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Abstract

The problem of hole-defect detection in standing trees is solved. To this end, the contact–ultrasonic1

device (Pundit PL-200) was employed to collect ultrasonic signals from testing some wood specimens both2

in the lab and some sites in Australia. The collected ultrasonic signals were then processed through the3

Variational Mode Decomposition algorithm to derive some features. In order to solve the classification4

problem more efficiently, the obtained characteristics were then analyzed through PCA to determine5

the most compelling features. Several machine learning algorithms and a one-dimensional convolutional6

neural network (1D-CNN) were employed to solve a set of classification problems based on data collected7

from (1) specimens with artificial defects in the lab and (2) billets with natural defects selected from trees8

harvested in sites of two states of WA and NSW, Australia. The results demonstrate the effectiveness9

of the proposed method for classifying wood materials based on their health state, where the accuracy10

result of 100% in the lab and at least 92.4% in the fields were achieved. The Fine Gaussian SVM was11

found to perform best on data collected from specimens in the lab and fields. It was also shown that12

1D-CNN results were more reliable for solving the classification problem of standing trees in the fields.13
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1. Introduction14

Modern Detection and Diagnosis (FDD) systems involve several steps, including (1) system knowledge15

representation, (2) data-acquisition and signal processing, (3) fault classification, and (4) maintenance-16

related decision making [1]. Conventional decay assessment of trees involves visual inspection to detect17

any external evidence that corresponds to the structural deficiency. Some of such evidence includes18

wounds at the tree’s self-pruned branches, which can occur when the trees are not pruned in time and,19

therefore, undergo a self-pruning process. Some invasive methods are used for decay detection in standing20

trees, such as decay detecting drill [2]. As such, a noninvasive sensing technology for detecting wood21

defects in standing trees is yet to be developed.22

Monitoring wood quality is of great interest to the mechanised harvesting industry [3]. For instance,23

it is known that the existence of knot clusters can affect the mechanical properties of wood products24

[4]. Wood material assessment favours the extensive development of new nondestructive techniques25

developed over the past decades. Such techniques usually comprise two elements: a sensing technology26

for collecting data of a wooden specimen and a data analysis algorithm that can interpret such data27

by deriving some features that can characterise the health state of the wood. Some of such sensing28

technologies include ultrasonics [5], thermography [6], and radiography [7]. Ultrasonic testing has been29

widely used for quality assessment of wood materials [8] due to the following reasons: (1) it is a less30

invasive and less expensive technique compared to other methods, and (2) it is susceptible to the existence31

of defects in wood materials [9]. Therefore, they have been used in several research for quality assessment32

of wooden sections [10, 11, 12, 13, 14, 15]. For instance, the capability of ultrasonic techniques for33

evaluating of mechanical properties of wood with artificial defects has been demonstrated in several34

studies [11, 16, 17, 18]. Ultrasonic tomography was also demonstrated as an effective method for35

detecting defects in standing trees [19], where it was shown that the velocity of the ultrasonic waves36

was correlated with the ratio of the hole-to-disc area. Another study found that the attenuation of37

the ultrasonic wave velocity and increased damping could be correlated with the presence of a defect38

in standing trees [20]. However, it was also learned that both ultrasound velocity and damping were39

sensitive to the diameter at the breast height (DBH) of the studied tree. A binary logistic regression was40

developed to explore the possibility of using ultrasound velocity and damping to predict internal defects’41

presence in stating trees [20]. The obtained accuracy using the velocity and damping were respectively42

0.72 and 0.76 in European beech and 0.83 and 0.82 in Norway spruce spices. Studying the time of flight43

of the ultrasonic waves travelling across the wood sections has also been demonstrated to be effective44

for evaluating defects in standing trees. In another study, a time-frequency signal processing algorithm45

was coupled with the ultrasound’s time of flight to evaluate the wood quality of standing trees [21].46

There are generally two types of ultrasonic devices based on how they are used to test specimens.47

This includes non-contact and contact devices. There are several types of non-contact–ultrasonics such as48

laser ultrasonics (LU) [22], electromagnet ultrasonics (EU) [23], and air-coupled ultrasonics (ACU) [24,49
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25, 26, 27]. Non-contact–ultrasonic techniques are widely used for NDT of different materials, though50

some limitations of such techniques have been reported in the literature. For example, EU devices are51

limited to conductive materials; LU devices are costly; ACU devices can only perform well in low-density52

materials [26]. Nonetheless, ACU signals can be of poor quality, further demanding more advanced signal53

processing algorithms for signal processing of the test results [25]. contact–ultrasonics can also suffer54

from several challenges. These devices include a transmitter and a receiver to perform the ultrasonic test55

on a specimen. However, a couplant gel must be applied to the surface of the sample at both receiver56

and transmitter sides to overcome the impedance difference between the air and the tested material.57

This will further ensure good transmissibility of the ultrasonic wave into the material by filling the gap58

between the transducer/receiver and the surface of the specimen. However, uncertainty always involves59

the amount of gel applied to the surface of the specimen for testing. Moreover, applying excessive60

pressure to the transducer/receiver by hand can squeeze some gel out of the gap, further compromising61

the quality of the test results. Moreover, any misalignment or vibration of the transducer/receiver can62

adversely affect the quality of measurements.63

This study explores the possibility of using contact–ultrasonics to mechanize standing tree harvesting.64

Generally, it is important to prune trees in time for self-pruning. The trees that have undergone self-65

pruning are usually found to be knotty and inappropriate for sawlogs [28]. Therefore, it is essential to66

hunt such trees down in the field prior to cultivation. Two different experiments, one in the lab and one67

in the field, were conducted in this study to explore the possibility of using contact–ultrasonic testing68

to classify wooden specimens into two categories: defective and healthy. Regarding the lab trial, two69

types of wood specimens, Merbau and Pine, were studied. In order to synthesize hole-defect in the70

specimens, two types of hole of different sizes were drilled into the models; one small and one large. The71

samples were classified as defective regardless of the size of the hole defects to make the experiment more72

compatible with the test conducted in the field. Regarding the tests performed in the field, first, some73

billets were cut from the cultivated trees in different sites of Collie (WA) and Coffs harbour (NSW),74

Australia. Other types of wood were studied in these sites, including Eucalyptus Marginata (Jarrah),75

Eucalyptus Pilularis (Blackbutt) and Eucalyptus Punctata (Grey gum). The proposed strategy uses the76

variational mode decomposition (VMD) algorithm to derive some features from the ultrasonic test results77

conducted on the studied specimens. Next, machine learning and deep learning models were trained to78

solve the classification problem of the tested samples into two categories healthy and defective. This79

study presents several novelties as listed below:80

1. First, the possibility of using VMD as a signal decomposition algorithm for feature extraction out81

of ultrasonic test results is demonstrated by introducing some useful features.82

2. Since the number of features extracted from the VMD can be numerous; a procedure is proposed to83

select the most appropriate features for solving the classification problems of this paper. Moreover,84

it was demonstrated that there is quite an overlap between the selected features from the lab and85
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the field’s test results.86

3. The proposed strategy is further successfully tested on some standing trees in the field by employing87

trained machine learning and deep learning algorithms.88

2. Methodology89

2.1. Feature extraction using VMD90

Each ultrasonic signal S(t) was first shifted by its mean value and then scaled by the difference91

between its maximum and minimum values as follows:92

S(t) =
S(t)− µ

max(S(t))−min(S(t))
. (1)

where S(t) is the normalised version of S(t). The normalised signals were then low-pass filtered with a93

cutoff frequency of 300 kHz [29]. The VMD algorithm was employed to derive some features from the94

normalised and low-passed filtered ultrasonic signals. Hence, a brief background of the VMD theory is95

presented here to keep the paper self-contained.96

VMD solves a variational optimisation problem to decompose a nonlinear/non-stationary signal into97

its constructive modes termed Intrinsic Mode Functions (IMFs). Each IMF is narrow-band and, there-98

fore, can represent only one mode of oscillation of the signal. The general form of the kth IMF is as99

follows:100

uk(t) = Ak(t) cos(φk(t)), (2)

where uk(t) is the kth IMF with Ak(t) and φk(t) being its instantaneous amplitude and phase, respec-101

tively. The Instantaneous Frequency (IF) of each IMF is obtained as ω(t) = ∂φ(t)
∂t . Alternatively, once102

an IMF is identified, the IF signal can be obtained through Gabor’s analytical signal defined as follows103

[30]:104

ua(t) = u(t) + jû(t), (3)

where ua(t) is the Gabor’s analytical signal, j is the imaginary unit, and û(t) is the Hilbert transform105

[31] of the given IMF signal u(t). As such, the instantaneous frequency of the IMF is obtained as follows:106

107

ω(t) =
d

dt

(
tan−1

(
ˆu(t)

u(t)

))
, (4)

The following procedures are followed to construct the variational optimisation problem of the VMD:108

Step (1): First the unilateral Hilbert transform of the kth IMF is obtained as
(
δ(t) + j

πt

)
∗uk(t), where δ, j,109

and ∗ denote the Dirac distribution, the imaginary unit, and the convolution operator, respectively.110

Step (2): A center frequency ωk is assumed for the kth IMF and the obtained Hilbert spectrum from the111

step (1) is shifted to the baseband as
[(
δ(t) + j

πt

)
∗ uk(t)

]
× e−jωkt.112

Step (3): Then, the squared L2 norm of the gradient of the shifted spectrum from the step (2) is calculated113

as

∥∥∥∥∥∂t [(δ(t) + j
πt

)
∗ uk(t)

]
× e−jωkt

∥∥∥∥∥
2

.114
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Table 1: VMD PARAMETERS.

Parameters Description Specified values

p Number of IMFs 3

α Denoising factor N.A.

τ Time interval 0.1

ε Convergence threshold 10−5

init Center frequency initialiser 0

DC Boolean parameter 0

Step (4): Finally, the L2 norm of the gradients is summed over all IMFs to construct the conditional opti-115

misation problem of the VMD, on uk and ωk, as follows:116

min
uk & ωk

∑
k

∥∥∥∥∂t (δ(t) +
j

πt
∗ uk(t)

)
× e−jωkt

∥∥∥∥2
2

, s.t. f(t) =
∑
k

uk(t) (5)

where the sum of the obtained IMFs construct the original signal minus some noise depending on117

the settings.118

The following alternative Lagrangian is constructed to solve the optimisation problem of (5), [32]:119

L(uk, ωk, λ) = α
∑
k

∥∥∥∥∂t (δ(t) +
j

πt
∗ uk(t)

)
× e−jωkt

∥∥∥∥2
2

+

∥∥∥∥f(t)−
∑
k

uk(t)

∥∥∥∥2
2

+

〈
λ(t), f(t)−

∑
k

uk(t)

〉
(6)

This makes the VMD a parametric decomposition algorithm, requiring its parameters to be specified120

in computer program settings before running the decomposition algorithm [33]. In this study, the121

parameters of the VMD and the values selected for each one are listed in Table 1. For further details122

about how to specify the parameters, the readers are referred to [29]. Three decompositions were selected123

based on the results of [29].124

Seven types of features were selected for each IMF as follows:125

1. The centre frequency of the IMF (ω).126

2. The Root Mean Square (RMS) of the IF signal obtained for the IMF as follows [29]:127

RMSIF =

√∑n
i=1 ω(t)2

n
, (7)

where RMSIF is the root mean square of the IF signal ω(t), and n is the length of the signal.128

3. The first quartile of the IF signal, shown as Q1IF, indicates the value under which 25% of IF points129

are located when they are arranged in ascending order.130

4. The second quartile of the IF signal or the median, shown as Q2IF, indicates the value under which131

50% of IF points are located when arranged in ascending order.132

5. The third quartile of the IF signal, shown as Q3IF, indicates the value under which 75% of IF133

points are located when arranged in ascending order.134
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Table 2: The description of all features naming.

Features Description Features Description

x1 ω of IMF1 x12 Q1IF of IMF2

x2 RMSIF of IMF1 x13 Q2IF of IMF2

x3 ω of IMF2 x14 Q3IF of IMF2

x4 RMSIF of IMF2 x15 kIF of IMF2

x5 ω of IMF3 x16 σIF of IMF2

x6 RMSIF of IMF3 x17 Q1IF of IMF3

x7 Q1IF of IMF1 x18 Q2IF of IMF3

x8 Q2IF of IMF1 x19 Q3IF of IMF3

x9 Q3IF of IMF1 x20 kIF of IMF3

x10 kIF of IMF1 x21 σIF of IMF3

x11 σIF of IMF1 – –

6. The variance of the IF signal, shown as σIF.135

7. The Kurtosis of the IF signal, shown as kIF.136

Therefore, there are totally 21 features derived for each test result, named from x1 to x21 as shown in137

Table 2.138

2.2. Feature selection139

It is essential to select the most practical features for training the MLAs in order to, first, avoid140

using uncorrelated features that will only increase the time of the training process, and secondly, prevent141

overfitting of the model on the training dataset, which will consequently increase the variance between142

the test set and training set accuracy. To this end, principal component analysis (PCA) is employed to143

explore the importance of each feature. Generally, the most important features are more correlated with144

lower order PCs, i.e. PC1 and PC2, and components that are not correlated with the lower order PCs145

are less critical in describing the variability of the dataset across different observations.146

Consider the standardised1 feature matrix Xm×p of rank r ≤ min{m, p}, that has the obtained147

features per observation stacked up in its rows. The singular value decomposition of X is written as148

follows:149

X = P∆QT , (8)

where Pm×r and Qp×r are matrices of left singular and right singular vectors, respectively. Note that Q150

is a unitary matrix, i.e. Q−1 = QT. Finally, the diagonal matrix of singular values is obtained as ∆r×r.151

1The standardised matrix X is obtained through centring each of its columns concerning the mean value of all the

observations in that column divided by their standard deviation.
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(b) Pr
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(c) Mixed

Figure 1: Scree plots of the PCA applied to the dataset corresponding to the (a) Mr, (b) Pr, (c) mixed observations.

The principal components of X are stacked up in the columns of the matrix of factor scores, F, obtained152

as follows:153

F = P∆ , (9)

whose columns represent the projected observations on the principal axes. Since Q is a unitary matrix,154

one can write:155

F = P∆ = P∆QTQ = X Q . (10)

Therefore, Q can also be interpreted as a projection matrix. As such, the contribution of a component156

to a variable called “loading” is obtained from the calculation of the squared entries of Q. Hence, the157

rows of Q2 correspond to the loading of variables evaluated at the principal direction of each column.158

In order to select the most compelling features for classification, we propose the following procedure to159

be followed:160

1. Obtain the variance percentage explained by each PC corresponding to the standardized feature161

matrix X.162

2. Multiply the variance percentage of the PC to the corresponding column of the Q2.163
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(c) Mixed

Figure 2: Contribution percentage of each feature to the first principal dimension for (a) Mr, (b) Pr, (c) mixed observations.

3. Sum the results of step (2) over the selected PCs. Note that one may choose to determine the164

number of PCs based on the accumulated variance explained by them. However, the first three165

PCs were selected in this study in all cases.166

The above concept can be written in the form of an equation as follows:167

I =

N∑
i=1

var(i)×Q2(:, i) (11)

where I is a vector of obtained importance value for each feature, N is the number of selected PCs,168

var(i) represents the amount of variance explained by the ith PC, and N = 3.169

2.3. Employed machine learning algorithms170

The machine learning toolbox in Matlab was exploited to solve the classification problems of this171

study. The MLAs employed for solving the classification problems are listed in Table 3.172
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Table 3: MLAs employed for solving the classification problems.

Trees Discriminant Naive Bayes SVM Nearest Neighbor Ensemble

Fine Linear Gaussian Linear Fine Boosted Trees

Medium Quadratic Kernel Quadratic Medium Bagged Trees

Coarse – – Cubic Coarse Subspace Discriminant

– – – Fine Gaussian Cosine Subspace KNN

– – – Medium Gaussian Cubic RUSBoosted Trees

– – – Coarse Gaussian Weighted –

Table 4: Technical specifications of the test set-up.

Ultrasonic device Pundit PL200

Prob frequency 54 kHz

Sampling frequency 10 MHz

Couplant gel Proceq Ultraschall-Koppelpaste

3. Lab trial results173

In this section, the problem of wood hole-defect classification in two types of wood, i.e. Merbau174

(hardwood) and Pine (softwood), is solved. The problem of this section is particularly set to serve175

as a controlled lab trial for classifying wood with natural imperfections in the field. However, similar176

application can be found in other works such as [34]. The specifications of the test set-up are listed177

in Table 4. The dimension of the specimens was 90 × 90 × 300 mm3. There were two types of defects178

implemented on the specimens: (1) a small hole with a diameter of 6 mm (7% of the cross-section) and179

(2) a larger hole with a diameter of 13 mm (14% of the cross-section). The hole damage was drilled into180

the cross-sections. For further details, the readers are referred to [35, 29].181

The contact–ultrasonic testing is sensitive to the following items:182

1. The amount of the coupling gel applied to the surface of the wood at the transducer and receiver183

sides.184

2. Any vibration of the hands upon testing while holding the transducer and receiver.185

3. The amount of pressure applied to the transducer and receiver.186

Therefore, 50 replicates of the ultrasonic tests were conducted on each specimen. Table 5 shows the187

number of tests performed on the samples’ different types and health conditions.188

Two classes were considered in this study: (1) healthy and (2) defective. As such, small and large189

damage is classified as defective. This is mainly because the size of the defect is not a matter in standing190

tree inspection. Therefore, this was done primarily to align with the field trials section. The MLAs191

listed in Table 3 have been used to answer the following questions:192
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(a) Ultrasonic device (Pundit PL 200)[35]

Hole-defect

90 mm

Receiver

Wooden
section

300 mm
Transducer

A A

(b) Schematic of the ultrasonic test

90 mm

Receiver

Wooden
section

90 mm

Transducer

Hole-defect
Growth ring

(c) Radial test (A-A)

Figure 3: Ultrasonic test experimental set-up.

1. Do the selected features capture enough variability in the obtained ultrasonic signals across different193

specimens?194

2. How will the trained MLAs perform on a mixture of different types of wood?195

Figure 1 shows the scree plots of different types of specimens and a mixture of them. It can be seen196

that the amount of variance explained by the higher order PCs is always smaller than those described by197

lower order PCs. Therefore, it is reasonable to select only three first columns of the Q2 corresponding to198

the first three PCs in (11). As such, the plots of Figure 2 are obtained that describe the contribution of199

each feature to the variability of the feature space across different observations, when the observations200

from different types of wood are considered individually or mixed.201

A threshold was set for the value of entries of vector I for each case to select the first ten most202

effective features for training. Table 6 shows the selected features for different types of wood based on203
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Table 5: The number of test samples collected from different types of wood through ultrasonic tests.

Radial test (tangential defect)

Defect type Specimens # Pine test # Merbau test #

Intact 6 300 300

Small tangential defect 3 150 150

Large tangential defect 3 150 150

Table 6: VMD PARAMETERS.

Type of wood Selected features

Mr x21, x19, x18, x17, x14, x12, x6, x5, x3, x2

Pr x21, x18, x17, x14, x13, x12, x7, x5, x2, x1

Mixture x21, x19, x18, x17, x14, x13, x12, x6, x5, x3

their correlation with the first three PCs. As can be seen from the table, features x21, x18, x17, x14, x12,204

and x5 are recognised the most effective in all the cases.205

Table 7 shows the 5-fold cross-validation accuracy results obtained from the MLA training on each206

type of wood and their mixture. The results indicate that the “Fine Gaussian SVM” is the most effective207

algorithm for the classification of all the three problems, i.e. Mr, Pr, and their mixture with the accuracy208

index of 100, 100, and 99.9 per cent, respectively. The other observation is that the accuracy slightly209

declines in most cases of using different MLAs when the samples are mixed.210

4. Field experimental results211

4.1. Using machine learning212

In this section, the problem of classification of standing trees based on knot-defect in their trunk is213

studied. This problem has been given much attention due to its importance in facilitating the mechanised214

harvesting process. If trees with natural imperfections are appropriately identified, they will not be215

subject to sawing. This is vital as the bulk of the timber with natural defects is usually sold as pulpwood.216

Multiple specimens from different types of wood at various sites in Western Australia (WA) and217

New South Wales (NSW) were tested using the Pundit PL-200 ultrasonic device. Table 8 shows the218

types of wood and the environmental conditions at each site upon which the tests were conducted. As219

such, there was one type of wood (Jarrah) tested in the WA site (Collie) and two different types of220

wood, namely Blackbutt and Greygum, tested in the NSW site (Coffs harbour). All of these spices,221

however, are categorised as members of the Eucalyptus family. The temperature in WA and NSW sites222

was respectively 5.1 and 10 degrees Celsius, while the humidity in both areas was almost equal to 90%.223

Previous experiences indicate that knot defects appear at the minimum breast height of a standing224

tree. Therefore, some billets between the breast height and the highest commercial elevation of the225
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Table 7: The classification results of different MLAs applied to the lab test results.

MLA Mr Pr Mixed

Fine trees 98.5 100 97.8

Medium trees 98.5 100 97.8

Coarse Trees 97.8 100 89.1

Linear Discriminant 97.5 100 86.1

Quadratic Discriminant 100 100 88.8

Gaussian Näıve Byes 81.8 98.7 80.3

Kernel Näıve Byes 95.3 100 84.4

Linear SVM 100 100 87.5

Quadratic SVM 100 100 97.9

Cubic SVM 100 100 99.4

Fine Gaussian SVM 100 100 99.9

Medium Gaussian SVM 100 100 96

Coarse Gaussian SVM 90.2 100 80.4

Fine Nearest Neighbor 100 100 99.8

Medium Nearest Neighbor 100 100 99.6

Coarse Nearest Neighbor 87.7 96.2 82.9

Cosine Nearest Neighbor 100 100 99.3

Cubic Nearest Neighbor 100 100 99.5

Weighted Nearest Neighbor 100 100 99.8

Boosted Trees 50 50 50

Bagged Trees 99.8 100 99.3

Subspace Discriminant 92.5 100 81

Subspace KNN 100 100 99.8

RUSBoosted Trees 50 50 50

corresponding standing trees were harvested and further tested. The breast height was roughly 1.3 m226

above the highest point of the ground at the base of the tree. The length of the billets was 20 cm each.227

Table 9 shows the number of billets from each site and the overall number of ultrasonic tests conducted228

on them. Likewise, in the lab trial section, there were two labels assigned to the tested specimens, namely229

healthy and defective, which were specified through visual inspection. The woods were tested through230

different randomly-selected directions based on how flat the surface of the tested tree was. All specimens231

were debarked at the point of testing using a hammer. The billets were harvested from 6 standing trees232

of each species. All trees were visually inspected and marked with a spray marker, as shown in Figure 4.233

234
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Table 8: Wood from different sites with different meteorological condition were tested.

State Site Wood species Temperature (◦C) Humidity (%)

WA Collie Jarrah 5.1 90

NSW Coffs harbour Blackbutt & Greygum 10 90

Table 9: The number of billets and ultrasonic tests conducted on woods of different sites.

Number of billets

Condition WA # NSW #

Intact 37 7

Defective 37 28

Number of ultrasonic test

Condition WA # NSW #

Intact 838 213

Defective 897 617

The obtained ultrasonic test results were preprocessed using the VMD algorithm to derive the re-235

quired features, as discussed in Section 2.1. The scree plot of the PCA algorithm applied to the stan-236

dardized X was first obtained, as shown in Figure 5, to select the most compelling features for training.237

Then, the variance explained by the first three PCs was used to obtain the effectiveness of features238

through (11). The contribution of features in the variability of the dataset pertaining to the specimens239

tested in WA, NSW, and their mixture is presented in Figure 6. Next, a threshold was set for each240

case to select the ten most useful features, as listed in Table 10. As can be seen from the table, fea-241

tures x21, x18, x17, x13, x12, x7, x4, and x2 were identically selected among the most effective features in242

all cases. This also has an overlap with the most effective features selected for the lab trial cases, which243

are x21, x18, x17 and x12.244

Next, the MLAs of Table 3 were employed to solve the classification problem of billets based on their245

health state in different states. Interestingly, similar to the lab trial results, the Fine Gaussian SVM246

performs best on all cases of WA, NSW, and a mixture of them with a 5-fold cross-validation accuracy247

of 93.9, 96.7, and 94 per cent, respectively.248

4.2. Using deep learning249

Thus far, the results of applying conventional MLAs for solving the classification problem of billets250

were presented and discussed. However, deep learning architectures have been widely used to solve251

problems in different fields. Different architectures of deep convolutional neural networks can be found252

in [36]. In this section, a one-dimensional Convolutional Neural Network (1D-CNN) is developed that253

takes the identified practical features from the previous sections as input and outputs the class of billets254
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Figure 4: All trees were visually inspected and marked with spray marker.

as healthy or defective. The architecture of the employed 1D-CNN is depicted in Figure 7. Some255

essential parameters in the employed 1D-CNN are as follows: learning rate was initially set at 0.01 and256

was assigned to drop at every 200 epochs with the dropping rate of 0.5; momentum was 0.9; mini-batch257

size was set at 128; the total epoch number was set at 1000. The damage identification results of these258

1D-CNN are presented in Table 12. Table 12 shows the results of the 5-fold cross-validation accuracy for259

the training and test sets. The results indicate the better performance of the trained 1D-CNN model on260

billets harvested from NSW sites. This is ideally in line with the results obtained through the machine261

learning algorithms. Next, the trained models are further tested on some data collected from testing262

some standing trees.263

5. Further testing the trained models264

Thus far, the results of solving the classification problem of billets have been presented and discussed.265

To further assess the capability of the trained models in identifying defective and healthy trees, some266

trees were tested in WA, from which ten were flawed and nine were healthy. The health state of the trees267

was determined after cutting down and visual inspection. However, the trees were tested before cutting268
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(c) Mixed

Figure 5: Scree plots of the PCA applied to the dataset corresponding to the (a) WA, (b) NSW, (c) mixed observations.

down, and there were 822 ultrasonic signals collected from the sampled trees at their breast height. The269

optimal MLAs, i.e. Fine Gaussian SVM and the 1D-CNN models trained on the billets harvested from270

WA, NSW, and a mixture of them, were employed to estimate the health condition of the tested trees.271

The final accuracy results are reported in Table 13. It was generally expected to achieve poor accuracy272

when applying the trained models on NSW species for estimating the labels of the tested trees in WA.273

The results of the table genuinely indicate that this is the case. Moreover, it can be seen from the table274

results that the Fine Gaussian SVM model trained on the WA billets provides the best accuracy of275

87.4%, followed by the 1D-CNN trained on WA billets at 85.5%. However, the accuracy obtained from276

the 1D-CNN trained on the mixture of billets was 83 %–more than the Fine Gaussian SVM at 78.4%.277

Interestingly, the 1D-CNN model trained on the NSW performs relatively well when tested on WA trees278

with an accuracy of 70.1%. The poorest results was obtained from the Fine Gaussian model trained on279

NSW billets with 58.9% accuracy.280
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(c) Mixed

Figure 6: Contribution percentage of each feature to the first principal dimension for (a) WA, (b) NSW, (c) mixed obser-

vations.
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Figure 7: The architecture of the constructed 1D-CNN.

6. Future work281

In Section 5, the developed models were further tested on some standing trees. However, the presented282

accuracy results were not intended for decision-making about accepting or rejecting this null hypothesis283

that a tested tree is healthy. This is mainly due to the fact that it is not clear how to decide for a tree284

whose, for instance, more than 50% test outcomes are negative, but still a few positive. Some internal285
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Table 10: Selected features for each type of wood in different states and a mixture of them.

Type of wood Selected features

WA x21, x18, x17, x14, x13, x12, x7, x5, x4, x2

NSW x21, x18, x17, x13, x12, x9, x8, x7, x4, x2

Mixture x21, x18, x17, x14, x13, x12, x7, x5, x4, x2

Table 11: The classification results of different MLAs applied to the field test results.

MLA WA NSW Mixed

Fine trees 91.2 94.1 90.3

Medium trees 91.0 94.5 89.8

Coarse Trees 88.2 90.6 85.2

Linear Discriminant 88.0 90.1 85.7

Quadratic Discriminant 87.5 91.3 85.7

Gaussian Näıve Byes 85.4 84.5 82.2

Kernel Näıve Byes 87.5 86.7 85.3

Linear SVM 90.4 91.9 86.8

Quadratic SVM 93.2 95.4 91.6

Cubic SVM 91.8 95.4 92.2

Fine Gaussian SVM 93.9 96.7 94

Medium Gaussian SVM 93.3 95.2 91.7

Coarse Gaussian SVM 90.4 90.4 87.1

Fine Nearest Neighbor 91.2 94.8 91.5

Medium Nearest Neighbor 93.5 95.3 92.9

Coarse Nearest Neighbor 88.0 87.5 85.7

Cosine Nearest Neighbor 92.2 93.6 91.8

Cubic Nearest Neighbor 93.5 94.9 92.8

Weighted Nearest Neighbor 93.3 95.9 94.1

Boosted Trees 92.7 94.9 92

Bagged Trees 93.3 96.4 93.3

Subspace Discriminant 86.6 90.1 85.2

Subspace KNN 91.5 96.5 92.2

RUSBoosted Trees 91.9 95.5 90.7

defects in the wooden sections may not be deemed as significant defects and may not thus exclude the286

tree from being used for industrial purposes. For such defects, it is evident that the test result obtained287

from testing through some particular angles may be positive. This is schematically demonstrated in288
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Table 12: The 5-fold cross validation accuracy results obtained for the training and test sets using the trained 1D-CNN

models.

Accuracy WA NSW Mixed

Training 96.3 99.7 97.8

Testing 92.5 96.3 92.2

Table 13: The training and testing accuracy of the trained CNN models.

Model CNN Fine Gaussian SVM

WA 83.1 87.4

Mixed 84.5 78.4

NSW 66.8 58.9

Positive tests

Negative tests

Positive tests Negative tests

(a) Major defect (a) Minor defect

Figure 8: Testing a cross section of a tree with (a) major defect, and (b) minor defect.

Figure 8. Therefore, further works need to be done on the decision-making part of the proposed strategy289

to make assigning a label to a tested tree more rational for practical applications. This is indeed the290

subject of future work.291

7. Conclusions292

The problem of mechanized harvesting of standing trees has been targeted through solving the293

classification problem of trees using contact–ultrasonic testing and machine learning algorithm. To this294

end, the contact–ultrasonic test results were first decomposed into their constituent components using295

the VMD algorithm to derive some features. The importance of each feature was then identified through296

a new equation based on the loading of each feature corresponding to a PC and the amount of variance297

explained by that PC summed over all the first three PCs, obtained from the PCA analysis of the298

standardized feature matrix. Several test results were obtained from lab specimens, and sites of the two299

states in Australia, i.e. WA and NSW, were studied. The results of the lab trial were interestingly well300

aligned with those obtained from the fields. For instance, the Fine Gaussian SVM was proven to be301
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the most effective MLA for solving the classification problem in both cases. Moreover, it was shown302

that in both cases features x21, x18, x17, and x12 were among the most effective features for solving the303

classification problem. These features correspond respectively to the σIF of IMF3, Q2IF of IMF3, Q1IF304

of IMF3, and Q1IF of IMF2.305

A 1D-CNN model was also established for solving the classification problem of billets obtained from306

the trees harvested in the fields. The results indicate that both the Fine Gaussian algorithm and 1D-307

CNN can effectively solve the classification problems of wood classifications in the fields, where at worst308

92.4% classification accuracy was obtained for the mixture of the billets obtained from WA and NSW309

sites.310

The trained models were then employed to predict the health label of some defective standing trees311

in WA sites. The results indicated that accuracy above 85% was achieved when models trained on the312

WA billets were employed. Nevertheless, this accuracy declined as the models trained on a mixture of313

billets from different cites (and, therefore, different types of wood) were employed. As such, the accuracy314

obtained from the 1D-CNN was still at an acceptable level of 83%, while the accuracy index obtained315

from the Fine Gaussian SVM plunged to 78.4%. Further, the models trained on the NSW billets were316

employed to predict the label of the standing trees in WA. Although expected that the results would317

plunge drastically, the 1D-CNN results were surprisingly at an acceptable level of 70.1%. However, the318

accuracy index obtained from the Fine Gaussian algorithm was at 58.9%, which is not near the one319

obtained from the 1D-CANN algorithm.320

Overall, the results of this study pave the way for solving the classification problem of the standing321

trees based on their health condition. This paper’s results also confirm the effectiveness of the features322

obtained from the time-frequency domain of the ultrasonic signals using the VMD algorithm. However,323

further works need to be done on the decision-making part of the problem, where the test results from324

different angles on a cross-section of the tree (mainly the breast height) are used to wisely decide whether325

the tree is actually helpful for industrial purposes.326
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