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Abstract

Hyperbox-based machine learning algorithms are an important and popular branch of ma-
chine learning in the construction of classifiers using fuzzy sets and logic theory and neural
network architectures. This type of learning is characterised by many strong points of mod-
ern predictors such as a high scalability, explainability, online adaptation, effective learning
from a small amount of data, native ability to deal with missing data and accommodating
new classes. Nevertheless, there is no comprehensive existing package for hyperbox-based
machine learning which can serve as a benchmark for research and allow non-expert users
to apply these algorithms easily. hyperbox-brain is an open-source Python library im-
plementing the leading hyperbox-based machine learning algorithms. This library exposes
a unified API which closely follows and is compatible with the renowned scikit-learn

and numpy toolboxes. The library may be installed from Python Package Index (PyPI)
and the conda package manager and is distributed under the GPL-3 license. The source
code, documentation, detailed tutorials, and the full descriptions of the API are available
at https://uts-caslab.github.io/hyperbox-brain.

Keywords: Hyperbox-based machine learning, hyperbox fuzzy sets, fuzzy min-max neu-
ral networks, general fuzzy min-max neural network, explainable machine learning, classifier

1. Introduction

This hyperbox-brain toolbox has been developed by the researchers within the Complex
Adaptive Systems laboratory at the University Technology Sydney. It is a result of many
years of developing versatile machine learning algorithms with hyperboxes as the founda-
tional representation element at their core.

Hyperbox-based machine learning algorithms use min-max hyperboxes as their funda-
mental building blocks to partition the sample space into various regions. A collection of
hyperboxes representing the same class can form the regions of arbitrary shape and com-
plexity. Each min-max hyperbox is usually characterised by the minimum and maximum
vertices together with a fuzzy membership function acting as a distance or similarity mea-
sure. During the training procedure, these hyperboxes are formed, as needed, and adjusted
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to accommodate the incoming input samples based on the degree-of-fit of each input pat-
tern to given hyperboxes expressed by their membership values. The use of hyperboxes for
learning systems can deal effectively with the pattern classification and clustering problems
(Khuat and Gabrys, 2020a). Moreover, this kind of learning exposes numerous essential
properties for lifelong machine learning systems (Hamker, 2001; Crowder et al., 2020) such
as scalability, explainability, incremental adaptation in dynamically changing environments,
continuously learning ability from a limited amount of data and new samples, absorption of
new knowledge as well as accommodating new classes with a better ability to avoid catas-
trophic forgetting, due to their local data cluster representations, and capability to manage
the stability-plasticity dilemma (McCloskey and Cohen, 1989).

According to a recent survey (Khuat et al., 2021b), hyperbox-based machine learning
algorithms can be divided into three main groups as illustrated in Fig. 1. The first group
includes network structured learning models. This group contains two types of learning al-
gorithms. The first sub-group allows the occurrence of overlapped areas among hyperboxes
representing different class labels, while the hyperboxes belonging to different classes gen-
erated by the algorithms in the other sub-group are not allowed to overlap with each other.
The second main group consists of hybrid tree and network structured models. The last
group includes non-network structured models. The learning algorithms supported by this
initial release of the hypebox-brain library primarily come from the network structured
models with non-overlapping inter-class hyperboxes.

Hyperbox-based Machine Learning Algorithms

Hybrid tree and network
structured models

Network structured
models

Non-network structured
models

Overlapping inter-class
hyperboxes

Non-overlapping inter-class
hyperboxes

Figure 1: Taxonomy of hyperbox-based machine learning algorithms.

The use of hyperbox fuzzy sets as fundamental representation blocks for machine learn-
ing based classifiers dates back to the early 1990s with the most prominent early works
including a fuzzy min-max neural network (FMNN) (Simpson, 1992) proposed by Simp-
son and the variations and extension to the Adaptive Resonance Theory (ART) such as
Fuzzy ART (Carpenter et al., 1991b) and ARTMAP (Carpenter et al., 1991a) proposed by
Carpenter et al.

This hyperbox-brain library focuses mainly on the FMNN and its improved, later
variants such as the general fuzzy min-max neural network (GFMMNN) (Gabrys and
Bargiela, 2000). Apart from scalability, explainability, incremental adaptation, and con-
tinuous learning from limited input samples, learning algorithms of GFMMNN also exhibit
unique learning abilities such as learning from interval input data, native learning ability
from a mixed labelled and unlabelled training sets (Gabrys and Bargiela, 2000; Gabrys,
2002b), directly learning from data with missing values without the need for data impu-
tation (Gabrys, 2002a), combining all resulting hyperboxes in an ensemble model into a
single model (Gabrys, 2004, 2002c), combination of multiple decision trees into a single
interpretable hyperbox-based model (Eastwood and Gabrys, 2011), and the capability of
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growing and including new classes of data without retraining the whole classifier (Gabrys
and Bargiela, 1999). All of these unique learning characteristics are supported by the library,
and their details will be presented in the next sections.

Although many hyperbox-based machine learning algorithms have been developed over
the years with many very recent examples (Khuat et al., 2021b), there is no comprehen-
sive software library gathering them in one convenient package allowing their easy usage,
benchmarking and further development. Therefore, this paper presents a scikit-learn

compatible hyperbox-based machine learning library in Python to fill this gap and serve as
a facilitator for further research and applications in this field.

2. Overview and Design

To achieve a high performance when applying machine learning algorithms for real-world
problems, it is necessary to combine learning algorithms with a hyperparameter search,
cross-validation, and feature engineering techniques at a large scale. The hyperbox-brain

library, therefore, is designed to be compatible with the scikit-learn toolbox (Pedregosa
et al., 2011) to take advantage of the availability of cross-validation, feature transforma-
tion, hyperparameter optimisation, and model evaluation methods. As a result, each model
in hyperbox-brain inherits from BaseEstimator or BaseEnsemble and ClassifierMixin

in the module sklearn.base. By this inheritance mechanism, the library can set hyper-
parameters using set params(), train a model using fit(X, y), make a prediction via
predict(X), and evaluate the trained model on a hold-out dataset using score(). To
integrate with scikit-learn, hyperbox-brain employs numpy’s structured arrays (Harris
et al., 2020) whose data type is a combination of simpler data types.

This library aims to provide users with a wide range of learning algorithm categories
suitable for addressing different ML problems and is therefore organised into the following
modules:
base: Providing base classes and functions for all hyperbox-based models in the library.
mixed data learner : Containing the specialised estimators which can work on mixed-attribute
data. However, categorical features given in a text form can also be encoded by various
encoding methods so that they can be processed by the following learning algorithms for
the numerical data only (Khuat and Gabrys, 2021a).
incremental learner : Including estimators for numerical data which use the instance based
incremental learning approaches.
batch learner : Comprising hyperbox-based learning algorithms for numerical data using
batch learning approaches.
multigranular learner : Containing classifiers for numerical data using the multigranularity
learning methods.
ensemble learner : Including the combination of hyperbox-based learners integrated with
various ensemble learning methods.
utils: Containing utility functions associated with unit tests which can be executed on all
supported Python versions by the continuous integration workflow.
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3. The hyperbox-brain Library at a Glance

The hyperbox-brain library is intended for researchers and practitioners as an easily acces-
sible toolbox of hyperbox-based machine learning algorithms. This library is implemented
in Python, providing numerous learning algorithms using hyperboxes as fundamental build-
ing blocks for solving classification and clustering problems. Our purpose is to create an
easy-to-use package which may be extended by the community, while also providing essen-
tial functionality and characteristics to enable researchers and practitioners to benchmark,
reproduce, further develop and apply this type of algorithms for their problems.

3.1 Supported Hyperbox-based Machine Learning Algorithms

The hyperbox-brain library currently includes 18 hyperbox-based algorithms, which are
used to train network-structured learning models without enabling the overlapped areas
among inter-class hyperboxes. All of them are original and improved learning algorithms
for the fuzzy min-max neural network (Simpson, 1992) and the general fuzzy min-max neural
network (Gabrys and Bargiela, 2000). Of these 18 algorithms, there are three mixed-data
learners and 15 learners for numerical data. Out of 15 numerical data learners, there are
six instance-incremental learners, two batch learners, six ensemble learners, and one multi-
granularity learner. These algorithms are summarised in Table 1.

Model Feature type Model type Learning type

EIOL-GFMM (Khuat and Gabrys, 2020b) Mixed Single Instance-incremental

Freq-Cat-Onln-GFMM (Khuat and Gabrys, 2020a) Mixed Single Batch-incremental

OneHot-Onln-GFMM (Khuat and Gabrys, 2020b) Mixed Single Batch-incremental

Onln-GFMM (Gabrys and Bargiela, 2000) Numerical Single Instance-incremental

IOL-GFMM (Khuat et al., 2020) Numerical Single Instance-incremental

FMNN (Simpson, 1992) Numerical Single Instance-incremental

EFMNN (Mohammed and Lim, 2014) Numerical Single Instance-incremental

KNEFMNN (Mohammed and Lim, 2017) Numerical Single Instance-incremental

RFMNN (Al Sayaydeh et al., 2020) Numerical Single Instance-incremental

AGGLO-SM (Gabrys, 2002b) Numerical Single Batch

AGGLO-2 (Gabrys, 2002b) Numerical Single Batch

MRHGRC (Khuat et al., 2021a) Numerical Single Multi-Granularity

Decision-level Bagging (Gabrys, 2002c) Numerical Combination Ensemble

Decision-level Bagging + hyperparameter optimisa-
tion for base learners

Numerical Combination Ensemble

Model-level Bagging (Gabrys, 2002c) Numerical Combination Ensemble

Model-level Bagging + hyperparameter optimisation
for base learners

Numerical Combination Ensemble

Random hyperboxes (Khuat and Gabrys, 2021b) Numerical Combination Ensemble

Random hyperboxes + hyperparameter optimisation
for base learners

Numerical Combination Ensemble

Table 1: Hyperbox-based machine learning algorithms are supported by hyperbox-brain.
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3.2 Typical Features of the Library

scikit-learn compatibility: The library is designed to be compatible with and benefits
from the scikit-learn toolbox’s many features including hyperparameter search, model
section and evaluation techniques as well as the pipeline composition approaches (see Sec-
tion 4). Moreover, the library can be compatible with other hyperparameter optimisation
libraries which may be integrated with scikit-learn such as hyperopt (Bergstra et al.,
2013).
Explainability: One of the interesting characteristics of the use of hyperbox fuzzy sets for
building pattern classifiers is the explainability of the predicted results (see the Appendix
A for more details). The library supports this functionality by possible parallel coordinates
plots based visualisation of representative hyperboxes from different classes together with
an input pattern to be classified.
Capability of directly handling missing data: General fuzzy min-max neural networks
supported by the library have the ability to handle the classification of inputs with missing
data directly without the need for replacing or imputing missing values as in other classifiers
(Gabrys, 2002a).
Combination of multiple models at the model level: Learning algorithms for the
GFMMNN in the library can combine multiple decision trees (Eastwood and Gabrys, 2011)
or resulting hyperboxes generated by multiple hyperbox-based models (Gabrys, 2002c) into
a single model. This feature contributes to the increase of explainability of ensemble mod-
els.
Data editing and pruning approaches: By integrating the repeated cross-validation
methods provided by scikit-learn and hyperbox-based learning algorithms, evidence from
training multiple models can be used for identifying which points from the original data set
or the hyperboxes from the generated multiple models should be retained and those that
should be edited out (Gabrys, 2001) or pruned (Gabrys, 2004) before further processing.
Native ability to learn from both labelled and unlabelled data: One of the out-
standing features of learning algorithms for the GFMMNN is the ability to form classifica-
tion boundaries between known classes and ability to cluster data and represent them as
hyperboxes when labels are not available in the data (Gabrys and Bargiela, 2000; Gabrys,
2002b). Unlabelled hyperboxes may be then labelled based on the evidence of incoming
input patterns.
Ability to learn from new classes in an incremental manner: Incremental learning
algorithms of hyperbox-based models provided in the library can grow and include new
classes of data without the need for retraining the whole classifier (Gabrys and Bargiela,
1999). Incremental learning algorithms themselves can develop new hyperboxes to repre-
sent clusters of new data with potentially new labels both in the middle of normal training
process and in the operating time where the initial training has been completed. This char-
acteristic is a key feature for life-long learning systems.
Documentation and tutorials: A comprehensive documentation is developed using
sphinx and numpydoc and is provided to users via the Read the Doc platform1. It pro-
vides a detailed API reference, essential background, and a wide range of tutorials and

1. https://hyperbox-brain.readthedocs.io/en/latest/
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examples2 under the interactive Jupyter notebook to allow new users to explore how the
classifiers in the library are used for solving classification problems.
Build robustness: The library uses GitHub Actions for continuous integration. Au-
tomated scripts are used for automated testing and building the library under different
versions of Python and operating systems. Tests are executed for each commit made to
master branch or when a pull request is opened.
Quality assurance: Code in the project follows the PEP8 style standard for Python. In
addition, essential utility functions and code blocks with high complexity are accompanied
with a set of unit tests. Furthermore, continuous integration is conducted to guarantee
backward compatibility and integrate new code in an easy fashion.
Community-based development: We welcome the contributions from the community
to the library via collaborative tools such as Git and GitHub. We provide a documented
contribution guideline3 to describe various ways that contributors can join and contribute
to the library. In addition, GitHub’s issue tracker and discussion are used to discuss ideas
and report bugs regarding the library. The hyperbox-brain library is distributed under
the GPL-3.0 license.

3.3 Installation and Usage

The hyperbox-brain toolbox can be downloaded and installed via PyPI using the command
pip install hyperbox-brain or from conda-forge using the command conda install

-c conda-forge hyperbox-brain. It is also possible to clone the source code directly from
GitHub4. In this case, the library can be installed by executing the existing setup script
in the root directory through the command python setup.py install. Once installed,
all available hyperbox-based algorithms and functions in the library can be accessed via
importing the desirable class within the hbbrain module. A simple example of fitting and
assessing a model in hyperbox-brain is given below. More elaborate examples and tutorials
can be accessed via the online documentation.

1 >>> from sklearn.datasets import load_iris

2 >>> from sklearn.preprocessing import MinMaxScaler

3 >>> from sklearn.model_selection import train_test_split

4 >>> from sklearn.metrics import accuracy_score

5 >>> from hbbrain.numerical_data.incremental_learner.onln_gfmm import

OnlineGFMM

6 >>> # Load dataset

7 >>> X, y = load_iris(return_X_y=True)

8 >>> # Normalise features into [0, 1] as required by hyperbox -based models

9 >>> scaler = MinMaxScaler ()

10 >>> scaler.fit(X)

11 MinMaxScaler ()

12 >>> XX = scaler.transform(X)

13 >>> # Split data into training and testing sets

14 >>> X_train , X_test , y_train , y_test = train_test_split(XX, y, test_size

=0.3, random_state =42)

15 >>> # Training a model

2. https://hyperbox-brain.readthedocs.io/en/latest/tutorials/tutorial_index.html
3. https://hyperbox-brain.readthedocs.io/en/latest/developers/contributing.html
4. https://github.com/UTS-CASLab/hyperbox-brain
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16 >>> clf = OnlineGFMM(theta =0.1).fit(X_train , y_train)

17 >>> # Make prediction

18 >>> y_pred = clf.predict(X_test)

19 >>> acc = accuracy_score(y_test , y_pred)

20 >>> print(f’Accuracy = {acc * 100: .2f}%’)

21 Accuracy = 97.78%

4. scikit-learn Compatibility

A critical property of the compatibility of hyperbox-brain with scikit-learn is the in-
heritance and usage of hyperparameter optimisation, model selection and evaluation, and
pipeline functionalities. For example,

• train test split of scikit-learn can be used with hyperbox-based models of
hyperbox-brain as shown in the example in subsection 3.3.

• cross val score method of scikit-learn can be transparently applied to hyperbox-
based models for cross-validation evaluation as below:

1 >>> # Instantiating a hyperbox -based model

2 >>> clf = OnlineGFMM(theta =0.1)

3 >>> from sklearn.model_selection import cross_val_score

4 >>> # usage cross_val_score on the hyperbox -based model

5 >>> cross_val_score(clf , XX, y, cv=5)

6 array ([0.96666667 , 0.96666667 , 0.86666667 , 0.9, 1.])

• Hyperparameter search functions such as grid search and random search can be
used directly for models in hyperbox-brain as described in the online examples5.

• Hyperbox-based estimators can be integrated with Pipeline of scitkit-learn to
form a combination of feature engineering methods and classifiers as various examples
shown in the online tutorials6.

5. Conclusion

hypberbox-brain is a free licensed Python toolbox which implements popular hyperbox-
based machine learning models. With the high compatibility with scikit-learn API, this
library provides users with an easy-to-use package of algorithms which can be integrated
with existing cross-validation, pipeline, model selection and evaluation techniques to for-
mulate powerful data analytics pipelines. As shown in Fig. 1, there are many existing
hyperbox-based learning algorithms in the literature, therefore, we are continuously adding
new models, enhancing usability, code quality, unit tests, documents, and tutorials. Finally,
we strongly encourage the contributions of the community to expand this free library for
the benefit of both researchers and practitioners interested in and able to benefit from this
type of ML algorithms.

5. https://hyperbox-brain.readthedocs.io/en/latest/tutorials/hyperparameter_opt.html
6. https://hyperbox-brain.readthedocs.io/en/latest/tutorials/pipline_integration.html
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Appendix A. Explainability of Predicted Outcomes

This appendix is dedicated to clarify the explanability of hyperbox-based learning algo-
rithms for the predicted results of a given input pattern through different types of visuali-
sation supported by the hyperbox-brain library.

For two dimensional training samples, the library provides a functionality to show
the generated hyperboxes and decision boundaries among classes of a trained model, e.g.,
GFMMNN, by a hyperbox-based machine learning algorithm as in Fig. 2a. For a given two
dimensional input pattern and a trained hyperbox-based model, the library shows repre-
sentative hyperboxes of all class labels joining the prediction to make the predicted class in
a two dimensional plane as shown in Fig. 2b. The predicted class for an unseen pattern is
the same with the hyperbox which has the highest membership value to that input pattern.
Let’s take the GFMMNN (Gabrys and Bargiela, 2000) as an example, the membership de-
gree between a hyperbox and an input sample is computed based on the longest distance
between that hyperbox and the input sample over all features. The smaller this distance
is, the higher membership value is. Therefore, it is easily observed that the green hyperbox
in Fig. 2b is closer to the input pattern than the blue hyperbox. As a result, the predicted
class for the input pattern in this case is green.

The code below shows how to display decision boundaries among classes if input data are 2-dimensional

In [15]:

      [0.55763   , 0.43813   ]]), 
          is_draw=True, theta=0.1, theta_min=0.1)

onln_gfmm_clf.draw_hyperbox_and_boundary("The trained GFMM classifier and its decision boundaries")

(a)

In [22]: onln_gfmm_clf.show_sample_explanation(Xtest[sample_need_explain], Xtest[sample_need_explain], min_points_classes

(b)

Figure 2: (a) Visualisation of two dimensional hyperboxes and the decision boundaries
of a trained GFMMNN. (b) Illustration of two dimensional representative (i.e. winning)
hyperboxes from two distinct classes used for the classification of an input pattern as a part
of possible suggested decision explanation approach.

The library also provides a general way of explanation for predicted outcomes using the
parallel coordinates graph to visualise the coordinates of representative hyperboxes of all
classes joining the prediction process as shown in Fig. 3. In this case, the membership
value between the green hyperbox and the input pattern is computed based on the fourth
feature (F4), which shows the smallest distance compared to the distance values of other
hyperboxes to the input pattern. Hence, the predicted class in this case is green.
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Figure 3: A parallel coordinates graph shows the representative (i.e. winning) hyperboxes
for all classes in the context of an input pattern (black color) to be classified. In this case,
the predicted class for the input pattern is green based on the highest membership value.
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