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ABSTRACT

The next generation wireless communication systems aim to achieve high capacity

and low latency with high-mobility scenario as an important channel condition for various

new applications. With the significantly increased data rate and Doppler frequency shift,

the systems’ ability to cope with fast channel variations is of significant importance.

This thesis develops effective and efficient solutions to improve the performance of both

conventional and emerging modulations over fast fading channels.

The recently proposed orthogonal time frequency space (OTFS) modulation shows

outstanding performance over fast fading channels. However, existing research on OTFS

is mostly focused on its delay-Doppler domain structure. In this thesis, channel and

system models in different signal domains are firstly derived in both continuous and

discrete forms, providing the basis for exploiting the full potential of OTFS with low

complexity. Particularly, a circular stripe diagonal structure in the frequency-Doppler

domain channel matrix for arbitrary multipath delays and Doppler shifts is identified

through analyses and simulations, paving the way for low-complexity techniques to be

adopted to combat fast channel fading.

Exploiting the circular stripe diagonal nature of the frequency-Doppler channel

matrix, a low-complexity frequency-domain minimum mean-square-error (MMSE) equal-

isation for OTFS systems with long signal frames and fully resolvable Doppler spreads

is then formulated. It is also demonstrated that the proposed MMSE equalisation is

applicable to conventional modulations with short signal frames and partially resolvable

Doppler spreads.
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ABSTRACT

The diversity performance analyses for OTFS are further provided under both maxi-

mum likelihood and linear equalisations. Inspired by the frequency-domain precoding

structure, an adaptive transmission scheme with frequency-domain precoding matrix

composed of the eigenvectors of the channel matrix is proposed to improve the system

performance under MMSE equalisation, and its optimised performance is derived with

simple analytical expressions. Considering two extreme channel conditions, the lower

and upper bounds for the diversity performance of the adaptive transmission scheme are

also derived. The derived performance bounds can serve as performance benchmarks for

OTFS and other precoded OFDM systems.

Based on the re-formulation of OTFS as precoded-OFDM, three variants of the

original OTFS system for low-complexity channel estimation over fast fading channels

are finally proposed in this thesis. They enable one-dimensional channel estimation and

corresponding equalisation to be applied in either frequency or time domain. Simulation

results demonstrate that the proposed frequency-domain pilot aided OTFS scheme is

the most effective transmission technique for high-mobility wireless communications in

terms of diversity performance, signalling overhead, and power efficiency.
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