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Abstract

We analyze the impact of soft information on US mortgages

for default prediction and provide a new measure for

lender soft information that is based on the interest

rates offered to borrowers and incremental to public

hard information. Hard and soft information provide for

a variation in annual default probabilities of approxi-

mately 3%. Soft information has a lesser impact over

time and time since origination. Lenders rely more on

soft information for high-risk borrowers. Our study

evidences the importance of soft information collected

at loan origination.
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1 | MOTIVATION

Mortgage lending plays a crucial role in financial markets and accounts for a high proportion of commercial

banks' balance sheets.1 Home ownership and finance play key roles in consumers' lives. However, mortgage

lending was found to be a critical cause of the Global Financial Crisis of 2008–2009. Financial institutions rely
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on credit scoring of borrowers to determine their ability to repay debt for loan pricing at origination and refi-

nance, loan provisioning and calculating bank capital requirements.

Lenders include both “hard” and “soft” information to assess the likelihood and magnitude of future loan losses

and then make lending decisions. We follow the definition by Stein (2002) in our paper and define hard information

as information that is measurable, digitally stored, and publicly verifiable by all lenders. Such information is easily

incorporated into scoring models and applied to a large number of borrowers. On the other hand, individual lenders

collect private soft information based on personal interactions, customer visits, and trust relationships between

lenders and customers. This kind of information is difficult to quantify and verify but remains significant in credit

assessment processes.

To illustrate, a borrower submits her mortgage loan application to a lender and loan officers analyze hard infor-

mation such as the FICO score, debt-to-income (DTI) ratio and loan-to-value (LTV) ratio. They further collect soft

information from interviews or other sources, such as transactional records and determine lending terms. Soft infor-

mation may result in the rejection (acceptance) of a loan application if the loan officer believes that the borrower is

riskier (less risky) than a threshold. In addition, the assessment of risk will be embedded in the pricing process,

whereby customers may have to pay a higher interest rate for a higher risk. It is apparent that soft information gath-

ered by lenders adds a human touch to the approval and pricing process.2

This paper provides a new measure for lender soft information based on the interest rates offered to borrowers

incremental to measurable hard information. We rely on the credit spreads embedded in loan rates offered to bor-

rowers following the accept decision of lenders. Through the credit spread channel, we identify and measure the net

position of soft information in which the more adverse the soft information is, the higher the credit spread on loans

is, and hence the higher the default likelihood is. This approach is novel as it defines soft information as the variation

after controlling for hard information. It includes soft information that may be observed through proxy variables such

as geographic distance between borrowers and lenders as well as soft information that is not observed. Further, this

paper also tests the additional accuracy of our soft information measure in predicting credit risk.

The econometric contributions of this approach are twofold. First, we are able to measure unobserved soft

information. Prior literature considers observed soft information via proxy variables but has not considered soft

information that is not observed by such variables. Second, soft information is measured in our paper on a continu-

ous scale and on an interpretational level of the credit spread. A higher value corresponds to a higher credit spread.

Prior literature has confirmed the existence of soft information but not the degree to which soft information predicts

credit risk.

Relative to the existing finance literature, we make the following contributions in this paper. First, we provide

evidence that soft information is predictive for mortgage default risk. Hard and soft information provide for a varia-

tion in annual default probabilities of 3%. Second, we find that soft information is less predictive over time and time

since origination. This may signal a shrinkage of soft information collection and depreciation since loan origination.

Third, we document that lenders rely more on soft information for high-risk borrowers as more soft information is

collected and priced for borrowers when information is more binding as information has a greater sensitivity on

default risk.

This paper is organized as follows, Section 2 reviews related literature. Section 3 outlines the model framework.

Section 4 describes the data used, main empirical analysis and robustness checks. Section 5 provides an economic

impact analysis and Section 6 discusses our findings and concludes.

2 | LITERATURE REVIEW

The existing literature supports the importance of soft information in business and consumer lending. There is a vast

literature on relationship lending to firms.3 Examples include Stein (2002), DeYoung et al. (2008), Degryse and Van

Cayseele (2000), Chakraborty and Hu (2006), and Brick and Palia (2007). For example, Stein (2002) argues for the
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importance of soft information on lending for small to medium firms. This is due to the relationship between the

firm's executives and lenders. Berger et al. (2005) find that smaller banks collect more soft information.

The creation of soft information underpins the relationship between a lender and their borrowers. A key mea-

sure for this relationship is geographic distance. Agarwal and Hauswald (2010) as well as Berger and Udell (2002)

show that borrower proximity facilitates the collection of soft information. Petersen and Rajan (2002) find that con-

solidation in the banking industry makes geographic distance a less precise measure as the location of the ultimate

parent (i.e., bank holding company) may not be representative for the location which collects soft information

(i.e., bank branch).

Literature on soft information in mortgage lending is sparser and more recent. Examples include Ergungor and

Moulton (2014) who use distance to the nearest branch, bank size, and bank deposit share as proxies. The authors

find that borrowers who receive a loan from a local bank are less likely to default on their loan as opposed to receiv-

ing a loan from other banks. Agarwal et al. (2011) analyze the lender decisions in a dynamic contract setting where a

loan application undergoes a secondary screening (collection of soft information) and contract terms are dynamically

adjusted. Saengchote (2013) analyses distance, broker competition, and regulation. Furthermore, Rajan et al. (2015)

show that over the duration of a loan, the interest rate becomes a poor predictor of default.

A key contribution of this paper to the existing literature is to identify the existence and importance of soft

information for mortgage loan prices relative to corporate loans. Prior literature uses indirect proxy variables.

We follow a different approach as soft information is internalized by lenders and not disclosed to investors, and

is thus hard to test for explicitly. Further, we define soft information as the variation after controlling for hard

information, and therefore include soft information that is explained by proxy variables for relationship lending,

as well as soft information, which is unobserved by such variables. Our methodology differs to the extant litera-

ture as we use two-stage model and use its residuals from a regression of the loan credit spread at origination

on hard information to measure soft information in a first stage and analyze the predictive role of these residuals

for credit risk in a second stage.

Literature on mortgage loan credit spreads includes Levitin et al. (2020), Justiniano et al. (2017) and Rajan et al.

(2015). Levitin et al. (2020) analyze the impact of observable risk factors on mortgage pricing over time. Justiniano

et al. (2017) analyze the impact of US treasury yield term structures on mortgage rates and find that the relation

diminishes over time. Rajan et al. (2015) find that LTV and FICO scores bear an increasing importance on the pricing

of securitized mortgages, which may be explained by borrowers window-dressing their loan applications.

Literature finds that lenders collect soft information. Prior studies in the literature rely on soft information

through indirect proxy variables. Our contribution is to provide a novel metric for lender soft information that is

based on the interest rates offered to borrowers incremental to measurable hard information. Further, we find that

this soft information is predictive for default and establish links to the decay over time and time since origination as

well as the interaction with hard information.

Using this methodology, we analyze the capability of soft information to predict mortgage default and condition

our findings on vintage, time since origination and hard information. Our research null hypotheses are:

Hypothesis 1. Soft information is not predictive for mortgage default.

Hypothesis 2. The predictive power of soft information is independent of (a) vintage, (b) time since

origination, and (c) hard information.

We interpret significance of test variables in Stage 2 regressions for soft information and their interaction

with (a) vintage, (b) time since origination, and (c) hard information, as an indication to reject the null hypothesis and

support of the alternative hypotheses. We acknowledge that we work with large data. P-values shrink to zero with

the number of observations. Hence, we provide an economic impact analysis of the measures for soft information to

further support our findings in Section 5.
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3 | MODEL FRAMEWORK

To understand the role that soft information plays for interest rates charged and credit risk, we use a two-

stage regression model. In the first stage (Stage 1) regression, we analyze the impact of hard information on

the credit spread charged for a given borrower. In the second stage (Stage 2) regression, we test the residuals

from the Stage 1 regression as a proxy of soft information next to hard information on default. This approach

is consistent with Goetzmann et al. (2004) who propose an alternative way of thinking about soft information

as noise in a quantitative model. All Stage 2 models control for loan payoffs due to early termination of con-

tracts with lenders.

3.1 | Stage 1 – Identifying soft information

The general definition of soft information within our paper is information linked to lenders who approve the loan but

cannot be linked to other observable information. Agarwal et al. (2011) argue that soft information is collected during

the origination of the loan. Following this argument, the Stage 1 models are based on an origination panel in which

every loan has a line entry with information known at the origination time. All variables are observed at the origina-

tion time of the loan. We have used a Linear Regression and a Random Forest in the empirical analysis. The models

are the foundation to the following Stage 2 analysis.

3.1.1 | Linear regression model

We estimate the OLS Linear Regression (LR) model below:

CreditSpreadiτ ¼ α1þβ1Xiτþ γ1Δiþδ1Δτþπ1ΔiΔτþεiτ,LR ð1Þ

with loan i (i = 1,…, I) and origination period τ (τ = 1,… Τ). All Stage 1 parameters have the index “1”.
We calculate credit spreads as the difference between the mortgage rate at origination and Treasury bond yields.

Then, we develop a pricing model based on hard information observed at origination. Xiτ is a vector of explanatory

variables, including vectors of borrower features, loan features and macroeconomic factors at loan origination. We

include spline effects to control for non-linear relations. Δi and Δτ are lender and time dummies.

We use variables published by periodic investor reports for mortgage securitizations (residential

mortgage-backed securities) for hard information that is verifiable (compare Stein (2002)). Keys et al. (2010)

argue that lenders may have weak incentives to screen due to securitization. They show that securitization

changes the lenders' screening process, because investors have access to hard information but not soft infor-

mation when making an investment decision and data templates are homogeneous over lenders. The authors

argue that lenders practice lax screening methods for borrowers with high-FICO scores because those loans

are easier to securitize. As a result, lenders are less motivated to collect soft information. In other words, secu-

ritization may introduce a bias as lenders pass on “lemon” mortgages based on soft information. However, our

findings are conservative (i.e., we are likely to underestimate soft information) for loans that lenders retain on

their balance sheet. Note that this is the lower proportion of total loans (see Federal Deposit Insurance

Corporation, 2019).

Banks have also different securitization ratios over time compared to non-bank lenders. We aim to control for

securitization bias using lender and time fixed effects as well as their interaction. We control for exogenous lending

standards across lenders by adding lender effects (Δi), time variation by adding time effects (ΔτÞ, as well as changes

LUONG ET AL. 161
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across lenders and time by adding interaction terms ΔiΔτ . After accounting for these factors, we are left with the

residuals εiτ,LR of the model to capture soft information.

We summarize the hard information to the score HIS by multiplying the estimated parameters with the factors

observed at loan origination:

HISiτ,LR ¼cα1þ bβ1Xiτþ bγ1Δiþ bδ1Δτþcπ1ΔiΔτ ð2Þ

For the avoidance of doubt, every loan i has one observation that is measured at origination τ and hence, one

residual εiτ,LR. As there is only a single origination time per loan, we simplify εi,LR ¼ εiτ,LR and HISi,LR ¼HISiτ,LR.

3.1.2 | Machine learning with random forests

The ultimate goal in our Stage 1 is to explain the credit spread by public information to infer the credit spread implied

by soft information (residual). Lenders may apply a range of approaches that vary over loans, loan products, lenders,

and time. Econometric techniques that rely on a complexity reduction via defined parameters may be unable to fully

account for the heterogeneity in loan pricing applied in industry. Machine learning methods such as bagged trees

(bootstrap aggregations like Random Forests) and boosted trees are well suited for our application as they are able

to consider any variable combination (based on public information) via random sampling and non-linearity via split-

ting of variables. We have tested a number of such approaches and find that the best fitting model is a random

forest.4

Random forests are based on a random selection of data and variables which are split into nodes. Multiple trees

are formed and a limited number of trees (e.g., 100) is generally sufficient to minimize errors. The final model predic-

tions CreditSpreadiτ,RF are based on averaging the predictions for the out-of-bag samples to avoid overfitting. We

set hard information to the model-implied credit spread:

HISiτ,RF ¼ dCreditSpreadiτ,RF ð3Þ

The soft information is the difference between the observed and the fitted credit spread:

εiτ,RF ¼CreditSpreadiτ,RF� dCreditSpreadiτ,RF ð4Þ

For the avoidance of doubt, every loan i has one observation that is measured in period τ and hence, one resid-

ual εiτ,RF as loans are included in different leaves in different trees and thus the average spreads are different over

loans. There is only a single origination time per loan and we simplify εi,RF ¼ εiτ,RF and HISi,RF ¼HISiτ,RF .

3.2 | Stage 2 – Base test for the impact of soft information on default

In Stage 2, we analyze the impact of soft information on the prediction of default. After loan origination, borrowers

face the following three outcomes:

Sit ¼
D if loan i defaults at time t

P if loan i paysoff at time t

0otherwise

8><
>:

162 LUONG ET AL.
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Hence, default is a competing hazard to the other two states of payoff and non-default/non-payoff (see Deng

et al., 2000). Low credit risk borrowers are more likely to pay loans off prior to maturity often as a consequence of

refinancing the loan with a lender at lower rates after loans are partially amortized and LTV ratios decrease. High

credit risk borrowers are more likely to default. A selection bias may be introduced when low credit risk borrowers

depart and the remaining population has a greater risk following payoff.

Default risk prediction in industry follows narrow regulatory requirements. One of which is the calibration of

annual PDs on annual default rates. Following industry practice, we have used multinomial logit models as they are

explaining default probabilities for discrete times. The competing states default, payoff, and non-default/non-payoff

are mutually exclusive. We further provide a competing risk hazard rate analysis for all main results in the robustness

test section.

For the main regression results, we control for payoff by estimating multinominal logit models, which are com-

mon in the literature (e.g., Ergungor and Moulton (2014) and Agarwal et al. (2011)).5 We model the probability of

default and payoff as

Prob Sit ¼ s, s� D, Pf gð Þ¼ exp αS2þβS2εiþ γS2HISiþδS2 �Xit

� �
1þP

s � 1,2f g exp αS2þβS2εiþ γS2HISiþδS2Xit

� � ð5Þ

with loan i (i = 1,…, I) and observation period t (t = 1,… T). All Stage 2 parameters have the index “2”. The equation is

in expected value terms (note the probability operator on the left-hand side) due to the trinomial outcome variable

S. Hence, there is no residual as it is common in OLS regression models. We estimate the parameters using the

maximum-likelihood method.

In the equations above, εi and HISi are the proxies of soft information and hard information respectively, that we

receive from the Stage 1 regression. βS2 and γS2 are two parameters of interest that show the impacts

of soft information and hard information on mortgage defaults. Xit is a vector of control variables that includes

time-changes in loan-characteristics and macroeconomic variables. Note that borrowers' variables are only included

in the hard information score HISi if they are observed at origination and do not change over time.

The probability of a non-default and non-payoff is inferred from the default probability Prob Sit ¼Dð Þ and the

payoff probability Prob Sit ¼Pð Þ:

Prob Sit ¼0ð Þ¼1�Prob Sit ¼Dð Þ�Prob Sit ¼Pð Þ ð6Þ

3.3 | Stage 2 – Interaction test for the impact of soft information on default

We examine a number of interactions for the residuals. First, vintages indicate whether there are changes over

time, due to changes in system-wide lending standards, or the type of loans that lenders securitize and we thus

observe in our data set. We further analyze time since origination, as soft information is generally collected by

lenders at mortgage origination when the loan terms are negotiated. Finally, we analyze hard information at

origination.

We extend the base model for the probability of default (D) and payoff (P) to accommodate these interactions

as follows:

Prob Sit ¼ s, s� D, Pf gð Þ¼ exp αS2þβS2,aεiInteractionitþβS2,bInteractionitþβS2,cεiþ γS2HISiþδS2Xit

� �
1þP

s � 1,2f g exp αS2þβS2,aεiInteractionitþβS2,bInteractionitþβS2,cεiþ γS2HISiþδS2Xit

� � ð7Þ

where βS2,a, β
S
2,b and βS2,c are the parameters of the interaction and the standalone effects.
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4 | EMPIRICAL ANALYSIS

4.1 | Data

We analyze securitized subprime mortgage loans observed from 2000 to 2015 by quarterly frequency. The data was

collected from the monthly loan performance reports of residential mortgage-backed securities to investors and pro-

vided by International Financial Research. The data is comparable to Rajan et al. (2015) and has been used in prior lit-

erature (e.g., Lee et al., 2021). We construct two data sets: an origination panel for the Stage 1 model and an

observation panel for the Stage 2 model.

Loan securitization may reduce the role of “soft information” in the credit assessment process and we hypothe-

size that lender-originated loans that are not intended for securitization include an even greater degree of soft infor-

mation. However, lenders in this market generally retain the equity tranche to have skin in the game and minimum

equity tranche sizes have been established by the Dodd-Frank Act. One motivation for using non-agency securitized

loans is that they are less subject to automated underwriting processes than the securitization markets organized by

Fannie and Freddie Mac which is an alternative popular data source for mortgage risk studies.

For the origination panel, we consider a sample of approximately three million loans originated from 1997 to

2010. Figure 1 shows the distribution of loans at origination from 1997 to 2010.

The number of originated loans is comparatively small in economic downturns, and high in economic upturns.

The highest origination/securitization period is from 2004 to 2007, that is, preceding the Global Financial Crisis of

2008–2009.

For the observation panel, we observe the loans for 15 years, resulting in roughly 39 million quarterly observa-

tions from 2000 to 2015. Note that information related to borrowers that is recorded only once at origination and

not updated over time is included in the hard information score. We select the first lien loans only and exclude

observations with a FICO score below 450 or above 900, LTV ratios greater than 130%, and more generally, missing

values.

Finally, we obtain several supplemental macroeconomic data. We analyze three indexes for house prices: Case–

Shiller (CS) index which is a national home price index, Zillow home value index at the zip-code level, and Federal

0

50,000

1,00,000

1,50,000

2,00,000

2,50,000

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

noitanigirotasnaolfo.oN

No of loans Downturn

F IGURE 1 Number of originated mortgage loans, from 1997 to 2010. This figure shows the exponential growth
of the observed and privately securitized mortgage loans prior to the Global Financial Crisis. The gray bars indicate

economic downturns as defined by the National Bureau of Economic Research.
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Housing Finance Agency (FHFA) house price index for metropolitan areas. Additionally, we collect real GDP from

the US Bureau of Economic Analysis, the US Bond Yield from the Department of the Treasury.

As with all empirical studies, our results should be interpreted with care as the analyzed data relates to US mort-

gage loans. Individual lenders, in particular those outside the US, are likely to have different portfolios with different

characteristics.

4.2 | Variable definitions

In Stage 1, we run a regression model on credit spreads, which are calculated as the difference between the original

mortgage rates and the Treasury bond yields of similar maturities.6 Figure 2 describes the credit spread of loans at

origination. The gray bars indicate economic downturns as defined by the National Bureau of Economic Research

(NBER). The credit spreads increase in economic downturns and reduce in economic upturns.

Our explanatory variables can be categorized into three groups: borrower characteristics, loan characteristics,

and macroeconomics variables at origination time.

For borrower features, the FICO score is a popular measure to analyze the credit risk of individual borrowers.

The score is provided by Fair Isaac & Company and includes the following factors (weights in brackets): payment his-

tory (35%), amounts owed (30%), length of credit history (15%), new credit (10%), and credit mix (10%). Higher FICO

scores show lower credit risk and vice versa. The second factor is debt-to-income (DTI) which is calculated as a frac-

tion of monthly debt payments to monthly incomes. The third borrower characteristic is whether borrowers are

investors or owner-occupiers.

For loan characteristics, the most important variable is the loan-to-value ratio (LTV) which is the outstanding balance

to appraisal value of the property. Other factors considered include maturity, original balance, property, and loan type.

Finally, we use the change in house price index and real GDP growth to control for macroeconomic conditions

at origination.

Figure 3 illustrates the default and payoff rates over the observation period from 2000 to 2015. Default is

defined as the foreclosure of a mortgage. We focus on loan foreclosures rather than delinquencies as these are the

0

2

4

6

8

10

12

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

In
te

re
st

ra
te

s(
%

)

Downturn Original_Interest_Rate US Bond Yield Credit_Spread

F IGURE 2 Mortgage rate, Treasury bond yield, and credit spread at origination, from 1997 to 2010. It shows the
mean original mortgage rate, Treasury bond yield and credit spread over the origination period from 1997 to 2010 in
quarterly frequency. Credit spread is the difference between original mortgage rate and the Treasury bond yield. The

gray bars indicate economic downturns as defined by the National Bureau of Economic Research.
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ultimate triggers of credit losses driven by equity and liquidity constraints. Further, strategic defaults in non-recourse

states during the GFC result in immediate foreclosures and may not be considered by analyzing delinquencies. Payoff

is defined as loans, which are terminated before maturity. Again, the shaded areas represent NBER economic down-

turn periods.

Figure 3 shows a negative relation between default and payoff rates, where default rates rise considerably in

economic downturns and payoff rates are lower in economic downturns.

In Stage 2, we model the default process and use the residuals from Stage 1 as proxies for soft information and

the predicted credit spreads as proxies for hard information. These are our two key test variables for default. We also

control for payoff where loans are terminated prior to maturity. For all Stage 2 regressions, Panel B shows the

parameters for the payoff equation. Whilst we do not discuss these in much detail, the parameters are generally

opposite to the default equation, indicating that payoff is associated with low credit risk as explained above. Please

refer to Pennington-Cross and Chomsisengphet (2007) and Clapp et al. (2001) for further details.

We also control for changes in loan characteristics. Change in current LTV is the current outstanding balance

over the current house values and is most significant. We compute current house values based on relative changes

in house price indexes over time. We further control for the remaining maturity, current outstanding, and the change

in the loan interest rate, which is the difference between current interest rate and the original interest rate of a loan,

as well as macroeconomic variables.

Furthermore, in interaction models, we investigate the interaction of soft information with other factors. We

test the interaction of soft information with vintages, time since origination, as well as borrowers' hard information.

Table 1 summarizes the definitions of variables used in this study.

Table 2 displays summary statistics for variables for Stage 1 models.

More than half of the observed loans are adjustable rate mortgages and/or refinanced mortgages. The average

maturity is nearly 30 years with an average original outstanding loan amount of $278,000. The average borrower

FICO score is 675.65 and the average original LTV ratio is 76.47%.

Table 3 shows the summary statistics for variables used in Stage 2 regressions for default and payoff predictions.

In Stage 2, we observe loans quarterly and predict default probabilities using residuals and predicted values of

credit spreads (HIS) from the Stage 1 models. The average residual is positive for defaulted loans and paid off loans
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F IGURE 3 Default rate and payoff rate, from 2000 to 2015. It shows the default and payoff rates over
observation periods from 2000 to 2015. The gray bars indicate economic downturns as defined by the National
Bureau of Economic Research (NBER).
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TABLE 1 Variables and definitions

Variable name Definition

Panel A: Variables at origination

Dependent variable

Credit spreads at origination (Credit_Spread) Difference between the mortgage rate at origination and US

Treasury bond yield measured in percentage points.

Explanatory variables

Lender Lender ID, dummy variable that takes value of one for a given

lender and takes value of zero otherwise.

Vintage Origination time, dummy variable that takes value of one for a

given vintage and takes value of zero otherwise.

Product Product code describing mortgage amortization terms, dummy

variable that takes value of one for a given product and takes

value of zero otherwise.

State State of the property location, dummy variable that takes value of

one for a given state and takes value of zero otherwise.

FICO score (FICO) Borrower credit scores provided by Fair Isaac & Company.

Debt-to-income (DTI) Ratio of monthly mortgage payment and monthly income of the

borrower at loan origination measured in percentage points.

Investor Dummy variable that takes value of one if borrower is an investor

and takes value of zero if borrower is an owner-occupier.

Loan-to-value at origination (Original_LTV) Ratio of original loan outstanding and appraisal value of property at

origination measured in percentage points.

Original term (Original_Term) Term of loan at origination in years.

Loan size (Log_Original_Balance) Natural logarithm of original loan balance.

Condos Dummy variable that takes value of one if property is a

condominium and takes value of zero otherwise.

Refinance Dummy variable that takes value of one if loan purpose is for

refinancing and takes value of zero otherwise.

ARM Dummy variable that takes value of one if loan is an adjustable rate

mortgage and takes value of zero otherwise.

Panel B: Variables at observation

Dependent variable

Outcomes Variable that takes value of “D” for default, “P” for payoff and zero

otherwise.

Default Default is defined as foreclosure.

Payoff Payoff is defined as loans which are repaid before maturity.

Test variables

Residual Error term generated from Stage 1 regressions as a measure of the

soft information, in percentage points.

HIS Predicted value generated from Stage 1 regressions as a measure of

hard information, in percentage points.

Vintage Origination year.

Time since origination (TSO) The difference between observation time and origination time.

Control variables

Current loan-to-value (LTV) Ratio of current outstanding balance to current appraisal value of

property. Note that current appraisal value of property is

(Continues)
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and negative for the pooled sample. The average is slightly below zero for the observation panel as the mean is

weighted by the number of observation quarters per loan.

The average predicted credit spread for defaulted loans is 2.15%. This is well above the average of 1.58% for

paid off loans and 1.63% for all loans. The current LTV of defaulted loans averages 98%, reflecting house price

declines. The number is considerably higher than the current LTV for paid off loans with 70% and the average for all

loans with 80%.

TABLE 1 (Continued)

Variable name Definition

estimated from changes in the CS house price index measured in

percentage points.

Remaining_Maturity Difference between maturity time and current observation time.

Log_Current_Balance Natural logarithm of current outstanding loan balance.

Change_Interest_Rate Difference between current interest rate and original interest rate

of a mortgage measured in percentage points.

HPI_CS Change of CS house price index in percentage points at

national level.

HPI_Zillow Change of Zillow house price index in percentage points at zip

code level.

HPI_FHFA Change of Federal Housing Finance Agency house price index in

percentage points at metropolitan area level.

GDP Real GDP growth at current time at national level measured in

percentage points.

TABLE 2 Summary statistics of loans at origination from 1997 to 2010.

Variable Mean SD P1 P50 P99

Metric variables

Original_Interest_Rate (%) 6.59 2.04 1.00 6.75 11.50

Yield_orig (%) 4.87 0.36 4.28 4.84 6.06

Credit_Spread (%) 1.72 2.01 �3.81 1.82 6.37

FICO 675.65 72.33 504.58 684.23 803.61

DTI (%) 34.19 24.41 5.49 27.66 124.44

Original_LTV (%) 76.47 13.88 26.80 80.00 100.00

Original_Term 29.30 4.09 15.00 30.00 40.00

Original_Balance ($ 1000) 278.41 230.53 33.30 214.00 1000.00

Dummy variables

Investor 0.13 0.34 0.00 0.00 1.00

Condos 0.06 0.24 0.00 0.00 1.00

Refinance 0.51 0.50 0.00 1.00 1.00

ARM 0.56 0.50 0.00 1.00 1.00

No. of loans at origination 3,057,870

Note: It shows summary statistics for variables used in Stage 1 regressions over the origination period from 1997 to 2010.
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4.3 | Stage 1 – Identifying soft information

To ensure a high model fit, we have tested all information that is publicly available for loan investors and considered

variable interactions as well as non-linear relations between variables and outcome variables. We have tested linear

regressions and machine learning techniques. We find that random forests provide the best fitting models.7 In the

following, we present and analyze two models.

The first model is a linear regression of all observed variables including lender, vintage, product8 and state fixed

effects as well as the interaction between vintage and lender effects.9 The SEs are clustered by lenders. We run a

piecewise linear regression for the continuous variables. We include continuous variables xijt (borrower i, explanatory

variable j and time t) and their spline expansions using a truncated power function (TPF) basis with a degree of unity

T :ð Þ.10 That is, we include the differences between these variables and the knot (threshold) kj if the variable is greater

than the threshold and zero otherwise:

T xijt
� �¼ xijt�kj if xijt > kj

0 if xijt ≤ kj

�
ð8Þ

The variables FICO score, DTI ratio and log loan balance are separated into 10 bins based on percentiles. Hence, the

bins have an equal number of observations. The variable LTV ratio has limited variation at origination of around 80%

TABLE 3 Summary statistics of loans over observation years from 2000 to 2015.

Variable

Pooled sample Default loans Payoff loans

Mean SD Mean SD Mean SD

Residual (linear regression) (%) �0.10 1.26 0.05 1.21 0.05 1.00

Hard information score, HIS (linear

regression) (%)

1.64 1.60 2.18 1.64 1.64 1.65

Residual (random forest) (%) �0.12 1.02 0.10 0.99 0.02 0.78

Hard information score, HIS

(random forest) (%)

1.67 1.56 2.12 1.70 1.68 1.62

Original_LTV 75.78 14.34 80.23 10.03 74.84 15.42

LTV (%) 80.10 26.77 98.10 21.97 70.58 24.82

Remaining_Maturity (in years) 24.90 5.55 26.71 3.81 25.50 5.58

Actual_Current_Balance ($ 1000) 259.47 224.64 265.63 206.34 263.51 228.98

Change_Interest_Rate (%) 0.03 1.51 0.31 1.61 0.39 1.53

TSO (in years) 4.25 2.94 3.46 2.18 3.42 2.65

HPI_CS (%) �0.51 3.50 �1.65 3.63 �0.40 3.39

HPI_Zillow (%) �0.27 6.23 �1.86 7.43 0.11 3.04

HPI_FHFA (%), smaller matched

sample

0.04 1.98 �0.43 2.10 0.26 1.97

GDP (%) 0.97 1.60 0.29 1.95 1.23 1.41

No. of Obs. 39,044,923 840,998 1,248,713

Note: It shows the summary statistics for metric variables used in the Stage 2 regressions over the observation period from

2000 to 2015 divided into all loans (pooled sample), default loans, and payoff loans.
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with most observations at or below 80% and five bins were manually defined.11 The knots are defined by the upper

interval boundary of the bins bar the last one:

• FICO: 574.5, 614.5, 634.4, 664.3, 684.2, 694.2, 724.1, 744.1, 774.1;

• DTI: 12.0, 16.0, 19.6, 23.4, 27.7, 32.7, 39.2, 48.3, 64.1;

• LTV: 70, 75, 80, 85;

• Log_Original_Balance: 11.2, 11.6, 11.8, 12.1, 12.3, 12.5, 12.7, 13.0, 13.2.

The second model is the best performing random forest that includes the empirically observed non-linearities

and variable interactions.12 Note that the variable set includes (like in the Linear Regression) observable public infor-

mation. However, the variable set does not include the additional terms of the piecewise regressions as random for-

ests split variables at appropriate thresholds. In order to approximate and compare univariate variable sensitivities

for non-parametric random forests, we run a second Linear Regression of the predicted credit spreads on the compo-

nents of the above Linear Regression. The SEs are clustered by lenders.

Table 4 shows the parameter estimates of the pricing model from Equation (1) for the Linear Regression and

implied regression of the Random Forest where we replace CreditSpreadiτ by the predicted credit spread from the

Random Forest and run regression Equation (1) for comparison:

We plot the mean observed and predicted credit spread for the percentile-based bins of FICO score, DTI, LTV

ratio and loan balance at origination using a Linear Regression and Random Forest model. The figures allow us to

assess the directional impact of continuous variables on credit spread. They also demonstrate both models are capa-

ble of including the non-linear relation to the observed credit spread for these important variables. The linear model

may show a slightly better fit here as the figures focus on the univariate relation between explanatory variables and

credit spreads, whilst the Random Forest includes variable interactions next to non-linearities (Figure 4).

The parameters are aligned with our prior expectations based on the above-mentioned credit spread literature

(e.g., Levitin et al. (2020), Justiniano et al. (2017) and Rajan et al. (2015)) and the mortgage risk literature

(e.g., Amromin & Paulson, 2009). Interest rates are higher for lower FICO scores, loan terms, loan balances, and refi-

nances. They are higher for higher DTI ratios, LTV ratios, adjustable rate loans, condominiums, and investor loans.

The refinance parameter is negative, as refinanced loans generally relate to lower risk borrowers. R-square measures

the explanatory power of models and shows how well hard information in the model can explain credit spreads. The

R-square is 65.66% for the piecewise linear model and 77.75% for the Random Forest. We include the residual and

predicted values of credit spreads from both the Linear Regression and the Random Forest in the following Stage

2 regressions as proxies for soft information and hard information.

We rely on the credit spreads embedded in loan rates offered to borrowers following the accept decision of

lenders. We do not have information on rejected loans. Soft information and hard information are metric measures

where a low value corresponds to low credit spreads and hence, low credit risk. Vice versa, a high value corresponds

to high credit spreads and hence, high credit risk. As a result, we expect a positive relation between default, residuals,

and hard information in all models throughout this paper. This interpretation is an important distinction to prior liter-

ature that generally does not measure the degree of soft information metrically.

4.4 | Stage 2 – Baseline test of soft information in the default process

Table 5 shows the parameter estimates of Equation (5) for the baseline test of soft information in the default process

using a Multinomial Logit model. We have three competing outcomes: default, payoff and non-default non-payoff

and our Multinomial Logit models have a default equation and a payoff equation. Multinomial Logit models are popu-

lar in the mortgage literature as mortgage borrowers have a prepayment option (i.e., a competing hazard).13
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TABLE 4 Stage 1 regression results – Identifying soft information

Linear regression Random forest

Estimate SE Estimate SE

Panel A: Parameter estimates

FICO �0.0074*** (0.0022) �0.0033*** (0.0011)

FICO Spline 1 �0.0045** (0.0022) �0.0056*** (0.0010)

FICO Spline 2 0.0103*** (0.0011) 0.0091*** (0.0010)

FICO Spline 3 �0.0032*** (0.0008) �0.0017*** (0.0006)

FICO Spline 4 0.0021*** (0.0005) 0.0011*** (0.0003)

FICO Spline 5 0.0008 (0.0006) �0.0003 (0.0003)

FICO Spline 6 0.0002 (0.0005) 0.0004 (0.0003)

FICO Spline 7 0.0006* (0.0003) 0.0000 (0.0002)

FICO Spline 8 0.0010*** (0.0003) 0.0005** (0.0002)

FICO Spline 9 0.0001 (0.0005) �0.0003 (0.0003)

DTI 0.1299*** (0.0137) 0.0581*** (0.0058)

DTI Spline 1 �0.0381*** (0.0090) �0.0036 (0.0047)

DTI Spline 2 �0.0213*** (0.0042) �0.0143*** (0.0028)

DTI Spline3 �0.0129*** (0.0026) �0.0093*** (0.0015)

DTI Spline 4 �0.0137*** (0.0023) �0.0091*** (0.0015)

DTI Spline 5 �0.0104*** (0.0018) �0.0061*** (0.0009)

DTI Spline 6 �0.0066*** (0.0016) �0.0032*** (0.0009)

DTI Spline 7 �0.0076*** (0.0012) �0.0028*** (0.0007)

DTI Spline 8 �0.0009 (0.0009) �0.0017*** (0.0005)

DTI Spline 9 �0.0117*** (0.0019) �0.0060*** (0.0013)

Original_LTV �0.0092*** (0.0020) �0.0035** (0.0016)

Original_LTV Spline 1 0.0110* (0.0063) 0.0067 (0.0049)

Original_LTV Spline 2 �0.0004 (0.0060) �0.0046 (0.0055)

Original_LTV Spline 3 0.0191** (0.0087) 0.0374*** (0.0067)

Original_LTV Spline 4 0.0094 (0.0163) �0.0130 (0.0118)

Log_Original_Balance �1.7889*** (0.2385) �1.1981*** (0.2024)

Log_Original_Balance Spline 1 0.3825 (0.3096) �0.0707 (0.2845)

Log_Original_Balance Spline 2 0.1852 (0.1564) 0.5160*** (0.1490)

Log_Original_Balance Spline 3 0.0198 (0.0725) �0.1422*** (0.0605)

Log_Original_Balance Spline 4 0.1928*** (0.0731) 0.2740*** (0.0666)

Log_Original_Balance Spline 5 0.0813 (0.0521) 0.0614 (0.0374)

Log_Original_Balance Spline 6 0.2159*** (0.0717) 0.1509*** (0.0528)

Log_Original_Balance Spline 7 0.3567*** (0.1166) 0.2909*** (0.0995)

Log_Original_Balance Spline 8 0.2055*** (0.0744) 0.1397** (0.0576)

Log_Original_Balance Spline 9 �0.1182 (0.1091) �0.1502 (0.0976)

Original_Term �0.0214*** (0.0075) �0.0270*** (0.0067)

ARM_Dummy 0.5333** (0.2083) 0.3946** (0.1830)

CO 0.2546*** (0.0299) 0.0559*** (0.0122)

(Continues)
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TABLE 4 (Continued)

Linear regression Random forest

Estimate SE Estimate SE

Investor 0.3106*** (0.0439) 0.2029*** (0.0357)

Refinance �0.1551*** (0.0200) �0.0827*** (0.0191)

Panel B: Fixed effects

State Yes Yes

Product Yes Yes

Lender Yes Yes

Vintage Yes Yes

Lender*Vintage Yes Yes

Panel C: Goodness-of-fit

R-square 65.7% 77.8%

RMSE 1.179 0.961

No. of Obs. 3,057,870.00 3,057,870.00

Note: It shows the regression results for Stage 1. The first model is a Linear Regression model where the dependent variable

is the credit spread as the difference between the mortgage rate and the Treasury bond yield at origination. The second

model relates to a linear regression model where the dependent variable is the estimated credit spread from a random

forest. Panel A shows the parameter estimates. Panel B shows the goodness of fit and number of observations of the

models. *, **, and *** represent statistical significance at the 10%, 5%, and 1% level, respectively.

F IGURE 4 Mean observed and predicted spreads by binned continuous variables. It shows the mean observed
and predicted credit spread using a Linear Regression and a Random Forest for bins of FICO, DTI, original LTV, and

natural logarithm of the original loan balance.
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Equation (6) shows that the probability for the third outcome can be inferred from the probabilities of the first two

modeled outcomes.

Prepayment is a borrower choice. Key factors are mortgage market rates falling below current loan contract

rates as borrowers can reduce mortgage payments by refinancing their loans with a more favorable rate and paying

off existing loans. Adverse soft information results in higher mortgage rates with current lenders and may motivate

borrowers to refinance their loans with lenders collecting adverse soft information. This is supported by the positive

and significant estimate of residuals in Panel B in our base test. We are unable to further analyze the impact of soft

information on payoff and refinance as borrowers are anonymous and measure the soft information of new lenders.

The estimates for key metric time-varying features generally show opposite signs for prepayment and default as

borrowers with high credit quality are more likely to refinance and payoff loans. The LTV estimates are negative for

TABLE 5 Stage 2 regression results – Base test for the impact of soft information on default.

Linear regression Random forest

Estimate SE Estimate SE

Panel A: Estimates for default

Residual 0.1565*** (0.0191) 0.2034*** (0.0227)

HIS 0.3707*** (0.0448) 0.3150*** (0.0368)

LTV 0.0232*** (0.0022) 0.0235*** (0.0022)

Remaining_Maturity 0.0369*** (0.0047) 0.0339*** (0.0052)

Log_Current_Balance 0.3099*** (0.0638) 0.2682*** (0.0616)

Change_Interest_Rate 0.2478*** (0.0255) 0.2407*** (0.0257)

HPI_CS �0.0173*** (0.0059) �0.0192*** (0.0057)

GDP �0.0579*** (0.0077) �0.0571*** (0.0078)

Intercept �11.3155*** (0.7345) �10.6519*** (0.7137)

Panel B: Estimates for payoff

Residual 0.1582*** (0.0161) 0.1630*** (0.0161)

HIS 0.1544*** (0.0325) 0.1517*** (0.0393)

LTV �0.0162*** (0.0014) �0.0162*** (0.0014)

Remaining_Maturity 0.0347*** (0.0065) 0.0347*** (0.0066)

Log_Current_Balance 0.1379*** (0.0416) 0.1363*** (0.0418)

Change_Interest_Rate 0.2091*** (0.0214) 0.2077*** (0.0233)

HPI_CS �0.0001 (0.0122) �0.0002 (0.0122)

GDP 0.0660*** (0.0203) 0.0660*** (0.0202)

Intercept �5.0803*** (0.5005) �5.0561*** (0.5263)

Panel C: Goodness-of-fit

AUROC (Default) 75.09% 74.93%

AUROC (Payoff) 65.50% 65.52%

No. of obs. 39,044,923 39,044,923

Note: It shows the regression results for the base test for Stage 2 using a multinominal logit model with the possible

outcomes of non-default/non-payoff (reference category), default, and payoff. Panel A shows the parameter estimates for

the default process. Panel B shows the parameter estimates for the payoff process and Panel C shows the goodness of fit

and number of observations of the models. Residual and HIS are based on outcomes of Stage 1 using a linear regression and

a random forest. *, **, and *** represent statistical significance at the 10%, 5%, and 1% level, respectively. Bold values

describe the test variables and non-bold values control variables in the models.
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the prepayment equation and positive for the default equation. The GDP and HPI estimates are positive for the pre-

payment equation and negative for the default equation.

Some features have the same (positive) signs for both equations: the remaining maturity, current balance, and

change in interest rate. This confirms that borrowers are more likely to default and payoff in earlier years when out-

standing loan amounts and times to maturity are high. Further, high interest rates imply a greater default rate.

In Panel A, the estimate of residual is significant, suggesting that soft information predicts the default likelihood.

Note that residuals include the amount of soft information embedded in credit spreads that is considered in addition to

hard information. Higher residuals are associated with higher credit spreads. The positive signs of residuals imply that

information, which results in an incremental credit spread, increases the default probabilities. Also, the hard information

score from Equation (2), HIS, is positive, meaning that higher predicted credit spreads result in higher probabilities of

default. We analyze the relative predictive power between soft and hard information in the next section.

In Stage 2, we link the soft information with default outcomes. We find that this relation is positive, which sug-

gests lenders obtain soft information outside the hard information score. We see this as an indication of private

information. In other words, had the lenders not included the soft information, the residuals and hence implied loan

prices would be less reflective of default outcomes.

Information asymmetries (see Keys et al. (2010)) may exist. For example, borrowers may hide information or

window-dress their loan applications to achieve more favorable lending decision outcomes. However, if lenders do not

observe this information privately then the residuals, which consider what the lenders can observe (as they are included

in the loan prices), would be independent or even negatively related to the default outcome in our Stage 2 regressions.

We do not detail the interaction between soft information and payoff risk in Tables 6–8 as we are unable to fur-

ther analyze the impact of soft information on payoff and refinance as borrowers are anonymous and we are unable

to measure the soft information of new lenders.

4.5 | Stage 2 – Interaction models

4.5.1 | Soft information over time

Table 6 and 7 show the parameter estimates of Equation (7) where residuals interact with vintages and time since

origination.

The interaction terms Residuali �VintageYeart are positive and significant as soft information predicts default.

The results are stronger for the Random Forest residuals. The estimates of Residuali �VintageYeart reduce by vintage

year and hence time. This suggests that the role of adverse soft information diminishes over vintages. In other words,

lenders rely less on soft information over time. The SEs are clustered by lender.

This finding is consistent with Rajan et al. (2015) who focus on hard information, with the distinction being that

we document the deterioration of soft information. We find that soft information decays with time since loan origi-

nation. Possible explanations include bank mergers (see Petersen & Rajan, 2002) and the increased application of

standardized digital processing of hard information in the industry.

We categorize time since origination (TSO) by the number of years, from one to ten and more years. It can be seen

that the estimate of Residual*1Y_TSO is insignificant, meaning that in the first year after origination, soft information

does not alter the default risk. However, after the first year, the interaction parameters are more negative. For example,

the estimate of Residual*3Y_TSO is �0.15, which is well below the estimate of Residual*2Y_TSO at �0.07.

The economic interpretation is that soft information, like most hard information, becomes less informative with

the passage of time. This observation is particularly relevant for the mortgage industry where most information is

collected at loan origination when the lender has bargaining power, as it can approve or reject loan applications and

request hard and soft information. Consumer protection laws limit lenders from including covenants in loan contracts

and lenders generally do not collect soft information after loan origination. Some hard information is collected as

lenders update LTV ratios by considering the loan amortizations and changes of house prices due to property
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revaluations or house price index changes. We include updated LTV ratios and other time-varying hard information

next to the time-invariant hard information score in all Stage 2 models.

4.5.2 | Interaction of soft information with hard information

Once we have measured soft information and its significance for predicting default, we analyze the impact of hard

information. We generate a dummy variable that is one if HIS is above the median value and zero otherwise. Table 8

shows the parameter estimates of Equation (7), showing the relation between the hard information dummy and soft

information for the impact on default.

TABLE 6 Stage 2 regression results – Interaction with vintage, default equation

Linear regression Random forest

Estimate SE Estimate SE

Panel A: Estimates for default

Residual*Vintage2002 0.1384*** (0.0444) 0.1263* (0.0444)

Residual*Vintage2003 0.1328** (0.0577) 0.2519*** (0.0577)

Residual*Vintage2004 0.1200 (0.0738) 0.1486* (0.0738)

Residual*Vintage2005 0.1571* (0.0822) 0.1240 (0.0822)

Residual*Vintage2006 0.1208 (0.0865) 0.0420 (0.0865)

Residual*Vintage2007 0.1410 (0.0868) 0.0485 (0.0868)

Vintage2002 0.1544 (0.2936) 0.1122 (0.2936)

Vintage2003 �0.2092 (0.3126) �0.3084 (0.3126)

Vintage2004 �0.0569 (0.3149) �0.1716 (0.3149)

Vintage2005 �0.1106 (0.3188) �0.1731 (0.3188)

Vintage2006 �0.0141 (0.3126) �0.0637 (0.3126)

Vintage2007 �0.1319 (0.3181) �0.1703 (0.3181)

Residual 0.0294 (0.0807) 0.1369* (0.0807)

HIS 0.3686*** (0.0448) 0.3090*** (0.0448)

LTV 0.0228*** (0.0020) 0.0229*** (0.0020)

Remaining_Maturity 0.0358*** (0.0049) 0.0325*** (0.0049)

Log_Current_Balance 0.3139*** (0.0620) 0.2692*** (0.0620)

Change_Interest_Rate 0.2476*** (0.0266) 0.2373*** (0.0266)

HPI_CS �0.0172*** (0.0055) �0.0193*** (0.0055)

GDP �0.0591*** (0.0078) �0.0588*** (0.0078)

Intercept �11.2292*** (0.7546) �10.4287*** (0.7546)

Panel B: Goodness-of-fit

AUROC (Default) 75.11% 74.95%

AUROC (Payoff) 67.15% 67.44%

No. of Obs. 39,044,923 39,044,923

Note: It shows the regression results for a Stage 2 test with the interaction between vintage and soft information using a

multinominal logit model with the possible outcomes non-default/non-payoff (reference category), default, and payoff.

Panel A shows the estimates for the default process. Panel B shows the goodness of fit and number of observations of the

models. Residual and HIS are based on outcomes of Stage 1 using a linear regression and a random forest. *, **, and ***

represent statistical significance at the 10%, 5%, and 1% level, respectively. Bold values describe the test variables and

non-bold values control variables in the models.
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TABLE 7 Stage 2 regression results – Interaction with time since origination, default equation.

Linear regression Random forest

Estimate SE Estimate SE

Panel A: Estimates for default

Residual*1Y_TSO �0.0157 (0.0224) �0.0251 (0.0251)

Residual*2Y_TSO �0.0687 (0.0647) �0.0976 (0.0810)

Residual*3Y_TSO �0.1527* (0.0839) �0.2033* (0.1064)

Residual*4Y_TSO �0.1527* (0.0839) �0.2013* (0.1131)

Residual*5Y_TSO �0.1567* (0.0885) �0.2051* (0.1104)

Residual*6Y_TSO �0.1854** (0.0916) �0.2594** (0.1132)

Residual*7Y_TSO �0.2429** (0.0944) �0.3332*** (0.1182)

Residual*8Y_TSO �0.2328** (0.0929) �0.3315*** (0.1172)

Residual*9Y_TSO �0.2628*** (0.0928) �0.3572*** (0.1171)

Residual*10Y_TSO �0.2770*** (0.0950) �0.3741*** (0.1176)

Residual*10 + Y_TSO �0.2881*** (0.0944) �0.3949*** (0.1179)

1Y_TSO 0.5192*** (0.0286) 0.5265*** (0.0300)

2Y_TSO 0.7856*** (0.0501) 0.7917*** (0.0533)

3Y_TSO 0.9223*** (0.0659) 0.9216*** (0.0689)

4Y_TSO 0.8457*** (0.0731) 0.8255*** (0.0770)

5Y_TSO 0.7232*** (0.0831) 0.6865*** (0.0863)

6Y_TSO 0.7730*** (0.0821) 0.7283*** (0.0849)

7Y_TSO 0.6939*** (0.0841) 0.6380*** (0.0877)

8Y_TSO 0.6561*** (0.0955) 0.5886*** (0.0976)

9Y_TSO 0.7352*** (0.1053) 0.6580*** (0.1096)

10Y_TSO 0.8380*** (0.1031) 0.7457*** (0.1093)

10 + Y_TSO 1.1446*** (0.1254) 1.0772*** (0.1231)

Residual 0.3031*** (0.0922) 0.4003*** (0.1157)

HIS 0.3829*** (0.0456) 0.3200*** (0.0378)

LTV 0.0220*** (0.0023) 0.0226*** (0.0023)

Remaining_Maturity 0.0472*** (0.0053) 0.0403*** (0.0062)

Log_Current_Balance 0.3229*** (0.0642) 0.2745*** (0.0620)

Change_Interest_Rate 0.2576*** (0.0252) 0.2435*** (0.0250)

HPI_CS �0.0128** (0.0058) �0.0129** (0.0057)

GDP �0.0298*** (0.0073) �0.0275*** (0.0071)

Intercept �12.4171*** (0.7671) �11.5618*** (0.7453)

Panel B: Goodness-of-fit

AUROC (Default) 75.49% 75.30%

AUROC (Payoff) 68.30% 68.31%

No. of Obs. 39,044,923 39,044,923

Note: It shows the regression results for a Stage 2 test with the interaction between time since origination and soft
information using a multinominal logit model with the possible outcomes non-default/non-payoff (reference category),
default, and payoff. Panel A shows the parameter estimates for the default process. Panel B shows the goodness of fit and
number of observations of the models. Residual and HIS are based on outcomes of Stage 1 using a linear regression and a
random forest. *, **, and *** represent statistical significance at the 10%, 5%, and 1% level, respectively. Bold values
describe the test variables and non-bold values control variables in the models.
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The estimate of Residual*HIS_D is positive and significant, suggesting that soft information from borrowers with

higher HIS has a greater impact on default risk than lower HIS borrowers. Lenders rely more on soft information for

high-risk borrowers as more soft information is collected and priced for borrowers where information is more bind-

ing as information has a greater sensitivity on default risk. Vice versa, lenders rely less on soft information for low

risk where information is less binding as it has a lower impact on default risk.

We have included HIS_D as a standalone effect as this is common for econometric interaction models. The

standalone effects of HIS and HIS_D are positive and significant, meaning that HIS is positively correlated with

default risk.

4.6 | Robustness checks

We perform a number of robustness checks to confirm our findings of the impact of soft information on default risk.

We run the base test of default equation using Residual and HIS outcomes from Stage 1 based on the random forest

method on different subsamples (robustness check 1–3). We also analyze logit models (robustness check 4) and

different HPI proxies (robustness check 5 and 6):

• Robustness check 1: Subsample for negative residuals;

• Robustness check 2: Subsample for positive (and zero) residuals;

TABLE 8 Stage 2 regression results – Interaction with hard information, default equation

Linear regression Random forest

Estimate SE Estimate SE

Panel A: Estimates for default

Residual*HIS_D 0.0646** (0.0284) 0.1019*** (0.0329)

Residual 0.0857*** (0.0298) 0.1351*** (0.0360)

HIS_D 0.5870*** (0.0891) 0.7210*** (0.0927)

HIS 0.2675*** (0.0419) 0.1726*** (0.0328)

LTV 0.0215*** (0.0019) 0.0217*** (0.0019)

Remaining_maturity 0.0317*** (0.0038) 0.0270*** (0.0042)

Log_Current_Balance 0.3512*** (0.0544) 0.3145*** (0.0493)

Changes_in_interest_rate 0.2360*** (0.0254) 0.2167*** (0.0251)

Hpi_CS �0.0159*** (0.0057) �0.0184*** (0.0056)

GDP �0.0615*** (0.0077) �0.0617*** (0.0078)

Intercept �11.7047*** (0.6425) �11.0533*** (0.6017)

Panel B: Goodness-of-fit

AUROC (Default) 75.30% 75.15%

AUROC (Payoff) 65.53% 65.56%

No. of Obs. 39,044,923 39,044,923

Note: It shows the regression results for a Stage 2 test with the interaction between soft information and a dummy variable

for low risk and high risk loans based on hard information (HIS_D is one if HIS is above the median and zero otherwise). The

regression is using a Multinominal Logit model with the possible outcomes of: non-default/non-payoff (reference category)

default, and payoff. Panel A shows the parameter estimates for the default process. Panel B shows the goodness of fit and

number of observations of the models. Residual and HIS are based on outcomes of Stage 1 using a Linear Regression and a

Random Forest. *, **, and *** represent statistical significance at the 10%, 5%, and 1% level, respectively. Bold values

describe the test variables and non-bold values control variables in the models.
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• Robustness check 3: Subsample for conventional 30-year fixed rate mortgage only;

• Robustness check 4: Full sample using Logit model (instead of Multinomial Logit);

• Robustness check 5: Full sample using HPI proxy sourced from Zillow at zip code level; and

• Robustness check 6: Subsample using HPI proxy sourced from FHFA for metropolitan areas.

In robustness check 1 and 2, we test negative and positive residuals separately to investigate whether lenders

differentiate between negative and positive soft information on loan pricing. We find that the results between the

two subsamples are comparable.

In robustness check 3, we run a robustness check for our Stage 2 regressions for 30-year fixed rate loans. These

loans are the default mortgage loan in the United States. Borrowers who choose other types (e.g., 30-year adjustable

rate loans) may actively select a different type of mortgage and this may reflect a riskier types of borrowers (see

e.g., Liu and Sing (2013)). We have controlled for a large range of mortgage features including LTV and mortgage

products in our main regressions. We find that 30-year fixed rate loans result in a greater significance of the residual

effect, implying that selection of non-standard mortgages reduces the collection of soft information.

In robustness check 4, we use a Logit regression for Stage 2 to test whether the results uphold if we do not con-

trol for competing risks using multinomial logit models. This is relevant as the industry mainly uses logistic regres-

sions in credit scoring applications. We find for logistic regressions that the impact of soft information on default

outcomes is consistent.

In previous analyses, the Case-Shiller house price index is used as the national index. We use the Zillow house

price index at the zip-code level and the Federal Housing Finance Agency (FHFA) house price index for metropolitan

areas, to run the robustness check 5 and 6. The advantage of the Zillow and FHFA house price indexes, compared to

Case-Shiller, is that we can more precisely capture changes in the housing market at particular locations. Note that

the FHFA House Price Index is collected for all 50 states and over 400 American cities. However, it is not available

for all zip codes. We find that the impact of soft information on default outcomes is consistent.

Table 9 summarizes all robustness checks and presents the regression results.

In Stage 2, the estimates of Residual and HIS are positive significant, suggesting that both soft and hard informa-

tion predict default. Again, this robustness confirms our main hypothesis that soft information impacts mortgage

default. In summary, all findings are robust for different subsamples and HPI indices. Furthermore, the signs and

magnitudes of all parameter estimates are very comparable.

Further, we have added a competing risk hazard model for our base model following the extended Cox propor-

tional hazard model by Fine and Gray (1999). The model explains the baseline hazard over TSO whilst our base

model does not condition on age.

The model is defined as:

λj TSO, xð Þ¼ λj0 TSOð Þexp x0βj
� � ð9Þ

λj is the proportional hazard rate of event j ( j = 1 – Default, 2 – Payoff, 0 - Performing) and λj0 is the baseline sub-

hazard of event j. Table 10 shows the results for Random Forest residuals for the main regressions. The results are

consistent with the main regression results for the Random Forest residuals in Tables 5–8.

5 | ECONOMIC IMPACT OF SOFT INFORMATION

We work with a large data set and there is a debate on the appropriateness of p-values (see Demidenko, 2016),

which shrink and hence increase significance with observation counts. There is related discussion on the appropriate-

ness of the areas under the receiver operating characteristics curve (AUROC, see Blochwitz et al. (2005) and Basel

Committee on Banking Supervision (2005)) which depend on the composition of credit portfolios and the numbers
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of defaulters in the estimation sample. As a result, we follow the guidance of Kellner and Rösch (2019) and analyze

the economic impact of the residuals on probabilities of default.

The Stage 1 models decompose the observed credit spread into a credit spread based on observed information

(hard information score, HIS) and residuals. Residuals may be negative or positive and measure the deviation from

credit spread based on hard information for subprime loans.

Figure 5 shows the relation between soft information and default rate observations and predictions. Default rates

are predicted by the mean estimated default probabilities, which are based on soft information and the hard
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F IGURE 5 Sensitivity of default risk between low risk and high risk loans in relation to residuals (soft
information). It shows the relation between observed default rates and residuals for low risk loans (HIS below the
median) and high risk loans (HIS below the median). The residuals are from the Stage 1 Random Forest model and
binned in 0.5 intervals. The gray histogram shows the distribution of total residual observations for the pooled data
sample, measured in millions.
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Predicted credit spreads from Stage 1 using the Random Forest method are binned in 0.5 intervals. The gray
histogram shows the distribution of predicted credit spread observations, measured in millions.
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information score. Following an increasing trend, higher residuals tend to result in higher probabilities of default as well

as default rates. The residuals are from the Stage 1 random forest model and are binned in intervals of length 0.5.

We show the implied PD variation (Stage 2) derived from residuals for loans with an HIS below median (gray

solid line) and above the median (black solid line). The figure confirms that high-risk loans are more sensitive to soft

information than low risk loans as the gap of default rates between low risk and high risk increases with the residual.

The variation of default rates for low risk loans is approximately 1.5% and for high risk loans 3%.

Figure 6 shows the relation between predicted credit spreads based on hard information and default rate obser-

vations and predictions.

The variation in default probabilities from low to high hard information scores is approximately 3%. Hard and

soft information may have a similar impact on default rates.

Finally, Figure 7 shows the actual default rate and predicted default probability over time.

Actual and predicted values of default rates are close to each other, suggesting a high degree of calibration of

mean model implied default probabilities to observed default rates over time of our model. The fit over time is an

important model performance aspect for lenders, as the default rate and hence, loss rate for a given time period,

needs to be offset by loan loss provisions and bank capital allocations.14

6 | CONCLUSION

We study the impact of soft information and its sensitivity on mortgage default. The econometric technique enables

us to measure observed and unobserved soft information. Prior literature has not considered unobserved soft infor-

mation. Soft information is measured on the interpretational level of credit spreads and higher values correspond to

higher credit spreads. The literature has measured whether there is soft information but not the degree to which it

impacts credit risk measures such as default probabilities.

First, we find strong evidence that soft information exists and predicts default probabilities. Second, although

lenders may have decreased their attention on collecting soft information, its effect on default remains. Soft informa-

tion is sensitive to the time and survival time (i.e., time since origination) of borrowers. The importance of soft
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F IGURE 7 Observed default rate and mean predicted default probability over observed period of 2000–2015. It
shows the observed default rate and mean predicted default probability over time. The gray histogram shows the
distribution of residual observations, measured in millions.
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information collected at loan origination diminishes over time and survival times. Third, we provide evidence for the

importance of soft information by showing that hard information is positively aligned with soft information,

suggesting that the impact of soft information on default risk is stronger for high-risk borrowers. This may indicate

that lenders rely more on soft information for high-risk borrowers as more soft information is collected and priced

for borrowers when information is more binding as information has a greater sensitivity on default risk.

Soft information is captured and internalized by lenders and should not be ignored because it is significant for

predicting default risk. This is a particular current concern, as lenders may shift to automatic, computer driven pro-

cesses that include machine learning and artificial intelligence to save costs and reduce processing times to compete

in a digital economy. Our study is important to policy makers to assist in reducing information asymmetries between

lenders and investors in the securitization process. Soft information from borrowers is captured and internalized by

lenders and should not be ignored because it is significant for predicting default risk.

Future research may explore other ways in which soft information may be digitally collected and made available

to investors. This may include the analysis of digital footprints using machine learning algorithms and artificial

intelligence.
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ENDNOTES
1 According to the International Monetary Fund's financial soundness indicators, real estate loan ratios of banks are 63.5%

for Australia, 18.5% for Germany, 36.6% for Canada and 31.0% for the US.
2 Some lenders do not offer risk-based interest rates but set accept thresholds and price the group of accepted mortgage

loans with the same loan rate. However, the accept thresholds and loan prices vary across lenders. For the avoidance of

doubt, we do not consider bank effects (e.g., risk appetite) as soft information as we control for lender fixed effects in

our Stage 1 regressions.
3 There are related contributions in the broader finance and accounting literature. For example, Bertomeu and Marinovic

(2016) examine unverifiable information disclosure such as news, forecasts, unaudited statements, and document cases

of misreporting.
4 See Footnote 8 for further details.
5 Further examples include Heinen et al. (2019), Pennington-Cross and Chomsisengphet (2007) and Clapp et al. (2001).
6 Treasury bond yields are available for 1 month, 2 months, 3 months, 6 months, 1 year, 2 years, 3 years, 5 years, 10 years,

15 years, 20 years and 30 years. We use the bond yield which is closest to the original maturity.
7 We find that other linear regressions with more granular non-linear spline extensions have similar model accuracies. We

considered quadratic and cubic TPF splines as well as cubic penalized and non-penalized B splines (R-square of 65.7%).

We find that other machine learning techniques have slightly lower but comparable model accuracy. We have considered

boosted trees with an R-square of 77.1%. We did not use these extensions considering the trade-off between modest

model accuracy improvements and greater model complexity.
8 Liu and Sing (2013) find that mortgage choices have an impact on ex-post default risk. We control for mortgage products

in our models.
9 Vintage is a strong predictor for credit spreads (see e.g., Levitin et al., 2020). The vintage fixed effects are proxies for

the general macro economy at loan origination. The interactions between vintage and lender effects explain how
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time-varying lender specific effects are proxies for time-varying bank underwriting criteria – commonly known as the

lending standard. The interaction effects use annual rather than quarterly time effects to limit the number of estimated

parameters.
10 We exclude the loan terms as the variation is limited.
11 Bins 1 to 5 include 20.11%, 8.06%, 11.88%, 38.92%, and 21.02% of observations.
12 Hyperparameters of the selected model include number of trees: 100, in-bag fraction: 60% and maximum depth 20. For

more details, please refer to Breiman (2001) or Rösch and Scheule (2020).
13 See Heinen et al. (2019), Ergungor and Moulton (2014), Agarwal et al. (2011)), Pennington-Cross and Chomsisengphet

(2007) and Clapp et al. (2001). We provide results for competing risk hazard models in the robustness check section.

We have also tested a number of alternative models including Logistic Regression, Probit Regression, sample selection

and regularization (L1 and L2) techniques. The results for the different methods are comparable and implied default prob-

abilities are highly correlated across the various econometric techniques. Rösch and Scheule (2020) analyze the predictive

accuracy of a broader range of classification models for mortgage loans including bagged and boosted trees and find that

the predictive performance measured by AUROC and Brier score slightly improves. We do not apply these models in our

Stage 2 regressions as the accuracy improvements are less pronounced than in our Stage 1 regressions due to the binary

nature of defaults. Further, some techniques do not allow for a model-based estimation of the impact of soft and hard

information and the various interactions due to their non-parametric (black box) nature.
14 Calibration measures such as the Hosmer-Lemeshow test statistic or the Brier score (see Rösch and Scheule (2020) for

more details) confirm our visual analysis
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