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Abstract: For low-voltage three-phase systems, the deep fault arc features are difficult to extract, and
the phase information has strong timing. This phenomenon leads to the problem of low accuracy
of fault phase selection. This paper proposes a three-phase fault arc phase selection method based
on a global temporal convolutional network. First, this method builds a low-voltage three-phase
arc fault data acquisition platform and establishes a dataset. Second, the experimental data were
decomposed by variational mode decomposition and analyzed in the time-frequency domain. The
decomposed data are reconstructed and used as input to the model. Finally, in order to reduce the
fault features lost during the causal convolution operation, the global attention mechanism is used to
extract deep fault characterization to identify faults and their differences. The experimental results
show that the accuracy of the three-phase arc fault arc phase selection of the model can reach 98.62%,
and the accuracy of single-phase fault detection can reach 99.39%. This model can effectively extract
three-phase arc fault and phase characteristics. This paper provides a new idea for series fault arc
detection and three-phase fault arc phase selection research.

Keywords: global attention mechanism; arc fault; deep learning; fault phase selection

1. Introduction

With the development of power systems and the increasing diversification of electrifi-
cation equipment, the low-voltage power load is increasing year by year, and the frequent
occurrence of electrical fire has caused huge losses to the national economic security. As one
of the main causes of electrical fire, fault arc is often accompanied by high temperature and
arc light as well as other physical characteristics. Taking a copper electrode as an example,
when the arc is freely ignited in air, the arc length is 5–20 mm, and the current is about
2–20 A. The average temperature of the fault arc is about 2500 K, and the arc column area
can even reach about 6500 K. There is a relatively complete protection system for the short
circuit and overload faults. Meanwhile, the arc grounding fault and parallel electric arc
fault also had a more reliable protection. However, a series of arc fault detection is required
for more common usage scenarios. Its concealment of failure can affect fire prevention, and
protecting user security is a difficult problem in equipment maintenance and repair work.

There are three main types of research on low-voltage series fault arc. (1) The method
based on an arc mathematical model is difficult to be used in practice due to the large number
of parameters required and many constraints. (2) The fault arc is detected by various sensors
at the arc location to detect the physical characteristics when the fault occurs, such as arc
light and sound. Because the actual circuit is long and the arc occurrence time and location
are random, it is difficult to realize series fault arc detection. (3) At present, the mainstream
trend of research on low-voltage series fault arc is to use a deep learning algorithm to extract
category features for fault arc detection after the current data are processed by signal or
mathematical operations such as wavelet transform [1] and Fourier transform [2]. Among
them, Zhang et al. [3] normalized current waveforms of different loads and transformed gray
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data to generate two-dimensional images, and they used self-normalized convolutional neural
network to identify features. Zhang used the generative adversarial network to enhance the
original data, and they design an adaptive asymmetric convolution kernel according to the
data distribution characteristics to improve the accuracy of fault detection [4]. Su et al. [5] used
chaotic fractal theory to study the spatial characteristics of AC fault arc current and established
a fault arc diagnosis model, making up for the deficiency of time-frequency characteristics in
fault arc detection. Hu CQ [6] proposes an arc fault detection method of channel threshold
(DRSN-CW) based on continuous wavelet transform and a deep residual shrinkage network
to effectively reduce the impact of a less fault arc public dataset in the deep learning model of
arc fault diagnosis.

In the research of low-voltage series three-phase fault arc, fault phase classifica-
tion is a difficult problem to be solved because its characteristics are not easy to extract.
Guo et al. [7] used the first-order difference to enhance the mutation component and con-
structed the rectangular fault arc region through time-frequency domain analysis. This
method can effectively detect fault arc in a low-voltage three-phase system. Wang et al. [8]
improved the fault arc characteristics in the singular value vector obtained by an attractor
trajectory matrix on the basis of first-order difference, and they proved that when three-
phase series fault arc was generated, any electrical signal of one phase contained the fault
arc and fault phase information of each phase. At present, the research on three-phase fault
arc phase selection mainly relies on signal and mathematical transformation to extract fault
features, and the construction of neural networks is relatively simple, ignoring the mining
of deep information by complex neural networks in deep learning.

The attention mechanism In deep learning [9] is a mechanism that focuses on local
feature extraction. Since different segments of the dataset have different contributions
to the task, the attention mechanism only focuses on the feature vectors in the time-
frequency domain that are highly correlated with the target features. At present, the
attention mechanism is widely used in the predicted task [10,11], image processing [12,13],
target tracking [14], fault diagnosis [15–17] and other fields. Among all kinds of deep
learning network models, Temporal Convolutional neural Network (TCN) [18] is a neural
network model with causal Convolutional Network as the main body, interlayer connection
supplemented by extended convolution [19] and residual connection [20]. The TCN is
convolved with dilation at different dilation rates to increase the receptive field. TCN as
the overall network infrastructure is more suitable for extracting a high order of magnitude
timing features. Therefore, TCN is currently applied in various timing signal processing
tasks [21–23].

In this paper, a method of Global Temporal Convolutional Neural Network (GTCN)
based on global attention mechanism (GAM) is proposed for three-phase arc fault phase
selection by building a low-voltage three-phase arc fault data acquisition platform, the
voltage data between the stationary phase and the neutral line of the inverter in the low-
voltage three-phase system are collected. The variational mode decomposition is used
to capture the initial features of the experimental data, and the eigenmode function with
obvious fault features are reconstructed into neural network training and testing datasets.
In order to reduce the computational burden of the network model and reduce the size of
the model. the expansion rate of the main network TCN is increased in a nonlinear way,
and the global attention mechanism is used to extract deep and high-dimensional features
every two layers. Finally, the fully connected laver is used to determine the data category.

To summarize, our main contributions are:

(1) Proposing a detection method based on sequential convolutional neural network
(GTCN) to solve the problem of three-phase series fault detection in a low-voltage
three-phase system.

(2) Introducing Variational Mode Decomposition (VMD) and analyzes the data in fre-
quency domain.
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(3) Building the simulation experiment platform of fault arc, and the experimental data
of fault arc phase selection using the voltage between the fixed phase and the zero
line is creatively proposed.

This paper consists of six sections. The first section introduces the fault arc detection
methods and research status. The second section introduces the simulation experiment and
analyzes the data in time domain. The third section introduces VMD and analyzes the data
in frequency domain. The fourth section introduces the neural network model of fault arc
phase selection named GTCN. The fifth and sixth sections analyze the experimental results
and draw conclusions.

2. Experimental Design and Data Collection
2.1. The Experiment Platform

The three-phase fault arc data acquisition platform is shown in Figure 1. Low-voltage
220 V/50 Hz AC power supply was used for the experiment, and a JDG4-0.5 220 V/10 V
voltage transformer was used for data acquisition. The frequency conversion device adopts
a EV4300 type 0.75 kW inverter, the motor adopts a 6KI400A-YF type three-phase motor.
This motor is a three-phase asynchronous motor, and its rated voltage is 380 V, rated
frequency is 50 Hz, rated current is 3.05 A, and speed range is 90–1300 r/min. The circuit
connection line is a 4 mm experimental copper wire, with two circuit breakers as the main
switch and an obvious disconnect point as the protection device. The TiePieSCOPE HS801
5-in-1 virtual comprehensive tester was used for data acquisition.

Figure 1. Experimental platform. (a) Physical and simulation diagrams of the experimental platform;
(b) Working principle diagram of inverter.

2.2. The Experiment Design

The fault arc signal is obtained by drawing—arc fault simulation. The main body of the
fault occurrence device is composed of a 6 mm carbon rod and 6 mm copper rod, in which the
carbon rod is used as the static electrode and the copper rod is used as the moving electrode.
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The electrodes are moved under the control of a stepper motor to adjust the gap between the
electrodes to produce an arc. The fault occurrence device is shown in Figure 2:

Figure 2. Fault generator.

In order to ensure the generality of the simulation system, this paper uses the frequency
converter to convert single-phase electricity into three-phase electricity, and it uses the
triangle connection method to connect a 220 V three-phase motor. In this paper, when the
maximum speed of the motor is working normally, one of the branches simulates the fault.
The collection point is fixed in phase A, and arc faults occur in three phases of A, B and C
respectively. The voltage between the collection point of phase A and the neutral line of
the inverter is collected as experimental data. An experimental circuit diagram is shown
in Figure 1. Four groups of experiments are carried out: namely normal, A-phase fault,
B-phase fault and C-phase fault. Here, 1, 2, and 3 are the locations where faults occur. The
switch is on to simulate the occurrence of faults, and the switch is closed to simulate the
normal situation of branches. In total, 2000 groups of experimental data were collected for
each group.

2.3. Data Acquisition and Preprocessing

The voltage frequency of the input three-phase motor is 50 kHz, the sampling number
is 10,000 as the sampling condition, and the sample duration is 0.2 s, including 10 cycles of
voltage waveform. When there are 15 or more fault arc features in the sample, the sample
is identified as a fault sample, and a label is added at the end of the data according to
its fault type. The host used in this experiment is configured with an Intel (R) Core (TM)
i7-7700 hq processor, the GPU is an NVIDIA GeForce GTX 1080 Ti dual graphics card, and
it has 16.00 GB running memory. Under the Windows 10 system, Python is used to realize
the algorithm of the experimental system. Two thousand sets of data were collected for
each group of experiments, and the training and testing datasets were allocated by 7:3.

2.4. Waveform Analysis

The waveform obtained from the three-phase fault arc simulation experiment is shown
in Figure 3. Here, the abscissa is the time axis, and the unit is second (s). The ordinate is
voltage, expressed in volts (V). According to the experimental waveform, the frequency
converter uses SPWM, that is, sinusoidal pulse width modulation, for single-phase to
three-phase conversion and speed regulation. Different from the regular high-frequency
waveform with large amplitude variation, the fault is characterized by a chaotic high-
frequency burr waveform with small amplitude variation. Among them, the fault char-
acteristics of phase A are more obvious in each stage. The fault characteristics of B and
C two-phase faults are different in different stages. The phase B fault is more obvious in
the first and third stages, and the phase C fault is more obvious in the second and fourth
stages, indicating that the phase characteristics of different faults have strong timing.
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Figure 3. Experimental waveform. (a) Normal operating state; (b) Phase A fault status; (c) Phase B
fault status; (d) Phase C fault status.

Taking the A-phase fault as an example, as shown in Figure 4, due to the change of
experimental environment, the different intensity of arc combustion, the uncontrollable
length of arc pulling gap and the change of contact area between fault poles caused by dust
after carbon rod combustion, the fault characteristics of the same type of data are quite
different. Therefore, the robustness of the model is required.

Figure 4. A phase fault comparison chart.

3. Variational Mode Decomposition

Variational mode decomposition (VMD) [24] is an adaptive signal processing method
based on the use of non-recursive and variational mode decomposition. Variational theory
is derived from mathematical functional analysis. This method can suppress the aliasing of
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EMD by controlling the bandwidth. VMD decomposition uses an iterative search for the
optimal solution of the variational model to determine the component center frequency
and bandwidth of each decomposition, which is a completely non-recursive model. Its
mode is defined as the AM/FM signal, and its function is expressed as:

uk(t) = Ak(t) cos(ϕk(t)) (1)

where ϕk(t) is the signal phase and Ak(t) is the instantaneous amplitude. k is the BIMF
component with specific sparsity, and the optimal solution of each component is obtained
by constantly updating each mode function and center frequency through iteration. For
the signal, its constrained variational model is:

min
{uk},{ωk}

{
∑
k

∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥2

2

}
s.t.

K
∑

k=1
uk(t) = f (t)

(2)

where {uk} = {u1, u2, u3, . . . , uk} represents each BIMF component composition and then
{ωk} = {ω1, ω2, ω3, . . . , ωk} represents the center frequency of each component. δ(t) is the
pulse signal, * is the symbol of convolution operation, and ∂t is the convolution operation.

As shown in Equations (3) and (4), in order to obtain the optimal solution of
Equation (2), the initial

{
û1

k
}

,
{

ω̂1
k
}

, λ̂1 values are given, and the penalty factor and
Lagrange operator are introduced to update each mode and its center frequency. The
specific solution steps are as follows:

ûn+1
k (ω) =

f̂ (ω)− ∑
i 6=k

ûn
i (ω) + λ̂n(ω)/2

1 + 2α
(
ω−ωn

k
)2 (3)

ωn+1
k =

∞∫
0

ω
∣∣∣ûn+1

k (ω)2
∣∣∣dω

∞∫
0

∣∣∣ûn+1
k (ω)2

∣∣∣dω

(4)

After the NTH cycle, the Lagrange operator is updated according to Equation (5)

λ̂n+1(ω) = λ̂n(ω) + τ

(
f̂ (ω)−∑

k
ûn+1

k (ω)

)
(5)

As shown in Equation (5), cyclic iteration steps (2) and (3) are carried out until the
total deviation is less than the ε preset error, and the cycle is stopped to obtain the k group
of modal functions.

∑
k

∥∥∥ûn+1
k − ûn

k

∥∥∥2

2∥∥ûn
k

∥∥2
2

< ε (6)

Taking the normal state and phase A fault stage 1 as an example, the optimal solution
of VMD decomposition k is 6, so the original signal f is decomposed to obtain six groups of
components, and the eigenmode functions of six groups of BIMF components are obtained,
as shown in Figure 5.
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Figure 5. Eigenmode functions of normal and faulty BIMF components.

It can be seen from the figure that there are great differences in the fault feature content
among waveforms with different center frequencies, and the content of the fault feature
in IMF1–IMF3 is low and similar to that in non-fault waveforms. The fault features in
IMF4–IMF6 are obvious but have strong correlation with the time sequence of non-fault
waveform, so it is difficult to extract.

4. GTCN Neural Network Model
4.1. GTCN Neural Network

Aiming at the difficulty of extracting the fault features of different stages and frequen-
cies of experimental data, a GTCN neural network model is proposed in this paper. As
shown in Figure 6, global temporal convolutional neural network (GTCN) consists of data
preprocessing, an initial extraction layer, a feedforward network layer and a classification
and recognition layer.

Figure 6. GTCN neural network model.

Firstly, the signal data collected by the arc data acquisition platform are formatted,
classified and sorted by the data preprocessing layer, and labels are added according to
the data types. Secondly, the preprocessed data are decomposed by VMD with the optimal
solution k = 6, and the decomposed IMF4, IMF5 and IMF6 are, respectively, used as the
input of the three channels of the sequential convolution feedforward neural network in the
GTCN network. CCNN is a causal convolutional layer, and the main body of the network
is a temporal convolutional network with four layers of CCNN. The channel attention in
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GAM is used between the data input terminal and the second causal convolution layer,
and the feedforward operation is continued after each channel is dotted with the channel
attention map. The spatial attention map of each channel between the output of the second
layer and the output of the fourth layer is formed after dimension reduction by point
multiplication. Finally, the fused feature vectors are brought into the fully connected layer
for classification and recognition. In order to improve the effect of fault classification, the
Mish activation function is used as the activation function in GTCN, the Adam algorithm
is used as the optimizer, and the cross-entropy function is used as the loss function. To
prevent the problem of overfitting in the training process of the network, the dropout
training mechanism is added into the model, and its value is set to 0.2. The main network
of this model is a four-layer TCN, and the number of hidden layers is 2. The initial learning
rate is 0.001. The maximum number of iterations follows.

4.2. Global Attention Mechanism

As shown in Figure 7, the Global Attention Mechanism (GAM) [25] is compared with
the original CBAM Attention Mechanism; it reduces the loss of information in transmission
and expands the attention span. Its working principle is shown in the GAM module. The
operation is as follows:

F2 = MC(F1)⊗ F1 (7)

F3 = MS(F2)⊗ F2 (8)

where Mc and Ms are the attention map of channel and space, respectively, and ⊗ is the
dot product operation. In order to adapt the experimental data, the two-dimensional
convolution in the structure is changed to one-dimensional convolution, and the original
dimensional transformation of the three-dimensional data is omitted.

Figure 7. Global attention mechanism.

There is a two-layer MLP in channel attention, which enhances the dependence of
classification on temporal information. The spatial attention is a two-layer one-dimensional
convolution, which integrates the spatial information, uses the reduction rate R and elimi-
nates the pooling layer, so as to maximize the retention of fault and phase features.

4.3. Activation Function Selection

The function of activation function is to bring nonlinear elements into the linear model
to complete nonlinear tasks such as classification. Choosing an appropriate activation
function can improve the efficiency and accuracy of this kind of work. The original Tem-
poral Convolutional Network uses the classical Relu activation function, whose function
expression is shown in (9), and the function image is shown in Figure 8.
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Figure 8. Relu, PRelu and Mish activation functions.

The Relu function is not activated when the input is negative, which indicates that
Relu will be invalid if the input is negative. In the back propagation process, the gradient is
zero. However, the fault arc data will have negative values in the propagation process, so it
is necessary to select the activation function used in the model.

f (yi) =

{
yi, i f yi > 0
0, i f yi < 0

(9)

The PRelu (Parametric Reasonable Linear Unit) activation function [26], that is, the
activation function expressed in Equation (10) can provide a reasonable solution to the
problem of Relu failure, as shown in Figure 8.

f (yi) =

{
yi , i f yi > 0

aiyi, i f yi < 0
(10)

As a self-learnable activation function, its learning rate update method adopts a
momentum method, namely:

∆ai := µ∆ai + ε
∂ε

∂ai
(11)

Although PRelu solves the failure problem of Relu, its function curve is not smooth
enough, which will lead to the lack of generalization ability when performing nonlinear
work. Compared with PRelu, the Mish activation function based on the self-gating charac-
teristic of Swish activation function is more likely to match or improve the performance of
neural network architecture [27]. Its expression is as follows:

f (x) = xtanh(so f tplus(x))
= xtanh(ln 1 + ex)

(12)

According to Equation (12) and Figure 8, the Mish activation function is a continuous,
smooth, regularized and non-monotonic activation function, which performs well on
gradient flows. The formula structure of multiplying the nonmodulated input with the
output of the input nonlinear function eliminates the prerequisite for problems such as
Relu failure.

4.4. Basic Principles of TCN

The causal convolution operation in Temporal Convolutional Network (TCN) has a
logic similar to Markov chain, that is, the current input only depends on the current value
and the value at the previous time, which not only ensures the timing of feature extraction
but also avoids the problem of redundant network structure in order to retain temporal
information. As shown in Figure 9, on the basis of causal convolution, dilated convolution
does not increase the convolution kernel size and the number of network layers, but it only
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increases a dilated rate D, namely the time range of input data, to enhance its receptive
field. The expression of extended causal convolution is:

F(s) = (x ∗ d f )(s) =
k−1

∑
i=0

f (i)Xs−d (13)

Figure 9. Dilated Causal Convolution.

On the premise of ensuring the performance of neural networks, higher requirements
are also put forward for the stability of multilayer expansive causal convolution. Residual
network ResNets provide a solution for multilayer network optimization. As shown in
Figure 10, in the residual block, four layers of extended causal convolution and nonlinear
mapping are used to ensure the classification performance. In order to reduce the compu-
tational burden of the network model and reduce the model size, the convolution kernel
size of the expanded causal convolution is 13, and the expansion rate D is 1, 2, 9 and 64,
respectively. That is, the nonlinear growth method is adopted. Mish activation function
and weight normalization are used between layers to improve the convergence efficiency
of the network.

Figure 10. TCN neural network.
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5. Experiment and Result Analysis
5.1. Criteria

In this paper, accuracy rate, precision rate, recall rate, F1 value and confusion matrix
are used as the evaluation criteria of the model:

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(17)

In Equations (14)–(17), TP stands for the number of actual categories predicted as
true categories, TN stands for the number of actual wrong categories predicted as false
categories, FP stands for the number of actual wrong categories predicted as true categories,
and FN stands for the number of actual right categories predicted as false categories.

5.2. The Experimental Results

Various existing models and comparative experimental designs are shown in Table 1.
All kinds of existing models directly use the original data for three-phase fault detection.
Each phase fault detection dataset and three-phase fault mixture dataset were used as the
input of different network models for fault diagnosis and fault phase selection. Since there
is no global attention in GRU, LSTM and original TCN, IMF4, IMF5 and IMF6 after VMD
decomposition are superimposed and reconstructed as the input of the three networks.
The Mish activation function was used in both networks. The detection results of each
phase fault and fault phase selection of GTCN are compared with the detection results
of traditional recurrent neural network GRU, LSTM and original TCN. The experimental
results are selected after the network iteration process is stable.

Table 1. Fault identification and phase selection accuracy of each model.

Model A B C Phase Selection

CNN 76.50% 77.75% 75.26% 75.13%
ALEXNET 72.01% 73.76% 72.24% 69.87%

CNN-LSTM 94.76% 94.01% 95.76% 94.50%
GRU 90.50% 89.76% 92.26% 89.26%
LSTM 93.50% 94.25% 94.76% 94.13%
TCN 95.26% 94.00% 95.51% 95.76%

VMD-GRU 95.25% 94.75% 95.70% 93.87%
VMD-LSTM 96.13% 96.31% 96.12% 96.13%
VMD-TCN 96.38% 94.98% 96.98% 95.37%

VMD-GTCN 99.39% 98.63% 98.93% 98.62%

Experimental results show that the detection accuracy of GTCN is higher than that of
existing deep learning fault detection models. In recurrent neural networks, the detection
accuracy of the model using VMD for initial feature extraction is significantly higher than
that of the model without VMD. Only models using VMD are analyzed below.

The phase selection accuracy of GRU and LSTM reached 93.87% and 96.13%, respec-
tively. Compared with LSTM, the accuracy of fault arc detection in each phase of GRU is
reduced by about 1%, and the accuracy of fault phase selection is reduced by about 2.3%.
This indicates that although GRU has fewer parameters and a relatively simple structure,
compared with the special gate structure of LSTM, GRU has insufficient ability to capture
depth features.
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The phase selection accuracy of the original TCN network is 95.37%, and the fault detection
accuracy of phase A, phase B and phase C is 96.38%, 94.98% and 96.98%. Compared with the
recurrent neural network, although TCN has a larger receptive field, the causal convolutional
neural network loses some fault and dissimilarity features during the convolutional operation,
resulting in its accuracy being similar to that of LSTM and unstable.

The fault arc phase selection accuracy of GTCN is 98.62%, and the fault detection
accuracy of each phase is about 99%. Compared with the original TCN network, the
classification and detection accuracy is improved by about 3%. The global attention
mechanism improves the ability of the network to mine deep information by extracting
faults and different features. Compared with LSTM, the fault phase selection accuracy of
GTCN is increased by about 3%, indicating that GTCN has a large receptive field to sense
the phase differentiation characteristics of strong timing.

To visually demonstrate the detection effect of the GTCN model, the detection results
are visualized and the confusion matrix is generated, as shown in Figure 11. The larger the
value on the diagonal of the confusion matrix, the better the detection effect of the model.
Here, 0, 1, 2 and 3 represent the normal working state, A-phase fault state, B-phase fault
state and C-phase fault state, respectively.

Figure 11. Confusion matrix of GTCN three-phase fault arc detection.

In order to verify the impact of the difference of activation functions on the overall
architecture, GTCN neural network models under different activation functions were
trained, and the evaluation criteria were accuracy, precision, recall and F1 value.

The experimental results are shown in Table 2. The accuracy rate and recall rate of
the original Relu activation function for fault phase selection reach the lowest 95%. The
accuracy, precision and recall of the PRelu activation function and F1 value reached 97.75%,
97.76%, 97.75% and 97.74%, respectively. The Mish activation function in GTCN shows that
the accuracy, precision, and recall of fault arc phase selection are 98.63%, while the F1 value
drops slightly to 98.26%.

Table 2. Fault phase selection accuracy of GTCN under each activation function.

Activation Function Accuracy Precise Recall Rate F1 Value

Relu 95.00% 95.22% 95.00% 95.02%
PRelu 97.75% 97.76% 97.75% 97.74%
Mish 98.63% 98.63% 98.63% 98.26%

The experimental results show that GTCN will appear negative during the propagation
process, so the failure of Relu function reduces the accuracy of phase selection classification.
In the process of GTCN iteration, the Mish activation function can better capture category
features than PRelu activation function in the feature classification task. Therefore, the Mish
activation function is used in GTCN for low-voltage three-phase fault arc phase selection.



Appl. Sci. 2022, 12, 11280 13 of 14

6. Conclusions

In this paper, a detection method based on a global temporal convolutional network
(GTCN) is proposed to solve the problem of three-phase series fault detection in a low-
voltage three-phase system. The global attention mechanism and Mish activation function
are used to optimize the algorithm. The simulated three-phase fault arc experiment was
carried out, and VMD was used to analyze the data in the time-frequency domain and
extract the initial features. The global attention mechanism improves the mining ability of
deep feature information and improves the accuracy of complex fault identification.

The fault arc phase selection accuracy of the GTCN model reaches 98.62%, and the
fault detection accuracy reaches 99.39%. Compared with the traditional neural network
model, the GTCN model has better performance in extracting deep features and processing
long time-series information, has good performance, and has a good application prospect.

However, due to the complex operation of the actual low-voltage three-phase power
system, the experiment in this paper only simulates one of the typical operation states. In
the future, we will continue to discuss different practical application scenarios, establish a
more complete experimental database, and combine time-frequency domain analysis with
spatial domain analysis to optimize low-voltage three-phase fault arc detection and phase
selection models.
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