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Abstract—Despite the rapidly increasing interest in analogue
multibeam antennas, there has been a lack of systematic theoreti-
cal approaches to synthesizing circuit-type multiple beamforming
networks, such as the Blass matrix and the Nolen matrix. To
address the issue, this paper presents a new concept, Generalised
Joined Coupler (GJC) matrix, which encapsulates both the Blass
matrix and the Nolen matrix as well as their variants, and
presents a novel theoretical framework for generating individually
and independently controllable multiple beams using the GJC
matrix. A GJC matrix has N columns to feed N antenna
elements and M rows to feed M beams, and the direction of
each individual beam can be controlled by tuning the phase
shifters in the associated row of the GJC matrix. In the paper,
a matrix theory is developed and an optimization algorithm is
proposed to provide a mathematical tool for synthesizing such
matrices and consequently the multiple beams. Using a particle
swarm optimization algorithm, numerical results demonstrate
that multibeams with independent control of individual beam
directions and sidelobes can indeed be synthesized in a systematic
manner. Specifically, two GJC matrix variants, the Blass-like
matrix and the Nolen-like matrix are investigated.

Index Terms—Blass matrix, Blass-like matrix, Feed networks,
GJC matrix, Individual beam control, Low sidelobes, Multibeam
phased arrays, Nolen matrix, Nolen-like matrix.

I. INTRODUCTION

MULTIBEAM antennas are regarded as a critical technol-
ogy for 5G and beyond 5G (B5G) wireless communica-

tions networks [1], [2], [3]. In comparison to digital beamform-
ing techniques, analogue beamforming techniques are of low
cost and low energy consumption [4]. Analogue multibeams
can be formed by using either circuit-type feed networks or
quasi-optical approaches [5]. Widely known circuit-type feed
networks for feeding multibeam antennas include the Butler
matrix, the Blass matrix and the Nolen matrix [1], [4]. The
standard Butler matrix is an N×N square matrix using hybrid
couplers to produce N orthogonal beams. Although all the
beams can be rotated together, their relative directions are
fixed. Therefore, the Butler matrix is most suited for covering
sectors in conventional base stations. Since its inception [6],
a large number of papers have been published on the Butler
matrix. These include systematic design approaches [7] and
various innovative designs such as wideband and low sidelobe
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beam realizations [1], [8]. Unlike Butler matrices, Blass matri-
ces and Nolen matrices employ directional couplers and phase
shifters without crossovers to produce flexible multibeams
which can be designed to point in desired directions [9], [10].
A Blass matrix is an M × N(M ≤ N) rectangular matrix
with matched loads at the end of each row and column to
produce M beams, thus making it lossy. A Nolen matrix is
an N × N diagonal matrix with the nodes lying along the
diagonal constructed to direct all ingoing energy to the row
above, hence making it lossless and also saving almost half of
the matrix nodes. Although the general thinking is that such
matrix savings in nodes and circuit components in the Nolen
matrix are advantageous, as we show in this paper, this may
result in the degradation of the beamforming performance.

Beamforming networks such as Blass and Nolen matrices
have two functions. The first function is to route different
input signals to the antenna elements to realize desired signal
magnitude distributions across the antenna array. The second
function is to produce different phase distributions to realize
desired beam directions for different input signals. The major
building blocks of these matrices are joined couplers that
consist of a number of directional couplers joined together to
perform the task of signal routing. A chief task in synthesizing
Blass and Nolen matrices is to determine the parameters of
the joined couplers. To treat all these matrices in a universal
manner, therefore, we introduce a new concept, the generalised
joined coupler (GJC) matrix, which encompasses the Blass
matrix, the Nolen matrix and other variants. A particularly
interesting new variant of the GJC matrix is also introduced
in this paper, in which the phase shifter associated with each
matrix node is placed to the right of the directional coupler
instead of above it as is the case in conventional matrices.
This makes it possible to realise independent individual beam
scanning. A salient feature of GJC matrices is that they can
be used to produce up to N number of beams flexibly by
adjusting the number of matrix nodes required, the coupling
coefficients, the associated phase shifter of each node, and the
termination of the matrix. Driven by multiuser communica-
tions and peer-to-peer networking, the interest in GJC matrices
is expected to grow in order to meet the demands of future
wireless communications such as 5G, B5G and 6G systems
[1] - [4].

One of the primary difficulties in employing Blass matri-
ces or Nolen matrices, and GJC matrices in general, is the
complexity of synthesizing the matrix. This is in contrast to
the Butler matrix; the methods for designing it have been
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Fig. 1: Illustration of the functionality of a directional coupler.

well developed [7], [11]. Some design procedures for special
Blass matrices and Nolen matrices have been reported in the
literature. In [12], a method was proposed for a matrix with
a maximum of two rows, and the procedures shown in [13],
[14] do not allow users to arbitrarily choose the position of
the generated beams. What was presented in [15] is a non-
systematic path-by-path approach. More recently, closed-form
equations for a uniplanar single 3 × 3 Nolen matrix were
reported in [16]. Owing to the lack of systematic theoretical
work on the topic, there have been scant publications inves-
tigating the synthesis of multiple beams and their individual
control in spite of the increasing interest from the antenna and
microwave communities [17], [18], [19].

In this paper, we present a novel systematic approach for
synthesizing flexible multibeams employing GJC matrices. In
Section II, a matrix form expression linking the GJC matrix
outputs, i.e., the antenna excitation coefficients, with the array
input ports or beam ports is derived first. This not only
provides a mathematical framework for multibeam synthesis,
but also enables us to reveal various characteristics of the Blass
matrix and the Nolen matrix for the first time. In Section III,
we propose a computationally efficient optimization method
to synthesise a GJC matrix in order to generate desired
multibeams. In Section IV, we present some examples of
synthesizing multiple beams using Blass-like and Nolen-like
GJC matrices, and reveal some features of these systems
including beam scanning and the realization of low sidelobe
beam patterns. Section V concludes the paper.

II. THEORETICAL FRAMEWORK

To feed a single beam antenna array, one needs a number of
power dividers and phase shifters to produce the desired array
excitation coefficients [20]. For convenience, we shall refer
to a set of such coefficients as an array excitation vector. In
order to produce flexible multibeams, one would need a GJC
matrix. The directional couplers in the GJC matrix are used
for directing the signal flow and distribution, and the phase

shifters are needed to produce beams in different directions. In
general, the function of a directional coupler can be illustrated
in Fig. 1. The ports are indexed clockwise. The signal transfer
among the four ports is described by an S matrix given by
[21]:

S =


0 jsinθ cosθ 0

jsinθ 0 0 cosθ
cosθ 0 0 jsinθ
0 cosθ jsinθ 0

 , (1)

where j =
√
−1. As shown in Fig. 2, a GJC matrix consists of

directional couplers and phase shifters. A directional coupler
and a phase shifter comprise a matrix node as shown in Fig.
3. For a GJC matrix, we use m to represent the mth row
corresponding to the mth input signal, and n the order of
the nth column corresponding to the nth antenna element.
We denote θmn as the parameter for determining the signal
flow within a directional coupler in the node positioned in the
mth row and the nth column of a GJC matrix, and φmn the
phase shifter value of this same node. It must be noted that,
in Fig. 2, the phase shifter in each matrix node is connected
to port 3 of its corresponding directional coupler, whereas
in traditional Blass matrices and Nolen matrices, each phase
shifter is connected to port 2 of its corresponding directional
coupler. This important difference makes it possible to realise
independent individual beam scanning. In Fig. 2, there are four
antenna input ports with input xm, m = 1, 2, 3, 4, and the
array excitation vector is given by yn, n = 1, 2, . . . , N
with N representing the number of antenna elements. In what
follows, the signal inputs xm are collectively referred to as
the array input vector.

Owing to the use of directional couplers, the signal flowing
through any antenna port or beam port to the inside of the
GJC matrix only travels upwards and to the right, as shown
in Fig. 1, with its S matrix in (1). The lower the antenna
input port, the more paths the signal flow takes. This makes
the handling of GJC matrices with more than two rows highly
complex. Few approaches have been proposed in the past to
find the general relationship between the array input vector and
the array excitation vector. Such lack of a general theory may
partly explain the slow uptake of Blass and Nolen matrices
for creating multibeams. In the following, we take a matrix
approach to derive their relationship in a closed form formula
for the first time.

Given that the matrix shown in Fig. 2 is a cascade of a
number of similar vertical units, or columns, each consisting
of four directional couplers and four phase shifters, or a
conjunction of four nodes. For the nth column, one can express
the relationship between their inputs and horizontal outputs as
follows:

u1n = cosθ1n e−jφ1u1(n−1) + j2sinθ1n sinθ2n e−jφ1nu2(n−1) + j2sinθ1n cosθ2n sinθ3n e−jφ1nu3(n−1)

+ j2sinθ1n cosθ2n cosθ3n sinθ4n e−jφ1nu4(n−1),
(2a)

u2n = cosθ2n e−jφ2nu2(n−1) + j2sinθ2n sinθ3n e−jφ2nu3(n−1) + j2sinθ2n cosθ3n sinθ4n e−jφ2nu4(n−1), (2b)

u3n = cosθ3n e−jφ3nu3(n−1) + j2sinθ3n sinθ4n e−jφ3nu4(n−1), (2c)

u4n = cosθ4n e−jφ4nu4(n−1). (2d)
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Without loss of generality N is chosen as 4 first. In (2a),
(2b), (2c), and (2d), the first subscript, e.g. 1 and 2 in u1n and
u2n, are aligned with the order of the nodes (see Fig. 2). The
second subscript, such as n in u1n and u2n, represents the
position of the column. As indicated by the number of terms

in each equation, (2d), (2c), (2b), and (2a) show that only one
signal travels through the bottom node and progressively more
signals go through the upper nodes.

Defining the signal transforma-
tion matrix of the nth column as:

A
(n)
4×4 =


cosθ1n e−jφ1n j2sinθ1n sinθ2n e−jφ1n j2sinθ1n cosθ2n sinθ3n e−jφ1n j2sinθ1n cosθ2n cosθ3n sinθ4n e−jφ1n

0 cosθ2n e−jφ2n j2sinθ2n sinθ3n e−jφ2n j2sinθ2n cosθ3n sinθ4n e−jφ2n

0 0 cosθ3n e−jφ3n j2sinθ3n sinθ4n e−jφ3n

0 0 0 cosθ4n e−jφ4n


4×4

,

(3)

Fig. 2: Part of a GJC matrix for transmitting four beams.

Fig. 3: A directional coupler and a phase shifter form a GJC
matrix node.

The signals entering horizontally into the first column of the
GJC matrix are transformed to the output as:

u11

u21

u31

u41

 = A
(1)
4×4


x1

x2

x3

x4

 , (4a)

and the signal transformation taking place at the nth column
of the GJC matrix is described as:


u1n

u2n

u3n

u4n

 = A
(n)
4×4


u1(n−1)

u2(n−1)

u3(n−1)

u4(n−1)

 ,

2 ≤ n ≤ 4.

(4b)

More specifically, one has:
u12

u22

u32

u42

 = A
(2)
4×4


u11

u21

u31

u41

 = A
(2)
4×4A

(1)
4×4


x1

x2

x3

x4

 , (4c)


u13

u23

u33

u43

 = A
(3)
4×4A

(2)
4×4A

(1)
4×4


x1

x2

x3

x4

 , (4d)


u14

u24

u34

u44

 = A
(4)
4×4A

(3)
4×4A

(2)
4×4A

(1)
4×4


x1

x2

x3

x4

 . (4e)

Note that a signal passing through a directional coupler can
continue horizontally or can be directed upwards as shown in
Fig. 1. The transformation of the signals in the first column
of a GJC matrix that are directed towards the first antenna is
represented as:

y1 =
[
α

(1)
4×1

]T 
x1

x2

x3

x4

 , (5a)

where:

α
(1)
4×1 =


jsinθ11
jsinθ21 cosθ11
jsinθ31 cosθ21 cosθ11
jsinθ41 cosθ31 cosθ21 cosθ11


4×1

. (5b)

The transformation of signals in the nth column of the GJC
matrix that are directed towards the nth antenna is represented
as:
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yn =
[
α

(n)
4×1

]T 
u1(n−1)

u2(n−1)

u3(n−1)

u4(n−1)

 , (5c)

where:

α
(n)
4×1 =


jsinθ1n
jsinθ2n cosθ1n
jsinθ3n cosθ2n cosθ1n
jsinθ4n cosθ3n cosθ2n cosθ1n


4×1

. (5d)

Consequently, we have the following expression of the array
excitation vector in terms of the array input vector:

y1
y2
y3
y4

 = Ω4×4


x1

x2

x3

x4

 , (5e)

where:

Ω4×4 =



[
α

(1)
4×1

]T[
α

(2)
4×1

]T
A

(1)
4×4[

α
(3)
4×1

]T
A

(2)
4×4A

(1)
4×4[

α
(4)
4×1

]T
A

(3)
4×4A

(2)
4×4A

(1)
4×4


4×4

. (5f)

The above derivation is for a full GJC matrix with four
antenna input ports and four antenna elements, and the antenna
excitation vector is [y1, y2, y3, y4]

T .
A general full GJC matrix with M signal input ports and

N antenna elements to feed is shown in Fig. 4. All the major
matrices for the general case are derived following the above
procedure, and are given below.

We define the general signal transformation
matrix for the nth column of a GJC matrix as:

A
(n)
M×M =


cosθ1n e−jφ1n j2sinθ1n sinθ2n e−jφ1n · · · j2sinθ1n cosθ2n . . . cosθ(M−1)n sinθMn e−jφ1n

0 cosθ2n e−jφ2n · · · j2sinθ2n cosθ3n . . . cosθ(M−1)n sinθMn e−jφ2n

0 0 · · · j2sinθ3n cosθ4n . . . cosθ(M−1)n sinθMn e−jφ3n

...
...

. . .
...

0 0 · · · cosθMn e−jφMn


M×M

,

(6)

where the superscript of A
(n)
M×M describes the nth column

of the GJC matrix transformation. The signals passing hor-
izontally through the first column of joined couplers are
transformed as:

u11

u21

...
uM1

 = A
(1)
M×M


x1

x2

...
xM

 , (7)

and that through the nth column of joined couplers as:
u1n

u2n

...
uMn

 = A
(n)
M×M


u1(n−1)

u2(n−1)

...
uM(n−1)

 ,

2 ≤ n ≤ N.

(8)

Defining:

α
(n)
M×1 =


jsinθ1n
jsinθ2n cosθ1n
jsinθ3n cosθ2n cosθ1n
...
jsinθMn cosθ(M−1)n cosθ(M−2)n · · · cosθ1n


M×1

,

(9)

the transformation of the signals in the first column of the GJC
matrix that are directed towards the first antenna is represented
as:

y1 =
[
α

(1)
M×1

]T


x1

x2

x3

...
xM

 , (10)

and that directed by the nth column of the GJC matrix to the
nth antenna is:

yn =
[
α

(n)
M×1

]T


u1(n−1)

u2(n−1)

u3(n−1)

...
uM(n−1)

 . (11)

Combining (6), (7), (8), (9), (10), and (11) yields:

y1
y2
...
yn
...
yN


= ΩN×M


x1

x2

...
xM

 , (12)
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where:

ΩN×M =



[
α

(1)
M×1

]T[
α

(2)
M×1

]T
A

(1)
M×M

...[
α

(n)
M×1

]T
A

(n−1)
M×M · · ·A(1)M×M

...[
α

(N)
M×1

]T
A

(N−1)
M×M · · ·A(1)M×M


N×M

. (13)

To quantify the losses occurring in the matched loads, we
define the transmission efficiency of the GJC matrix as:

ηt = 1−
M∑
n

u2
nN/

M∑
i

x2
n. (14)

It should be noted that the transmission efficiency of the GJC
matrix defined in (14) is for all of the beams, but it can also
be used to calculate the transmission efficiency of individual
beams. It is a representation of how much ohmic loss occurs
in the matrix. In the case of the Blass matrix, the losses will
occur in the matched loads at the end of each row and column.
In the case of the Nolen matrix, the transmission efficiency is
theoretically 100% if all of the matrix nodes are lossless. In the
case of a general GJC matrix where some nodes are connected
to a matched load and some may be treated in the same way as
in the Nolen matrix, (14) can be easily modified to calculate
the transmission efficiency.

With the above equations, one can obtain the antenna
excitation vector of any antenna beam by considering only
one beam input at a time. In practice, we would be faced with
the problem of synthesizing multibeams by synthesizing the
GJC matrix. This will be discussed in the next section.

III. DESIGN OF GJC MATRICES FOR MULTIPLE BEAMS

The synthesis of single beam arrays is usually treated as
a problem of optimizing the antenna weights, or the array
excitation vector. Similarly, the synthesis of multiple beams
can be treated as a problem of optimizing the parameters
of a GJC matrix to produce M predefined beams. There
is a wealth of literature on single antenna pattern synthesis

Fig. 4: Part of a general GJC matrix.

using optimization methods [22]. Typically, one would need
to calculate the radiation pattern in an angular range of
interest in each optimization step, and use a cost function
to guide the iteration process in order to obtain the optimal
array excitation vector to achieve the desired beam pattern.
This can be computationally time-consuming for producing
multibeams, especially when the dimensions of the GJC matrix
are large. In the following, we propose to synthesize GJC
matrices by optimizing the array excitation vector for each
beam directly. This is much more computationally efficient as
one can use a classical array distribution function such as the
uniform, Taylor, or Chebyshev distributions as the targeted
array excitation vectors [20]; no beam pattern calculation is
required. Thanks to the employment of the phase shifters in
each row of the GJC matrix, no optimization of the phase
distribution is required in the proposed strategy.

A. Single Beam Synthesis

We first start with the synthesis of a single beam. This is
equivalent to synthesizing a series-fed linear antenna array or
a leaky wave antenna. This special case is pertinent because
it can be used as the first step in synthesizing multibeams.
We choose to optimize the GJC matrix to produce a uniform
array excitation to produce the sharpest antenna beam with
maximum aperture efficiency. Intuitively, the power “leakage”
should be as [ 1/N, 1/ (N − 1) , 1/ (N − 2) , . . . , 1 ], where
N is the number of antenna elements. The coupler parameter
θ1n (n = 1, 2, . . . , N) is thus given by:

θ1n = sin−1 1√
N − n+ 1

, (15)

which results in a uniform array excitation. A constant phase
shift φ1 can be assigned to produce a beam in the following
direction:

γ1 = sin−1φ1

kd
, (16)

where k is the wavenumber and d is the antenna element
spacing; a uniformly distanced array has been assumed. It
should be noted that, if we use the above approach, the feed
network is lossless, as all the input energy is radiated. This is
important as (15) can be used to design series fed liner antenna
arrays and leaky wave antennas. An alternative approach is to
synthesize beam 1 in the same way as other beams.

B. Multibeam Synthesis

Next, we show how to synthesize multiple beams. We can
keep the directional coupler and phase shifter design for beam
1 the same as in (15) and (16) above, and then synthesize the
couplers in the other rows of the GJC matrix (see Fig. 2).
Intuitively, we can keep all the phase shifts the same as φ2 to
obtain the second beam in the direction of γ2 as follows:

γ2 = sin−1φ2

kd
. (17)

This is where the complexity of the problem arises. Since
the signal flow from the second row to the first row of the
GJC matrix and then to the antennas takes place via many
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different multi-paths, we no longer know how to set the
coupler parameters optimally to obtain a desired beam pattern
as for the first beam. Furthermore, we typically need to keep
the transmission efficiency high. Therefore, we need to resort
to an optimization strategy.

From beam 2 onwards, we define the targeted magnitude
distribution of the array excitation vector elements for the mth

beam as Y
(m)
n , n = 1, 2, · · · , N . Y (m)

n , n = 1, 2, · · · , N
can be chosen from a classic distribution such as the uniform
distribution or the Taylor distribution. Then, the cost function
for the optimization of the couplers in the mth row of the GJC
matrix is given by:

f (m)(θ(m)) =

N∑
n=1

∣∣∣∣∣∣y(m)
n (θ(m))

∣∣∣− Y (m)
n

∣∣∣, (18)

γm = sin−1φm

kd
, (19)

where y
(m)
n , n = 1, 2, . . . , N are the antenna excitations

generated by the GJC matrix for the mth beam based on (11).
In practice, we can make the magnitude distribution of all the
targeted array excitation vectors the same. It should be noted
that in (18) we have chosen to optimize the magnitudes of the
array excitation vector elements. This is because the phases of
these elements are determined by the phase shifter values given
by (19). When implementing the uniform excitation, Y (m)

n can
be calculated as:

Y (m)
n =

1√
N

. (20)

Our strategy is to optimize the coupler parameters θ
(m)
n ,

n = 1, 2, . . . , N in order to minimize the cost function
f (m). It is noted that the L1 norm is employed in (18), though
other norms can also be used. Successful synthesis of a desired
beam is achieved in practice when the cost function reaches a
minimum.

Thus, an algorithm for synthesizing multiple beams is given
as follows:

Multibeam Synthesis Algorithm
1) Select the magnitude distribution of the antenna

coefficients for the M beams;
2) Select the directions of M beams and set the phase

shifter values using (19);
3) Define a cost function for optimization, such as the

one given in (18);
4) Optimise the directional couplers in the first row of

the GJC matrix using an optimization algorithm;
5) Use the above directional coupler values for the

first row in the GJC matrix and then optimize the
directional couplers in the second row of the GJC
matrix;

6) Repeat step 5 until M beams have been synthe-
sized.

Owing to the complexity of this form of objective functions,
it has become a common practice to use Genetic Algorithm
or Particle Swarm Optimization (PSO) algorithm for array

synthesis [23]. In this paper, therefore, the PSO algorithm is
employed.

IV. NUMERICAL EXAMPLES

To verify the theory developed in Section II and the GJC
matrix synthesis strategy proposed in Section III, we present
some numerical results and reveal some characteristics of GJC
matrices.

As stated in the introduction, GJC matrices have a number
of variants. In what follows, we focus on those variants
in which the phase shifters are placed to the right of the
associated directional couplers. Specifically, we examine two
important variants, namely, the Blass-like GJC matrix and the
Nolen-like GJC matrix.

A. Multiple Beamforming and Sidelobe Control

We first demonstrate the effectiveness of the proposed ap-
proach in synthesizing Blass-like GJC matrices for generating
multiple beams. The illustration of such a matrix is given in
Fig. 5. To date, owing to the lack of accessible theoretical
methods on the topic, there has been a scant number of
publications investigating the use of Blass matrices to produce
more than two beams, Fig. 6 shows three beam patterns
of an 8-element array fed by a Blass-like GJC matrix with
uniform distribution as the targeted magnitude distribution of
the array excitation vector. The beams numbered as b1, b2
and b3 are pointed at (−30◦, 0◦, 30◦) as intended in the
matrix synthesis, with side lobes less than −12 dB. We can see
that the proposed optimization strategy does result in desired
results. The magnitude of the antenna excitation coefficients
and the antenna efficiency are shown in Table I. To compare,
Fig. 7 shows three beam patterns of a 12-element array fed
by a Blass-like GJC matrix. The simulated beams are again
pointed at (−30◦, 0◦, 30◦) as intended in the synthesis. In
this case, the transmission efficiency is increased from 95.8%
to 97%. The magnitude of the antenna excitation coefficients
and the GJC matrix transmission efficiency are shown in Table
II. From these two examples, we observe that despite the
conventional perception that Blass matrices are generally lossy
and therefore would be undeserving of implementation, their
transmission efficiency can actually be made high.

The beam patterns in Fig. 6 and Fig. 7 are obtained with
uniform antenna excitation coefficients for all the beams. The
leftmost beams are created by the first row of the GJC matrix
and, as such, they exhibit classical linear array beam patterns.
Because of the multipath effects, however, it is seen that the
sidelobe levels of other beams, corresponding to beam ports
that are lower in the GJC matrix, deteriorate. In practice, low
sidelobe levels may be required for some or all of the beams.
To achieve this, we can use tapered antenna excitations as
the objective for optimization, such as the Taylor distribution
or the Chebyshev distribution. Fig. 8 shows three beams
created by using 20 antenna elements with a Taylor distribution
exhibiting -20 dB sidelobe levels [20]. It is seen that, counting
from the left, although the sidelobe levels of the second and
third beams do increase from that of the first, they are still
close to -20 dB. Fig. 9 shows the results of synthesizing five
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Fig. 5: Illustration of a Blass-like GJC matrix.

Fig. 6: Synthesized beam patterns using a Blass matrix when
M = 3, and N = 8.

Fig. 7: Synthesized beam patterns using a Blass matrix when
M = 3, and N = 12.

beams using the same amplitude taper, and it is seen that the
sidelobe levels of the third to fifth beams have increased to -15
dB. This demonstrates that the multi-path effect does become

Fig. 8: Three beams produced by using 20 antenna elements
and a Taylor distribution (M=3, N=20).

Fig. 9: Five beams produced by using 20 antenna elements
and a Taylor distribution (M=5, N=20).

stronger as the beam number increases.

B. Beam Scanning

The single row matrix presented in Section III-A can be
used to produce a scanning beam by simply changing the phase
shift values and optimizing the directional coupler parameters
to obtain the desired antenna excitation coefficients. It is
effectively a series fed phased array. For multiple beams, beam
scanning can also be achieved by optimizing the coupling pa-
rameters once and then fixing them while changing the phase
shift values. To demonstrate this, we chose to divide a scanning
range of [−60◦, 60◦] into three regions [−60◦, −20◦], [−20◦,
20◦], and [20◦, 60◦], and produce three scanning beams in the
three regions.

To investigate the optimality of the above strategy, we first
optimize the Blass-like GJC matrix to produce three beams
pointing at (−30◦, 0◦ and 30◦). Then, we scan the three
beams by simply changing the phase shifter values according
to (19). The results are shown in Fig. 10. It is seen that the
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TABLE I: Magnitudes of array excitation vector elements for N = 8 and M = 3. Achieved ηt = 95.8%.

Ant1 Ant2 Ant3 Ant4 Ant5 Ant6 Ant7 Ant8
Beam1 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536
Beam2 0.3536 0.3536 0.3536 0.3536 0.3636 0.3536 0.3536 0.1831
Beam3 0.3536 0.3515 0.3536 0.3536 0.3536 0.3435 0.3310 0.3243

TABLE II: Magnitudes of array excitation vector elements for N = 12 and M = 3. Achieved ηt = 97.0%.

Ant1 Ant2 Ant3 Ant4 Ant5 Ant6 Ant7 Ant8 Ant 9 Ant10 Ant11 Ant12
Beam1 0.2887 0.2887 0.2887 0.2887 0.2887 0.2887 0.2887 0.2887 0.2887 0.2887 0.2887 0.2887
Beam2 0.2887 0.2887 0.2887 0.2887 0.2887 0.2887 0.2887 0.2887 0.2887 0.2887 0.2887 0.1534
Beam3 0.2887 0.2887 0.2887 0.2887 0.2887 0.2887 0.2887 0.2887 0.2887 0.2887 0.2696 0.2530

Fig. 10: Multiple beam scanning by changing phase shifts only
(solid line, -s), and optimizing the GJC matrix (circles, -o) with
M=3, N = 12.

beam patterns are well maintained. This is significant as it
means that Blass-like GJC matrices can be used for multibeam
phased arrays. To further confirm this, Fig. 10 also compares
the beams pointing at (−40◦, −20◦, 50◦) produced by direct
optimization of the directional couplers and by just changing
the phase shift values, respectively. It is observed that the
two sets of results are highly similar. It should be noted that
the sidelobe levels of the second and third beams from the
left have higher sidelobes than the first. To prevent beams
associated with the lower beam ports from deteriorating, in
practice, the number of antenna elements N would need to be
sufficiently high compared with the number of beams M .

C. Nolen-like GJC Matrix

For clarity, we have investigated only Blass-like matrices
with N columns and M rows so far. A generalized joined
coupler (GJC) matrix doesn’t need to be a full rectangular
matrix. Depending on the specific performance and cost re-
quirements, some elements can be removed. The GJC can be
terminated by match loads, or similar to the Nolen matrix,

𝑦7 𝑦8

𝑥4

𝑦5𝑦1

𝑥2

𝑥1

𝑥3

𝑦6𝑦2 𝑦3 𝑦4

Fig. 11: Illustration of a 4× 8 Nolen-like GJC Matrix.

one can truncate some rows and direct the signal flow in the
last nodes upwards. This results in a lossless Nolen-like GJC
matrix shown in Fig.11.

In fact, a Nolen matrix is realized by setting the parameters
of the diagonal directional couplers as θm(N−m+1) = π/2,
m = 1, 2, · · · , M , thus preventing the signal flow from
passing from left-to-right through the directional couplers
positioned along the diagonal of the Nolen matrix. Since all
the input energy to an ideal Nolen matrix is directed to the
antenna elements, Nolen matrices are understood to be lossless
and thus have been recently favored for implementation.
The synthesis of Nolen matrices can be realized using the
theory developed in Section II; One simply needs to have
the parameters of the diagonal couplers fixed to π/2. The
prameters of matrix nodes below the diagonal ones can be
set to any values as they do not affect the calculations and
would effectively not exist in the physical implementation of
this matrix.

Although the Nolen matrix is lossless and requires almost
only half of the elements of the Blass matrix for large N , it
does exhibit critical drawbacks; to produce N beams with a
Nolen matrix, we have N − 1 variables to optimize Beam 1,
N − 2 variables to produce Beam 2, and so on. We do not
have any variable to optimize beam N . Effectively, beam N
is determined by the N − 1 beams. The quality of the higher
order beams can thus deteriorate significantly. To show this,
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Fig. 12: Comparison of four beams produced by a Blass-like
GJC matrix (circles, -b) and a Nolen-like GJC matrix (solid
line, -n) using eight antenna elements (M=4, N = 8).

we chose a Nolen-like GJC matrix with N = 8 and M = 4,
and set the parameters of the last four diagonal elements as
θm(N−m+1) = π/2, m = 1, 2, 3, 4. We call it a Nolen-
like GJC matrix as it is not diagonal, and its configuration is
shown in Fig. 11. Some numerical results of the Nolen-like
GJC matrix are provided in Fig. 12. The matched loads at the
bottom of the matrix are for receiving only, and they do not
consume any transmission power. It is seen from Fig. 12 that,
compared with the Blass-like GJC matrix counterparts, the 3rd

and 4th beams produced by the Nolen-like GJC matrix have
more prominent sidelobes in addition to broadened main lobes
as a result of reduced matrix nodes.

As stated earlier, a GJC matrix can take many forms, and
there are many issues to be investigated further using the
approach presented above. This is the topic of our on-going
study.

V. CONCLUSIONS

Analogue multiple beamforming serves as a low-cost and
energy efficient way to produce multiple beams. The Blass
matrix is usually regarded as too lossy, and, therefore, recent
research activities have been focused on the Nolen matrix.
To address the issue of lacking general theory and synthesis
approaches, we have developed a new theory for synthesizing
multiple beams with individual beam direction and sidelobe
control using the generalized joined coupler (GJC) matrix,
and have shown how the proposed approach can be employed
through numerical examples. We demonstrated that the loss
of a Blass-like GJC matrix can be made relatively small and
therefore it would deserve more attention as a candidate for
feeding multibeam antenna arrays. The Nolen matrix and the
Nolen-like GJC matrices may lead to faster beam quality
degradation than in the Blass-like GJC matrix case if many
beams are needed. We have also shown that low sidelobe
multibeam phased arrays can be produced by using appropriate
distribution functions as the optimization target, and using
tuneable phase shifters to control the beam directions. It is

expected that the theory presented and the features of the
Blass-like GJC matrices and Nolen-like matrices revealed will
facilitate future research and adoption of circuit-type multiple
beamforming networks.
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