2022) and 
Pseudo-nitzschia pseudodelicatissima complex Clade 1 (Ajani et al. 2021). The qPCR assays 
can be used on-farm, allow for automation, are easy to use without specialist knowledge, and 
provide an early warning that harmful algae are present in the water column. It is envisaged 
that high-resolution, real-time environmental data, combined with sensitive, specific and 
efficient molecular tools such as we have developed in the current study, will enable us to 
effectively predict and manage these blooms into the future. 
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6.3 Assay Development and Faecal Pollution in the Georges River 
 
Molecular assays for the detection of faecal bacterial contamination in the Georges River 
were determined with two main aims. The first was to design a faster method for the currently 
used place count methodologies for the detection of faecal indicator bacteria by commercial 
laboratories and secondly, for source tracking. This later assay would be used to identify 
which animals might be contributing to any E. coli in the river system. Assays needed to be 
sufficiently specific to only the target organism, to have a sufficiently low level of detection, 
and finally have a high level of efficiency, in line with the best practice guidelines for qPCR 
assays (Bustin et al. 2009). 
 
E. coli is the primary faecal indicator bacterial species, and is most commonly used for 
detecting faecal contamination using culture-based methods (Odonkor & Ampofo 2013, 
NHMRC 2008, 2011). Although there are assays that target genes that detect faecal coliforms 
(Isfahani 2017), genetic variability between coliforms makes it a challenge for accurate 
assessment (Maheux et al. 2014). As E. coli is tested for in oyster meat (NSWFA 2015, 2017). 
E. coli was considered to be a more targeted approach to also detect in estuarine waters. In 
this study, several primer pairs were trialled which targeted 3 different genes within E. coli, 
with the final E. coli assay selected being the most efficient and specific only to the target 
organism (Tesoreiro 2020). 
 
The second group of assays developed were those that were microbial source tracking as they 
detect bacteria of faecal origin specifically associated with a group of animals, i.e. bird, cow 
and human. Birds are a significant source of faecal contamination in estuarine/marine waters 
during dry periods, and increase faecal indicator bacteria load in catchments (Araujo et al. 
2014, Converse et al. 2012). The marker we used was 100% avian specific, with gulls, geese, 
ducks and chickens being tested (Green et al. 2012) and has been successfully used in 
catchments across different continents (Ahmed et al. 2016, 2019; Li et al. 2019, Vadde et al. 
2019). Our source tracking assay for cows had 100% sensitivity to bovine faecal samples, with 
little cross reactivity to other species (93% specific). When tested in a rural catchment, a high 
proportion of faecal contamination was attributable to cattle (Layton 2006). Finally, the 
human marker we used has demonstrated the best performance for the detection of human 
faecal contamination compared to all other assays since it was developed in 2000 (Boehm 
2013, Shanks 2010). 
 
In most coastal and estuarine systems, an increase in bacterial load is usually linked to an 
increase in rainfall and a decrease in water salinity. These events most likely lead to a 
concomitant increase in nutrients entering the waterway (Amato et al. 2020, Abimbola et al. 
2021, Liang et al. 2019, Buszka & Reeves 2021), providing bioavailable nutrient forms for 
phytoplankton growth. E. coli pollution entering a waterway can also induce nutrient recycling 
and accelerate the decomposition of other organics like aquatic plants, further releasing 
nutrients into the system (Wu et al. 2021). The survival and proliferation of E. coli in the 
aquatic systems have also been found to be strain specific, with hydrological conditions, 
differing sources of pollution, selective pressures in the waters, and various land uses, all 
contributing to the community structure and diversity of E. coli in a waterway (Bong et al. 
2021).  
 



36 
 

While salinity was a more reliable predictor than rainfall in only one out of four of the faecal 
indicators tested. Elevated E. coli, cow and human bacteria concentrations were detected on 
two occasions (~Aug 19 and July 20). These high concentrations were linked to increasing 
rainfall and nutrients. The position of the sensor relatively close to Botany Bay, and its oceanic 
influence, is reflected in the overall high salinity profile and apparent rapid recovery after 
rainfall events. Under an operational salinity only management plan, adverse sampling 
continues to provide protection and gather data to better understand the effect of rainfall. 

Georges River Council is undertaking large scale landscape and stormwater treatment 
projects to prevent litter, sediments, nutrients (phosphorus and nitrogen) and oil entering the 
waterways. This work includes removing concrete stormwater infrastructure, and 
constructing/reinstating natural waterway features including swales, wetlands, ponds and 
bioretention systems. Gross pollutant traps, foreshore remediation and naturalisation works 
as well as redirecting stormwater through swales and detention points before it reaches the 
waterway, are other activities currently being undertaken to reduce aquatic pollution in this 
river system (DPE 2022). 

Avian faecal pollution in Georges River was linked to rainfall, but was observed to peak during 
the summer months. This peak coincided with the Australian forest mega-fires of 2019/2020 
(Boer et al. 2020), whereby coastal areas may have been a relatively safer refuge during that 
extreme period. The molecular marker used in this study, however, does not discriminate 
between avian species (gulls, geese, chickens, ducks etc), so it is uncertain what percentage 
of the bacterial load is attributable to terrestrial birds and that of aquatic birds. Further 
discrimination into the breakdown of the faecal load would be required for this elucidation. 
 
The generally low levels of human bacterial contamination observed in this study may suggest 
that water quality management efforts in regard to sources of human contamination over the 
past two decades are working. Sewer overflows present the highest impact/risk for human 
contamination Georges River. It was suggested that, due to the wider range of human enteric 
viruses in a large number of oyster and sediment samples, the outbreak of hepatitis A linked 
to the consumption of oysters from Wallis Lake in 1997 was linked to significant sewage or 
faecal contamination. New legislation followed on from this event, tightening controls over 
septic maintenance, new sewerage management plans developed, and a mandatory 
notification system for sewage overflows introduced. Following this, mandatory membership 
for industry to Shellfish Quality Assurance Programs was implemented and an estuary 
classification system introduced (Conaty et al. 2000).  

The future use of molecular tools such as qPCR for the detection and quantification of bacteria 
or HABs would require further validation in accordance with the Association of Official 
Agricultural Chemists (AOAC) procedures for the validation of such tests. This would include 
the validation of the sensitivity, precision and reliability of methods and a rigorous 
comparison to existing methods. Methodology and protocols for sampling accreditation and 
assurance of independence in testing and reporting for on farm testing would then follow. 

Increases in whole oyster weight in Georges River were greatest in the second half of the 
experiment from July 2019 to June 2020. However, growth, in terms of shell length, was 
greatest in the 5-month period leading up to July 2019. The salinity level during the period of 
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maximum shell growth was very stable and remained above 32 ppt.  Higher salinities increase 
seawater alkalinity providing more calcium carbonate available for oyster shell deposition. 
The salinity level that promotes the greatest growth rates in Sydney Rock Oyster spat is 30 
ppt for small spat (1.3 mg) and 35 ppt for larger spat (0.61 g) (Nell and Holliday, 1988).  The 
period of maximum whole weight increase occurred over the last 11 months of the 
experiment which was also characterised by stable salinity levels above 32 ppt other than in 
February 2020 where salinity dropped rapidly to approximately 10 ppt and then quickly 
recovered to levels above 30 ppt (Fig. 5.1B). This was following an intense rain event where 
approximately 330 mm was recorded at the Airport Bureau of Meteorology station between 
the 7th and 10th of February 2020.  
 
Survival of oysters during the experiment was high from deployment until February 2020. 
Mortality during this period was below the background farming mortality (approximately 10% 
per annum) commonly experienced when farming Sydney Rock Oysters. Oyster mortality 
measured on each sampling occasion did not exceed 5%.  Cumulative mortality in February 
2020 was 16% and comparable to cumulative mortality measured on the same date in Wallis 
Lake (14%), Manning River (15%), Port Stephens (16%), Pambula River (16%) and Wapengo 
Lake (15%).   
 
The Georges River sensor site is situated in Quibray Bay. Quibray Bay is a location known to 
experience recurrent outbreaks of winter mortality disease and has been the primary field 
exposure site to develop winter mortality resistance in Sydney Rock Oysters since 1997 (Nell 
et al. 2000; Dove et al. 2013).  Winter mortality infections generally commence in autumn and 
most mortality occurs in spring (Nell, 2006). The Quibray Bay site used in this project 
experienced increased levels of mortality during October, November and December of 2019 
with the highest mortalities occurring in December 2019. However, the oyster mortality level 
was only 7% during this three-month period.  Winter mortality disease can cause over 70% 
mortality in Sydney Rock Oysters in severe outbreaks (Lauckner, 1983).   
 
Oyster families from the Sydney Rock Oyster breeding program were deployed at this site 
from April 2018 to December 2018 (2016-year class) and from April 2019 to December 2019 
(2017-year class). The average mortality over the duration of the experiment in the 2016- and 
2017-year class families was 10% and 8%, respectively.  These data indicate that winter 
mortality disease at the sensor in Quibray Bay was not occurring at all or only occurring at 
very low levels during the monitoring conducted for this project.   
 
The batch of oysters used for this experiment were a random mix of families taken from the 
2016-year class of the Sydney Rock Oyster Breeding program. This particular year class had 
86% of the parents selected from wild and QX disease resistant genetic groups. Only 14% of 
the parents for this year class were sourced from the fast growth genetic group.  It took this 
year class approximately 2 years and 10 months to reach the large oyster size grade (> 70 mm 
total length or > 50 g whole weight).  This site had the heaviest oysters at the end of the 
experiment in June 2020 (68.5 g average whole weight). Hawkesbury River and Wagonga Inlet 
were the only other two sites that had comparable growth in terms of whole weight with 
oysters attaining 63.2 g in the Hawkesbury River and 61.9 g in Wagonga Inlet.   
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Both Sydney Rock Oysters and Pacific Oysters are cultured in Georges River and Quibray Bay 
is an important area for oyster culture in Georges River. This location is the only site from 
which oysters can be harvested and then depurated prior to sale for human consumption.  
For Sydney Rock Oyster culture, all other oyster growing areas in Georges River are impacted 
by seasonal QX disease outbreaks and Quibray Bay has had no recorded outbreaks of QX 
disease. However, winter mortality disease is a known threat to Sydney Rock Oyster in 
Quibray Bay. The spatial and temporal characteristics of winter mortality disease outbreaks 
at this location, and in many other estuaries from Port Stephens to Wonboyn Lake, are 
mysterious and unpredictable. Farming triploid Pacific Oysters in Georges River is one way 
that growers can mitigate against Sydney Rock Oyster losses in Georges River from QX disease 
and winter mortality. However, Ostreid herpesvirus is a known disease threat for Pacific 
Oysters cultured in all areas of Georges River.  Strategies to manage the oyster disease threats 
in Georges River are securing disease resistant oysters and using window farming techniques 
in areas where disease is known to occur.  
 
Winter mortality of Sydney Rock Oysters has low to moderate heritability and would respond 
to genetic selection. Despite considerable effort, the Sydney Rock Oyster breeding program 
has not been able to incorporate winter mortality resistance for Sydney Rock Oysters due to 
low levels of winter mortality at field test sites which dampens response to selection. Given 
that winter mortality is a significant issue for sections of the Sydney Rock Oyster industry, 
field trials continue in Quibray Bay each year to gain a better understanding of this trait for 
inclusion into the breeding goals.  
 
6.5 Outreach  

Outreach and project materials developed during Stage 1 of this project include two scientific 
publications - Harmful Algae (international scientific journal) and The Conversation, and a 
further one in preparation; one Department of Primary Industry Report; three 
newsletters/factsheets; sixteen seminars/conferences/workshop presentation and four 
videos/YouTube posts (Appendix 3). Regular program progress reports were provided to the 
NSW Shellfish Committee and the NSW Aquaculture Research Advisory Committee. 
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7. Conclusions  

The data assessment from this report supports implementing a harvest area management 
plan based on sensor salinity data for Quibray Bay harvest area, subject to agreement by the 
local shellfish industry. Available data indicated that ten harvest area closures could have 
potentially been avoided between October 2017 and March 2022. As of August 2022, 
seventeen salinity-only management plans had been offered for harvest areas in participating 
NSW estuaries, with six being taken up and the remaining eleven under consideration. 

Quibray Bay is an important location for oyster culture in Georges River as it is the only 
location in this estuary where oysters can be harvested and then depurated prior to sale for 
human consumption. Compared to the other monitoring sites in NSW, oyster growth in 
Georges River ranked first overall in terms of whole oyster weight and 3rd overall in terms of 
shell length. Low levels of mortality were recorded over the period from August 2018 to 
February 2020 and mortality was below the level accepted as background farming mortality 
(approximately 10% per annum).  Although Quibray Bay is often impacted by outbreaks of 
winter mortality disease, no significant oyster mortality events occurred to indicate that this 
disease was active during the study.   

The pollution source tracking results were highly variable across the study period, most likely 
attributable to the extreme variation in environmental conditions experienced (drought, bush 
fires, floods). Real time sensor data showed a higher predictive capability than rainfall for one 
(bird) out of the four faecal indicator bacteria. Elevated levels of E. coli, cow and human 
bacterial corresponded to high rainfall and subsequent nutrient inputs. Furthermore, while 
contamination from bird sources was observed at levels similar to other estuaries, a distinct 
presence throughout the black summer bushfires 2019-2020 was observed.  
 
PCR based assays demonstrate significant potential to supplement and/or replace classical 
environmental sample analytical methods. The benefits of PCR based analysis includes 
reduced cost, faster sample turnaround time and potentially the ability to analyse samples 
on-site, removing the need for the cost and delay of sample transport. Sample transport often 
comprises >50% of the delay between sample collection and result reporting. These delays 
cost industry money and reduce the utility of samples for risk management purposes. Future 
work should focus on validating qPCR methods in accordance with AOAC procedures.  

Overall these results demonstrate the utility of salinity-based management plans for 
predicting potential contamination events and managing water quality risks. Real time sensor 
data, combined with rapid molecular tools, can help predict optimal conditions for harvesting 
and growth. This has the potential to improve regulatory and management outcomes and 
enhance the productivity and profitability of oyster farming in the Georges River.  
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9. Appendices  

A1. Methods   

A1.1 Sampling locations in the Georges River  

Data used in this report originates from locations within the Georges River over the period 12 Oct 

2017 to 31 March 2021. High-resolution temperature, salinity and depth data were obtained from a 

sensor located in Quibray Bay harvest area, located within the Georges River (Fig. A1). At this sensor 

location, oysters were both deployed and retrieved, and water samples for eDNA were collected. From 

here on, this location is referred to as the ‘sensor site’. Phytoplankton was also collected at a second 

sampling location established as part of the DPI’s Shellfish Quality Assurance program (Fig. A1).  

Figure A1: Map of the Georges River highlighting the sensor located in Quibray Bay (black square), the 
phytoplankton sampling location (black circle), and location of nutrient sampling (black triangle). 

A1.2 High-resolution sensor data  

High-resolution temperature (℃), salinity and water depth (m) data were collected from the sensor 
site using Seabird SBE 37-SM/SMP/SMP-ODO MicroCAT high accuracy conductivity, temperature and 
depth (CTD) field sensors. This sensor was deployed using a fixed installation, with the inlet 60 cm 
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above the seabed and at least 30 cm below the estimated Lowest Astronomical Tide (LAT) (Fig. A2). 
This fully autonomous instrument collected and transmitted data every 10 minutes (24 h day-1) to 
Microsoft Azure cloud storage before downstream quality checking and analysis. Sensor data was then 
packaged into RO-Crates by the e-Research team at UTS, which are then uploaded to an Arkisto-based 
website. This website allows for the filtering and downloading of these crates based on both time and 
location, for use in research and analysis (Fig. A3). Finally, rainfall data were obtained from the closest 
BOM rainfall station at San Souci Public School (BOM 66058 ~-33.99oS, 151.13oE) from Oct 2017 to 
March 2021. 

 

Figure A2 Seabird MicroCAT high accuracy conductivity, temperature and depth (CTD) field sensor deployed in 
the Georges River.  

 

Figure A3. Georges River data provenance chain from source of data (sensor), via quality assurance processes, 
data analyses, to consumers.  
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A1.3 DPI Management Plan review  

Evaluation of the harvest area management plans for each NSW harvest area occurs annually. 
This is carried out by the NSW Shellfish Program (NSW DPI Food Authority). The date of the 
Georges River annual review is 1 April. As part of the most recent (2022) annual review for 
Quibray Bay harvest area, all salinity data from the monitoring sensors during the 2018, 2019, 
2020, 2021 and 2022 annual review periods were assessed in relation to microbiological 
samples collected by the local shellfish program during the same period. Due to technical 
issues with the sensor, there were gaps in data collection between 9 August and 8 October 
2019 and 28 June and 23 July 2020. The original sensor ceased reporting 1 April 2021 and data 
collection resumed with a new sensor 15 April 2021. There were gaps in salinity on 5 October 
2021, 8-11 December 2021 and 3 January 2022 due to instrument error, most likely the sensor 
coming out of the water at lower tides. 

A1.4 Biological sampling, eDNA extraction and nutrient analyses   

Estuarine water samples were collected weekly by oyster farmers working at Endeavour Oysters from 
September 2018 - September 2020 for both phytoplankton and bacteria. For algal samples, 3L sub-
surface water samples (0.5 m, in triplicates) were collected and filtered using a specially made PVC 
sampler. Samples were then stored at 4 ℃ until further downstream processing. DNA was then 
extracted using the DNeasy 96 PowerSoil Pro QIAcube HT Kit (Qiagen) and DNA stored at -20℃ until 
further analysis.  

In the case of a rainfall event, water samples were collected for bacterial analysis (only) every 24 h 
over a two-day period commencing on the first day of rainfall and processed as described above. Daily 
rainfall measurements were taken from the closest available weather station at Bureau of 
Meteorology site number 66204 (Oyster Bay, Green Point Rd, ~-34.02oS, 151.07oE) from Oct 2017 to 
March 2021.  

Triplicate water samples were also collected for nutrient analyses approximately weekly (n= 65) 

between September 2018 and March 2020 (Fig. A1). For each sample (~150 m apart), a one 10 L acid 

washed container of water was collected from ~2 meters depth, ~5 meters offshore. From each of 

these containers, five litres of sample water was transported to the laboratory at UTS, where it were 

filtered through a 100 µm mesh. Subsequently, 100 ml of water per sample was filtered through a 

sterile, 0.22 µm Sterivex-GP pressure filter (Merck) using a MasterFlex L/S Multichannel Peristaltic 

Pump 7535-08 (Cole-Parmer, Vernon Hills IL, USA). Each triplicate filter was stored in 2 x 50 ml Falcon 

tubes at -20 °C until further analysis. 

Orthophosphate [PO4
3-], NOx (nitrate [NO3

-] + nitrite [NO2
-]) and nitrite concentrations were measured 

colourimetrically using Lachat QickChem 8500 Series 2 flow injection analysis (FIA) and Omnion 4.0 

(Lachat Instruments, Loveland CO, USA). Soluble or dissolved reactive phosphorus (SRP) consists 

mostly of inorganic orthophosphate, which is the form of phosphorus that is directly available for algae 

(Carlson and Simpson, 1996; Koenig et al., 2014). The concentration of SPR (µg P L-1) was determined 

using the phosphomolybdenum blue method; reagents were prepared as per QuikChem Method 31-

115-01-1-G (Diamond 2003). The reagents used to measure NOx concentration (µg N/L) were prepared 

based on QuikChem Method 31-107-05-1-A (Schroeder 2003). The limit of detection (LOD) was 5 µg 

L-1 for all nutrients. Throughout the sample analysis, regular quality control methods were applied, 

such as calibration standards at the beginning of each analysis furthermore duplicates, field blanks 

and spike recoveries after every ~20 samples. The efficiency of the cadmium column, installed in the 
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NOx line, was checked at least 3 times per analysis. All glassware used during the preparation of 

reagents was acid-washed using 10 %v/v hydrochloric acid (HCl) solution and rinsed at least 3 times 

with Milli-Q water to prevent any contamination. Light-sensitive reagents were stored in dark glass 

containers.   

The results were monitored in Omnion 4.0 and peak captures were adjusted when necessary. The data 

were further processed in Microsoft Excel (2019). In order to mitigate bias towards lower values, 

concentrations below 4 µg L-1 were substituted with 2.5 µg L-1, ½ of the LOD.  

A1.5 qPCR assays for bacterial source tracking  

Realtime qPCR tests were carried out on all water samples in triplicate for bacterial source tracking of 
E. coli, bird, cow and human faecal indicators.     

A1.6 Phytoplankton enumeration  

Water samples (500 ml) were collected at approximately 2-weekly intervals from a depth of 0.5 m 
closest to the sensor for microscopic phytoplankton identification and enumeration in accordance 
with the NSW Marine Biotoxin Management Plan (NSW MBMP) and the Australian Shellfish Quality 
Assurance Program (ASQAP). Once collected, samples were immediately preserved with 1% Lugol's 
iodine solution, and returned to the laboratory for concentration using gravity-assisted membrane 
filtration. Detailed cell examination and counts were then performed using a Sedgewick Rafter 
counting chamber and a Zeiss Axiolab or Standard microscope equipped with phase contrast. Cells 
were identified to the closest taxon that could be accurately identified using light microscopy (max. 
magnification x1000). Cell counts were undertaken to determine the abundance of individual HAB 
species and total phytoplankton cell (>5 mm) numbers. Dinophysis cells were counted to a minimum 
detection threshold of 50 cells L-1 while all other species were counted to a minimum detection 
threshold of 500 cells L-1.  

A1.8 Oyster Growth and Mortality   

At the sensor site, we also deployed two types of experimental Sydney Rock Oysters (Saccostrea 
glomerata). The first group of oysters were all the same age and used to collect weekly samples at the 
sensor site when water samples were collected for downstream processing. Three oysters were 
removed on each sampling occasion and placed whole and live into a freezer for preservation.   

The second group of experimental oysters were obtained from the NSW DPI Sydney Rock Oyster 
Breeding Program and were deployed at the sensor site to measure shell length (Fig. A4), whole weight 
and mortality. These oysters were from the 2016-year class and were the same age, size and 
originated from a single genetic group. Three replicate floating baskets were placed on the designated 
oyster sampling lease and each replicate unit contained approximately 70 oysters.   

A1.8.1 Oyster Whole Weight  

Whole weight was measured in August 2018, February 2019, August 2019, February 2020 and finally 
in June 2021. Thirty randomly sampled oysters from each replicate were pooled and weighed on each 
sampling date using a calibrated weight balance to the nearest 0.1 g.  The average whole weight of 
oysters at the start of the experiment in August 2018 was 22.6 ± 1.4 g.   
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A1.8.2 Shell Length  

Oyster shell length was measured ~monthly from August 2018 to June 2020 (Fig. A4). A subsample of 
30 oysters from each replicate were measured on each sampling occasion. The 30 oysters from each 
replicate were arranged on a measuring board that included a scale bar. A digital image was taken and 
GrabIt software (MyCommerce Inc, Minnetonka, MN, USA) was used to estimate the shell length (mm) 
of oysters in the images provided.   

  

Figure A4. Oyster shell dimensions (Carriker 1996)  

 A1.8.3 Oyster Mortality   

Oyster mortality was calculated by counting the number of empty oyster shells in each replicate 
approximately each month from August 2018 to June 2020.  After empty oyster shells were counted, 
they were removed from the experimental baskets. Oyster farmers performed the counts and 
recorded this information during the experiment.  

A1.9 Modelling  

To model the relationship between pathogens and oyster growth in this estuary, a series of models 
were run to investigate firstly the predictors of faecal bacteria abundance and secondly, oyster 
growth.  

Daily averages for all sensor measurements taken on a calendar day, midnight to midnight, were then 
calculated. A simple unweighted average was taken over all observations. Data for a day was regarded 
as missing if fewer than 96 observations were made. 24 h, 48 h, 72 h and weekly salinity and 
temperature averages were then calculated by taking the simple unweighted averages of each day’s 
daily average. Where a day’s data were missing, all other variables which relied on this were classified 
as missing. For example, if no observations were recorded on 1 June, then the 1 June 24 h average 
was missing, the 1 June and 2 June 48 h average was missing, the 1 June, 2 June and 3 June 72 h 
average were missing (Appendix 2).  
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Rainfall data from the closest Bureau of Meteorology site (No. 66204, Oyster Bay, Green Point Rd, ~-
34.02oS, 151.07oE) from Oct 2017 to March 2021, which was the official management plan gauge for 
this harvest area, were averaged over the 24 h, 48h, 72 h and 7 days prior to the water sampling each 
day, to incorporate a measure of exposure of the bacterial community and deployed oysters. Total 
phytoplankton (and log transformed total phytoplankton) from microscopic phytoplankton 
enumeration was also included in the modelling as a potential predictor variable. Finally, week of the 
year and water depth were included in the models to understand any seasonality or tidal variability 
that was present in the data.  

To model the relationship between bacteria (E. coli, bird, cow, human) abundance and/or oyster 
growth (response variables) and environmental variables (temperature, salinity, week, depth, total 
phytoplankton, rainfall and nutrients) at the sensor location within Georges River, correlation analyses 
were initially undertaken to explore the relationships between variables. Generalised additive models 
(GAMs) were then applied to the data. GAMs allow abundance data to be treated as count data 
(discrete integer values), and as such can handle zero counts. GAMs also allow for smoother functions 
to be incorporated into each model for the environmental variables that had a non-linear relationship 
with bacterial abundance.   

Input data (predictor variables) were the sensor observations for both salinity and temperature, 
including aggregation over several different time periods, including depth, week, total phytoplankton 
(logged or unlogged) and nutrients. For comparison to current (non-sensor-based) practice, models 
were also run using only rainfall data. Again, these included depth, week, total phytoplankton and 
nutrients. As total phytoplankton data is not available in real time, and therefore not considered a 
predictor variable by definition, models were run both with and without this variable. In summary, 
four models were developed for each of the bacterial sources: rainfall only, rainfall and total 
phytoplankton; sensor only; and sensor and total phytoplankton. Finally, cow and human bacteria 
models were run again this time without nutrient data, to observed the impact these additional 
variables had on bacterial abundance. 

To model the relationship between oyster growth various GAMs models were also investigated using 
the sensor/total phytoplankton/rainfall data for the same time period. These models were then fitted 
in version 3.4.3 of the R statistical package (Team R Core, 2013), using the GLM function in version 
1.8–22 of the ‘mgcv’ package (Wood, 2006). Models were then compared using the Akaike 
information criterion (AIC) and the model with the lowest AIC selected. Models were rerun for cow 
and human bacterial abundance without nutrients - this extended the dataset and revealed the 
difference with/without nutrient data included. 
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Appendix 2. Summary Statistics for Bacterial Modelling – Sensor site, Georges River 

 

  

Variable Mean Standard Error Median Standard Deviation Minimum Maximum Count Missing

average_cfu 43.17 14.98 9.96 152.07 0.00 1454.73 103 0

average_nitrite 2.81 0.11 2.50 1.14 2.50 8.76 103 49

average_nox 17.75 2.90 9.10 29.48 2.50 200.15 103 49

average_phosphate 4.73 0.25 4.37 2.57 2.50 19.13 103 49

bird 543.28 99.46 203.54 1009.36 0.00 7587.97 103 0

cow 5989.56 5190.16 0.00 52674.41 0.00 529176.18 103 0

depth24 0.90 0.01 0.90 0.11 0.70 1.25 103 11

depth48 0.90 0.01 0.88 0.09 0.73 1.19 103 14

depth72 0.90 0.01 0.88 0.09 0.75 1.14 103 17

ecoli 4743.94 1491.42 1474.62 15136.25 0.00 144865.41 103 0

human 4727.08 4395.87 0.00 44613.23 0.00 452515.12 103 0

logPhytoplankton 13.41 0.07 13.40 0.66 12.21 14.65 103 0

Phytoplankton 821650.49 51370.72 660000.00 521355.88 200000.00 2300000.00 103 0

rainfall24 1.08 0.35 0.00 3.56 0.00 23.00 103 25

rainfall48 1.09 0.24 0.00 2.46 0.00 11.50 103 27

rainfall72 1.09 0.19 0.00 1.96 0.00 7.67 103 29

salinity24 34.23 0.25 34.70 2.57 15.42 36.61 103 11

salinity48 34.22 0.22 34.69 2.26 20.09 36.52 103 14

salinity72 34.22 0.20 34.64 2.06 23.89 36.45 103 17

temp24 20.10 0.42 20.78 4.24 11.88 27.25 103 11

temp48 20.23 0.41 21.29 4.12 12.64 26.98 103 14

temp72 20.36 0.40 21.55 4.06 12.92 26.80 103 17
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Appendix 3.  Summary of project related publications, seminars, workshops, conference 
presentations and other project related public presentations.   

Author(s)  Title  Bibliographic details  Status   
(Submitted, 
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Published)  

Penelope Ajani, 
Hernan Henriquez-
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Farrell, Anthony 
Zammit, Steve Brett 
and Shauna 
Murray   
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Harmful Algae 116 (2022) 102253 Published  

DPI Food Authority  Foodwise - Issue 60  https://www.foodauthority.nsw.gov.au  

Winter 2022 

Published  
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Arjun Verma, Jin Ho 
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DPI Food Authority  Foodwise - Issue 56  https://www.foodauthority.nsw.gov.au  

Autumn 2021 

Published  
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Published  
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Published  
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Published  
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McLennan  

Australasian Society for 
Phycology and Aquatic Botany 
Annual Conference 2020  

Using molecular genetic techniques to detect 
harmful algal bloom-forming species impacting 
aquaculture  

Arjun Verma & Matt 
Tesoriero           

Catchment, Estuary and 
Wetland Mapping, Modelling 
and Prioritisation Workshop 
2020  

Oyster Transformation Project  

Shauna Murray & Matt 
Tesoriero      

Manning River Estuary CMP 
Discussion Group - Sewerage 
and Septic Pathogen Risks 
2020  

Discussion Group  

Wayne O’Connor  Aust & NZ Biotechnology 
Conference, May, 2019, 
Sydney  

Plenary Address: The future of NSW Aquaculture: 
the need for clever solutions  

Shauna Murray, Arjun 
Verma, Swami Palanisami & 
Penelope Ajani  

Australia New Zealand Marine 
Biotechnology Conference 
(ANZMBS) 2019  

The use of eDNA and arrays for precise estuarine 
water quality assessment  

Arjun Verma, Swami 
Palanisami, Penelope Ajani 
& Shauna Murray  

Australian Marine Science 
Association Conference 2019  

Novel molecular ecology tools to predict harmful 
algal blooms in oyster- producing estuaries  

Arjun Verma and Matthew. 
Tesoriero  

Trade table, NSW Oyster 
Conference, Forster NSW 
2019  

Oyster Transformation Project  

Penelope Ajani, Arjun 
Verma & Shauna Murray  

NSW Oyster Conference, 
Forster NSW (Poster 
Presentation) 2019  

Common harmful algae in the oyster growing 
estuaries of New South Wales.  

Wayne O’Connor   DPI, Senior Scientist 
Symposium. EMAI, Camden, 
November 2018  

Overview and Progress – Oyster Transformation 
Project  

Penelope Ajani, Michaela 
Larsson, Ana Rubio, 
Stephen Bush, Steve Brett,   
Stephen Woodcock, Hazel 
Farrell & Shauna Murray  

Estuarine Coastal Shelf Science 
Conference 2018  

Modelling harmful algal blooms in   
the Hawkesbury River, Australia  

  

  

Wayne O’Connor  Macquarie University, 
Microbiomes Workshop, 
Epping, November 2018  

Overview and Progress – Oyster Transformation 
Project  

Shauna Murray, Arjun 
Verma, Penelope Ajani, 
Anthony Zammit, Hazel 

Australian Shellfish Quality 
Assurance Advisory 
Committee Science Day 2018  

Building profitability and sustainability in the NSW 
oyster industry  

https://theconversation.com/ah-shucks-how-bushfires-can-harm-and-even-kill-our-delicious-oysters-131294
https://theconversation.com/ah-shucks-how-bushfires-can-harm-and-even-kill-our-delicious-oysters-131294
https://theconversation.com/ah-shucks-how-bushfires-can-harm-and-even-kill-our-delicious-oysters-131294
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Farrell, Swami Palanisami & 
Wayne O’Connor  

Penelope Ajani, Michaela 
Larsson, Ana Rubio, 
Stephen Bush, Steve Brett,   
Stephen Woodcock, Hazel 
Farrell & Shauna Murray  

Australian Shellfish Quality 
Assurance Advisory 
Committee Science Day 2018  

Modelling harmful algal blooms in   
the Hawkesbury River, Australia  

Hazel Farrell, Grant 
Webster, Phil Baker, 
Anthony Zammit, Penelope 
Ajani, Shauna Murray & 
Steve Brett  

Australian Shellfish Quality 
Assurance Advisory 
Committee Science Day 2018  

Developing phytoplankton and biotoxin risk 
assessments for both shellfish aquaculture and wild 
harvest shellfish in New South Wales.  

Wayne O’Connor  SIMS, July 2017  Oyster Research Overview Presentation  

  

Presenter(s)  Event  Presentation title  

Shauna Murray & Arjun 
Verma  

https://www.youtube.com/watch?v=cfAyjjnASy0&t=154s   

  

Sept. 2019: PROJECT 
NEWS: Can World 
Leading Research 
Transform the NSW 
Oyster Industry?   

Shauna Murray  https://www.youtube.com/watch?v=4NM_U_lKCEE&t=1s   

  

Sept. 2020: Food 
Agility CRC – 
Cooperative Research 
Centre customer story 
   

Arjun Verma & Penelope 
Ajani  

https://www.youtube.com/watch?v=iRcRZkptpOY&t=46s  

  

Feb. 2020: Food 
Agility Summit 2020: 
WE LOVE SCIENCE!   

Anthony Zammit  https://www.cnbc.com/video/2017/03/05/one-of-the-most-
sustainable-farming-enterprises-meets-hi-tech.html   

  

Mar 2017: One of the 
most sustainable 
farming enterprises’ 
meets hi-tech  

 

 

 

https://www.youtube.com/watch?v=cfAyjjnASy0&t=154s
https://www.youtube.com/watch?v=4NM_U_lKCEE&t=1s
https://www.youtube.com/watch?v=iRcRZkptpOY&t=46s
https://protect-au.mimecast.com/s/jVdMCr81YNH380D1h7VvYG?domain=cnbc.com
https://protect-au.mimecast.com/s/jVdMCr81YNH380D1h7VvYG?domain=cnbc.com

