Low-Complexity Equalisation and Channel Estimation over Fast Fading Channels

by Hongyang Zhang

Thesis submitted in fulfilment of the requirements for the degree of

> Doctor of Philosophy in Engineering

 $under \ the \ supervision \ of$

Prof. Xiaojing Huang

to

School of Electrical and Data Engineering Faculty of Engineering and Information Technology University of Technology Sydney Broadway, NSW 2007, Australia

June 2022

© 2022 by Hongyang Zhang All Rights Reserved

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Hongyang Zhang declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature: Signature removed prior to publication.

18/10/2022

Date:

ABSTRACT

The next generation wireless communication systems aim to achieve high capacity and low latency with high-mobility scenario as an important channel condition for various new applications. With the significantly increased data rate and Doppler frequency shift, the systems' ability to cope with fast channel variations is of significant importance. This thesis develops effective and efficient solutions to improve the performance of both conventional and emerging modulations over fast fading channels.

The recently proposed orthogonal time frequency space (OTFS) modulation shows outstanding performance over fast fading channels. However, existing research on OTFS is mostly focused on its delay-Doppler domain structure. In this thesis, channel and system models in different signal domains are firstly derived in both continuous and discrete forms, providing the basis for exploiting the full potential of OTFS with low complexity. Particularly, a circular stripe diagonal structure in the frequency-Doppler domain channel matrix for arbitrary multipath delays and Doppler shifts is identified through analyses and simulations, paving the way for low-complexity techniques to be adopted to combat fast channel fading.

Exploiting the circular stripe diagonal nature of the frequency-Doppler channel matrix, a low-complexity frequency-domain minimum mean-square-error (MMSE) equalisation for OTFS systems with long signal frames and fully resolvable Doppler spreads is then formulated. It is also demonstrated that the proposed MMSE equalisation is applicable to conventional modulations with short signal frames and partially resolvable Doppler spreads. The diversity performance analyses for OTFS are further provided under both maximum likelihood and linear equalisations. Inspired by the frequency-domain precoding structure, an adaptive transmission scheme with frequency-domain precoding matrix composed of the eigenvectors of the channel matrix is proposed to improve the system performance under MMSE equalisation, and its optimised performance is derived with simple analytical expressions. Considering two extreme channel conditions, the lower and upper bounds for the diversity performance of the adaptive transmission scheme are also derived. The derived performance bounds can serve as performance benchmarks for OTFS and other precoded OFDM systems.

Based on the re-formulation of OTFS as precoded-OFDM, three variants of the original OTFS system for low-complexity channel estimation over fast fading channels are finally proposed in this thesis. They enable one-dimensional channel estimation and corresponding equalisation to be applied in either frequency or time domain. Simulation results demonstrate that the proposed frequency-domain pilot aided OTFS scheme is the most effective transmission technique for high-mobility wireless communications in terms of diversity performance, signalling overhead, and power efficiency.

ACKNOWLEDGMENTS

First of all, I would like to express my deepest gratitude to my supervisor Prof. Xiaojing Huang for his constant guidance and support. Along this journey, his kindness and sincerity keep warming and encouraging my life. Meanwhile, his patience, knowledge, and ingenuity show a remarkable example for my future work.

I would also like to thank my co-supervisor A/Prof. J. Andrew Zhang for his valuable suggestions and guidance. He is the man who always stands behind and is eager to help. I also want to thank Prof. Jay Guo for sharing experience and knowledge during my study.

I wish to extend my appreciation to excellent mentors and friends in GBDTC: Dr. Hao Zhang, Dr. Anh Tuyen Le, Dr. Yijiang Nan, Dr. Peiyuan Qin, Dr. Can Ding, Dr. Ting Zhang, Dr. Wei Lin, Dr. He Zhu, and Dr. Shulin Chen. Collaborating with them is the happiest and luckiest thing in my life.

Finally, I would like to show endless gratitude to my family: my father Shizhong Zhang, my mother Dexin Song, and my love Xinzhu Li. Their constant love, trust, accompany, and encouragement make it happen. I love you all!

> Hongyang Zhang June 2022

LIST OF PUBLICATIONS

Journal Papers

- J-1. H. Zhang, X. Huang and J. A. Zhang, "Adaptive Transmission With Frequency-Domain Precoding and Linear Equalization Over Fast Fading Channels," in IEEE Transactions on Wireless Communications, vol. 20, no. 11, pp. 7420-7430, Nov. 2021, doi: 10.1109/TWC.2021.3083652.
- J-2. **H. Zhang**, X. Huang and J. A. Zhang, "Low-Overhead OTFS Transmission with Frequency or Time Domain Channel Estimation," submitted to IEEE Transactions on Wireless Communications.
- J-3. **H. Zhang**, X. Huang and J. A. Zhang, "Low-Complexity Frequency Domain Equalization over Fast Fading Channels," submitted to IEEE Wireless Communications Letters.

Conference Papers

- C-1. H. Zhang, X. Huang and J. A. Zhang, "Comparison of OTFS Diversity Performance over Slow and Fast Fading Channels," 2019 IEEE/CIC International Conference on Communications in China (ICCC), 2019, pp. 828-833, doi: 10.1109/IC-CChina.2019.8855898.
- C-2. H. Zhang, X. Huang, J. A. Zhang and Y. J. Guo, "Adaptive Transmission Based on MMSE Equalization over Fast Fading Channels," 2020 IEEE 92nd Vehicu-

lar Technology Conference (VTC2020-Fall), 2020, pp. 1-5, doi: 10.1109/VTC2020-Fall49728.2020.9348563.

C-3. H. Zhang, X. Huang and J. A. Zhang, "Frequency Domain Pilot-Aided Channel Estimation for OTFS over Fast Fading Channels," 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), 2021, pp. 1-5, doi: 10.1109/VTC2021-Fall52928.2021.9625551.

TABLE OF CONTENTS

C	Certificate of Original Authorship				
A	Abstract				
A	cknov	wledgn	nents	v	
Li	st of	Public	eations	vii	
Li	st of	Figure	es	xiii	
Li	st of	Tables	5	xvii	
Abbreviations xi					
N	Notations				
Li	List of Symbols x				
1	Intr	oducti	ion	1	
	1.1	Backg	round	1	
		1.1.1	Use Cases for Next Generation Network	1	
		1.1.2	Challenges for Practical Applications	2	
		1.1.3	Affection of Fast Fading Channels	4	
	1.2 Challenges for Fast Fading Channels				
	1.3	Thesis	organisation	7	

2	Ana	lyses o	on Channel and System Models	9
	2.1	Introd	luction and Literature Review	9
	2.2	Fast F	ading Channel Representations	10
	2.3	Signal	Models in Time and Frequency Domains	12
		2.3.1	Continuous Signal Models	13
		2.3.2	Discrete Signal Models	14
	2.4	Simul	ation Results	22
	2.5	Conclu	usions	24
3	Low	v-Comj	plexity Equalisation Techniques over Fast Fading Channels	27
	3.1	Introd	luction and Literature Review	27
		3.1.1	Conventional Modulation over Fast Fading Channels	27
		3.1.2	OTFS over Fast Fading Channels	28
		3.1.3	Existing Equalisation Techniques of OTFS	28
		3.1.4	Chapter Structure	30
	3.2	Low-C	Complexity MMSE Equalisation	30
		3.2.1	MMSE Equalisation with Fully Resolvable Doppler Spread \ldots	30
		3.2.2	MMSE Equalisation with Partially Resolvable Doppler Spread	33
	3.3	Equal	isation Performance Analysis	35
		3.3.1	Input-Output Relationships	35
		3.3.2	Output SNR Analysis	37
	3.4	Simul	ation Results	40
	3.5	Conclu	asions	44
4	Ada	ptive '	Fransmission with Frequency-Domain Precoding	47
	4.1	Introd	luction and Literature Review	47
		4.1.1	Existing Diversity Study of OTFS	47
		4.1.2	Chapter Structure	48

TABLE OF CONTENTS

	4.2	OTFS	as Precoded OFDM	49
	4.3	Divers	sity with ML Equalisation	52
	4.4	Adapt	ive Transmission and BER Bounds	53
		4.4.1	Adaptive Transmission	54
		4.4.2	BER Bounds and Analysis	56
	4.5	Simul	ation Results	59
		4.5.1	Adaptive Transmission Performance and Comparison	59
		4.5.2	BER Bound Validation	63
	4.6	Conclu	asions	65
5	Low	v-Over	head OTFS Transmission with Frequency or Time Domain	
	Cha	nnel E	stimation	67
	5.1	Introd	uction and Literature Review	67
		5.1.1	Existing Channel Estimation techniques of OTFS	67
		5.1.2	Chapter Structure	68
	5.2	OTFS	Variants and Channel Estimation	69
		5.2.1	Frequency-Domain Pilot-Aided Scheme	69
		5.2.2	Time-Domain Pilot-Aided Scheme	72
		5.2.3	Time-Domain Training Sequence Scheme	75
	5.3	Perfor	mance Analysis	77
		5.3.1	MSE Analysis for FD-PA-OTFS	78
		5.3.2	MSE Analysis for TD-PA-OTFS	79
		5.3.3	MSE Analysis for TD-TS-OTFS	79
	5.4	Simul	ation Results	81
	5.5	Conclu	usions	85
	5.6	Appen	dix	86

6 Con	clusions	and	Future	Work
-------	----------	-----	--------	------

89

6.1	Summ	ary of Contributions	89
6.2	Future	e Work	91
	6.2.1	Extension to MIMO Systems	92
	6.2.2	Application in Joint Radar Communication (JRC)	92
	6.2.3	Further System Complexity Reduction	93
Bibliog	raphy		95
Append	lix		113
Appe	endix A		113
Appe	endix B		114

LIST OF FIGURES

FIGURE

Page

2.1	Relationships among different continuous channel representations	12
2.2	Construction of delay-time domain channel matrix	17
2.3	Construction of frequency-Doppler domain channel matrix.	19
2.4	An example demonstrating the process of forming the delay-time domain and	
	frequency-Doppler domain channel matrices	20
2.5	Relationships among channel matrices in different domains.	23
2.6	Power delay profiles of TDL-A (a) and TDL-D (b) channel models. \ldots .	25
2.7	Frequency-time domain representation of fast fading channels	25
2.8	Frequency-Doppler domain channel matrix over fast fading channels	26
3.1	Comparison between long and short signal frames.	33
3.2	Performance comparison in LOS channel	41
3.3	Performance comparison in NLOS channel	42
3.4	BER versus velocity variation rate for detection with outdated CSI in LOS	
	channel at SNR = 15 dB	43
3.5	Performance comparison between MMSE and MP equalisations	44
3.6	Performance comparison with LDPC coding.	45
4.1	Time domain transmitted signal frame of original OTFS system	50
4.2	Frequency domain transmitted signal frame of OTFS as precoded OFDM form.	51

4.3	OTFS system block diagram in precoded OFDM form: (a) transmitter and	
	(b) receiver. S/P and P/S stand for serial-to-parallel and parallel-to-serial	
	conversions respectively, and CP stands for cyclic prefix	52
4.4	Adaptive transmission system block diagram: transmitter (a) and receiver (b).	55
4.5	Comparison of various modulation schemes in LOS channels using 4-QAM. $% \mathcal{A}$.	60
4.6	Comparison of various modulation schemes with and without channel estima-	
	tion error in NLOS channels using 4-QAM	61
4.7	Comparison of various modulation schemes with 16-QAM under both LOS	
	and NLOS channels	62
4.8	Lower bounds of MMSE equalisation performance under different multipath	
	diversity orders without Doppler frequency shifts. The curves from right to	
	left correspond to $P = 1, 2, 4, 8, 16, 32, 64, 128, 1024$, and asymptotic ∞ .	64
4.9	Upper bounds of MMSE equalisation performance under different Doppler	
	frequency diversity orders with $P = M \times N$. The curves from left to right	
	correspond to $K_{\text{max}} = 1, 4, 64$, and asymptotic ∞ .	65
4.10	BER comparison under adaptive transmission when $K_{\text{max}} = 1, 4, 16, 64$ in high	
	SNR region	66
5.1	FD-PA-OTFS frequency-domain transmission frame construction with pilots.	70
5.2	FD-PA-OTFS channel estimation process.	71
5.3	Time-domain transmission frame constructions of (a) TD-PA-OTFS and (b)	
	TD-TS-OTFS	74
5.4	Channel estimation performance comparison among FD-PA-OTFS, TD-PA-	
	OTFS and TD-TS-OTFS.	83
5.5	BER performance comparison among FD-PA-OTFS, TD-PA-OTFS and TD-TS-	
	OTFS with estimated CSIs.	84
5.6	BER performance comparison between FD-PA-OTFS and original OTFS	85

1	Illustration of Gaussian elimination.	114
5.8	BER performance of TD-TS-OTFS under different maximum speeds.	87
5.7	BER performance of FD-PA-OTFS under different maximum speeds	86

LIST OF TABLES

7	FABLE	Pa	ıge
1	Signals, Channel Representations and System Parameters	1	xxiii
2	Signals, Channel Representations and System Parameters	2	xxv
3	Matrices and Vectors	1	xxvii
2.1	Simulation Parameters		24
5.1	Overhead of Different Transmission Schemes		82

ABBREVIATIONS

- 1G first generation
- 2D two-dimensional
- 3GPP 3rd generation partnership project
- 4G fourth generation
- 5G fifth generation
- 6G sixth generation
- ADC analog-to-digital converter
- ADS autonomous driving system
- AR augmented reality
- AWGN additive white Gaussian noise
- BER bit error rate
- CDSC continuous-Doppler-spread channel
- CFO carrier frequency offset
- CP cyclic prefix
- CSI channel state information
- DAC digital-to-analog converter
- DFS Doppler frequency shift
- DFT discrete Fourier transform

ABBREVIATIONS

- eMBB enhanced mobile broadband
- ETSI European telecommunications standards institute
- FBMC filter bank multicarrier
- FD-PA frequency-domain pilot aided
- FT Fourier transform
- Gbps Gigabit per second
- GFDM generalized frequency division multiplexing
- H2H human to human
- HD high-definition
- IAI inter antenna interference
- ICI inter-carrier interference
- IDFT inverse discrete Fourier transform
- **IDI** inter Doppler interference
- IFT inverse Fourier transform
- ISFFT inverse symplectic finite Fourier transform
- ISTNs integrated space and terrestrial networks
- JRC joint radar communication
- LDPC low-density parity-check
- LOS line-of-sight
- LTE long term evolution
- M2M machine to machine
- MAP maximum A Posteriori probability
- MCMC Markov chain Monte Carlo
- MIMO multiple-input multiple-output

ML - maximum-likelihood

- MLSE maximum likelihood sequence estimation
- MMSE minimum mean square error
- mMTC massive machine type communication
- mmWave millimeter-wave
- MP message passing
- MSE mean-square-error
- NLOS non-line-of-sight
- OFDM orthogonal frequency division multiplexing
- OTFS orthogonal time frequency space
- PA power amplifiers
- PAPR peak to average power ratio
- PDF probability density function
- QAM quadrature amplitude modulation
- RHS right-hand-side
- SC-FDE single carrier frequency domain equalisation
- SFFT symplectic finite Fourier transform
- SISO single-input single-output
- SNR signal-to-noise ratio
- TDL tapped delay line
- TD-PA time-domain pilot aided
- TD-TS time-domain training sequence
- TF time-frequency
- UAV unmanned aerial vehicle

ABBREVIATIONS

UMa - urban macrocell

- uRLLC ultra-reliable and low latency communication
- V2V vehicle-to-vehicle
- VR virtual reality
- ZC Zadoff Chu
- ZF zero forcing

NOTATIONS

Expressions	Definitions
Bold letters	Matrices and vectors signal
(.) ^T	Transpose operation
(.)*	Conjugate operation
(.) ^H	Conjugate transpose operation
$\mathbf{X}_{m imes n}$	m by n matrix
I _m	m by m identity matrix
\mathbf{F}_m	<i>m</i> -point normalised DFT matrix
$1_{m imes n}$	m by n matrices with all 1 elements
$0_{m imes n}$	m by n matrices with all 0 elements
vec(·)	Vectorisation operation
$diag\{X\}$	Extracting the diagonal elements from matrix ${f X}$
$diag\{\mathbf{x}\}$	Forming a diagonal matrix with vector \mathbf{x}
0	Hadamard product
8	Kronecker product
$(\cdot)_M$	Modulo <i>M</i> operation
[·]	Ceiling operation
Ŀ	Flooring operation
X (<i>i</i> ,:)	<i>i</i> -th row of X
X (:, j)	j -th column of ${f X}$

Table 1: Signals, Channel Representations and System Parameters

LIST OF SYMBOLS

Table 2: Signals, Channel Representations and System Parameters

Symbols	Definitions
s(t)	Time domain continuous transmitted signal
r(t)	Time domain continuous received signal
w(t)	Time domain continuous noise
S(f)	Frequency domain continuous transmitted signal
R(f)	Frequency domain continuous received signal
W(f)	Frequency domain continuous noise
s[i]	Time domain discrete transmitted signal
<i>r</i> [<i>i</i>]	Time domain discrete received signal
w[i]	Time domain discrete noise
S[i]	Frequency domain discrete transmitted signal
R[i]	Frequency domain discrete received signal
W[i]	Frequency domain discrete noise
$h_i, \tau_i, \text{ and } v_i$	The path gain, delay and Doppler shift of the <i>i</i> -th path in sparse <i>P</i> -path channel model
Р	Number of multipaths in sparse P-path channel model.
τ	Delay
ν	Doppler frequency shift
t	Time variables
f	Frequency variables
$h(\tau, \nu)$	Continuous delay-Doppler channel representation
$h_t(\tau,t)$	Continuous delay-time channel representation
$H_{\nu}(f,\nu)$	Continuous frequency-Doppler channel representation
H(f,t)	Continuous time-frequency channel representation
M	Number of subcarriers
N	Number of OFDM/SC-FDE Symbols

Symbols	Definitions
M_1	Number of pilot sections in frequency domain for FD-PA- OTFS
N_1	Number of precoded data symbols in frequency domain in each pilot section for FD-PA-OTFS
M_2	Number of precoded data symbols in time domain in each pilot or training sequence section for TD-PA-OTFS or TD-TS- OTFS
N_2	Number of pilot or training sequence sections in time domain for TD-PA-OTFS or TD-TS-OTFS
d_r	Delay resolution
f_r	Doppler resolution
T	Duration of OFDM symbol
L	Length of channel impulse response
$L_{\rm max}$	Maximum number of resolvable multipaths
K _{max}	Maximum number of resolvable Doppler frequency shifts
L_{cp}	Length of CP
T_{cp}	Duration of CP
σ_x^2	Time domain data symbol power
σ_s^2	Time domain signal power (the same as σ_x^2)
σ_w^2	Time domain noise power
σ_S^2	Frequency domain signal power
σ_W^2	Frequency domain noise power
Yin	Input SNR before equalisation
Yout	Output SNR after equalisation

Symbols	Definitions	Dimensions
r	Time domain received sequence	MN by 1
s	Time domain transmitted sequence	MN by 1
w	Time domain noise sequence	MN by 1
\mathbf{H}_{t}	Delay-time channel matrix	MN by MN
R	Frequency domain received sequence	MN by 1
S	Frequency domain transmitted sequence	MN by 1
W	Frequency domain noise sequence	MN by 1
$\mathbf{H}_{\mathbf{v}}$	Frequency-Doppler channel matrix	MN by MN
h	Discrete version of $h(\tau, v)$	MN by MN
н	Discrete version of $H(f,t)$	MN by MN
\mathbf{h}_t	Discrete version of $d_r h_t(\tau, t)$	MN by MN
\mathbf{h}_{v}	Discrete version of $f_r H_v(f, v)$	MN by MN
ŝ	Estimate of s	MN by 1
Ŝ	Estimate of S	MN by 1
\mathbf{G}_t	Time domain MMSE matrix	MN by MN
$\mathbf{G}_{\mathbf{v}}$	Frequency domain MMSE matrix	MN by MN
X	Data symbol matrix for original OTFS	M by N
x	Data symbol vector	MN by 1
У	Received signal after MMSE equalisation	MN by 1
X ₁	Data symbol matrix for FD-PA-OTFS	M_1 by N_1
\mathbf{X}_2	Data symbol matrix for TD-PA-OTFS and TD-TS-OTFS	M_2 by N_2
\mathbf{S}_{data}	Precoded data matrix in frequency domain for FD-PA-OTFS	M_1 by N_1
s _{data}	Precoded data matrix in time domain for TD- PA-OTFS and TD-TS-OTFS	M_2 by N_2

Table 3: Matrices and Vectors

Symbols	Definitions	Dimensions
Θ	Frequency domain interpolation matrix	MN by N_1
Ψ	Time domain interpolation matrix	N_2 by MN
Φ	Doppler domain phase shifting matrix	$L_{max} + 1$ by MN
Е	Doppler domain phase shifting matrix composed of columns from ${f \Phi}$	L_{max} + 1 by N_2
Z	ZC sequence	L_{max} + 1 by 1
q	Toeplitz-form matrix composed of ZC sequence	L_{max} + 1 by L_{max} + 1
Q	Unitary matrix composed of eigenvectors of $\mathbf{H}_{\nu}^{\mathbf{H}}\mathbf{H}_{\nu}$	MN by MN
Q	Diagonal matrix composed of rows from ${f q}$	$L_{max} + 1$ by $(L_{max} + 1)^2$
Λ	Diagonal matrix composed of eigenvalues of $\mathbf{H}_{\nu}^{\mathbf{H}}\mathbf{H}_{\nu}$	MN by MN
V	Modulation matrix in general	Dimensions vary for different modulations