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Abstract—Semi-supervised heterogeneous domain adaptation (SsHeDA) aims to train a classifier for the target domain, in which only

unlabeled and a small number of labeled data are available. This is done by leveraging knowledge acquired from a heterogeneous

source domain. From algorithmic perspectives, several methods have been proposed to solve the SsHeDA problem; yet there is still no

theoretical foundation to explain the nature of the SsHeDA problem or to guide new and better solutions. Motivated by compatibility

condition in semi-supervised probably approximately correct (PAC) theory, we explain the SsHeDA problem by proving its

generalization error – that is, why labeled heterogeneous source data and unlabeled target data help to reduce the target risk. Guided

by our theory, we devise two algorithms as proof of concept. One, kernel heterogeneous domain alignment (KHDA), is a kernel-based

algorithm; the other, joint mean embedding alignment (JMEA), is a neural network-based algorithm. When a dataset is small, KHDA’s

training time is less than JMEA’s. When a dataset is large, JMEA is more accurate in the target domain. Comprehensive experiments

with image/text classification tasks show KHDA to be the most accurate among all non-neural network baselines, and JMEA to be the

most accurate among all baselines.

Index Terms—Transfer learning, machine learning, classification

Ç

1 INTRODUCTION

TRADITIONAL supervised learning theories [1] are based on
two assumptions: 1) that the training and test data are

from the same distribution [2], [3]; and 2) that sufficient labeled
training data are available [4], [5]. To ease the above assump-
tions, researchers have studied the domain adaptation (DA)
problem [6], [7], [8], [9]. In DA, there are two different
domains: source and target domains, where the source
domain contains sufficient labeled data (training data) and
the target domain only contains a few labeled data or unla-
beled data (test data). Current learning theories of DA [10],
[11], [12], [13], [14], [15] show that,when the source and target
domains are from the same feature space (i.e., homogeneous DA
(HoDA)), DA can be solved under proper assumptions [16].

In reality, however, it is not easy to find a source domain
with the same feature space as the target domain of interest
[17], [18], [19], [20], [21], [22]; specifically, the source and tar-
get domains might be from different feature spaces. To track
this issue, researchers have proposed a challenging prob-
lem: semi-supervised heterogeneous DA (SsHeDA) [23], [24],
where the source and target domains have different feature
spaces, while unlabeled and just a few labeled target data
are available in the target domain. Though many practical

SsHeDA algorithms have been proposed [25], [26], [27],
[28], very little theoretical groundwork has been undertaken
to reveal the nature of the SsHeDA problem or why the cur-
rent solutions work as they do [14].

One of our main purposes in this paper is to develop a
SsHeDA theory to explain why the labeled source and unla-
beled target data can help to reduce the need for labeled tar-
get data. We first discuss whether we can simply extend the
semi-supervised HoDA (SsHoDA) theory to the heteroge-
neous situation by introducing feature transformations to
adapt the heterogeneous source domain and target domain.
Existing SsHoDA theory [13], [29] is based on the theoretical
analysis of a weighted sum of source and target risks (weighted
risk). Researchers have provided a uniform bound on the
target risk of a classifier trained to minimize the weighted
risk. This has shown that the need for labeled target data
can be lowered by reducing the weight of the target risk.
But, an obstacle appears in the heterogeneous situation: the
combined risk [13], [29], as a constant term in the SsHoDA
uniform bound, becomes a function related to feature trans-
formations. This means that the target risk estimation might
be impracticable without sufficient labeled target data.

Motivated by the compatibility condition introduced by
semi-supervised probably approximately correct (PAC) theory
[30], we devise a novel theory for SsHeDA from a quite new
perspective compared with previous domain adaptation
theories [10], [11], [12], [13], [14], [31]. Our bold strategy is
to explain why the SsHeDA problem can be addressed by
proving a novel generalization error of SsHeDA. By reduc-
ing the size of the target feature transformation space, the
generalization error illustrates how the labeled source and
unlabeled target data, together with a suitable compatibility
condition, can reduce the need for labeled target data.

� The authors are with Australian Artificial Intelligence Institute, Univer-
sity of Technology Sydney, Ultimo, NSW 2007, Australia.
E-mail: {Zhen.Fang, Jie.Lu, Feng.Liu, Guangquan.Zhang}@uts.edu.au.

Manuscript received 11 Aug. 2021; revised 23 Dec. 2021; accepted 18 Jan. 2022.
Date of publication 27 Jan. 2022; date of current version 5 Dec. 2022.
This work was supported in part by Australian Research Council (ARC) under
Grant FL190100149.
(Corresponding authors: Jie Lu and Feng Liu.)
Recommended for acceptance by V. Lepetit.
Digital Object Identifier no. 10.1109/TPAMI.2022.3146234

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 1, JANUARY 2023 1087

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0602-6255
https://orcid.org/0000-0003-0602-6255
https://orcid.org/0000-0003-0602-6255
https://orcid.org/0000-0003-0602-6255
https://orcid.org/0000-0003-0602-6255
https://orcid.org/0000-0003-0690-4732
https://orcid.org/0000-0003-0690-4732
https://orcid.org/0000-0003-0690-4732
https://orcid.org/0000-0003-0690-4732
https://orcid.org/0000-0003-0690-4732
https://orcid.org/0000-0002-5005-9129
https://orcid.org/0000-0002-5005-9129
https://orcid.org/0000-0002-5005-9129
https://orcid.org/0000-0002-5005-9129
https://orcid.org/0000-0002-5005-9129
https://orcid.org/0000-0003-3960-0583
https://orcid.org/0000-0003-3960-0583
https://orcid.org/0000-0003-3960-0583
https://orcid.org/0000-0003-3960-0583
https://orcid.org/0000-0003-3960-0583
mailto:Zhen.Fang@uts.edu.au
mailto:Jie.Lu@uts.edu.au
mailto:Feng.Liu@uts.edu.au
mailto:Guangquan.Zhang@uts.edu.au


Guided by our SsHeDA theory, we devise two SsHeDA
algorithms to bring the proposed SsHeDA theory to reality.
Kernel heterogeneous domain alignment (KHDA) is a kernel
method designed for small datasets. Joint mean embedding
alignment (JMEA) is a network method designed for large-
scale data. Both algorithms maintain two main branches,
where the first branch aims to transfer knowledge from
source to target domain, and the second branch aims to
transfer knowledge from the labeled target data to the unla-
beled target data.

Both algorithms are proved to have good performance in
a set of experiments comprising seven representative
SsHeDA baselines, 30 text classification tasks, and 74 image
classification tasks. Extensive experiments demonstrate that
KHDA achieves competitive performance compared with
non-neural network baselines, and that JMEA achieves bet-
ter performance than all of the baselines. Our contributions
are summarized as follows:

1) We introduce the concepts of compatibility, transfer
error rates, and uniform sample complexity as new
tools for estimating the need for labeled target data.
Co-opting these concepts gives a thoroughly new
perspective for theoretically analyzing domain adap-
tation problems.

2) We propose a generalization error estimation for tar-
get risk in SsHeDA. This is the first work on SsHeDA
to explain why combining labeled source data with
unlabeled target data can reduce the need for labeled
target data.

3) We develop two SsHeDA algorithms based on our
theoretical work: KHDA and JMEA. KHDA is a ker-
nel-based algorithm that takes less time than JMEA,
when the size of datasets is small. JMEA is a neural
network algorithm that is more flexible and suitable
for handling massive data.

This paper is organized as follows. Section 2 reviews the
current literature on SsHeDA; Section 3 introduces the prob-
lem setting and important notations; Section 4 sets out our
fundamental theory of SsHeDA; Section 5 gives the details
of how to design algorithms based on our theory; Sections 6
and 7 describe the KHDA and JMEA algorithms, respec-
tively; Section 8 details our experiments; and Section 9 con-
cludes the paper and introduces our future works.

2 RELATED WORK

Here we briefly discuss the domain adaptation theories and
representative SsHeDA algorithms.

2.1 Domain Adaptation Theory

Pioneering theoretical work was proposed by Ben-David
et al. [10], which shows that the target risk is upper bounded
by three terms: source risk, marginal distribution discrep-
ancy, and combined risk. This learning bound has been
extended from many perspectives, such as considering dif-
ferent loss functions [32], different distribution distances
[33], [34], [35] or the PAC-Bayes framework [36], [37].
According to the survey [14], most works focus on proving
tighter bounds by constructing a new distribution distance.

For example, Zhang et al. [15] recently developed a new dis-
tribution distance termed margin disparity discrepancy.

Almost all the aforementioned works focus on the homo-
geneous and unsupervised situation. Only Blitzer et al. [13],
Ben-David et al. [29] and Zhou et al. [31] investigated the semi-
supervised situation. Blitzer et al. [13] and Ben-David et al.
[29] mainly focused on the homogeneous situation. These
works are based on theweighted sum of the source and target
risks and show that, a decrease in the target weight results in
a reduced need for the labeled target data. Zhou et al.[31] dis-
cussed the heterogeneous situation, however, Zhou’s theoret-
ical work is designed specially for their algorithm SHFR and
is difficult to extend tomore general situations.

2.2 SsHeDA Algorithms

The mainstream strategy to address SsHeDA is to align the
source and target domains by constructing heterogeneous
feature transformations [38]. Representative SsHeDA algo-
rithms can be roughly separated into four main types: geo-
metric/statistical alignment, instance reweighting, pseudo
label strategy and feature augmentation.

� Geometric or Statistical Alignment. Domain adaptation with
manifold alignment (DAMA) [26] and domain adaptation by
covariance matching (DACoM) [39] utilize the manifold align-
ment technique [40] and covariance alignment, respectively.
DAMA learns the source and target linear feature transfor-
mations to ensure that the geometry structures of the trans-
formed domains are consistent. DACoM learns kernel/
linear transformations to ensure that the transformed
domains are matched with higher order moments.

� Instance Reweighting. Cross domain landmarks selection
(CDLS) [41] does not regard data as being of equal impor-
tance during the domain matching process. CDLS learns
two linear feature transformations and estimates the
weights for the source and target data at the same time. To
estimate the discrepancy between the transformed domains,
CDLS utilizes the maximum mean discrepancy (MMD) [42].

� Pseudo Label Strategy. Generalized joint distribution adapta-
tion (G-JDA) [43] and soft transfer network (STN) [44] both
learn feature transformations to project the source and tar-
get data into a latent space, where the marginal and class-
conditional distributions are matched. Lastly, the pseudo
label iteration technique is used to update the target labels.

� Feature Augmentation. Sparse heterogeneous domain adap-
tation (SHFA) [23] utilizes the augmented feature transfor-
mations, which are special linear projections mapping the
source and target data to a higher dimensional space. By
incorporating the original features into the augmented fea-
tures, SHFA enhances the similarities between domains.

In addition to these four strategies, other strategies have
also been explored. Transfer neural trees (TNT) [24] effectively
adapts domains by using the decision forest technique. Semi-
supervised entropic Gromov-Wasserstein discrepancy (SGW) is
proposed in [45] and relies on optimal transport theory.

2.3 Comparison With Existing Study

� Theoretical Perspective. There is only one SsHeDA theoretical
work [31]. This work limits the loss function to hinge loss and
the feature transformation to linear mapping. However, our
work eases the restriction of the loss functions and the feature
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transformations. Hence, our theory can be used in more gen-
eral situations. Besides, the proposed generalization error in
[31] does not provide an explanation as to why the labeled
source and unlabeled target data can help reduce the need for
labeled target data. However, providing such an explanation
is ourmain purpose.

� Algorithmic and Experimental Perspectives. Compared
with the SsHeDA algorithms mentioned in Section 2.2, our
algorithms KHDA and JMEA are theoretical-guided. This
ensures that our algorithms have good generalization ability
under proper conditions. Additionally, we construct two
new datasets and introduce a new dataset for validating the
effectiveness of SsHeDA algorithms. These new datasets are
very challenging and practical, and increase the diversity of
benchmark datasets in the field of SsHeDA.

3 PROBLEM SETTING AND CONCEPTS

This section shows the problem setting and related con-
cepts. Main notations are summarized in Table 1 of Appen-
dix I, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2022.3146234.

3.1 Problem Setting

Let X s � Rd1 ; X t � Rd2 be feature spaces and Y ¼ f1; . . . ;
Kg be a label space. Source domain and target domain are two
different joint distributions PXsY s and PXtY t , whereXs 2 X s,
Xt 2 X t and Y s; Y t 2 Y are random variables. Then, the
SsHeDA problem is defined as follows:

Problem 1 (SsHeDA). Given sets of samples called the labeled
source, labeled target and unlabeled target data

S ¼ fðxis; yisÞg
ns
i¼1 � PXsY s i:i:d:

T l ¼ fðxil ; yilÞg
nl
i¼1 � PXtY t i:i:d:

T u ¼ fxiug
nu
i¼1 � PXt i:i:d:

where nl � nu, nl � ns, the aim of semi-supervised heteroge-
neous domain adaptation is to train a classifier g : X t ! Y such
that g can classify the unlabeled target data by using S; T l; T u.

3.2 Concepts

�Data. xis, x
i
l and xiu represent the ith labeled source data, the

ith labeled target data, and the ith unlabeled target data,
respectively. We use fxitg

nlþnu
i¼1 to denote the union of labeled

target data and unlabeled target data: xit ¼ xil , if i � nl; and

xit ¼ x
i�nl
u , if i > nl. We also use fxistg

nsþnlþnu
i¼1 to denote the

union of source data and target data: xist ¼ xis, if i � ns; and
xist ¼ xi�ns

t , if i > ns.
� Data Matrices. For simplicity, we set Xs ¼ ½x1s; . . . ; xnss �;

Xl ¼ ½x1l ; . . . ; x
nl
l �; Xu ¼ ½x1u; . . . ; xnuu �: Let Xc

s 2 Rds	ncs and Xc
l 2

Rdt	nc
l be the sub-matrices of Xs and Xl, whose column vec-

tors are data with label c. Let Xt 2 Rdt	nt be ½Xl;Xu�. Here
nc
s; n

c
l are the number of labeled source and target data with

label c, and nt ¼ nl þ nu. Given any data matrix X, x 2 X
means that x is a column vector of X.

� Empirical Distributions and Feature Transformations.We
denote the notation bPX be the corresponding empirical dis-
tribution over any data matrix X ¼ ½x1; . . . ; xn�

bPX ¼ 1

n

Xn
i¼1

dxi ;

where dxi is the Dirac measure defined in xi. For example,bPXs is the empirical distribution corresponding to Xs.
Given a latent space X � Rd, we denote

F s � fTT : X s ! Xg; F t � fTT : X t ! Xg;

as source and target transformation spaces, respectively. Given
a transformation TT , we define the transformed data matrix
as TT ðXÞ ¼ ½TT ðx1Þ; . . . ; TT ðxnÞ�.

� Hypothesis Space and Risks. In this paper, we consider a
multi-class classification task with a hypothesis space H con-
sisting of scoring functions (hypothesis functions)

hh : X ! R1	jYj ¼ R1	K

x ! ½h1ðxÞ; . . . ; hKðxÞ�;

where hcðxÞ ðc ¼ 1; . . . ; KÞ indicates the confidence in the
prediction of label c. Given ‘ : RK 	RK ! R
0 as the sym-
metric loss function, the risks of hh 2 H w.r.t. ‘ under PTTsðXsÞYs
and PTTtðXtÞYt are given by

Rsðhh � TTsÞ ¼ E ‘ðhh � TTsðXsÞ;fðYsÞÞ;
Rtðhh � TTtÞ ¼ E ‘ðhh � TTtðXtÞ;fðYtÞÞ;

where fmaps a label to the corresponding one-hot vector. It
is convenient to use notations bRsðhh � TTsÞ and bRtðhh � TTtÞ rep-
resent the empirical risks corresponding to the risks Rsðhh �
TTsÞ and Rtðhh � TTtÞ, respectively.

� Domain Distance. To estimate the discrepancy between
domains, we use the following well-known measurements.

Definition 1 (Disparity Distance[15]). Let the hypothesis
space H be a set of functions defined in a feature space X , ‘ be a
loss function and P1; P2 be distributions on space X and hh be
any element in H . The disparity distance d‘hh;HðP1; P2Þ between
the distributions P1 and P2 over X is

sup
hh�2H

E
x�P1

‘ðhhðxÞ; hh�ðxÞÞ � E
x�P2

‘ðhhðxÞ; hh�ðxÞÞ
����

����:
Compared with classical discrepancy distance [32], [34]

d‘HðP1; P2Þ ¼ sup
hh2H

d‘hh;HðP1; P2Þ; (1)

the disparity distance d‘hh;HðP1; P2Þ is tighter.

TABLE 1
Parameters for Different Tasks

KHDA r p s T

CIFAR-8 1.0 10.0 0.01 10.0
CIFAR-59 1.0 10.0 0.01 10.0
Food-101 1.0 10.0 0.01 10.0
Wikipedia 1.0 10.0 0.01 10.0
MRC 10.0 10.0 0.1 10.0

JMEA r r� r T

CIFAR-8 0.005 0.02 100 300.0
CIFAR-59 0.001 0.002 100 300.0
Food-101 0.001 0.001 100 1000.0
Wikipedia 0.001 0.0005 100 300.0
MRC 0.001 0.001 100 300.0
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Definition 2 (Maximum Mean Discrepancy (MMD)
[42]). Given a feature space X and a class of function F � ff :
X ! Rg, the MMD between distributions P1 and P2 is

DF ðP1; P2Þ ¼ sup
f2F

E
x�P1

fðxÞ � E
x�P2

fðxÞ
����

����:
Gretton et al. [42] propose the unit ball in a reproducing

kernel Hilbert space (RKHS) Hk [34] (the subscript k repre-
sents the reproducing kernel) as theMMD function class F .

Though the MMD distance is powerful with selected ker-
nels [46], [47], it is not convenient to be optimized as a regu-
larization term in shallow domain adaptation algorithms.
The projected MMD [9], [34], [48] has been proposed to trans-
form the MMD distance into a proper regularization term.
Given a scoring function hh ¼ ½h1; . . . ; hK � 2 H, if hc 2
Hk; c ¼ 1; . . . ; K, the projected MMD is defined as follows:
let k 
 k2 be the ‘2 norm, then

DhhðP1; P2Þ ¼ E
x�P1

hhðxÞ � E
x�P2

hhðxÞ
����

����
2

: (2)

4 THEORETICAL FOUNDATION FOR SSHEDA

This section presents two novel concepts, then reviews the
existing SsHoDA theory and discusses the main obstacle to
extend the SsHoDA theory into the heterogeneous situation.
Lastly, we introduce our main theoretical results. For better
understanding the structure of our theorems and their con-
nections with our algorithms, we draw Fig. 1 to illustrate
the structure of the following contents of our paper.

4.1 Uniform Sample Complexity

Let c be the function from H	F s 	F t 	 Ps 	Pt 	 PtðXÞ
to R, where Ps;Pt;PtðXÞ are probability spaces over spaces
X s 	 Y, X t 	 Y and X t, respectively. Given any distribu-
tions PXsYs 2 Ps, PXlYl 2 Pt and PXt 2 PtðXÞ (in SsHeDA,
PXlYl ¼ PXtYt ), if random data S with size ns , T l with size nl

and T u with size nu are drawn from PXsYs , PXlYl and PXt ,
i.i.d., respectively, for any 0 < d < 1, � > 0, we denote

mc
s ð�; d;H;F s;F tÞ; mc

l ð�; d;H;F s;F tÞ; mc
u ð�; d;H;F s;F tÞ;

as the smallest numbers of data (detailed definitions can be
seen in Appendix III-A, available in the online supplemen-
tal material, (Definitions 7, 8)) such that if

ns > mc
s ð�; d;H;F s;F tÞ;

nl > mc
l ð�; d;H;F s;F tÞ;

nu > mc
u ð�; d;H;F s;F tÞ;

with a probability of at least 1� d > 0, then for any hh 2 H,
TTs 2 F s and TTt 2 F t, we have jc� bcj < �, where

c ¼ cðhh; TTs; TT t; PXsYs ; PXlYl ; PXtÞ;bc ¼ cðhh; TTs; TT t; bPS; bPT l
; bPT uÞ;

here bPS ; bPT l
; bPT u are empirical distributions corresponding

to S, T l and T u. If the smallest sample numbers mc
s ;m

c
u and

mc
l are finite, then we say c has uniform estimation.
It is clear that if eH � H, eF t � F t, then

mc
l ð�; d; eH;F s; eF tÞ � mc

l ð�; d;H;F s;F tÞ: (3)

Above inequality shows that we can reduce the smallest
sample numbermc

l for labeled target data by decreasing the
size of the hypothesis space and target transformation
space. Next, we provide an example to understand the uni-
form sample complexity.

Example 1. Let cðhh; TTs; TT t; PXsYs ; PXlYl ; PXtÞ be

Rsðhh � TTsÞ þ d‘hh;HðPTTsðXsÞ; PTTtðXtÞÞ: (4)

If H � F s;H � F t have finite Natarajan dimensions ds and
dt [49], thenmc

l ð�; d;H;F s;F tÞ ¼ 0 and

mc
s ð�; d;H;F s;F tÞ � C

dslog ðds=�Þ þ log ð1=dÞ
�2

;

mc
u ð�; d;H;F s;F tÞ � C

dtlog ðdt=�Þ þ log ð1=dÞ
�2

;

whereC is a uniform constant depending onK and loss ‘.

Example 1 has shown that if the hypothesis space and
transformation spaces satisfy appropriate conditions, Eq. (4)
can be estimated by finite samples. To achieve a more accu-
rate estimation for Eq. (4), more labeled source data and
unlabeled target data are required.

4.2 Compatibility and Transfer Error Rate

Compatibility is proposed by [30] to develop the PAC-
model style framework for semi-supervised learning. By
using the notation of compatibility, the semi-supervised
PAC theoretical model provides a unified framework for
analyzing why unlabeled data can help to reduce the need
for labeled data.

To investigate how the source data and unlabeled target
data reduce the need for labeled target data in the SsHeDA
problem, we define the SsHeDA compatibility.

Definition 3. Given hypothesis space H, transformation spaces
F s;F t and probability spaces Ps and PtðXÞ over spaces X s 	
Y, X t, respectively, the heterogeneous domain adaptation com-
patibility is a function x : H	F s 	F t 	 Ps 	PtðXÞ !
½0; 1�:

Fig. 1. The structure of our theorems and the relations between theo-
rems and algorithms.
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Definition 4 (Transfer Error Rate). Given the HeDA com-
patibility x, the incompatibility of hh; TTs; TT t with distributions
PXsYs and PXt is

1� xðhh; TTs; TT t; PXsYs ; PXtÞ;

which is also called the transfer error rate, errðhh; TTs; TT tÞ, when
x, PXsYs , PXt are clear from the context. For given data S �
PXsYs , T u � PXt , we use cerrðhh; TTs; TT tÞ to denote 1�
xðhh; TTs; TT t; bPS; bPT uÞ as the empirical form of errðhh; TTs; TT tÞ.

Transfer error rate errðhh; TTs; TT tÞ aims to measure the
degree of incompatibility, which is a kind of “error” that
measures how unreasonable we believe some proposed
hypothesis functions and feature transformations are. Then,
we define the hypothesis function and target transformation
whose incompatibility is at most a given value a:

Definition 5. Given the threshold a 
 0,HðaÞ;F tðaÞ are

fhh 2 H j 9 TTs 2 F s; TT t 2 F t; s:t: errðhh; TTs; TT tÞ � ag;
fTTt 2 F t j 9 TTs 2 F s; hh 2 H; s:t: errðhh; TTs; TT tÞ � ag:

Remark 1. It is clear thatHðaÞ � H;F tðaÞ � F t.

Next, we need an assumption to estimate the difference
between cerrðhh; TTs; TT tÞ and errðhh; TTs; TT tÞ.

Assumption 1. Given spaces H, F s, F t and transfer error rate
errðhh; TTs; TT tÞ, for any � > 0 and 0 < d < 1,

merr
s ð�; d;H;F s;F tÞ < þ1;

merr
u ð�; d;H;F s;F tÞ < þ1;

merr
l ð�; d;H;F s;F tÞ ¼ 0:

If Assumption 1 holds, the transfer error rate can be esti-
mated by using finite source data and finite unlabeled target
data. Lastly, we introduce an example of transfer error rate.

Example 2. One can set errðhh; TTs; TT tÞ as

ð1� tÞRsðhh � TTsÞ=Bþ td‘hh;HðPTTsðXsÞ; PTTtðXtÞÞ=B;

where t is the weight and B is the supremum of ‘. If H �
F s;H � F t have finite Natarajan dimension, then
errðhh; TTs; TT tÞ satisfies Assumption 1 (see Appendix III-B,
available in the online supplemental material).

4.3 Obstacle to Extend SsHoDA Theory

Here we introduce the obstacle to extend SsHoDA theory in
SsHeDA. All proofs are given in Appendix IV, available in
the online supplemental material.

In SsHoDA theory [13], [29], weighted risk is defined as

RbðhhÞ ¼ bRtðhhÞ þ ð1� bÞRsðhhÞ;

where b ð0 < b < 1Þ is the weight. Utilizing weighted risk,
the following theorem shows that the number of labeled tar-
get data can be reduced in homogeneous situation.

Theorem 1 (SsHoDA Learning Bound). Let ‘ be the sym-
metric loss satisfying the triangle inequality, feature spaces
X s;X t be space X , and F s, F t be fIg, where I is identical map-
ping from X to X . Given labeled source data S with size ns,

labeled target data T l with size nl, and unlabeled target data
T u with size nu, for any 0 < d < 1, 0 < g1, g2 < 1; and
� > 0, if

ns > max

�
m

d‘H
s

�
g1�

2ð1� bÞ ;
g2d

2
;H;F s;F t

�
;

mRs
s

�
g1�

2ð1� bÞ ;
g2d

2
;H;F s;F t

��
;

nu > m
d‘H
u

�
g1�

2ð1� bÞ ;
g2d

2
;H;F s;F t

�
;

nl > mRt
l

�
ð1� g1Þ�

2b
; ð1� g2Þd;H;F s;F t

�
;

where d‘H is d‘HðPXs; PXtÞ defined in Eq. (1) and Rs;Rt are
RsðhhÞ; RtðhhÞ, then with a probability at least 1� d > 0

RtðbhhÞ � RtðhhtÞ þ 2ð1� bÞ
�
dHð bPXs ;

bPXuÞ þ L
	
þ �;

where bhh 2 argminhh2H bRbðhhÞ, hht 2 argminhh2H RtðhhÞ and
L ¼ minhh2H

�
RsðhhÞ þRtðhhÞ

	
known as the combined risk.

The SsHoDA learning bound in Theorem 1 mainly con-
tains three terms: the optimal target risk, the discrepancy
distance and the combined risk. When b ! 1, the bound
degenerates into the standard learning bound (that is, we
use only labeled target data). Note that by choosing differ-
ent values of b, the bound allows us to effectively trade off
the number of labeled target data against the number of
labeled source data and unlabeled target data.

Remark 2. The number of labeled target data mRt
l ðð1�g1Þ�

2b ;
ð1� g2Þd;H;F s;F tÞ is reduced, with a decrease of b.
Especially, if we set b ! 0, then mRt

l ðð1�g1Þ�
2b ; ð1� g2Þd;

H;F s;F tÞ ! 0.

It is natural to extend the above theorem to the heteroge-
neous situation by using the weighted risk and transforma-
tions TTs and TTt. However, the combined risk L results in
the main obstacle. In heterogeneous situation, L is

min
hh2H

�
Rsðhh � TTsÞ þRtðhh � TTtÞ

	
: (5)

Eq. (5) shows that L is a function on variables TTs; TT t, hence,
it is not a fixed value. To estimate L using finite samples,
the labeled target data are indispensable. The following the-
orem provides a reason why L is the main obstacle.

Theorem 2. There exist hypothesis space H and non-trivial
transformation spaces F s, F t such that for any � > 0 and 0 <
d < 1, we have mL

l ð�; d;H;F s;F tÞ 
 mRt
l ð�; d;H;F s;F tÞ; if

jX sj; jX tj > 1, where L is defined in (5) and Rt is Rtðhh � TTtÞ.

Note that there is a coefficient 2ð1� bÞ of L in the bound
of Theorem 1. Hence, to estimate 2ð1� bÞL given � and d,
the number of labeled target data needed is at least

mL
l ð

�

2ð1� bÞ ; d;H;F s;F tÞ: (6)

Combining Theorems 1 and 2 with Eq. (6), we know that
when jX sj; jX tj > 1, there exist hypothesis space H and
non-trivial transformation spaces F s, F t such that the num-
ber of labeled target data nl is at least
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max
n
mRt

l


 �

2b
; d;H;F s;F t

�
;mRt

l


 �

2ð1� bÞ ; d;H;F s;F t

�o
;

to obtain a similar bound in Theorem 1. Hence, the number
nl is greater than or equal to mRt

l ð�; d;H;F s;F tÞ (detailed
discussion can be found in Appendix IV-D, available in the
online supplemental material).

Remark 3. According to Theorem 1, in homogeneous situa-
tion, for any hypothesis H, when b ! 0, the need for
labeled target data is close to 0. However, in heteroge-
neous situation, there exist hypothesis H and non-trivial
transformation spaces F s;F t such that for any weight b 2
ð0; 1Þ, the number of labeled target data may be larger
thanmRt

l ð�; d;H;F s;F tÞ.

4.4 Theoretical Analysis

We start this section from a basic theorem, which contains
our main idea about SsHeDA theory. More extensive dis-
cussions and all proofs are given in Appendix V, available
in the online supplemental material.

Theorem 3. Let H be the hypothesis space, F s;F t be the source
and target transformation spaces, and errð
Þ be the transfer
error rate satisfying Assumption 1. Given labeled source data S
with size ns, labeled target data T l with size nl, and unlabeled
target data T u with size nu, for 0 < d; g1 < 1, 0 � a < 1
and � > 0, if

ns > merr
s ð�; g1d;H;F s;F tÞ;

nu > merr
u ð�; g1d;H;F s;F tÞ;

nl > mRt
l ð�; ð1� g1Þd;H;F s;F tðaþ �ÞÞ;

then, with a probability of at least 1� d, for any hh 2 H, TTs 2
F s and TTt 2 F t withminhh�2H;TT�

s2F s
cerrðhh�; TT �

s; TT tÞ < a

jRtðhh � TTtÞ � bRtðhh � TTtÞj < �:

Observing Theorem 3, when g1 is close to 0, then the
number of labeled target data is less than that for estimating
Rtðhh � TTtÞ directly. The crucial reason is because the space
F t is replaced by a smaller space F tðaþ �Þ.

To further reduce the number of labeled target data, we
replace conditionminhh�2H;TT�

s2Fs
cerrðhh�; TT �

s; TT tÞ < a by

min
TT�
s2Fs

cerrðhh; TT �
s; TT tÞ < a;

then the number of labeled target data can be reduced to

mRt
l ð�; ð1� g1Þd;Hðaþ �Þ;F s;F tðaþ �ÞÞ:

Though Theorem 3 provides an explanation of the uni-
form sample complexity for the labeled target data, we still
cannot explain the representative algorithms [43], [44] by
constructing different transfer error rates. This is because
the transfer error rate is not related to labeled target data
that can be used to help align the heterogeneous spaces and
control the approximate error. Hence, we add an additional
constraint called the heterogeneous space alignment

dðhh; TTs; TT tÞ; (7)

which is able to be estimated by labeled source data and
labeled target data. Motivated by previous work [11], [44],
[50], we can set the heterogeneous space alignment as

� class-conditional distribution alignment

XK
c¼1

d‘hh;HðPTTtðXtÞjYt¼c; PTTsðXsÞjYs¼cÞ; (8)

� projected MMD alignment for class

XK
c¼1

D2
hhðPTTtðXtÞjYt¼c; PTTsðXsÞjYs¼cÞ; (9)

�MMD alignment for class

XK
c¼1

D2
F ðPTTtðXtÞjYt¼c; PTTsðXsÞjYs¼cÞ: (10)

Theorem 4. Given the same conditions and assumption in Theo-
rem 3, for any 0 < d < 1 and a; � > 0,

ns > merr
s ð�; g1d;H;F s;F tÞ;

nu > merr
u ð�; g1d;H;F s;F tÞ;

nl > mRt
l ð�; ð1� g1Þd;H;F s;F tðaþ �ÞÞ;

where g1 is from (0,1) and Rt is Rtðhh � TTtÞ, then with proba-
bility of at least 1� d > 0, for any hh 2 H, TTs 2 F s and TTt 2
F t withminhh�2H;TT�

s2F s

�cerrðhh�; TT �
s; TT tÞ þ bdðhh�; TT �

s; TT tÞ
	
< a

jRtðhh � TTtÞ � bRtðhh � TTtÞj < �;

where bdðhh; TTs; TT tÞ is the empirical form of heterogeneous space
alignment defined in Eqs. (8), (9) or (10).

Theorem 4 is an extension of Theorem 3. By introducing
the heterogeneous space alignment in Theorem 4, we can
align the heterogeneous space between the source and tar-
get domains better. Using Theorem 4, we can provide an
explanation for representative algorithms, such as STN [44].
Reducing the space size implies that the estimation error
decreases and approximate error may increase. To estimate
the approximate error, Theorem 5 provides an answer.

Theorem 5. Let ‘ be the loss satisfying the triangle inequality. If
errðhh; TTs; TT tÞ ¼ 1

B

�
Rsðhh � TTsÞ þ d‘hh;HðPTTsðXsÞ; PTTtðXtÞÞ

	
,

dðhh; TTs; TT tÞ ¼ 1
BL, where L ¼ minhh2H

�
Rsðhh � TTsÞ þRtðhh �

TTtÞ
	
, B=2 is the supremum of ‘, then the approximate error

min
hh2Hða1Þ;TTt2F tða2Þ

Rtðhh � TTtÞ � Bamin;

for a1;a2 > amin, where

amin ¼ min
hh2H;TTs2F s;Tt2F t

�
errðhh; TTs; TT tÞ þ dðhh; TTs; TT tÞ

	
:

We use the combined error Lðhh; TTs; TT tÞ=B as the hetero-
geneous space alignment term in above theorem. The com-
bined error is deeply related to the conditional distribution
discrepancy (see Appendix VI-B, available in the online
supplemental material), hence, it can be used to align het-
erogeneous spaces. In addition, if we require

Rtðhh � TTtÞ � C
�
errðhh; TTs; TT tÞ þ dðhh; TTs; TT tÞ

	
;
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we can also obtain a result similar to the above theorem.
Furthermore, we provide an explanation for representative
algorithm STN [44] using our theory (see Appendix VI-C,
available in the online supplemental material).

5 BRINGING SSHEDA THEORY INTO REALITY

This section shows how to design a loss function according
to Theorem 4, i.e., bringing Theorem 4 into the reality. As
discussed in Theorem 4, we should consider the optimiza-
tion problem as follows:

min
hh2H;TTt2F t

bRtðhh � TTtÞ; subject to

min
hh�2H;TT�

s2F s

�cerrðhh�; TT �
s; TT tÞ þ bdðhh�; TT �

s; TT tÞ
	
� a: (11)

However, such constraint optimization problem cannot be
easily solved. Following [51], we replace the constraint in
problem (11) as a penalty and have the revised problem

min
hh;hh�2H;TTs2F s;TT t2F t

bRtðhh � TTtÞ þ �cerrðhh�; TT s; TT tÞ

þ�bdðhh�; TT s; TT tÞ; (12)

where � (� > 0) is a free parameter. It is important to con-
struct transfer error rate errðhh; TTs; TT tÞ and heterogeneous
space alignment dðhh; TTs; TT tÞ. Motivated by [50], [52], in our
kernel-based algorithm

errðhh; TTs; TT tÞ ¼ Rsðhh � TTsÞ þ rD2
hhðPTTtðXtÞ; PTTsðXsÞÞ;

dðhh; TTs; TT tÞ ¼ r
XK
c¼1

D2
hhðPTTtðXtÞjYt¼c; PTTsðXsÞjYs¼cÞ: (13)

Motivated by [44], in our neural network-based algorithm

errðhh; TTs; TT tÞ ¼ Rsðhh � TTsÞ þ rD2
F ðPTTtðXtÞ; PTTsðXsÞÞ;

dðhh; TTs; TT tÞ ¼ r
XK
c¼1

D2
F ðPTTtðXtÞjYt¼c; PTTsðXsÞjYs¼cÞ; (14)

where r (r > 0) is free parameter, and F is the unit ball of
linear kernel Hilbert space. Besides, we omit the coefficient
that ensures the transfer error rate is not larger than 1.

� Target Distribution Alignment.Note that the selection
bias may exist [53], [54], since the number of labeled target
data might be small. Thus, to mitigate the selection bias, the
target distribution alignment bdtðhh; TT t; TT tÞ is considered. An
analysis for the target distribution alignment is in Appendix
VI-D, available in the online supplemental material. In our

kernel-based algorithm, we set bdtðhh; TT t; TT tÞ to

D2
hhð bPTTtðXlÞ;

bPTTtðXuÞÞ þ
XK
c¼1

D2
hhð bPTTtðXc

l
Þ; bPTTtðXc

uÞ
Þ: (15)

In our neural network-based algorithm, bdtðhh; TT t; TT tÞ is

D2
F ð bPTTtðXlÞ;

bPTTtðXuÞÞ þ
XK
c¼1

D2
F ð bPTTtðXcl Þ

; bP
TTtðXc

uÞ
Þ; (16)

where Xc
u is the unlabeled data matrix with pseudo label c.

�Overall Loss Function. Inspired by the above discussions,
to solve the SsHeDA problem well, we need to take care of

the following optimization problem

min
hh;hh�2H;TTs2F s;TT t2F t

Lðhh; hh�; TT s; TT tÞ; where (17)

Lðhh; hh�; TT s; TT tÞ ¼ bRtðhh � TTtÞ þ � bRtðhh� � TTtÞ þ �
�bdðhh�; TT s; TT tÞ

þ cerrðhh; TTs; TT tÞ
	
þ rbdtðhh; TT t; TT tÞ; (18)

here cerrðhh; TTs; TT tÞ, bdðhh�; TT s; TT tÞ are the empirical forms of
Eqs. (13) and (14), and bdtðhh; TT t; TT tÞ is defined in Eqs. (15) or
(16). Note that we have added bRtðhh� � TTtÞ in Eq. (18),
because we need to guarantee that the labeled target data
can be classified accurately.

6 KERNEL-BASED ALGORITHM FOR SSHEDA

This section presents kernel heterogeneous domain alignment
(KHDA) algorithm, where the spaces F s;F t and H in prob-
lem (17) are defined as follows:

F s ¼ f½T1; . . . ; Tc; . . . ; Td� j Tc 2 Hksg;
F t ¼ f½T1; . . . ; Tc; . . . ; Td� j Tc 2 Hktg;
H ¼ f½h1; . . . ; hc; . . . ; hK � j hcðxÞ ¼ xaa>; aa; x 2 R1	dg;

where d is the dimension of the latent space X , Hks is the
RKHS space with kernel ksð
; 
Þ defined in the space X s 	X s

and Hkt is the RKHS space with kernel ktð
; 
Þ defined in the
space X t 	X t. The function hc is a linear function, thus, hc �
TTs 2 Hks and hc � TTt 2 Hkt .

6.1 Loss Function in KHDA

As introduced in Eq. (13), the transfer error rate is Rsðhh �
TTsÞ þ rD2

hhðPTTtðXtÞ; PTTsðXsÞÞ, then the empirical form of the
transfer error rate can be written as

bRsðhh � TTsÞ þ rD2
hhð bPTTtðXtÞ;

bPTTsðXsÞÞ:

According to Eq. (13), the heterogeneous space alignment
dðhh; TTs; TT tÞ is set to projected MMD alignment. The empiri-
cal projected MMD alignment is

XK
c¼1

D2
hh� ð bPTTsðXc

sÞ;
bPTTtðXc

l
ÞÞ:

Motivated by [50], [55], the pseudo labels are used to fur-
ther improve the classification performance, hence, we
replace above equation by

XK
c¼1

D2
hh� ð bPTTsðXc

sÞ;
bP
TTtðXc

t Þ
Þ; (19)

where Xc
t ¼ ½Xc

l ;X
c
u�, here Xc

u is unlabeled data matrix with
pseudo label c.

Then, to preserve domains’ geometry structures, such as
manifold structure and clustering structure, manifold regu-
larization [40] is considered in KHDA. Many kernel-based
DA algorithms [50], [52], [56] have studied the manifold reg-
ularization and shown that it can help to improve the trans-
fer performance. One can write the manifold regularizationsbM1ðhh�; TT s; TT tÞ; bM2ðhh; TT t; TT tÞ as follows:
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X
x;x02Xs or Xt

���hh� � TT ðxÞ � hh� � TT ðx0Þ
���2
2
W�ðx; x0Þ;

X
x;x02Xt

���hh � TTtðxÞ � hh � TTtðx0Þ
���2
2
Wðx; x0Þ;

where TT ðxÞ ¼ TTsðxÞ if x 2 Xs, otherwise TT ðxÞ ¼ TTtðxÞ;
W�ðx; x0Þ and Wðx; x0Þ are the pair-wise affinity functions
and estimate the similarity of x; x0. Additionally, when x
and x0 are from different domains, we setW�ðx; x0Þ ¼ 0.

Summarizing the above discussion, the loss function (18)
can be rewritten as follows:

bRtðhh � TTtÞ þ skhh � TTsk2s þ skhh � TTtk2t
þ r

�bdtðhh; TT t; TT tÞ þ bM2ðhh; TT t; TT tÞ
	

þ � bRsðhh� � TTsÞ þ � bRtðhh� � TTtÞ þ �skhh� � TTsk2s
þ �r

�bdsðhh�; TT s; TT tÞ þ bM1ðhh�; TT s; TT tÞ
	
þ �skhh� � TTtk2t ; (20)

where bdsðhh�; TT s; TT tÞ and bdtðhh; TT t; TT tÞ are

D2
hh�ð bPTTsðXsÞ;

bPTTtðXtÞÞ þ
XK
c¼1

D2
hh�ð bPTTsðXc

sÞ;
bP
TTtðXc

t Þ
Þ;

D2
hhð bPTTtðXlÞ;

bPTTtðXuÞÞ þ
XK
c¼1

D2
hhð bPTTtðXc

l
Þ; bPTTtðXc

uÞ
Þ; (21)

respectively, k 
 k2s , k 
 k
2
t are the squared norms in RKHS

with kernel ks and kt respectively; khh � TTsk2s þ khh � TTtk2t and
khh� � TTsk2s þ khh� � TTtk2t are used to avoid over-fitting; and s

is the free parameters (s 
 0). In addition, we set the loss ‘
as the squared loss ‘ðy; y0Þ ¼ ky� y0k22 in KHDA.

6.2 Reformulation of the KHDA Loss Function

This section shows how to reformulate Eq. (20). Following
the representer theorem [57], TTs and TTt can be written as

TTsðxÞ ¼
Xns
i¼1

aaiksðx; xisÞ; 8x 2 X s;

TT tðxÞ ¼
Xnt
i¼1

bbiktðx; xitÞ; 8x 2 X t;

where aai;bbbbi 2 R1	d are the parameters. We define matrices
aa 2 Rns	d, bb 2 Rnt	d and QQ 2 RðnsþntÞ	d as

aa ¼

aa1

. . .

aai

. . .

aans

2
6666664

3
7777775; bb ¼

bb1

. . .

bbi

. . .

bbnt

2
6666664

3
7777775; QQ ¼

aa

bb

� 

:

We also define the kernel matrix

K ¼
Kss O

O Ktt

� 

2 RðnsþntÞ	ðnsþntÞ; (22)

where Kss ¼ ½ksðxis; xjsÞ� 2 Rns	ns , Ktt ¼ ½ktðxit; x
j
tÞ� 2 Rnt	nt

are source and target kernel matrices, respectively.
Additionally, the hypothesis space H is the linear space,

thus, we can write hh and hh� as follows:

hhðxÞ ¼ xGG; hh�ðxÞ ¼ xGG�; 8x 2 X ;

where GG;GG� 2 Rd	K are the parameters.
� Empirical Risks. Here we will use a matrix to rewrite the

following equation:

� bRsðhh� � TTsÞ þ � bRtðhh� � TTtÞ þ bRtðhh � TTtÞ
þ skhh � TTsk2s þ skhh � TTtk2t þ s�khh� � TTsk2s þ s�khh� � TTtk2t :

(23)

Let the label matrix be Y 2 RðnsþntÞ	K

Yic ¼
1; xist 2 Xc

s or X
c
l ;

0; otherwise:

�
(24)

Then, Eq. (23) can be written as (The details about how to
obtain Eq. (25) from Eq. (23) are shown in Appendix VII-D,
available in the online supplemental material)

kAðY�KQQGGÞk2F þ �kA�ðY�KQQGG�Þk2F
þ strððQQGGÞ>KQQGGÞ þ s�trððQQGG�Þ>KQQGG�Þ

¼ tr
�
ðQQGGÞ>ðKA2Kþ sKÞQQGG

	
� 2tr

�
Y>A2KQQGG

	
þ �tr

�
ðQQGG�Þ>ðKA�2Kþ sKÞQQGG�	� 2�tr

�
Y>A�2KQQGG�	

þ Constant; (25)

where A is a ðns þ ntÞ 	 ðns þ ntÞ diagonal matrix with
Aii ¼

ffiffiffiffi
1
nl

q
, if xist 2 Xl, otherwise Aii ¼ 0; A� is a ðns þ ntÞ 	

ðns þ ntÞ diagonal matrix with A�
ii ¼

ffiffiffiffi
1
ns

q
, if xist 2 Xs, A

�
ii ¼ffiffiffiffi

1
nl

q
, if xist 2 Xl, otherwise A�

ii ¼ 0; and k 
 kF is the Frobenius

norm.
� Distribution Alignment. Using the representer theorem

[57] and kernel trick [52], we rewrite Eq. (21) as

bdsðhh�; TT s; TT tÞ ¼ tr
�
ðQQGG�Þ>KM�KQQGG�	;bdtðhh; TT t; TT tÞ ¼ tr
�
ðQQGGÞ>KMKQQGG

	
; (26)

whereM andM� are MMDmatrices defined in Appendix I-
G, available in the online supplemental material. The details
about how to derive Eq. (26) from Eq. (21) are shown in
Appendix VII-D, available in the online supplemental
material.

� Manifold Regularization. The pair-wise source affinity
matrixWs is denoted as

ðWsÞij ¼
simðxis; xjsÞ; xis 2 N pðxjsÞ or xjs 2 N pðxisÞ;
0; otherwise;

�

where simðxis; xjsÞ is the similarity function such as cosine
similarity, N pðxisÞ denotes the set of p-nearest neighbors to
xis and p is a free parameter.

The pair-wise target affinity matrixWt is denoted as

ðWtÞij ¼
simðxit; x

j
tÞ; xit 2 N pðxjtÞ or x

j
t 2 N pðxitÞ

0; otherwise:
:

�
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UsingWs andWt, we have

W ¼
O O

O Wt

� 

2 RðnsþntÞ	ðnsþntÞ;

W� ¼
Ws O

O Wt

� 

2 RðnsþntÞ	ðnsþntÞ:

Using the representer theorem and kernel trick, we can
formulate bM1ðhh�; TT s; TT tÞ and bM2ðhh; TT t; TT tÞ as

tr
�
ðQQGG�Þ>KL�KQQGG�	; tr

�
ðQQGGÞ>KLKQQGG

	
; (27)

where L� and L are the Laplacian matrices, which can be
written as D� �W� and D�W. Here D�, D are diagonal
matrices withD�

ii ¼
Pnsþnt

j¼1 W�
ij,Dii ¼

Pnsþnt
j¼1 Wij.

� Overall Reformulation.Combining Eqs. (25), (26), (27)
with Eq. (20), the optimization problem is written as

GG;GG�;QQ ¼ argmin
GG;GG�2Rd	K;QQ2RðnsþntÞ	d

LðGG;GG�;QQÞ; (28)

where LðGG;GG�;QQÞ is

tr
�
ðQQGGÞ>ðKðA2 þ rMþ rLÞKþ sKÞQQGG

	
þ �tr

�
ðQQGG�Þ>ðKðA�2 þ rM� þ rL�ÞKþ sKÞQQGG�	

� 2tr
�
Y>A2KQQGG

	
� 2�tr

�
Y>A�2KQQGG�	: (29)

6.3 Analytical Solution

We theoretically analyse the optimization problem (28) and
the following theorem tells us that the optimization problem
(28) has countless solutions. All proofs are in Appendix VI,
available in the online supplemental material.

Theorem 6. If the optimization problem

min
GG;GG�2Rd	K;QQ2RðnsþntÞ	d

LðGG;GG�;QQÞ;

has a solution, then the optimization problem has countless sol-
utions, where LðGG;GG�;QQÞ is defined in Eq. (29).

Although the optimization problem (28) has countless
solutions, we are only interested in QQGG and QQGG�. Next, we
investigate whether the optimization problem (28) can be
transformed to an optimization problem with respective to
QQGG and QQGG� in Theorem 7.

Theorem 7. Given any optimal solution GG;GG�;QQ of the optimi-
zation problem (28), if the source kernel ks and target kernel kt
are universal, and the latent subspace dimension d 
 2K, then

QQGG; QQGG�;

is the unique solution of the optimization problem

min
Z;Z�2RðnsþntÞ	K

LðZ;Z�Þ; where (30)

LðZ;Z�Þ ¼ tr
�
Z>ðKðA2 þ rMþ rLÞKþ sKÞZ

	
þ �tr

�
Z�>ðKðA�2 þ rM� þ rL�ÞKþ sKÞZ�	

� 2tr
�
Y>A2KZ

	
� 2�tr

�
Y>A�2KZ�	:

Theorem 7 implies an important result that though the
solutions of problem (28) are not unique, QQGG;QQGG� are fixed
and are the unique solution of the problem (30). Then, we
present the solution to problem (30) in Theorem 8.

Theorem 8. If the kernels ks and kt are universal, then the opti-
mization problem (30) has a unique solution

Z ¼
�
ðA2 þ rMþ rLÞKþ sI

	�1
A2Y; (31)

Z� ¼
�
ðA�2 þ rM� þ rL�ÞKþ sI

	�1
A�2Y: (32)

Algorithm 1. KHDA Algorithm for SsHeDA

1: Input Data S; T u; T l;#Iterations T ;
Parameters s; r;#Neighbor p; Kernel ks; kt;

2: Y u ¼ SVMðXl;XuÞ; // Classify T u by SVM , T l;
3: Assign Y �

u ¼ Yu;
for i ¼ 1; 2; . . . ; T do

4: Compute Z;Z� by Eqs. (31), (32) with pseudo labels Yu

and Y �
u ;

5: Obtain hh � TT t; hh
� � TT t by Z;Z� (Eqs. (33), (34));

6: Update Y �
u by hh� � TT tðXuÞ;

7: Compute Z by Eq. (31) with pseudo labels Y �
u ;

8: Obtain ehh � TT t by Z and Eq. (33);
9: Obtain the classifier ff by Eq. (35);
10: Update pseudo labels Yu by ffðXuÞ;

11: Output predicted target labels Yu.

Based on Theorem 8, hh � TTt and hh� � TTt can be written as

hh � TTtðxÞ ¼
Xnt
i¼1

Ziktðx; xitÞ; (33)

hh� � TTtðxÞ ¼
Xnt
i¼1

Z�
i ktðx; xitÞ; (34)

where x 2 X t, and Zi, Z
�
i are (iþ ns)th rows of matrices Z

and Z�, respectively.

6.4 KHDA Algorithm

To compute Eqs. (31) and (32), the labels of the unlabeled
target data are required. However, we have not any label
information related to these data. A simple and effective
method is to use the pseudo label iterative strategy [12],
[55], [58], [59]. Motivated by pseudo-label iterative strategy,
Algorithm 1 presents how to iteratively improve the quality
of Eqs. (31) and (32) and give a final kernel-based solution
to the SsHeDA problem, which is explained below.

Step 1 (Initialize pseudo labels, lines 2-3). We use SVM
with the labeled target data T l as the training data to predict
the pseudo target labels Yu for unlabeled target data T u.
Then, we let Y �

u ¼ Yu.
Step 2 (Construct classifiers, lines 4-5). Using Eqs. (31),

(32) with the pseudo labels Y �
u and Yu, we obtain

hh� � TTt; hh � TTt.
Step 3 (Bridge classifiers, lines 6-9). To link hh� � TTt; hh � TTt,

we update the pseudo label Y �
u by classifier hh� � TTt, then use

Eq. (31) with the pseudo label Y �
u to learn the third classifierehh � TTt. Next, we advocate taking advantage of the comple-

mentary of hh � TTt, hh
� � TTt and ehh � TTt via
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fcðxÞ ¼ maxfhc � TTtðxÞ; h�
c � TTtðxÞ; ehc � TTtðxÞg; (35)

where hc , h
�
c and ehc are the cth coordinate of hh, hh�, ehh. As a

result, the pseudo label of a given target data x can be pre-
dicted by argmaxc2Y½f1ðxÞ; . . . ; fcðxÞ; . . . ; fKðxÞ�. Using clas-
sifier ff , we obtain the pseudo labels Yu, where
ff ¼ ½f1; . . . ; fc; ::; fK �.

Step 4 (Update, line 10). We repeat Steps 2 and 3 until
convergence, and choose ff as the final classifier.

7 NETWORK-BASED ALGORITHM FOR SSHEDA

To address the SsHeDA problem in large-scale datasets, this
section presents joint mean embedding alignment (JMEA) to
train a network to classify target data. In JMEA, we use the
fully-connected neural networks to construct the spaces
F s;F t and H. Since JMEA does not need to compute the
kernel matrix of the whole training set, the computational
cost of JMEA is lower than that of the algorithm KHDA.

7.1 Network Structure in JMEA

According to Eqs. (14), (16) and (18), we have the following
loss function:

Lðhh; hh�; TT s; TT tÞ
¼ bRtðhh � TTtÞ þ ��ð bRsðhh� � TTsÞ þ bRtðhh� � TTtÞÞ

þ r�


D2

F ð bPTTtðXtÞ;
bPTTsðXsÞÞ þ

XK
c¼1

D2
F ð bPTTtðXc

l
Þ; bPTTsðXc

sÞÞ
�

þ r


D2

F ð bPTTtðXlÞ;
bPTTtðXuÞÞ þ

XK
c¼1

D2
F ð bPTTtðXc

l
Þ; bPTTtðXc

uÞ
Þ
�
;

where �� is a parameter to re-weight the labeled-data lossbRsðhh� � TTsÞ þ bRtðhh� � TTtÞ and always set to 2 in this paper.
Since we need to minimize above loss function by using

two different classifiers hh� and hh over the representations of

source and target data, the network used in JMEA contains
two branches (see Fig. 2). The first branch takes the labeled
source, labeled target and unlabeled target data as inputs
and aims to train a classifier (i.e., hh�) to classify source repre-
sentations (i.e., TTsðXsÞ) and target representations (i.e.,
TTtðXtÞ) well. The second branch only takes labeled and
unlabeled target data as inputs and aims to train a classifier
(i.e., hh) for the target representation (i.e., TTtðXtÞ). Note that,
the second branch is used as the final target classifier.

7.2 Loss Function in JMEA

In the first branch, we need to train a classifier to classify
source and target representations well. Thus, the following
loss function is used to optimize the parameters of Branch I

LIðhh�; TT s; TT tÞ ¼ 2
� bRsðhh� � TTsÞ þ bRtðhh� � TTtÞ

	
þ r�



D2

F ð bPTTtðXtÞ;
bPTTsðXsÞÞ þ

XK
c¼1

D2
F ð bPTTtðXc

l
Þ; bPTTsðXcsÞÞ

�
;

whereD2
F ð bPTTtðXtÞ;

bPTTsðXsÞÞ is expressed by��� 1

ns

X
x2Xs

TTsðxÞ �
1

nt

X
x2Xt

TT tðxÞ
���2
2
; (36)

andD2
F ð bPTTtðXc

l
Þ; bPTTsðXc

sÞÞ is expressed as follows:

��� 1

nc
s

X
x2Xc

s

TT sðxÞ �
1

nc
l

X
x2Xc

l

TT tðxÞ
���2
2
: (37)

To compute target mean embedding in Eq. (37) accurately,
pseudo labels are introduced to compute the second term in
Eq. (37). Thus, Eq. (37) is revised to

��� 1

nc
s

X
x2Xc

s

TT sðxÞ �
1

nc
l þ nc

u

X
x2Xc

t

TT tðxÞ
���2
2
; (38)

where Xc
t is ½Xc

l ;X
c
u�.

Fig. 2. Network structure of the joint mean embedding alignment (JMEA).
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In the second branch, we need to train a classifier to clas-
sify target representations well. Thus, the following loss
function is used to optimize the parameters of Branch II

LIIðhh; TTs; TT tÞ ¼ bRtðhh � TTtÞ þ rD2
F ð bPTTtðXlÞ;

bPTTtðXuÞÞ

þ r
XK
c¼1

D2
F ð bPTTtðXc

l
Þ; bPTTtðXc

uÞ
Þ;

whereD2
F ð bPTTtðXlÞ;

bPTTtðXuÞÞ is expressed by

��� 1

nl

X
x2Xl

TT tðxÞ �
1

nu

X
x2Xu

TT tðxÞ
���2
2
; (39)

andD2
F ð bPTTtðXc

l
Þ; bPTTtðXc

uÞ
Þ is expressed as follows:

��� 1

nc
l

X
x2Xc

l

TT tðxÞ �
1

nc
u

X
x2Xc

u

TT tðxÞ
���2
2
: (40)

Since we need to use pseudo labels to compute Eqs. (38)
and (40), we apply high-confident pseudo labels and the
soft-label trick [44] to ensure the high quality of pseudo
labels. Hence, we revise Eq. (38) to

��� 1

nc
s

X
x2Xc

s

TT sðxÞ �
P

x2Xc
l
TT tðxÞ þ

P
i2Ikc TT tðxiuÞ�yiu

nc
l þ jIk

c j

���2
2
; (41)

where Ik
c ¼ Ik \ I c, Ik is a set collecting the index of the

top-k high-confident target data (annotated by hh � TTt), I c is
a set collecting the index of target data with the pseudo label
c, and �yiu is the soft label of xiu (i.e., �yiu ¼ maxc2Yhc � TTtðxiuÞ).
Similarly, we revise Eq. (40) to

��� 1

nc
l

X
x2Xc

l

TT tðxÞ �
P

i2I�kc
TT tðxiuÞ�y�iu

jI�k
c j þ h

���2
2
; (42)

where h is a small constant 10�6 to avoid numerical
problems when jI�k

c j gets close to 0, I�k
c ¼ I�k \ I�

c , I�k is
a set collecting the index of the top-k high-confident

target data (annotated by hh� � TTt), I�
c is a set collecting

the index of target data with the pseudo label c, and
�y�iu ¼ maxc2Yh

�
c � TTtðxiuÞ.

Note that we have applied the co-teaching manner to
avoid accumulating errors of pseudo target labels [60], [61].
Namely, the pseudo-labeled target data used in Branch I are
annotated by Branch II (i.e., �yiu), and the pseudo-labeled tar-
get data used in Branch II are annotated by Branch I (i.e.,
�y�iu ). Since two branches have different views to annotate
unlabeled target data, two branches can teach each other to
avoid accumulating errors of pseudo target labels [61], [62].

Finally, JMEA has four parts of the overall loss function:

1. Labeled-data loss: L�
l ¼ 2

� bRsðhh� � TTsÞ þ bRtðhh� � TTtÞ
	
;

2. Labeled-target loss: Ll ¼ bRtðhh � TTtÞ;
3. Mean embedding (ME) loss I: LM ¼ r(Eq. (36)þ

Eq. (41));
4. ME loss II: L�

M ¼ r� (Eq. (39) þ Eq. (42)).

7.3 JMEA Algorithm

Algorithm 2 presents how JMEA trains a network to classify
data from the target domain. First, we initialize parameters
of TTs, TTt, hh, hh

� (line 2). Then we shuffle data S; T u; T l, and
update the value of k to decide how many high-confident
pseudo-label target data should be selected (lines 3 and 4).
After a mini-batch is fetched, we obtain the pseudo labels of
the unlabeled target data by hh� � TTs and hh � TTt (lines 5 and
6), respectively. Based on the confidence of each pseudo
label, we select top-k high-confident pseudo-label target
data (lines 7 and 8). Then we can compute the overall loss
(lines 9-11) and update the parameters of TTs, TTt, hh, hh

� by
minimizing the overall loss.

8 EXPERIMENTS AND EVALUATIONS

This section empirically evaluates the proposed algo-
rithms KHDA and JMEA on different SsHeDA tasks. We
then conducted experiments to analyze the sensitivity of

Algorithm 2. JMEA Algorithm for SsHeDA

1: Input Data S; T u; T l;#Epochs T ; Lowest selection rate r; Mini-batch size nb; Parameters �, r;
2: Initial TTs, TT t, hh, hh

�;
for i ¼ 1; 2; . . . ; T do
3: Shuffle datasets S; T u; T l;
4: Update k ¼ minfbnb 	 i=Tmax þ rc; nbg; // Set the number of high-confident pseudo-label target

data
forN ¼ 1; . . . ; Nmax do
5: Fetchmini-batches from S and T u; // We use the full batch for T l

6: Compute labeled data loss: L�
l ¼ 2

� bRsðhh� � TTsÞ þ bRtðhh� � TTtÞ
	
;

7: Compute labeled target loss: Ll ¼ bRtðhh � TT tÞ;
8: Obtain soft pseudo labels �Y �

u ¼ f�y�iu g
nu
i¼1 by hh� � TT t; // �y�iu ¼ maxc2Yh

�
c � TT tðxiuÞ

9: Obtain soft pseudo labels �Y u ¼ f�yiug
nu
i¼1 by hh � TT t; // �yiu ¼ maxc2Yhc � TT tðxiuÞ

10: Select top k high-confident soft labels from �Y u and denote their index by Ik ¼ [c2YIk
c ;

11: Select top k high-confident soft labels from �Y �
u and denote their index by I�k ¼ [c2YI�k

c ;
12: ComputeME loss I: LM ¼ r (Eq. (36)þEq. (41)); // Discrepancy between source and target
13: ComputeME loss II: L�

M ¼ r� (Eq. (39)þEq. (42)); // Discrepancy between pseudo-label and labeled target
14: Compute the overall loss: L�

l þ Ll þ LM þ L�
M ;

15: Update TTs, TT t, hh, hh
� by minimizing the overall loss;

16: Output Predicted target labels Y u by hh � TT tðXuÞ.
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hyperparameters. More experiments are given in Appen-
dix VIII, available in the online supplemental material.

8.1 Datasets and Baseline Algorithms

� Image$Image. CIFAR-10/100 [63] is an image dataset with
10=100 classes. The ILSVRC2012 of ImageNet is an image
dataset, which has 1,000 classes [64]. CIFAR-10/100 and
ILSVRC2012 have different resolutions. We construct
ILSVRC2012-8/59 and CIFAR-8/59 by selecting 8/59
shared classes from CIFAR-10/100 and ILSVRC2012. Then,
we use Big Transfer-M (BiTM) with ResNet-50 and ResNet-
101 [65] to extract the features. By considering each as a
domain, we build 8 datasets: I8-50/101 (ILSVRC2012-8 with
BiTM ResNet-50/101), I59-50/101 (ILSVRC2012-59 with
BiTM ResNet-50/101), C8-50/101 (CIFAR-8 with BiTM
ResNet-50/101) and C59-50/101 (CIFAR-59 with BiTM
ResNet-50/101). With these datasets, we construct several
SsHeDA tasks: I8-50 ! C8-101, I8-101 ! C8-50, I59-50 !
C59-101, and I59-101 ! C59-50 (i.e., to transfer knowledge
from ImageNet to CIFAR10/100). For I8/I59 and C8/C59,
we randomly select 500=50 labeled source data per class
and 500=50 unlabeled target data per class for training. We
randomly choose 1,3,5 data per class as labeled target data.
The average accuracy and standard error of 10 random tri-
als are shown in Table 2.

� Text$Image. UPMC Food-101 dataset [66] contains text
and image datasets and consist of about 100,000 recipes
with 101 food categories. For images (I), we use the Big
Transfer-M (BiTM) with ResNet-50 [65] to extract the fea-
tures. For text features (T), we adopt NLP model BERT [67]
to extract the features [68]. Then, we randomly select 30
data per class as the source data, 30 data per class as the
unlabeled target data, and 1,3,5 data per class as labeled

target data. There are 6 SsHeDA tasks. The average accu-
racy and standard error of 10 random trials are shown in
Table 3.

� Text$Image. Wikipedia dataset [69], [70] is extracted
from Wikipedia feature articles and consists of 2,866 image-
text pairs with 10 semantic classes. For images (I), we use
the Big Transfer-M (BiTM) with ResNet-101 [65] to extract
the features. For text features (T), since most of Wikipedia’s
texts are long-sequence, we adopt the NLP model Big Bird
[71] to extract the features. All data in the source domain
are selected randomly as the labeled source data. For the
target domain, we randomly choose 3,5,7 data per class as
labeled target data, and randomly choose 50 data per class
in the remaining data as the unlabeled target data. There
are 6 SsHeDA tasks. The average accuracy and standard
error of 10 random trials are shown in Table 3.

� Text$Text. Multilingual Reuters Collection (MRC) [72],
[73] is a text dataset applied for multi-lingual text categori-
zation and consists of 11,000 articles from six categories in
five languages, i.e., English, French, German, Italian, and
Spanish. Following the same settings in previous work [43],
we use BOW with TF-ITF to describe each article. Then we
use PCA in the BoW features to preserve 60% energy [72],
[73]. We set English, French, Italian and German as the
source domains and Spanish as the target domain. 100 data
per class in the source domain are selected randomly as the
labeled source data. For the target domain, we randomly
choose 10,15,20 data per class as the labeled target data and
randomly choose 500 data per class as the unlabeled target
data. There are 12 SsHeDA tasks. The average accuracy and
standard error of 20 random trials are shown in Table 4.

� Image!Text (end-to-end). Road-View dataset is con-
structed through the natural language-based vehicle retrieval
(NLVR) dataset [74] for end-to-end learning tasks. The road-

TABLE 2
Accuracy (%) With Standard Error on Image$Image Tasks

Tasks Non-neural Network Algorithm Neural Network Algorithm

1NN SVMt DAMA SHFA G-JDA CDLS DACoM KHDA TNT STN JMEA

#labeled target data/class = 1
I8-50!C8-101 49.6�2.2 49.6�2.4 43.5�1.3 59.8�1.6 73.1�2.4 70.3�2.0 64.1�1.1 75.7�2.5 76.8�2.8 76.9�3.7 83.6�3.6
I8-101!C8-50 49.1�1.3 49.1�1.4 44.0�1.7 64.2�0.7 71.0�2.2 71.2�1.6 61.2�1.7 78.5�2.3 75.3�2.0 72.9�2.9 77.0�2.0
I59-50!C59-101 39.0�0.8 39.0�0.8 38.9�0.6 46.2�0.8 48.9�0.9 51.0�1.0 33.8�0.5 57.0�0.9 38.9�1.1 30.9�0.5 51.0�0.8
I59-101!C59-50 37.6�0.9 38.0�0.9 38.1�0.9 41.5�1.2 45.1�1.0 47.3�1.0 34.8�0.9 52.8�1.0 40.1�0.7 34.7�1.1 48.1�1.3

Avg 43.8 43.9 41.1 52.9 59.5 61.5 48.5 66.0 57.8 53.9 64.9

#labeled target data/class = 3
I8-50!C8-101 65.9�1.1 73.5�1.5 73.4�1.1 80.4�1.9 86.4�1.9 86.5�1.4 78.2�1.5 89.8�1.2 87.4�1.4 88.9�0.7 91.1�0.2
I8-101!C8-50 64.6�1.9 73.5�1.5 68.5�1.6 80.2�1.0 86.1�0.4 85.7�0.7 78.3�1.1 87.8�1.0 85.8�0.6 86.9�0.8 89.3�0.3
I59-50!C59-101 52.7�0.4 59.1�0.3 52.4�0.4 62.4�0.3 63.4�0.6 64.1�0.7 56.1�0.6 69.8�0.5 55.3�0.6 63.9�0.8 70.6�0.6
I59-101!C59-50 48.6�0.5 55.4�0.4 51.5�0.4 59.6�0.6 59.9�0.5 60.3�0.4 52.9�0.6 65.4�0.4 50.6�0.5 60.6�0.8 66.8�0.5

Avg 58.0 65.4 61.5 70.7 74.0 74.2 66.4 78.2 69.8 75.1 79.5

#labeled target data/class = 5
I8-50!C8-101 76.4�0.8 82.8�0.8 81.9�0.7 87.4�0.3 90.2�0.2 89.5�0.2 84.6�0.5 90.9�0.3 90.1�0.2 89.6�0.8 91.5�0.2
I8-101!C8-50 69.8�0.9 77.7�0.6 76.7�0.6 82.3�0.3 88.2�0.2 86.7�0.3 80.4�0.3 88.8�0.1 86.6�0.3 88.1�0.2 89.3�0.4
I59-50!C59-101 60.5�0.5 66.0�0.3 61.2�0.4 69.1�0.4 68.1�0.3 69.2�0.3 63.6�0.4 72.9�0.2 62.8�0.4 70.7�0.3 74.8�0.1
I59-101!C59-50 48.6�0.5 62.2�0.4 61.6�0.3 64.4�0.4 63.7�0.4 64.8�0.6 60.7�0.4 69.3�0.4 57.4�0.4 67.3�0.4 71.3�0.4

Avg 63.8 72.2 70.4 75.8 77.6 77.6 72.3 80.5 74.2 78.9 81.8

The underline indicates the best accuracy among all non-neural network algorithms, and the bold color indicates the best accuracy among all neural network
algorithms.
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TABLE 3
Accuracy (%) With Standard Error on Text$Image Tasks

Tasks Non-neural Network Algorithm Neural Network Algorithm

1NN SVMt DAMA SHFA G-JDA CDLS DACoM KHDA TNT STN JMEA

#labeled target data/class = 1
I!T Food 50.3�0.6 50.3�0.7 51.8�0.6 53.9�0.6 54.3�0.7 52.5�0.8 50.8�0.6 55.4�0.7 49.7�0.7 54.2�0.6 56.3�0.7
T!I Food 21.4�0.2 21.4�0.4 21.8�0.2 25.2�0.3 20.8�0.3 21.9�0.3 15.4�0.8 28.1�0.3 19.7�0.5 27.2�0.4 30.8�0.4

Avg 35.9 35.9 36.7 39.6 37.6 37.2 33.1 41.8 34.7 40.7 43.6

#labeled target data/class = 3
I!T Food 61.3�0.3 61.0�0.3 57.3�0.3 64.9�0.4 65.3�0.3 62.4�0.5 62.1�0.3 66.7�0.4 59.4�0.4 67.0�0.3 68.2�0.4
T!I Food 29.6�0.5 37.2�0.4 34.5�0.3 39.8�0.4 35.3�0.4 38.3�0.3 27.4�0.4 43.8�0.4 22.7�0.6 44.4�0.3 45.9�0.4

Avg 45.5 49.1 45.9 52.4 50.3 50.4 44.8 55.3 41.1 55.7 57.1

#labeled target data/class = 5
I!T Food 64.4�0.3 63.8�0.3 66.4�0.3 68.6�0.3 67.9�0.2 65.8�0.4 64.8�0.3 70.1�0.3 65.3�0.4 70.4�0.3 71.1�0.3
T!I Food 33.4�0.3 42.7�0.3 41.3�0.3 47.6�0.3 42.4�0.3 43.3�0.4 33.4�0.2 50.0�0.3 31.5�0.4 50.6�0.4 51.3�0.4

Avg 48.9 53.3 53.9 58.1 55.2 54.6 49.1 60.1 48.4 60.5 61.2

#labeled target data/class = 3
I!TWiki 80.0�1.1 78.7�0.9 80.5�1.0 86.6�0.5 84.0�0.9 86.8�0.6 80.4�0.6 87.3�0.6 87.5�0.8 87.4�0.7 88.0�0.7
T!I Wiki 23.7�0.9 25.9�0.8 23.1�0.9 29.2�1.1 28.4�1.4 26.9�1.9 27.0�0.7 34.3�1.1 31.8�1.5 32.7�1.3 33.2�1.1

Avg 51.9 52.3 51.8 57.9 56.2 56.9 53.7 60.8 59.7 60.1 60.6

#labeled target data/class = 5
I!TWiki 80.8�0.9 79.3�0.5 80.8�0.9 86.9�0.5 85.3�0.9 87.2�0.6 81.4�0.7 87.6�0.4 87.3�0.6 87.7�0.7 88.1�0.6
T!I Wiki 26.8�0.8 30.7�0.9 24.4�0.5 31.8�0.9 34.9�0.7 25.8�1.0 32.1�0.7 38.7�1.0 36.5�1.0 36.1�0.8 36.7�0.8

Avg 53.8 55.0 52.6 59.4 60.1 56.5 56.8 63.2 61.9 61.9 62.4

#labeled target data/class = 7
I!TWiki 83.0�0.7 81.1�0.6 81.8�0.9 88.0�0.5 87.7�0.9 87.3�0.6 85.3�0.3 88.2�0.4 88.1�0.3 88.4�0.4 88.9�0.4
T!I Wiki 29.7�0.9 34.3�0.6 27.1�0.9 36.7�1.0 38.1�0.6 31.2�0.9 36.9�0.5 42.1�0.6 39.5�0.9 38.8�0.9 40.0�1.0

Avg 56.4 57.7 54.5 62.4 62.9 59.3 61.1 65.2 63.8 63.6 64.5

The underline indicates the best accuracy among all non-neural network algorithms, and the bold color indicates the best accuracy among all neural network
algorithms.

TABLE 4
Accuracy (%) With Standard Error on Text$Text Tasks

Tasks Non-neural Network Algorithm Neural Network Algorithm

1NN SVMt DAMA SHFA G-JDA CDLS DACoM KHDA TNT STN JMEA

#labeled target data/class = 10
English 63.0�0.5 61.6�0.9 63.7�0.9 70.4�0.5 69.4�0.8 70.0�0.9 72.3�0.6 73.0�0.5 69.7�0.7 73.3�0.6 74.4�0.5
France 63.0�0.5 61.6�0.9 62.9�0.7 70.5�0.5 70.5�0.7 70.0�0.9 72.7�0.6 73.1�0.5 69.0�0.8 73.4�0.6 74.4�0.5
German 63.0�0.5 61.6�0.9 62.6�0.9 71.5�0.5 69.6�1.0 69.0�0.8 72.5�0.7 73.2�0.5 69.2�0.8 73.4�0.6 74.0�0.6
Italian 63.0�0.5 61.6�0.9 63.2�1.0 71.3�0.5 70.1�1.0 69.8�0.9 72.8�0.5 73.0�0.5 69.2�0.9 73.4�0.6 74.3�0.5

Avg 63.0 61.6 63.1 70.9 69.9 69.7 72.6 73.1 69.2 73.4 74.3

#labeled target data/class = 15
English 66.9�0.4 68.0�0.7 69.1�0.5 74.7�0.4 73.8�0.6 73.6�0.6 74.9�0.3 75.9�0.4 70.0�0.5 76.3�0.5 76.5�0.4
France 66.9�0.4 68.0�0.7 68.3�0.6 73.6�0.4 73.6�0.5 73.4�0.7 75.3�0.5 75.9�0.4 70.5�0.6 76.3�0.4 76.8�0.4
German 66.9�0.4 68.0�0.7 68.5�0.5 74.3�0.4 74.0�0.5 72.4�0.6 75.7�0.4 75.9�0.4 71.4�0.6 76.5�0.5 76.5�0.4
Italian 66.9�0.4 68.0�0.7 69.4�0.6 73.9�0.4 73.4�0.5 73.2�0.7 75.7�0.4 75.8�0.4 70.5�0.6 76.3�0.5 76.6�0.4

Avg 66.9 68.0 65.4 74.1 73.7 73.2 75.4 75.9 70.6 76.3 76.6

#labeled target data/class = 20
English 69.3�0.4 71.2�0.5 71.9�0.4 76.4�0.4 76.0�0.7 75.2�0.6 77.2�0.4 78.1�0.5 71.1�0.5 78.3�0.4 78.6�0.5
France 69.3�0.4 71.2�0.5 71.4�0.5 76.8�0.4 76.8�0.8 75.3�0.5 77.4�0.5 77.8�0.5 71.7�0.5 78.1�0.5 78.4�0.5
German 69.3�0.4 71.2�0.5 71.5�0.4 77.1�0.5 76.8�0.7 74.3�0.6 77.3�0.5 77.9�0.5 71.6�0.7 78.1�0.5 78.4�0.5
Italian 69.3�0.4 71.2�0.5 71.8�0.4 76.9�0.4 76.6�0.7 75.3�0.6 77.3�0.5 78.0�0.5 71.9�0.6 78.2�0.5 78.6�0.5

Avg 69.3 71.2 71.7 76.8 76.6 75.0 77.3 77.9 71.6 78.2 78.5

The underline indicates the best accuracy among all non-neural network algorithms, and the bold color indicates the best accuracy among all neural network
algorithms.
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view images (i.e., the source domain) are from 20 different
cameras in the NLVR dataset and are reconstructed into 20
different classes, containing 68,254 images. Meanwhile, we
construct a text dataset (i.e., the target domain) that
describes such road-view images, containing 7,700 sequen-
ces. In this road-view task, we aim to train a classifier to
identify 20 different roads that text sequences describe
using few-labeled text sequences (1,3,5 per class), unlabeled
text sequences and road-view images. We use the ResNet-
50 [75] and the NLP model RoBERTa-large [76] as the back-
bones for images and texts, respectively. The average accu-
racy and standard error of 5 random trials are shown in
Table 5.

� Other Datasets. Due to space limitations, details about
Office+Caltech256 [77] (24 tasks), ImageCLEF-DA [78] (32
tasks), Reuters-21578 [18] (6 tasks) and Cross-lingual Senti-
ment [31] (3 tasks) are given in Appendix VIII, available in
the online supplemental material.

� Baseline Algorithms. 1NN, SVMt, DAMA [26], SHFA
[23], G-JDA [43], CDLS [41], DACoM [39], TNT [24] and
STN [44] are used as the baseline algorithms for non-end-to-
end tasks. Except for 1NN and SVMt, the details on other
baselines are given in Section 2. In the end-to-end task, we
consider the following baselines: 1) Target-ERM where we
only use labeled target data to fine-tune the RoBERTa-large
model [76], and 2) ST-ERMwhere we train JMEA only using
labeled information in both domains, and 3) JMEA-BII
where we use labeled and unlabeled target data to fine-tune
the RoBERTa-large model [76] (i.e., only training Branch II
of JMEA), and 4) the end-to-end version of STN [44].

8.2 Experimental Setup

Before detailing the evaluation results, we explain how the
parameters of KHDA and JMEA are set.

� Parameters for KHDA. There are several parameters: 1)
the kernel ks and kt; 2)#iterations T ; 3) s, r,#neighbor p.

As suggested in [42], [50], we choose the Gaussian kernel

knðxn; x0nÞ ¼ exp


� kxn � x0nk

2
2

2r2n

�
;

where n 2 fs; tg, xn; x0n 2 Xn and the kernel bandwidth rn is
medianðkxn � x0nk2Þ, 8 xn; x

0
n 2 Xn. When n ¼ s, Xn ¼ Xs.

When n ¼ t, Xn ¼ Xt. The details of the parameters are
shown in Table 1.

� Parameters for JMEA. There are several parameters in
JMEA: 1) #epochs T ; 2) r, � and r. Except for the end-to-
end task, the details of these parameters are shown in
Table 1. TTs and TTt are three-layer fully-connected neural
networks. The hh and hh� are two-layer fully-connected

neural networks. In the end-to-end task, the backbone of the
Branch I of JMEA is the ResNet-50 model [75], and the back-
bone of Branch II of JMEA is the RoBERTa-large model [76],
and we use the end-to-end manner to implement JMEA.
Due to the complexity of Road-View task, we detail JMEA’s
parameter setting regarding the end-to-end task in
Appendix VIII, available in the online supplemental
material.

�Metric. The classification accuracy [55] on the test data is

Accuracy ¼
PK

c¼1 jx 2 Xc
u : ggðxÞ ¼ cj

jx : x 2 Xuj
;

where gg is the predicted classifier and Xc
u is the unlabeled

target data matrix with true label c.

8.3 Experimental Results

The classification accuracy and standard error on different
tasks are shown in Tables 2, 3 and 4.

� Image$Image. 1) In Table 2, compared to all non-neural
network baselines, KHDA works the best for almost all
tasks (12=12) and the mean accuracy achieves an improve-
ment at least 2:5%. Compared to all neural network base-
lines, JMEA works the best for all tasks (11=12) and the
average accuracy of JMEA achieves an improvement at least
2:5%. KHDA and JMEA both achieve better performance
than all baseline algorithms. 2) It is notable that the accuracy
of all algorithms increases when using more labeled target
data per class. In addition, KHDA is better than JMEA
when the number of labeled target data per class is 1.
KHDA becomes worse than JMEA if the number of labeled
target data per class is 3 or 5. 3) Except for DAMA, baselines
SHFA, G-JDA, CDLS, DACoM, TNT and STN achieve better
mean performance than 1NN and SVMt. This indicates that
the baselines SHFA, G-JDA, CDLS, DACoM, TNT and STN
can transfer knowledge from the source data to the target
data.

� Text$Image. The results for the Wikipedia and Food-
101 datasets are reported in Table 3. 1) JMEA works the best
for all tasks (12=12) and has achieved a mean improvement
at least 0:5%, compared to all baselines. 2) Among all non-
neural network algorithms, KHDA works the best for all
tasks (12=12) and has achieved a mean improvement at least
2:0%. 3) In some tasks, STN is slightly better than KHDA
(0:1% � 0:6%). However, in tasks T!I Wiki, KHDA is better
than STN (0:9% � 3:3%). 4) DACoM and TNT are worse
than 1NN and SVMt in tasks I!T and T!I Food. The rea-
son is that the number (101) of classes for Food-101 may be
beyond the capacity of DACoM and TNT.

� Text$Text. Table 4 shows the means and standard
errors of classification accuracy for all algorithms on the
MRC. 1) Of all the non-neural network-based algorithms,
KHDA performs the best on 11 tasks (11=12). 2) JMEA has
achieved the best performance compared to all algorithms
and generally outperforms all other baseline algorithms by
at least 0:9%; 0:3% and 0:3% (average accuracy), respectively,
for different labeled target data per class. 3) According to the
results from Table 4, the accuracy of all algorithms increases
when usingmore labeled target data per class.

� Image!Text (end-to-end). Table 5 shows the means and
standard errors of classification accuracy of JMEA and

TABLE 5
Accuracy (%) of JMEA and Baselines on the Road-View Task

(End-to-End Learning Task)

np
l Target-ERM ST-ERM STN JMEA-BII JMEA

1 29.3�1.0 32.0�0.7 30.6�2.3 28.4�2.5 34.9�1.7
3 62.3�2.0 58.9�0.7 66.7�1.3 61.2�3.6 68.2�2.0
5 75.1�1.2 79.9�1.3 88.5�1.5 89.4�3.5 91.0�1.4
Avg 55.6 56.9 62.0 59.7 64.7

np
l is the number of labeled target data per class.
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baselines on the Road-View task. In Table 5, JMEA outper-
forms all baselines. In particular, JMEA has higher accuracy
than the state-of-the-art network-based SsHeDA algorithm
STN.

8.4 Parameter Sensitivity

We conduct experiments on three different tasks: CIFAR-8,
CIFAR-59 and Food-101 (3 labeled target samples per class)
to evaluate the mean-accuracy variations of KHDA and
JMEA using different parameters.

� Parameter r in KHDA. We run KHDA with varying val-
ues of r. Fig. 3a plots the classification accuracy w.r.t. differ-
ent values of r. From this figure, we observe that 1) when r

is from [1.0,5.0], the performance may be the best and when
r ¼ 0:01, the performance is the worst; 2) as increasing r

from 0.01 to 1.0, the accuracy increases; 3) as increasing r

from 1.0 to 100, the accuracy decreases slowly. KHDA can
achieve satisfactory performance, if r 2 ½1:0; 10:0�.

� Parameter p in KHDA. We run KHDA with varying val-
ues of p. Fig. 3b plots the classification accuracy w.r.t. differ-
ent values of p. From this figure, we observe that as
increasing p from 2.0 to 64.0, the accuracy on CIFAR-8 is
quite stable, and the accuracy on CIFAR-59 and Food-101
decrease slowly. In particular, by changing p in the range of
[2.0,10.0], KHDA achieves satisfactory performance.

� Parameter s in KHDA. We run KHDA with varying val-
ues of s. Fig. 3c plots the classification accuracy w.r.t. differ-
ent values of s. From this figure, we observe that 1) the
performance is the best when s ¼ 0:001, and the perfor-
mance is the worst when s ¼ 10:0; 2) as increasing s from
0.001 to 10.0, the accuracy decreases gradually. Specifically,
by changing s in the range of ½0:001; 0:05�, the mean accu-
racy of KHDA is still higher than that of the non-neural net-
work baselines.

� Parameter T in KHDA. The results of the convergence
analysis are provided in Fig. 3d, which shows that KHDA
achieves steady performance in a few iterations (T < 5).

� Parameter r in JMEA.We run JMEAwith varying values
of r. Fig. 3e plots the classification accuracy w.r.t. different
values of r. From this figure, we observe that 1) the perfor-
mance of JMEA is very steady, when r is in the range
[0.0001,0.001] on CIFAR-8 and Food-101 datasets; 2) as

increasing r from 0.0001 to 0.001, the accuracy on CIFAR-59
dataset increases and achieves the highest value when r ¼
0:001. Thus, we recommend selecting r in ½0:005; 0:001�.

� Parameter r� in JMEA. We run JMEA with varying val-
ues of r�. Fig. 3f plots the classification accuracy w.r.t. dif-
ferent values of r�. From this figure, we observe that 1) the
mean accuracy of JMEA will drop significantly when r� is
greater than 0.001, meaning that a small value of r� will be
better if the number of classes is large; 2) when increasing
r� from 0.0001 to 0.02, the accuracy on CIFAR-8 dataset is
quite stable. Overall, if we select r� in the range of
½0:0005; 0:001�, JMEA can achieve satisfactory performance.

� Parameter r in JMEA.We run JMEA with varying values
of r. Fig. 3g plots the classification accuracy w.r.t. different
values of r. From this figure, we observe that the accuracy
on all datasets is quite stable, when increasing r from 50 to
250. We recommend selecting r in the range of [100,200].

8.5 Ablation Study

Here we present the ablation study for KHDA and JMEA.
This study is conducted on different tasks: CIFAR-8,
CIFAR-59 and Food-101 (3 labeled target samples per class).
We report average accuracy for different dataset.

� Ablation Study for KHDA. We conduct comprehensive
experiments to show the contribution of the individual com-
ponents in KHDA in Table 6. We consider the following
baselines: 1) w/o D: In KHDA, train classifiers without dis-
tribution alignment Eq. (21). 2) w/o M: In KHDA, train clas-
sifiers without manifold regularization Eq. (27). 3) r ¼ 0: In
KHDA, train classifiers without the combination of mani-
fold regularization and distribution alignment. 4) s ¼ 0: In
KHDA, train classifiers without kernel regularization. 5) hh,
hh�, ehh: In KHDA, the performance of hh, hh� and ehh. 6) w/o hh:
In KHDA, train classifiers without hh. 7) w/o hh�: In KHDA,
train classifiers without hh�. 8) w/o ehh : In KHDA, train classi-
fiers without ehh. From these results, we find that:

1) When we omit the distribution alignment (i.e., w/o
D), the mean accuracy drops from 70:6% to 66:4%.
This indicates that the distribution alignment is
important for KHDA. If we omit the manifold regu-
larization (i.e., w/o M), the mean accuracy 70:1% is

Fig. 3. Parameter study of KHDA and JMEA.
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worse than the mean accuracy 70:6% of KHDA. This
indicates that the manifold regularization helps
KHDA to achieve better performance.

2) If we set r ¼ 0, then themean accuracy 64:5% is much
lower than the mean accuracy 70:6% of KHDA. This
indicates that the combination of manifold regulari-
zation and distribution alignment can greatly
improve the performance of KHDA. If s ¼ 0, the
mean accuracy 46:4% is much lower than the mean
accuracy 70:6% of KHDA with s ¼ 0:01. The reason
may be that the overfitting occurs when s ¼ 0.

3) We observe that the performance of hh� (68:7%) and ehh
(70:2%) is worse than the performance of hh (70:5%)
and ff (70:6%). The performance of hh and ff is similar,
which means that hh can also be used as the final
classifier.

4) If we omit hh (i.e., w/o hh), hh� (i.e., w/o hh�) and ehh (i.e.,
w/o ehh), respectively, the mean performance of
KHDA (70:6%) decreases to 67:9%, 69:1% and 69:2%,
respectively. This implies that every classifier is
important for KHDA.

� Ablation Study for JMEA. We conduct comprehensive
experiments and show the contribution of the individual
components in JMEA. We consider the following baselines:
1) w/o L�

l : In JMEA, train two branches without minimizing
loss function L�

l . 2) w/o Ll: In JMEA, train two branches
without minimizing loss function Ll. 3) w/o LM : In JMEA,
train two branches without minimizing loss function LM . 4)
w/o L�

M : In JMEA, train two branches without minimizing
loss function L�

M . 5) w/o C : In JMEA, turn off the checking
process. Namely, we replace Ik

c in Eq. (41) with I�k
c and to

replace I�k
c in Eq. (42) with Ik

c . 6) w/o S : In JMEA, turn off
the selection process. Namely, we set r in Algorithm 2 to nb.
7) w/o C&S : In JMEA, turning off the checking process and
the selection process.

Note that in the full JMEA, we minimize all loss func-
tions and turn on the checking process (C) and the selec-
tion process (S) simultaneously. Table 7 reports the
average performance of above baselines and JMEA. It is
clear that all components in JMEA can help improve the

performance. From these results, we can find the follow-
ing insights:

1) When we remove L�
M from the overall loss func-

tion used by JMEA, the performance will drop
more than the accuracy when we remove LM .
Hence, minimizing L�

M is important to improve
the performance.

2) It is important to turn on the checking process and
the selection process simultaneously since the per-
formance of w/o C&S (70:0%) is much lower than
that of JMEA (72:0%). If we only turn on checking
(i.e., w/o S) or selection (i.e., w/o C), the accuracy
will drop significantly on the Food-101 dataset (from
57:1% to 52:3% or to 52:4%).

9 CONCLUSION AND FUTURE WORKS

This paper provides an in-depth analysis of SsHeDA that
gives rise to a comprehensive theory of the SsHeDA prob-
lem, a novel perspective for analyzing domain adaptation
problems, and new mathematical tools for solving the
SsHeDA problem. The theoretical result is the first-ever
explanation of why labeled source data combined with
unlabeled target data help reduce the need for labeled data
in the target domain. Then we propose two novel SsHeDA
algorithms to bring the proposed theory into reality: KHDA
and JMEA. KHDA is kernel-based and is well-suited to sit-
uations with small amounts of data. JMEA can deal with
massive datasets. It is neural network-based and highly
flexible. In sweeping experiments with representative base-
lines and 104 SsHeDA tasks, the accuracy of JMEA outstrips
that of all baselines, and KHDA outperforms all non-neural
network baselines. In the future, we will consider HeDA in
semantic segmentation tasks [79], [80]. Inspired by Dong
et al. [81], [82] that develop a novel perspective to distin-
guish transferable or untransferable representations across
domains, we will develop a novel learning theory in seman-
tic segmentation tasks to quantify transferability across het-
erogeneous domains.

TABLE 7
Accuracy (%) of Ablation Study of JMEA on CIFAR-8/59, Food-101 Datasets With 3 Labeled Target Data per Class

Dataset w/o L�
l w/o Ll w/o LM w/o L�

M w/o C&S w/o S w/o C JMEA

CIFAR-8 89.4 43.7 88.9 88.0 89.9 89.9 89.6 90.2
CIFAR-59 57.8 28.4 64.4 65.0 67.8 67.9 68.2 68.7
Food-101 50.1 31.1 53.0 51.1 52.3 52.3 52.4 57.1
Avg 65.8 34.4 68.8 68.0 70.0 70.0 70.1 72.0

TABLE 6
Accuracy (%) of Ablation Study of KHDA on CIFAR-8/59, Food-101 Datasets With 3 Labeled Target Data per Class

Dataset w/o D w/o M r ¼ 0 s ¼ 0 hh� ehh hh w/o hh� w/o ehh w/o hh KHDA (ff)

CIFAR-8 83.7 88.3 81.4 87.0 88.5 88.7 88.8 88.3 88.3 87.4 88.8
CIFAR-59 62.9 67.0 60.2 50.9 66.1 67.2 67.5 65.0 65.0 67.2 67.6
Food-101 52.7 55.1 52.2 1.3 51.4 54.6 55.2 54.0 54.4 49.1 55.3
Avg 66.4 70.1 64.5 46.4 68.7 70.2 70.5 69.1 69.2 67.9 70.6
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