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Abstract—Cold-start issues have been more and more chal-
lenging for providing accurate recommendations with the fast
increase of users and items. Most existing approaches attempt
to solve the intractable problems via content-aware recommen-
dations based on auxiliary information and/or cross-domain
recommendations with transfer learning. Their performances are
often constrained by the extremely sparse user-item interactions,
unavailable side information, or very limited domain-shared
users. Recently, meta-learners with meta-augmentation by adding
noises to labels have been proven to be effective to avoid
overfitting and shown good performance on new tasks. Motivated
by the idea of meta-augmentation, in this paper, by treating
a user’s preference over items as a task, we propose a so-
called Diverse Preference Augmentation framework with multiple
source domains based on meta-learning (referred to as MetaDPA)
to i) generate diverse ratings in a new domain of interest (known
as target domain) to handle overfitting on the case of sparse
interactions, and to ii) learn a preference model in the target
domain via a meta-learning scheme to alleviate cold-start issues.
Specifically, we first conduct multi-source domain adaptation by
dual conditional variational autoencoders and impose a Multi-
domain InfoMax (MDI) constraint on the latent representations
to learn domain-shared and domain-specific preference proper-
ties. To avoid overfitting, we add a Mutually-Exclusive (ME)
constraint on the output of decoders to generate diverse ratings
given content data. Finally, these generated diverse ratings
and the original ratings are introduced into the meta-training
procedure to learn a preference meta-learner, which produces
good generalization ability on cold-start recommendation tasks.
Experiments on real-world datasets show our proposed MetaDPA
clearly outperforms the current state-of-the-art baselines.

Index Terms—Recommender system, preference augmentation,
meta leaning, cold-start

I. INTRODUCTION

Recommender systems have shown great success in both
academia and industries, and so become indispensable in
our life by helping us filter millions of possible choices.
Recommender systems provide a small set of items from
the underlying pool of items based on users’ historical
interactions and their side information. One of the well known
recommendation frameworks is Collaborative Filtering (CF)
[1], [2], where the only available data is user-item historical
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interactive information. A key challenge in CF-based methods
is to provide accurate recommendations from a large number of
items with extremely sparse interactions [3]. Such recommender
systems suffer from poor performance due to sparse interactive
data or ratings and cannot even handle user cold-start and item
cold-start issues brought by new users and new items [4]. So as
a very critical problem in recommender systems, how to make
accurate recommendation under sparse and cold-start scenarios
attracts rising attention from a wide range of stakeholders in
recent years.

Existing approaches for solving cold-start and sparse issues
are proposed from the following three directions: (1) content-
aware recommender systems [5]–[9] that integrate auxiliary
side information and interactive data to enhance representations
of users and items, and then feed them into the preference
model to improve the performance of recommender systems,
where user’s and item’s content information (user’s profile,
item’s description, user’s review, etc.) is taken as auxiliary
side information for strengthening representations of users
and items. (2) Cross-domain recommender systems transfer
preference knowledge from source domains to its similar target
domain, and then improve the performance of recommendations
in the target domain. These methods can be categorized into
single source [10]–[17] and multiple source [18]–[24] cross-
domain recommendations based on the number of source
domains applied for transferring preference knowledge. (3)
Meta-learning based recommender systems [25], [25]–[27]
learn the prior preference distribution of users over items by
taking users’ preferences as meta-learning tasks. They can
improve the performance of recommendations under sparse
and cold-start settings by fine-tuning the preference model with
only a few ratings.

Content-aware recommender systems have been widely
studied for solving the cold-start and sparse issues with the
help of auxiliary side information. One of the most commonly
used side information is content [2], [5]–[9], [28]–[30]. By
learning with content data, the features of users or items with
just a few ratings or even no ratings can be then effectively
represented, making those content-aware recommender systems
be able to improve the performance under sparse and cold-start



scenarios. However, there exist inconsistencies between item
content and user preferences. That is to say, users under the
same profile (e.g., age, occupation, gender, place of residence,
etc.) often have different preferences over the same item; and
items having similar content (e.g., description, category, users’
reviews, etc.) are often rated with different scores by the same
user. As a result, the performance improvement of content-
aware recommender systems are limited by the gap between
content and preferences.

Cross-domain recommendations based on transfer learning
are another type of solutions for solving cold-start and sparse
challenges. Existing methods transfer knowledge from source
domains with rich preference information to a target domain
with very sparse historical data [12]–[14], [31]. Moreover,
those methods transfer preference information by domain
adaptation with domain-shared users in order to strengthen
the representations of users and items. Thus, the cross-domain
model can learn effective representations of users and items
than only using preference information of a single domain.
However, the limit number of shared users affects the capability
of preference transferring, which restricts the performance
improvement in the target domain. For example, on Amazon
datasets, Books and Electronics subsets only share 5% users,
which limits the transferable preference patterns from the source
domain to the target domain, and thus the performance of cross-
domain recommendations is also constrained.

To acquire more preference patterns, some scholars study
multi-domain recommendations of transferring preference
patterns from multiple source domains to a target domain
[18]–[24]. These methods extract correlations between source
domains and the target domain and tie factors from different
source domains together. Such correlation enrich rating patterns
of the target domain with multiple related source domains.
Thus, these methods can achieve better performance than single
source domain. The transferable preference patterns are also
limited because the correlation is dependent on shared users.
The performance is still limited by the ratio of shared users
among all users. In addition, some of these multi-source cross-
domain methods can only provide recommendation for shared
users and do not work for providing recommendations for
unshared users. Besides, the augmentation method is another
way to acquire more preference patterns, such as AugCF [32].
It is designed based on Conditional Generative Adversarial
Nets by considering the class (like or dislike) as a feature
to generate new interaction data, which is evaluated to be a
sufficiently real augmentation to the original dataset in their
work.

Meta-learning has been validated as a promising approach
for mitigating cold-start issues of recommendations [4], [25],
[27], [33], [34], which treats user’s preferences as meta-learning
tasks and learns a preference prior distribution of all users over
items. Meta-learning based methods can fast adapt to new users’
or new items’ recommendations with the learned meta-learner
of the preference prediction model. However, the meta-learner
easily overfits to the sparse preference (rating) data, which
makes it difficult to provide accurate recommendations under

new users or new items settings.
To avoid overfitting on meta-training tasks, meta-

augmentation [35] adds noise to labels y without changing
inputs x. It is capable of handling two forms of overfitting: (1)
memorization overfitting, in which the model is able to overfit
to the training set without relying on the meta-learner, and (2)
meta-learner overfitting, in which the learner overfits to the
training set and does not generalize to the test set. Yin et al.
[36] identify the memorization overfitting can happen when the
set of tasks are non-mutually-exclusive. The meta-augmentation
is proven to avoid memorization overfitting effectively by
transforming the task setting from non-mutually-exclusive to
mutually-exclusive and proven to avoid the learner overfitting
effectively [36]. Tasks are said to be mutually-exclusive [35]
if a single model cannot solve them all at once. For example,
if the task T1 is ‘output 0 if the input image is a dog’, and
task T2 is ‘output 1 if the image is a dog’, then we call tasks
{T1, T2} are mutually-exclusive.

Generally, we define ‘Mutual Exclusivity’ as: Training sam-
ples (x, y1), (x, y2), · · · , (x, yk) are called mutually-exclusive
samples, if all continuous labels y1, y2, · · · , yk are different
from each other with the same input x. For example, training
samples (x, 0.1), (x, 0.2), (x, 0.3) with the same input x are
mutually-exclusive samples because all labels are different from
each other. However, in practice, it is difficult to obtain training
samples that meet such a strict assumption (i.e., all labels are
required to be different with the same input). By relaxing
the assumption, we define ‘Diversity’ as: Training samples
(x, y1), (x, y2), · · · , (x, yk) are called diverse samples, if not
all continuous labels y1, y2, · · · , yk are different from each
other with the same input x. For example, training samples
(x, 0.1), (x, 0.1), (x, 0.3) are diverse samples because not all
labels are different (the first and the second samples are with
the same label 0.1). It’s worth noting that labels in the above
two definitions are continuous values. Particularly, continuous
labels are within the interval [0, 1], because we train our model
on real interactive data(‘0’ or ‘1’) and augmented interactive
data within the interval [0, 1]. It is also worth mention that
all labels are required to be different from each other in
mutually-exclusive samples; while in diverse samples, some
labels from {y1, y2, · · · , yk} may be the same, so mutually-
exclusive samples are diverse samples, but not vice versa.

To avoid overfitting, our initial goal is to construct mutually-
exclusive samples (tasks) in the target domain for training
our model. Specifically, we develop a multi-source domain
adaptation module that transfers the preference patterns from
multiple source domains (k source domains) to a target domain
by k dual conditional variational autoencoders (Dual-CVAEs)
shown in Fig. 1. By enforcing Mutually-Exclusive (ME)
constraints on decoders of those k Dual-CVAEs, we hope
to generate mutually-exclusive ratings by k encoder-decoder
frameworks (highlighted with red line in Fig. 1) given the
input xt. However, it is computationally intractable to obtain
an optimal solution due to the strict assumption (i.e., all
generated ratings from different source domains are required to
be different from each other), because it needsO(k2) operations



to assert the assumption in each iteration of training those k
Dual-CVAEs. Accordingly, we relax the ME constraint by
adding it to the objective with a weight (hyper-parameter β2 in
Eq. (8)). Hence, these generated ratings may not be all different
from each other, but they increase the rating diversity [35].
Consequently, we generate diverse ratings r̂t1, r̂t2, · · · , r̂tk
by the learned k encoder-decoder frameworks with the same
content xt in the target domain, which is different from the
work [35] where it augments diverse samples by adding noises
to the ground-truth label y.

We call our proposed method as Diverse Preference Augmen-
tation based on meta-learning (MetaDPA). To learn domain-
shared and domain-specific information by these k Dual-
CVAEs, we add Multi-domain InfoMax (MDI) constraints
imposed on the latent representations of source and target
domains [37], which maximizes the mutual information be-
tween representations of source and target domains. To augment
diverse ratings, we impose ME constraints on the decoders of
k Dual-CVAEs. Then we adopt the learned k encoder-decoders
(red line in Fig. 1) to generate diverse ratings by the content
data xu of target domain. Finally we combine the augmented
diverse ratings and true ratings to learn a prior preference
distribution via a meta-learning framework in the target domain,
which is expected to quickly adapt to new users’ or new items’
recommendations via only a few fine-tuning steps. The main
contributions are summarized as follows:

• We propose a multi-source cross-domain recommender
system, coined as Diverse Preference Augmentation based
meta-learning (MetaDPA), for solving cold-start and
sparse issues in recommendations. MetaDPA consists
of three blocks: multi-source domain adaptation, diverse
preference augmentation, and preference meta-learning.

• For multi-source domain adaptation, MetaDPA augments
diverse ratings with content data via the ME constraint
imposed on the multi-source domain adaptation.

• We develop the MDI constraint to learn domain-shared
and domain-specific preference information, where the
domain-shared information makes it possible to transfer
preference patterns from the source domain to the target
domain, and the domain-specific preference information
contributes to generate diverse ratings in the preference
augmentation step.

• In experiments, we demonstrate the effectiveness of
MetaDPA to relieve the sparse issue (‘Warm-start’) and
three types of cold-start issues (‘C-U’, ‘C-I’, ‘C-UI’) by
comparing with existing competitive baselines. Besides,
we conduct ablation studies to evaluate the effectiveness
of ME and MDI constraints.

The rest of this paper is organized as follows. Section
II introduces three types of closely related work, content-
aware recommender systems in Section II-A, cross-domain
recommendations in Section II-B and meta-learning based
recommender systems in Section II-C. In Section III, we
introduce the problem formulation and notations in Section
III-A, and briefly state the recommender systems equipped with

the meta-learning framework in Section III-B. Next, we give
a detailed introduction of the proposed three-block MetaDPA
in Section IV. Specifically, we firstly introduce the multi-
source cross-domain adaptation in Section IV-A including MDI
and ME constraints added on the domain adaption; we then
introduce the diverse preference augmentation in Section IV-B
after multi-source domain adaptation; finally we introduce the
preference meta-learning framework in Section IV-C. Then
we demonstrate the experiments of the proposed MetaDPA
together with the competing baselines in Section V, which
includes introductions of the experimental settings in Section
V-A, the overall experimental results compared with baselines
in Section V-B, the ablation studies to evaluate the effectiveness
of MDI and ME constraints in Section V-E, and the impact of
hyper-parameters β1, β2 the above two constraints in Section
V-F. Finally, we conclude this paper in Section VI.

MDI Constraint ME Constraint

Source

Target

Fig. 1. The framework of cross-domain adaptation with Dual-CVAE. The MDI
constraint is imposed on latent representations zs and zt. The ME constraint
is enforced on the outputs of two decoders Ds and Dt. Given ratings rs, rt
and content data xs, xt, the goal of Dual-CVAE is to learn domain-shared
and domain-specific preference information, and then generate diverse ratings
by decoders of k Dual-CVAEs.

II. RELATED WORK

In this section, we focus on closely related work to our
method: content-aware recommender systems, cross-domain
recommender systems, and mete-learning based recommender
systems. The proposed MetaDPA is a kind of cross-domain rec-
ommendation that transfers preference patterns from multiple
source domains to a target domain based on a meta-learning
optimization framework with content information.

A. Content-aware Recommender Systems

Content-aware recommender system, as a representative
content-aware method, is widely studied by scholars re-
cently. Such as the state-of-the-art collaborative deep learn-
ing (CDL) [6] was proposed as a probabilistic model by
jointly learning a probabilistic stacked denoising auto-encoder
(SDAE) [38] and CF. CDL exploits the interaction and content
data to alleviate cold start and data sparsity problems. However,
unlike CTR, CDL takes advantage of deep learning framework



to learn effective real latent representations. Thus, it can also
be applied in the cold-start and sparse settings. CDL is also a
tightly coupled method for recommender systems by developing
a hierarchical Bayesian model.

Another classic content-aware method is deep cooperative
neural networks (CoNN) [39], which consists of two parallel
neural networks: one learns user behaviors exploiting users’
reviews, and the other one learns item properties from the
items’ reviews. A shared layer is introduced on the top to
couple these two networks together. Then, dual attention mutual
learning (DAML) [40] integrates ratings and reviews into a joint
neural network with a local and mutual attention mechanism
to strengthen the interpretability. In addition, higher-order
nonlinear interaction of features are extracted by the neural
factorization machines to predict ratings.

B. Cross-domain Recommender Systems

Cross-domain recommender systems, as a type of methods
for solving cold-start and sparse challenges, transfer preference
information from source domains to its related target domain
and then improve the performance of recommendations in the
target domain. These methods can be categorized into single
source and multiple source cross-domain recommendations
based on the number of source domains applied for transferring.

Cross-domain recommendations with single source domain,
such as cross-domain triadic factorization (CDTF) [41], deep
domain adaptation model (DARec) [42] , and equivalent
transformation learner (ETL) [43] were proposed to transfer
user-item preference relations from a single source domain to
a target domain without relying on any auxiliary information.
By combining content information, a transfer meeting content-
aware method (TMH) [44] is formulated with unstructured
text in an end-to-end manner. Then, Cross-domain recom-
mendation framework via aspect transfer network (CATN)
[45] is developed via an aspect transfer network for cold-start
users. Another related study is text-enhanced domain adaptation
recommendation (TDAR) [46] that extracts the textual features
in word semantic space for each user and item and feeds them
into a domain classifier with the embeddings of users and items
for better domain adaptation.

For multi-source cross-domain recommendations, one pio-
neer work is Collective Matrix Factorization (CMF) [18] that
extends linear models to arbitrary relational domains. Then,
multi-domain collaborative filtering (MCF) [47] is proposed
by considering multiple collaborative filtering tasks in differ-
ent domains simultaneously and exploiting the relationships
between domains. MCF also introduces the link function for
different domains to correct their biases. Recently, MINDTL
[14] exploits transfer learning and compresses the knowledge
from the source domain into a cluster-level rating matrix to
model user’s rating pattern. The rating patterns in the low
level matrix are transferred to the target domain by enriching
rating patterns by relaxing the full rating restriction on source
domains.

C. Meta-learning Based Recommender Systems

Recently, many scholars focus on formulating recommenda-
tion frameworks with meta-learning [4], [26], [48] for solving
cold-start and sparse issues. Current meta-learning-based
recommender systems adopt optimization-based meta-learning
methods, such as model-agnostic meta-learning (MAML) [49],
to improve the performance of new tasks. One representative
work is MeLU [4] that utilizes MAML to rapidly adapts
to new tasks with a few ratings. Another straightforward
application of MAML on the recommender system is MetaCS
[50], which formulates each user’s rating pattern as a task in
MAML and designs a recommendation framework based on
this. Then, Memory-augmented meta-optimization (MAMO)
[26] designs two memory matrices to store task-specific
memories for parameter initialization and feature-specific
memories for fast predicting users’ preferences, respectively. By
integrating heterogeneous information, MetaHIN [27] exploits
meta-learning to alleviate the cold-start problem at both the
data and model levels, which leverages multifaceted semantic
contexts and a co-adaptation meta-learner to learn finer grained
semantic priors for new tasks in both semantic and task-
wise manners. By dynamic subgraph sampling to construct
representative training tasks, MetaCF [51] dynamically samples
subgraph centered at a user in the training phase to account for
the effect of limited interactions under cold-start settings, and
extends the historical interactions by incorporating potential
interactions to avoid the overfitting problem. It can achieve good
performance under cold-start settings. However, the drawback is
obvious due to the introduction of potential interaction leading
to low efficiency of training the model.

As a promising approach, meta-learning frameworks can fast
adapt to new users’ or new items’ recommendations. However,
existing meta-learning based methods suffer poor performance
caused by meta-overfitting on sparse interactive data. So in
this paper we aim to solve the meta-overfitting problems in
meta-learning based recommendations by the proposed diverse
preference augmentation technique as introduced in Section I.

III. PRELIMINARIES

In this section, we first describe the basic notations used in
this paper and the problem formulation in Section III-A. Then
we briefly introduce a general framework of meta-learning
based recommender systems in Section III-B.

A. Problem Formulation

In this paper, we aim to provide recommendations in the
target domain by transferring preference knowledge from source
domains. We suppose there are n users and m items in the target
domain, and their index sets are denoted as U = {1, · · · , n}
and I = {1, · · · ,m}, respectively. The available data includes
user-item interactive matrix R = {rui ≥ 0 : u ∈ U, i ∈ I}, the
user content data CU , and the item content data CI . If user u
has an interaction with item i, then rui = 1; otherwise, rui = 0.
For each user u, the content data cu ∈ CU is composed of
bag-of-vectors generated from her/his rated items’ review data.



Similarly, the content data of each item ci ∈ CI is extracted
from all obtained reviews.

In this work, we divide users’ set U as Ue and Un, where
we define Ue as ‘existing users’, and each u ∈ Ue represents
the user who rates no less than 5 items, i.e., |{rui : u ∈
Ue}| ≥ 5. The remaining users u ∈ Un are defined as ‘new
users’ (or cold-start users). Similarly, we divide items’ set I
as Ie and In, where we define Ie as ‘existing items’, and each
i ∈ Ie denotes the item of receiving no less than 5 ratings,
i.e., |{rui : i ∈ Ie}| ≥ 5, and the remaining items i ∈ In are
defined as ‘new items’ (or cold-start items). Then, we define
the following four recommendation problems including the
sparse issue (‘Warm-start’) and three kinds of cold-start issues
solved in this paper:
(1) Warm-start: how to improve the accuracy of recommend-

ing existing items to existing users with sparse interactions
available? Given sparse ratings Rw of users Ue to items
Ie, i.e., Rw = {rui > 0, u ∈ Ue, i ∈ Ie}, then we train
our model f(θ) : Ue × Ie → Rw on Rw. The goal of
‘Warm-start’ is to predict unknown ratings r̂ui /∈ Rw of
existing users Ue to existing items Ie with the trained
model f(θ) and recommend k existing items with top-k
ratings to each user in Ue.

(2) C-U: how to improve the accuracy of recommending
existing items to new users? After training our model f(θ)
with Rw, we finetune f(θ) with only a few ratings Rcu
of new users u ∈ Un to existing items i ∈ Ie. The goal
of ‘C-U’ is to predict unknown ratings r̂ui /∈ Rcu of new
users Un to existing items Ie by the finetuned model f(θ)
and recommend k existing items with top-k ratings to new
users.

(3) C-I: how to improve the accuracy of recommending new
items to existing users? Similar to C-U, we finetune f(θ)
with only a few ratings Rci of existing users Ue to new
items In. The goal of ‘C-I’ is to predict unknown ratings
r̂ui /∈ Rci of existing users Ue to new items In by the
finetuned model f(θ) and recommend k new items with
top-k ratings to existing users.

(4) C-UI: how to improve the accuracy of recommending
new items to new users? We finetune f(θ) with a few
ratings Rcui of new users Un to new items In. The goal
of ‘C-UI’ is to predict unknown ratings r̂ui /∈ Rcui of
new users Un to new items In with the finetuned model
and recommend k new items with top-k ratings to new
users.

B. Meta-learning for Recommendations

The objective of meta-learning is to learn good initial weights
for a model that can fast adapt to previously unseen tasks with
a few samples [25]. In meta-learning based recommendations
[4], [52], a user’s preference prediction over all items is treated
as a meta-learning task Tu, which is denoted as the dataset used
for the task. To be specific, Tu = (cu, ru), where cu is the
input of all items for a specific user u and ru is the ratings of
a user to all items. The input identifies a user, and it could be
her/his identity, profile, historical preference information, or the

review comments written by the user. In this paper, we user the
review comments as the input. In particular, according to the
setting of meta-learning, we divide into a support set Su and a
query set Qu. Tasks from all users’ preferences are randomly
splited into two disjoint partitions: one for meta-training tasks
denoted as Ttr, and another one for meta-testing tasks denoted
as Tte. The meta-learning based recommendations aim to learn
a good preference prior distribution on meta-training tasks, and
then can fast adapt to new tasks in meta-testing tasks.

Suppose a supervised learning problem considers training
on a dataset for a single task T . In contrast, meta-learning
considers to learn a set of tasks Tu ∈ Ttr, which are sampled
from the task distribution p(T ). The objective of meta-training
for recommendations is formulated as follows:

min
θ

∑
Tu∼Ttr

LTu(θ − α∇θLTu(θ,Su),Qu), (1)

where ∇θ denotes the gradient w.r.t parameters θ of a
preference prediction model, and α is the meta-learning rate,
and θ−α∇θLTu(θ,Su is the task-specific parameters adapted
to the task Tu after one gradient step from the global θ. The
algorithm locally updates parameters θ based on the gradient
with Su, and then globally updates θ based on Qu, so that the
globally updated parameters adapt to various tasks [4]. During
meta-testing, the meta-learner adapts the learned θ to Tu ∈ Tte
with its support set Su, and then the adapted parameters θ
is used to predict ratings and evaluate the recommendation
performance in its query set Qu [52].

IV. METHODOLOGY

In this section, we propose a novel method Diverse Pref-
erence Augmentation with multiple domains (MetaDPA) for
cold-start recommendations as illustrated in Fig. 2. Our method
consists of three blocks: Multi-source Domain Adaptation, Di-
verse Preference Augmentation, and Preference Meta-learning.

Firstly, we conduct multi-source domain adaptation between
the source domains and the target domain with Dual CVAEs,
and align the representations of the source and target domains
by the principle of InfoMax [37] in Section IV-A. Then, we
employ the learned encoder-decoders to generate diverse ratings,
which is named as diverse preference augmentation in Section
IV-B. Next, these augmented diverse ratings together with the
original true ratings are fed into the preference meta-learning
procedure in Section IV-C. Finally, we test the recommendation
performances under three cold-start settings separately.

A. Multi-source Domain Adaptation

In this section, our objective is to conduct domain adap-
tation from multiple source domains to the target domains.
As users’/items’ content information is commonly used for
alleviating cold-start issues, and the content data including
items’ images, descriptions and users’ profile, user-item review
texts. Most of the content data are not shared by different
domains. In TDAR [46], it takes the review texts as domain-
invariant features to align the latent space for domain adaptation.



CDs

Movies

Music

Source

Target

Content Ratings

Content Ratings

Books
Content RatingsAlignment

Content Ratings

All users

Preference Meta-learning
(all users)

MLP

MLP

Local 
update

Global 
update

Concatenation

Embedding Embedding

Diverse Preference AugmentationMulti-sourceDomain Adaptation
(shared users)

user's content item's content

Fig. 2. The framework of diverse preference augmentation with multiple source domains based on meta-learning (MetaDPA) consists of three blocks:
Multi-source Domain Adaptation, Diverse Preference Augmentation, and Preference Meta-learning. We first train the framework of multi-source domain
adaptation; and then we generate diverse ratings for the target domain given the content data; and finally we learn the preference model formulated as a
multi-layer architecture based on the meta-learning optimization framework MAML.

To facilitate the domain adaptation, we also adopt the domain-
invariant reviews as the content data. Specifically, the user
content cu is the collection of reviews from items rated by
the user u. We first encode the user’s content into a dense
low-dimensional embeddings xu. We denote x

(s)
u and x

(t)
u

as the user content vectors in the source domain and in the
target domain, respectively. For simplicity, we use xs and xt
to represent them. Similarly, we denote rs and rt as ratings
rated by the shared user u to items in the source domain and
the target domain, respectively.

We use a Dual-CVAE network to learn users’ latent rep-
resentations and reconstruct ratings rs and rt. In the Dual-
CVAE, we add conditions xs (xt) on the latent representations
in a similar way with HCVAE [53]. Firstly, the input xs
and xt are encoded into a distribution qφs(zs|rs,xs) and
qφt(zt|rt,xt), respectively. The encoders of the Dual-CVAE
maps ratings rs and rt to latent representations zs and zt,
respectively. The optimization objective of the Dual-CVAE
is the evidence lower bound (ELOB) [54], which consists of
the sum of the reconstruction error, namely, maximizing the
likelihood estimation of the decoders log pθs(rs|zs,xs) and
log pθt(rt|zt,xt), and the negative KL-divergence between the
variational posterior and the prior. So the loss function in the
source domain and the target domain can be written as follows
[53]:

LELBO = L(rs,xs; θs, φs) + L(rt,xt; θt, φt)
= Eqφs (zs|rs,xs)[log pθs(rs|zs,xs)]
+ Eqφt (zt|rt,xt)[log pθt(rt|zt,xt)]
−DKL[qφs(zs|rs,xs)||p(zs)]
−DKL[qφt(zt|rt,xt)||p(zt)]. (2)

We employ the softmax function as the activation function in the
output layer that maps the reconstructed output into the range
of [0,1], which is consistent with the range of reconstructed
ratings. The reconstruction loss between the predictions and

true ratings could be MSE if the user-item interactions are
explicit feedback and binary cross entropy if the user-item
interactions are implicit feedbacks [55]. In this paper, we use
the implicit feedback as ratings, so we adopt the binary cross-
entropy as the reconstruction loss.

The KL divergence loss of the Dual-CVAE can be estimated
using the Stochastic Gradient Variational Bayes (SGVB)
estimator [56]. Besides, we hope to learn latent representations
from the content embeddings xs and xt, and so the learned
distributions of latent representations store preference informa-
tion from both ratings and content, which makes it capable
of reconstructing ratings only using content. So we have the
following objective:

LKL =− 1

2

L∑
l=1

[σ2
sl
+ (µsl − zxsl)

2 − logσ2
sl
− 1]

+
1

2

L∑
l=1

[σ2
tl
+ (µtl − zxtl)

2 − logσ2
tl
− 1]. (3)

where L is the dimension of the latent sampled representations.
For the source domain, us and σs are the mean and variance
of the approximate posterior, and zxs is the output of a dense
embedding encoder Exs , parameterized by φxs . The notations
ut, σt, zxt , Ext , and φxt in the target domain have similar
meanings.

To reconstruct ratings only using content, we align the
latent representations of the Dual-CVAE to the output dense
embedding vector of encoder Exs by the following mean square
error (MSE) loss:

LMSE = ||zs − qφxs (z
x
s |xs)||2 + ||zt − qφxt (x

x
t |xt)||2. (4)

For domain adaptation, we construct the cross-domain
reconstruction objectives by generating ratings rs of the source
domain with the latent representation of the target domain
zt, and reconstructing ratings rt of the target domain with
the latent factors of the source domain zs. To align the latent



representations zs and zt, we have the following cross-domain
reconstruction loss,

LRec =
1

2m

m∑
i=1

[rsi log(r̂ti) + (1− rsi) log(1− r̂ti)]

+
1

2m

m∑
i=1

[rti log(r̂si) + (1− rti) log(1− r̂si)], (5)

where r̂ti is the reconstructed rating of user u to item i by
feeding the latent representation of target domain zt into the
decoder Ds in the target domain as shown in the Fig. 1, and
r̂si is the generated rating of user u to item i by injecting the
latent representation of source domain zs into the decoder of
target domain Dt.

To maximize the mutual information from the source and
target domains and preserve the domain-specific properties, we
impose the MDI constraint with the InfoMax principle [57]
on sampled latent representations zs and zt. Since the MDI
constraint does not discard superfluous information of each
domain for predicting ratings. So it allows the reconstructed
user’s preference to have the capacity of preserving the domain-
specific properties as well as the domain-shared properties. The
MDI constraint is written as follows:

LMDI(φs, φt) = −Iφs,φt(zs, zt), (6)

where the function I(·) denotes the mutual information between
inputs [37]. The MDI is employed here because we consider
each user’s latent preferences zs and zt encoded from different
domains should have both domain-shared and domain-specific
properties. So the MDI advocates the decoders of each domains
to generate domain-specific ratings, which is consistent with
the goal of generating diverse ratings by the content in the
target domain.

B. Diverse Preference Augmentation

As introduced in Section I, the goal of diverse preference
augmentation is to generate diverse ratings by the learned
encoder-decoders (highlighted with red line shown in Fig. 1)
of target domain given the input xt. If there are k source
domains, we have k Dual-CVAEs for the multi-source domain
adaptation, then we generate k ratings for each user in the
target domain by his/her content xt. Due to the integrated
effect of MDI constraint imposed on the latent representations,
the reconstruction loss (2) and the cross-domain reconstruction
loss (5), the Dual-CVAE can learn domain-shared preference
information well enough. Thus, these generated k ratings from
k Dual-CVAEs are similar because all source domains adapts
to the target domain. To avoid overfitting, we impose the ME
constraints on the outputs of k decoders Dt to generate ratings
as different as possible from each other. With the ME constraint,
we force the generated rating from the decoder Dt as close
to the reconstructed ratings as possible from the decoder Ds.
Thus, the generated ratings preserve domain-specific preference
patterns of multiple source domains, so we can generate diverse
ratings by k encoder-decoder frameworks of Dual-CVAEs. The
ME constraint is realized by maximizing the mutual information

between two generated ratings rs and rt of a shared user u as
follows:

LME = −I(rs, rt), (7)

where I(·) denotes the mutual information between two inputs,
that is implemented by InfoNCE [58].

By enforcing ME and MDI constraints on the Dual-CVAE,
the objective of cross-domain adaptation can be derived by
summing up objectives (2), (4), (5), and two constraints (6), (7)
together. Single-source cross-domain adaptation is one special
case of multi-source cross-domain adaptation. We can obtain
the multi-source cross-domain objective by integrating the
following cross-domain objective together,

LDual-CVAE = LELBO + LMSE + LRec + β1LMDI + β2LME. (8)

We train the Dual-CVAE shown in Fig. 1 by minimizing the
objective (8) of cross-domain adaptation. The multi-source
cross-domain adaptation can be implemented by training
multiple Dual-CVAEs in parallel. Suppose we have k source
domains, then we learn k Dual-CVAEs independently. After
that, we obtain the learned k encoders Ext and k decoders
Dt, and then employ them to generate k diverse ratings
rt1, rt2, · · · , rtk with the content xt. It’s worth note that these
generated ratings are in the continuous scale of [0, 1] because
we focus on implicit feedback in this paper.

By taking users’ preferences / ratings prediction as meta-
learning tasks, the meta-learner trained on these generated
ratings and original ratings is expected to avoid overfitting
as introduced in Section I. In Section II, we know that the
meta-learning optimization scheme MAML [49] can fast adapt
to new tasks. In recommendations, the meta-learner can fast
adapt to cold-start recommendations with MAML.

C. Preference Meta-learning

This block focuses on training a preference prediction model
based on meta-learning in the target domain by generated
diverse ratings rt1, rt2, · · · , rtk. Firstly, we encode the original
content cu and ci to their dense embedding xu and xi. We
denote ct as the combination of cu and ci in the following
paper. Then, we construct the meta-learning task Tu and the
augmented tasks T 1

u , · · · , T ku as follows:

Tu = (ct, rt) (9)
Tu1

= (ct, r̂t1), · · · , Tuk = (ct, r̂tk), (10)

where rt is the original ratings in the target domain. Next, we
learn the preference prediction model via the meta-learning
framework MAML.

As shown in Fig. 2, we firstly employ a fully connected
embedding layer to encode content vectors cu and ci into dense
embeddings xu and xi, and then we adopt a multi-layer neural
architecture [29] to predict rating scores by the concatenation
of xu and xi. As implicit feedback we considered in this
paper, so we use the binary cross-entropy loss on the top of
multi-layer neural network to predict ratings.

The embedding layer and the multi-layer architecture con-
stitute the preference prediction model. We train the model



TABLE I
STATISTICS OF DATASETS FOR MULTIPLE SOURCE DOMAINS.

Source (S) #shared users (T ) #items #ratings sparsityBooks CDs
Electronics 28,505 6,260 63,001 1,687,993 99.98%

Movies 37,387 18,031 50,052 1,697,438 99.97%
Music 1,952 5,331 3,568 64,705 99.67%

TABLE II
STATISTICS OF DATASETS FOR TARGET DOMAINS.

Datasets #users #items #ratings sparsity
Books 603,374 348,957 8,575,000 99.99%
CDs 25,400 24,904 43,903 99.99%

with diverse tasks to avoid overfitting via the meta-learning
framework MAML. The objective can be written as:

r̂ui = f(θl, θe, cu, ci), (11)

where θe is the parameters of the fully connected embedding
layer that encodes the content vector cu and ci into dense
embeddings xu and xi, and θl is the parameters of the multi-
layer neural network.

As shown in Fig. 2, MAML includes the inner loop for
local update of the model and the outer loop for global update
of the model. In this work, we train the MAML on training task
set Ttr, which includes the original tasks Tu and augmented
tasks Tu1, · · · , Tuk. We divide samples of each task T ∈ Ttr
randomly into a support set Su and a query set Qu as follows:

T = {Su,Qu}. (12)

In the meta-testing phase, meta-testing tasks T ∈ Tte
includes only original tasks constituted from original ratings
of the target domain. Samples of each T are also split into
a support set Su for fine-tuning the preference model and a
query set Qu for testing the recommendation performance.

D. Time Complexity Analysis

Our model consists of three blocks (Fig.2). (1) the Dual-
CVAE (Fig. 1) is trained in parallel for multiple source domains.
It encodes users’ ratings and users’ content into latent vectors
zs, zt with 2-layer networks and then decodes the latent vectors
into users’ ratings with 2-layer networks. The dimensions of
users’ content, hidden layers and the latent vectors are constant
with the data size O{max{n,m}}, where n and m are numbers
of users and items. If we denote B, l and m as the batch size,
the numbers of items in the source and target domains, then
the dimensions of inputs rs and rt are l and m, respectively.
So the time complexity is O(B(l+m)). (2) The second block
forwards the encoder and decoder (red line in Fig. 1) one-
pass to generate ratings, so the time complexity is O(B). (3)
The third block learns a 2-layer network, and the dimension
of users’ (items’) content is constant with the data size, so
the time complexity is O(B). Overall, the time complexity is
O(B(l +m)), so it scales linearly with the data size.

V. EXPERIMENTS

In this work, we claim that (1) diverse preference augmen-
tation can handle overfitting in the case of sparse interactions

to improve the performance of four recommendation problems
defined in Section III-A; (2) learning a preference model via a
meta-learning scheme can alleviate cold-start issues. The goal
of experiments is to evaluate the effectiveness of the proposed
MetaDPA to avoid overfitting and solve the recommendation
problems including ‘Warm-start’, ‘C-U’, ‘C-I’, and ‘C-UI’. In
addition, the experiments study the impact of two constraints
added in the model. To be specific, we analyze the effectiveness
from the following aspects:
• RQ1: Does our method outperforms the state-of-the-art

cross-domain baselines?
• RQ2: Does our method handle overfitting on sparse

interactions?
• RQ3: How is the scalability of our method?
• RQ4: How do the two constraints MDI and ME affect

the performances of recommendations under different
settings?

• RQ5: How do the hyper-parameters, such as β1 of MDI,
and β2 of ME, affect the effectiveness of DPA?

A. Experimental Settings

1) Datasets: We evaluate the performance of our method
against the state-of-the-art baselines on public Amazon
datasets1. Among the largest categories, we choose Electronics,
Movies and Music as three source domains, and Books and
CDs as two target domains. As this paper focuses provide
recommendations based on implicit feedbacks, we transform
explicit ratings greater than 0 as the positive feedbacks ’1’
and others as negative feedbacks ’0’. Statistics for the source
domains and the target domains are shown in Table I and
Table II, respectively.

Experiments of our method contains three phases: (1)
multi-source domain adaptation from three source to two
target domains, (2) diverse preference augmentation, and (2)
preference meta-learning in the two target domains. In the first
phase, we train three independent Dual-CVAEs of multi-source
domain adaptation. In this phase, we discard users or items
with fewer than 20 positive ratings for both source and target
domains. We randomly split ratings into 80% as training set and
the remaining 20% as evaluation set for the domain adaptation.
Then, we generate diverse ratings from three decoders of Dual-
CVAEs for users in the target domains by their content data. In
the third phase, we train preference model with the generated
ratings and the original ratings in the target domains, and test
the performances of four problems defined in Section III-A.

2) Evaluation Protocols: In this paper, we only test per-
formances on target domains. Recommendation problems
consist of ‘C-U’, ‘C-I’, ‘C-UI’, and ‘Warm-start’ introduced
in Section III-A. We first train our model on training tasks Ttr
constructed of ratings in Rw. For solving ‘Warm-start’, we
test the performance on the query set of Ttr. For cold-start
problems ‘C-U’, ‘C-I’, and ‘C-UI’, we first finetune the trained
model on training tasks Ttr by the support set of testing tasks
Tte, and then we test the performance on the query set of Tte.

1http://jmcauley.ucsd.edu/data/amazon/
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Fig. 3. Performance comparison on Books.
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Fig. 4. Performance comparisons on CDs.

Taking ‘C-U’ as an example, Tte is constructed from ratings
{rui : u ∈ Un, i ∈ Ie}. Similarly, we can construct testing
tasks Tte for other two cold-start settings.

Following the common strategy of implicit feedbacks [29],
we adopt the similar leave-one-out evaluation protocols for
evaluating the performance of recommendations. Specifically,
we sample 99 negative unobserved items for each positive item
to evaluate MetaDPA and other baselines. Then we report the
performance of top-k recommendations under four common
metrics: hit ratio (HR) [59], mean reciprocal rank (MRR) [60],
normalized discounted cumulative gain (NDCG) [4], and area
under ROC curve (AUC) [61].

3) Baselines: To investigate whether MetaDPA can improve
the recommendation performance under cold-start settings
or not, we compare it with several state-of-the-art baselines,
including the competitive NeuMF, content-aware recommender
systems (CoNN, DAML), meta-learning based methods (Melu,
MetaCF), cross-domain recommendation frameworks (TDAR,
CATN).
• NeuMF: Neural collaborative filtering [29] is the most

favorite technique in recommender systems.
• MeLU: Meta-learned user preference estimator [62]

demonstrates satisfactory performance when applied to
a wide range of users for providing personalized recom-
mendations due to the generalization ability.

• MetaCF: Fast adaptation for recommendations with meta-
learning [51] is formulated with a dynamic subgraph
sampling that accounts for the dynamic arrival of new
users by dynamically generating representative adaptation
tasks for existing users.

• CoNN: Deep cooperative neural networks [39] learns item
properties and user behaviors from reviews consisting of
two parallel neural networks with the shared last layer.

• DAML: Dual attention mutual learning [40] adapts local
and mutual attention network to extract the rating and
review features. With such features, neural factorization
machine can effectively make predictions.

• TDAR: Text-enhanced domain adaptation recommenda-
tion (TDAR) [46] extracts the textual features in word
semantic space for each user and item and feds them into
a collaborative filtering model for predicting ratings.

• CATN: Cross-domain recommendation framework via
aspect transfer network [45] learns cross-domain aspect-
level preference matching by bridging multiple user’s
inherent traits via reviews in different domains.

4) Hyper-parameter Settings: To obtain the optimal hyper-
parameters β1 and β2 in Eq.(8), we apply the grid search in the
range of {1e−2, 1e−1, 1, 1e1, 1e2}

⊗
{1e−2, 1e−1, 1, 1e1, 1e2}

on Books and CDs, respectively. After searching, we set β1 =
0.1, β2 = 1 on CDs, and β1 = 0.1, β2 = 1 on Books, because
these settings can achieve best performance.

B. Overall Performance Compared with Baselines (RQ1 &
RQ2)

We compare our model MetaDPA with other competi-
tive baselines to show the performance improvements under
NDCG@k in Fig. 3 and Fig. 4 on Books and CDs, respectively.
The results under other metrics are shown in Table V-A3. We
conclude that the performance of the proposed MetaDPA is
significantly superior to all competing baselines. The over-



TABLE III
THE OVERALL PERFORMANCE COMPARISON OF METADPA (THE PROPOSED MODEL) AND BASELINES. BEST PERFORMANCE MARKED AS BOLD FONT, THE

SECOND BEST MARKED AS o .

Dataset Books CDs
Metric HR@10 MRR@10 NDCG@10 AUC HR@10 MRR@10 NDCG@10 AUC

C-U

NeuMF 0.1159 0.0327 0.0515 0.5009 0.1069 0.0300 0.0478 0.5054
MeLU 0.1524 0.0630 0.0834 0.5819 0.1278 0.042 0.0617 0.5635
CoNN 0.1515 0.0437 0.0683 0.5810 0.1696 0.0549 0.0813 0.5853
TDAR 0.0641 0.0195 0.0298 0.3852 0.1417 0.0549 0.0748 0.5451
CATN 0.1071 0.0329 0.0500 0.5376 0.1346 0.0364 0.0585 0.5910o
DAML 0.1756 0.0596 0.086 0.5454 0.1789o 0.0618 0.0886o 0.5876
MetaCF 0.1607 0.0746o 0.1014o 0.5383 0.1535 0.0807o 0.0979 0.5024

MetaDPA 0.1702o 0.0848 0.1042 0.5803o 0.2648 0.1371 0.1660 0.6364

C-I

NeuMF 0.1248 0.0329 0.0536 0.5043 0.117 0.0416 0.0589 0.5054
MeLU 0.1846o 0.0610 0.0891o 0.5977 0.1326 0.0404 0.0616 0.577
CoNN 0.1660 0.0438 0.0716 0.6014o 0.1871 0.0651 0.09319 0.6092
TDAR 0.1275 0.0343 0.0556 0.5169 0.1423 0.0472 0.0688 0.5324
CATN 0.1280 0.0373 0.0581 0.5628 0.1195 0.0347 0.0539 0.5670
DAML 0.1766 0.0561 0.0839 0.5466 0.2008o 0.0738 0.1030 0.6143o
MetaCF 0.1393 0.0631o 0.0807 0.5298 0.1930 0.1041o 0.1252o 0.5108

MetaDPA 0.2178 0.0775 0.1101 0.6392 0.3119 0.1359 0.1762 0.6808

C-UI

NeuMF 0.0843 0.0277 0.0408 0.5387 0.1240 0.0371 0.0568 0.5144
MeLU 0.1742o 0.0621o 0.0872o 0.5699o 0.1240 0.0265 0.048 0.5733
CoNN 0.1011 0.0223 0.0404 0.5493 0.1473 0.0570 0.0776 0.6045
TDAR 0.1180 0.0308 0.0504 0.5076 0.1705 0.0809 0.1016 0.5560
CATN 0.1209 0.0391 0.0579 0.5315 0.0916 0.0314 0.0451 0.5256
DAML 0.1292 0.0379 0.0590 0.5340 0.1550 0.0543 0.0774 0.6053o
MetaCF 0.1236 0.0462 0.0644 0.5351 0.1860o 0.0876o 0.1104o 0.5221

MetaDPA 0.1910 0.0694 0.0971 0.5921 0.2558 0.1069 0.1407 0.6515

Warm-start

NeuMF 0.1292 0.0415 0.0616 0.5107 0.1106 0.0336 0.0512 0.5014
MeLU 0.1512 0.0929 0.1059 0.5562 0.1470 0.0465 0.0696 0.5826
CoNN 0.1773 0.0528 0.0813 0.6023 0.1922 0.0645 0.0940 0.6029
TDAR 0.2798 0.0749 0.1219o 0.6331 0.1501 0.0489 0.0722 0.5843
CATN 0.1363 0.0386 0.0610 0.5539 0.1505 0.0440 0.0684 0.6183o
DAML 0.2011 0.0696 0.1000 0.5710 0.2007 0.0691 0.0995 0.6062
MetaCF 0.1775 0.0857o 0.1070 0.5127 0.2084o 0.1511o 0.1859o 0.5472

MetaDPA 0.2099o 0.0829 0.1396 0.6211o 0.2866 0.1994 0.2187 0.6481
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Fig. 5. Effectiveness of Mutually-Exclusive (ME) and Multi-domain InfoMax (MDI) constraints.

whelming advantages over baselines attribute to the following
three points:

(1) Compared with cross-domain recommendations CATN
and TDAR: By transferring preference properties from
multiple source domains to the target domain via aug-
mented diverse ratings, the proposed model can capture
more preference properties, which is helpful to avoid
overfitting and improve the recommendation accuracy, so
it performs much better than cross-domain recommender
systems;

(2) Compared with content-aware recommendations CoNN
and DAML: The diverse preference augmentation block
aims to reduce the gap between content and preference
that exists in content-aware recommender systems, so
most of the time, it performs better than content-aware

recommender systems;
(3) Compared with meta-learning based recommender systems

Melu and MetaCF: With the diverse ratings fed into the
preference meta-learning, MetaDPA avoids overfitting to
the insufficient interactive training set, so it performs much
better than meta-learning based recommender systems for
solving recommendation problems.

Specifically, both CoNN and DAML are content-aware
recommendations with deep models. The difference is that
CoNN uses a parallel neural network to learn user behaviors and
item properties while DAML learns rating and review features
by local and mutual attention networks. In our experiments,
DAML shows a little better than CoNN. Both methods show
middle performance in all scenarios. Actually, this indicates
that content information can effectively deal with cold-start
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problems and work well in warm-start scenarios.

Besides, TDAR and CATN perform worse than content-based
methods CoNN and DAML in most scenarios. However, the
performance of TDAR is unstable. In some cases, it performs
very well, e.g., the warm-start scenario on Books and CDs.
The possible reason is that TDAR is designed for warm-start
recommendations instead of cold-start settings, and the training
datasets are very sparse for cold-start users/items, so it performs
inferior to other baselines under cold-start settings and achieves
better performance under warm-start settings.

In addition, MeLU and MetaCF are effective meta-learning
recommendations that are designed for solving cold-start issues
with meta-learning frameworks. Both of them demonstrate
powerful performances, which outperforms almost all other
baselines in cold-start settings, and both perform well in
the warm-start scenarios on Books as well. However, MeLU
performs badly in all scenarios on CDs. A possible reason
is that it easily sticks into the serious meta-overfitting on
sparse user-item interactions. In contrast, MetaCF performs
much better than other baselines on CDs, which indicates that
incorporating potential interactions by neighborhood users /
items can enrich users’ preference information.

To explore the reasons why the performances of other
baselines’ on CDs are worse than the performances on Books,
we calculate the proportion of users who have no less than 40
interactions, and we obtain 13% for CDs and 16% for Books,
which may account for the different results of baselines. We
are known that the recommendation performance is heavily
dependent on the rating sparsity. When we learn models by a
batch of users, the performances rely on the rating sparsity of
a batch of users. If more users rated more items (such as more
than 40 items), the recommendation problems would converges
to a better solution, so the performances would be better.

Overall, under both cold-start and warm-start scenar-
ios, MetaDPA outperforms all baselines significantly w.r.t
NDCG@k metric. Regarding other metrics, MetaDPA out-
performs almost all baselines except HR@10 and AUC for
solving user cold-start problem (‘C-U’), MRR@10 for solving
‘Warm-start’ issue on Books. However, MetaDPA obtains the
second-best performance on these problems. This indicates that
meta-learning-based recommendations significantly improve
cold-start recommendations and warm-start recommendations
by addressing the meta-overfitting problem.

C. Scalability (RQ3)

In this section, we run a series of experiments on the
source domain Electronics and the target domain Books. To
evaluate the scalability, we choose items in Books randomly
with different percentages, 10%, 20%, ..., 100% to create 10
group new datasets. To speed up the computation, we train
our model on GPU platform (NVIDIA GeForce RTX 3090).
In the experiments, we set batch size B = 32 heuristically
similar to the work [63], and we report the training time costs
of 1 epoch in each block. As shown in Fig. 6, the training
procedure scales linearly with the data size for the first block
(Block-1 in Fig. 6), and the training time costs are constant
with the data size for the second block (Block-2) and third
block (Block-3). Which is consistent with the time analysis in
Section IV-D. So the proposed framework can be extended to
larger datasets.

D. Significance Test

We use the one-sided test, Wilcoxon signed-rank test [64],
to test the significance of our method surpassing the second-
best methods, which has the null hypothesis that the median
of the differences of two results xi − yi under an evaluation
metric (xi and yi denote the results of our method and the
second-best method) is negative against the alternative that it
is positive. For different metrics, we obtain different p-values.
By randomly splitting training set and testing set 30 times
independently, we obtain two sets of 30 results for our method
and the second-best method, respectively.

By comparing with the second-best method MeLU,
we test the significance on Books and get p-values
are 5.96e−8, 1.23e−5, 1.78e−7, 5.96e−8 for HR@10,
MRR@10, NDCG@10, AUC under cold-start user (‘C-
U’). Similarly, for cold-start item (‘C-I’), p-values are
5.96e−8, 2.98e−7, 5.96e−8, 5.96e−8. For ‘C-UI’ and ‘Warm-
start’, all p-values are 5.96e−8 except p-value is 2.15e−4

under AUC for ’Warm-start’ setting. Besides, we get all
p-values are 1.19e−7 on CDs under all recommendation
settings. Similarly, we obtain similar results when we compare
the second-best methods MetaCF, DAML, TDAR, and CATN
under specific settings. So we conclude that our method
significantly outperforms other baselines with p-values<0.05
under all evaluation metrics.

E. Ablation Studies (RQ4)

In this subsection, we discuss the effectiveness of MDI and
ME constraints. We test two variants of MetaDPA to validate
the effectiveness of the two constraints.
• MetaDPA-ME: MetaDPA only with the ME constraint.
• MetaDPA-MDI: MetaDPA only with the MDI constraint.
MetaDPA-ME only considers making the preference distribu-

tion of the target domain close to the source and ignores how to
learn domain-specific and domain-shared preference properties
for domain adaptation. MetaDPA-ME generates more diverse
but less meaningful ratings for the target domain. In contrast,
MetaDPA-MDI considers learning domain-specific and domain-
shared properties as other cross-domain methods and ignores
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Fig. 7. The impact of hyper-parameter β1.

10 2 10 1 1 10 102

2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

N
D

C
G

@
20

User cold-start

10 2 10 1 1 10 102

2

0.00

0.05

0.10

0.15

0.20

0.25

0.30
N

D
C

G
@

20
Item cold-start

10 2 10 1 1 10 102

2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

N
D

C
G

@
20

User&Item cold-start

10 2 10 1 1 10 102

2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

N
D

C
G

@
20

Warm-start

Fig. 8. The impact of hyper-parameter β2.

diverse requirements. The results on all four scenarios on
CDs are shown in Fig. 5. Obviously, both MetaDPA-ME and
MetaDPA-MDI suffer performance declines. MetaDPA-ME
performs worst due to it generating meaningless ratings and
introducing useless bias to the meta-training tasks. MetaDPA-
MDI performs worse than MetaDPA because it generates ratings
that are too close to the true ratings and lack diversity. However,
both variants still perform better than MeLU and other baselines
since the Dual-CVAE framework brings weak but good enough
diversity and domain adaptation.

F. The Impact of Hyper-parameters (RQ5)

In this subsection, we test the sensitivity of our framework
w.r.t the hyper-parameters β1 and β2 on CDs by grid search
introduced in Section V-A. The results for β1 and β2 are
respectively shown in Fig. 7 and Fig. 8. We conclude that
β1 is more sensitive than β2. Actually, β1 and β2 weigh the
importances of constraints MDI and ME, respectively. MDI
affects both domain adaptation and diverse ratings generation;
while ME only affects the latter, so the variation of β1 affects
the recommendation performance more seriously than β2, i.e.,
β1 is more sensitive than β2. Besides, we find that warm-
start scenarios are more sensitive than cold-start scenarios. As
introduced in Section V-A, we use a few samples to finetune
the model (trained in the warm-start setting) for cold-start
testings, so it has a better generalization ability than that for
warm-start testing. That’s why warm-start scenarios are more
sensitive than cold-start scenarios.

VI. CONCLUSION

In this paper, we propose a Diverse Preference Augmentation
based on meta-learning (MetaDPA) method by multiple source
domains for solving cold-start issues in recommendation tasks.
The proposed MetaDPA consists of three blocks. The first block

is multi-source domain adaptation, formulated with multiple
Dual-CVAEs. To preserve both domain-shared and domain-
specific preference properties in the latent space, we add
the MDI constraint with the principle of Info-Max, which
is effective to maintain domain-shared properties without
discarding domain-specific information. Besides, we impose
the ME constraint on the outputs of decoders for generating
diverse ratings from different source domains. The second
block is diverse preference augmentation, which is realized
by feeding the content data in the target domain into the
content encoder Ext and the decoder Dt. The last block,
preference meta-learning, optimizes the preference model which
is formulated with a multi-layer neural network based on the
model-agnostic meta-learning scheme. Experimental results
clearly show that MetaDPA significantly outperforms state-of-
the-art baselines including content-aware, cross-domain, and
meta-learning methods on public datasets. Besides, we conduct
ablation studies to evaluate the effectiveness of two constraints
MDI and ME. Finally, we also evaluate the impacts of hyper-
parameters β1 and β2 on the recommendation performance.
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