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Abstract
Multi-way data analysis has become an essential tool for capturing underlying structures in higher-order data sets where
standard two-way analysis techniques often fail to discover the hidden correlations between variables in multi-way data.
We propose a multi-objective variational autoencoder (MO-VAE) method for smart infrastructure damage detection and
diagnosis in multi-way sensing data based on the reconstruction probability of autoencoder deep neural network (ADNN).
Our method fuses data from multiple sensors in one ADNN at which informative features are being extracted and utilized
for damage identification. It generates probabilistic anomaly scores to detect damage, asses its severity and further localize it
via a new localization layer introduced in the ADNN. We evaluated our method on multi-way laboratory-based and real-life
structural datasets in the area of structural health monitoring for damage diagnosis purposes. The data was collected from
our deployed data acquisition system on a cable-stayed bridge in Western Sydney, a reinforced concrete cantilever beam
which replicates one of the major structural components on the Sydney Harbour Bridge and a laboratory based building
structure obtained from Los Alamos National Laboratory (LANL). Experimental results show that the proposed method
can accurately detect structural damage. It was also able to estimate the different levels of damage severity, and capture
damage locations in an unsupervised aspect. Compared to the state-of-the-art approaches, our proposed method shows better
performance in terms of damage detection and localization.

Keywords Autoencoder neural network · Multi-way data · Structural health monitoring · Damage detection · Data fusion

1 Introduction

The concept of smart infrastructure maintenance emerged
in the recent years as a continuous automated process
known as structural health monitoring (SHM). It aims to
build a condition-based inspection system driven by data
for early damage identification which results in better life-
safety and economic benefits. Most of the current structural
maintenance’s approaches are considered as a time-based
visual inspection which often follows a predefined regular
schedule. This kind of time-based inspection for a such
structure may results in certain economic and potential
life losses if it was too late or too early. Moreover, some

Seid Miad Zandavi, Basem Suleiman, Mohamad Naji and Ali
Braytee are contributed equally to this work.

� Ali Anaissi
ali.anaissi@sydney.edu.au

Extended author information available on the last page of the article.

structures such as high bridges raise other challenges in
terms of accessibility. SHM has earned a lot of interests
during the last decade due to the fact that it leads to enhance
understanding the behaviour of infrastructure and increases
its life span whilst maintaining a high level of life-safety.

In the realm of data science, SHM has attracted many
researchers working in the areas of machine learning and
data mining to handle the wealth of vibration responses
being simultaneously measured over time by many sensors
attached to a structure at different locations, and further
to identify structural damage. These measured responses
lead to high dimensional, multi-way and correlated data
which raises many challenges in analyzing and extracting
informative features to learn a damage identification model.
The SHM sensing data can be arranged as a three-way
data (feature × location × time) as described in Fig. 1.
Feature is the information extracted from the raw signals in
time domain (e.g. features in frequency domain). Location
represents sensors, and time is data snapshots at different
timestamps. Each cell is a feature value extracted from a
particular sensor at a certain time.
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Fig. 1 Multi-way data with three modes in SHM applications

Rytter classified damage identification into four different
levels of complexity [1]: damage detection (level 1),
localization (level 2), severity assessment (level 3) and
failure prediction (level 4). The damage detection level
can be solved using two-way analysis techniques by
constructing a standard anomaly detection model. However
damage localization and severity assessment require multi-
way data analysis techniques to capture the physical
meaning of the structure. On the other hand, level 4 is
not considered as a machine learning problem since it
requires understanding of the physical characteristics of the
damage progression in the structure. These requirements
have motivated us to study the deep neural networks (DNN)
as a feature learning method to handle the complexities
associated with the multi-way SHM data. DNN has become
popular and attracted many researchers working in the area
of data analytic. It has been successfully applied to solve
complex pattern recognition problems such as vision [2]
and speech [3]. Sutskever et al. [4] claim that DNN often
produces powerful models that achieve high performance
in comparison to other state-of-the-art machine learning
algorithms.

Generally speaking, data instances from at least two
different classes are required for the training stage in DNN.
However, in many applications such as SHM [5], only data
instances from one state (i.e. undamaged or healthy) are
available, and the samples from other states (i.e. damaged),
if not impossible, are too difficult or costly to acquire. Thus,
the classification process becomes as an anomaly detection
problem. Anomaly detection methods build a model based
on a given positive training dataset, and for a new arrived
data instance, the model estimates the agreement between
the new instance and the trained model. Data instances
which do not fit into the trained model are classified as
anomaly [6].

In the context of anomaly detection, an autoencoder deep
neural networks (ADNN) model may be more practical
when only data from positive/normal states are available.
It was originally proposed for dimensionality reduction

problems. However, it has proved throughout several
applications that it was very capable to handle the case of
one class learning and solve anomaly detection problems.
Furthermore, it can be also utilized as a data fusion structure
which can construct an internal representation for input data
collected frommultiple sources and then extracts anomalous
sensitive features. Recently, Anaissi and Zandavi [7] use
ADNN to propose a multi-object autoencoder for fault
detection and diagnosis in higher-order data based on the
reconstruction error of ADNN.

This paper is an extension of the aforementioned work
in [7]. In combining with the multi-objective autoencoder
in [7], this paper utilizes the variational autoencoder
method to propose a multi-objective variational autoencoder
(MO-VAE) deep neural network for damage detection,
localization and severity assessment. In contrast to [7], MO-
VAE performs damage detection based on reconstruction
probability but not reconstruction error. It performs data
fusion by taking a frontal slice from a multi-way training
data. Stochastic gradient descent algorithm is then used
to learn reconstructions that are close to its original input
slice followed by constructing a sensor identity matrix
which will be used for damage localization. For each new
incoming data slice we calculate its anomaly score based
on reconstruction probability which further used for damage
assessment. The sensor identity matrix is finally utilized to
locate the identified damage.

This work is part of our broader efforts to apply data-
driven SHM approaches to real bridges in operation, includ-
ing the Sydney Harbour Bridge (SHB). We extensively
evaluated our proposed method on laboratory-based and
real-life structures datasets. The evaluation shows that MO-
VAE model has the capability to perform data fusion and
extract damage sensitive features which were able to accu-
rately detecting damage. The reconstruction probability also
demonstrates the ability to localize the detected damage. It
further reflects the fact that it has the potential to estimate
the severity of damage by analyzing the obtained recon-
struction probability values. The contributions of this paper
are as follows.

1. Sensing multi-way data are fused using ADNN to
efficiently extract damage sensitive features and then
learn reconstruction of the original input .

2. Damage detection is accomplished using reconstruction
probability which has the capability to identify damage
without using any preset fixed threshold parameter.

3. Damage localization is accomplished using a new layer
introduced in ADNN.

4. Experiments using data obtained from laboratory-based
and real-life structures datasets show the effectiveness
of our approach in damage identification and localiza-
tion.
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The remainder of this paper is structured as follows.
Section 2 reviews some related work. Section 3 describes
our novel MO-VAE method for learning reconstruction
error and localizing anomalous data, while Section 4
presents our experimental results and evaluations. Finally,
Section 5 discusses the contributions, future work and
concludes this paper.

2 Related work

Anomaly detection methods have been employed in many
application domains such as damage detection in civil
structure [8–11], intrusion detection in network [12, 13] and
numerous other fields. They are mainly proposed to handle
the cases when only normal/positive data are available. For
instance, [14] designed a robust one-class support vector
machine (OCSVM) to eliminate the influence of outliers
to the learned boundary and used it to detect damage in
a simulated structure. Mahadevan and Shin et al. [14] and
[15], proposed an approach for fault detection and diagnosis
using OCSVM and SVM-recursive feature elimination.
Further, the authors [14] and [15] used OCSVM to detect
damage in a rotating machinery and the results showed that
the performance of the proposed method is superior to the
state-of-the art methods. However, the work above focused
on damage detection using two-way matrix data generated
via individual sensor which might help in detecting damage
but not in assessing its severity or localize it.

In the recent years, various data fusion methods have
been used in SHM applications to deal with the multi-way
data [16–18]. Some of these methods performed data fusion
in an unsophisticated manner by simply concatenating
features obtained from different sensors [16]. However,
more advanced methods including principle component
analysis (PCA), neural networks and Bayesian methods
have been adopted at this level [19]. In this context, khoa
et al. [20] used advanced tensor analysis to fuse data from
multiple sensors followed by constructing a OCSVMmodel
for damage detection. The authors were able to successfully
detect and assess the severity of the damage but failed to
localize it.

With the advent of deep learning methods, ADNN
attracted many researchers working in the area of anomaly
detection due its promising achievements in many domains
[21–23]. Jinwon and Sungzoon [24] propose a variational
autoencoder (VAE) for anomaly detection tasks. They
used a probability measure to generate the anomaly score
instead of reconstruction error. The work in [25] also uses
autoencoders for anomaly detection in videos. The authors
evaluate their method on real-world datasets and reported
better performance over other state-of-the-art methods. The
authors in [26] use deep learning methods to hierarchically

learn features from the sensor measurements of exhaust gas
temperatures. Then they use the learned features as input to
an ADNN for performing combustor anomaly detection.

Further, Akcay et al. [27] propose a model com-
posed of generative adversarial networks (GANs) and
encoder-decoder-encoder sub-networks which is known as
(GANomaly) . The aim of the model is to minimise the
distance between real, generator images and their latent
representation. While the author in [28] propose a Skip-
GANomaly by using an encoder-decoder convolution neural
network (CNN) with skip connection . The enhancement
added to [27] is in the generator network to cope with higher
resolution image. The author in [29] use a CNN based
on decision-tree learning to propose an anomaly detection
algorithm to detect a threat in X-ray cargo image. The work
in [30] propose an end-to-end trainable consist of Convo-
lutional Long Short-Term Memory (Conv-LSTM) networks
which is known as (AnoGAN). The model is able to predict
the evolution of video sequence from a limited number of
input frames. The author in [31] develop an EGBAD model
which is based on GAN at the same time to learn the encoder
during training which is used for image anomaly detection.

In fact, there are still few works in which researchers
try to apply ADNN methods to other data analytic tasks
such as data fusion in multi-way datasets. In this study, we
propose a MO-VAE deep neural network as a data fusion
method to extract damage sensitive features from three-
way measured responses and to perform damage detection
based on the reconstruction probability. Further, the average
distance between the anomaly scores of each corresponding
sensor nodes are used as an another measure to localize and
assess the severity of structural damage.

3 Background

3.1 Autoencoder deep neural network

Autoencoder deep neural network is an unsupervised
learning process which has the ability to learn from one
class data. It is an extension to the deep neural network
which is basically designed for supervised learning when
the class labels are given with the training examples. The
rational idea of an autoencoder is to force the network to
learn a lower dimensional space Z for the input features
X, and then try to reconstruct the original feature space
to X̂. In other words, it sits the target values to be
approximately equal to its original inputs. In this sense, the
main objective of autoencoders is to learn reproducing input
vectors {x1, x2, x3, . . . , xm} as outputs {x̂1, x̂2, x̂3, . . . , x̂m}.
Figure 1 illustrates the architecture of ADNN composed
of L hidden layers (L = 3 for simplification). Layer X

is the input layer which encoded into the middle layer
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Z, and then decoded into the output layer X̂. Each layer
consists from a set of nodes denoted by circle in Fig. 2.
The nodes in the input layer represents the input features
which are often aligned with the number of features for a
given dataset. However, the number of nodes in the hidden
layer(s) are selected by user. In contrast to the traditional
neural network, the number of nodes in the output layer are
aligned with the same number of the input layers.

The learning process of ADNN successively computes
the output of each node in the network. For a node i in layer
l we calculate an output value z

(l)
i obtained by computing

the total weighted Wij sum of the input values plus the bias
term bi using the following equation:

z
(l)
i =

n∑

j=1

W
(l−1)
ij a

(l−1)
j + b

(l)
i (1)

The parameter W is the coefficient weight written as Wij

when associated with the connection between node j in
layer l−1, and node i in layer l. The bi parameter is the bias
term associated with the node i in layer l and a

(l−1)
j is the

output value of node j in layer l − 1. The resultant output
is then processed through an activation function denoted by
a

(l)
i , and it is defined as follows:

a
(l)
i = f (z

(l)
i ) (2)

Intuitively, in the input layer a1 = x, and in the output
layer, a3 = x̂. The most common activation functions in
the hidden layers are the sigmoid and hyperbolic tangent
defined in (3) and (4), respectively. However, in autoencoder
settings a linear function is used in the output layer since we
don’t scale the output of the network to a specific interval
([0, 1] or [−1, 1]).

f (z) = 1

1 + e−z
(3)

f (z) = ez − e−z

ez + e−z
(4)

Lets say that an autoencoder is composed of two systems
known as encoder g(θ) and decoder f (φ). The encoder
maps an input vector X to a latent vector Z. Then the
decoder maps Z back to the original input feature X̂.
The autoencoder uses back propagation algorithm to learn
the parameters (θ, φ). In each iteration of the training
process, we perform a feedforward pass which successively
computes the output values a

(l)
i for all layer’s nodes. Once

completed, we calculate the cost error J (θ, φ) using (5) and

then propagate it backward to the network layer.

J (θ, φ) = 1

n

n∑

i=1

(
1

2
‖x(i) − x̂(i)‖2

)

= 1

n

n∑

i=1

(
1

n
‖x(i) − fθ (gφ(x̂(i)))‖2

)
(5)

In this setting, we perform a stochastic gradient descent
step to update the learning parameters (θ, φ). This is done
by computing the partial derivative of the cost function
J (θ, φ) (defined in (5)) with respect to θ and φ as follows:

θ := θ − α
∂

∂θ
J (θ, φ) (6)

We update φ in the same way. The complete steps are
summarized in Algorithm 1.

Algorithm 1 Autoencoder training algorithm.

Fig. 2 Autoencoder neural network architecture
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Once the autoencoder get trained, the network will be
able to reconstruct an new incoming positive data, while it
fails with anomalous data. This will be judged based on the
reconstruction error (RE) which is measured by applying
the Euclidean norm to the difference between the input and
output nodes as shown in (7).

RE(x) = ‖x(i) − x̂(i)‖2 (7)

The measured value of RE is used as anomaly score
for a given new sample. Intuitively, examples from the
similar distribution to the training data should have low
reconstruction error, whereas anomalies should have high
anomaly score. Algorithm 2 shows the process of anomaly
detection based on the reconstruction error of autoencoders.

Algorithm 2 Autoencoder anomaly detection algorithm.

4Multi-objective variational autoencoder

We propose a multi-objective variational autoencoder (MO-
VAE) neural network for damage detection and diagnosis
based on the reconstruction probability of ADNN. Our MO-
VAE method performs multi-way data fusion by taking a
frontal slice from the training data (as shown in Fig. 3). Each
input slice represents all feature signals across all locations
at a particular time. Stochastic gradient descent algorithm
is used here to learn reconstructions that are close to its
original input slice. Once the network get trained, we create
a sensor identity matrix S ∈ �s×m in which each row
captures meaningful information for each sensor location
for damage localization purposes. The values in this matrix
are obtained by calculating the average total reconstruction
probability for each set of m output nodes related to one
single sensor.

Our method employed the concept of variational auto
encoder (VAE) for computing the anomaly score for each
new incoming data slice. It aims to calculate the anomaly
score for new arrived data based on its reconstruction prob-
ability. Practically, VAE generates multiple reconstructions
given a single latent space which allows us to perform a
statistical reconstructions with a probabilistic approach for
detect anomalous data rather than sitting a fixed threshold
for anomalous score. This measure provides more princi-
pled and objective decision value than reconstruction errors
since it considers the variability of the distribution variables,
and does not require presetting fixed threshold parameter
for identifying damage. Setting a threshold for reconstruc-
tion error is problematic especially in the case of multi-way
heterogeneous data. Moreover, the normal and anomaly data
might share the same mean value. However, anomalous data
will not share the same variance to the normal data and it
leads to significant lower reconstruction probability, thus
classified as damage. Another advantage of using VAE is its
robustness against noise. It is inevitable that there will be
a base level of noise in any sensor reading which will not
be possible for the decoder to reproduce this signal compo-
nent exactly. However, the level of noise compared to the
signal could be encoded into the covariance of the VAE.
The following sections discuss the details of the proposed
method.

4.1 Multi-way data fusion

As we observed in this study, a large number of sensors
are usually used to collect data in SHM applications which
often aim to monitor large civil structures such as bridge
or a high-rise building. The sensing data being generated
from networked sensors mounted structures are considered
as three-way data in the form of (location × f requency ×
t ime) as previously described in Fig. 1. In this setting, two-
way matrix analysis is not able to capture the correlation
between sensors [32]. At the same time, unfolding the
three-way data and concatenating the frequency features
from multiple sensors at a certain time to form a single
data instance at that time may result in information loss
since it breaks the modular structure inherent in three-way
data [32]. Accordingly, data fusion plays a critical role in
analyzing structure behaviours and assessing the severity of
any damage data.

Basically, ADNN is mainly used for the purpose of
dimensionality reduction or as anomaly detection models.
In fact, ADNN can be also utilized as data fusion structure
which can constructs an internal representation for input
data collected from multiple sources i.e. sensors. Therefore,
our MO-VAE method utilizes the ADNN as a multi-way
data fusion model which automatically learns features via
its deep-layered structure.
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Fig. 3 Autoencoder deep neural
network architecture of
MO-VAE

As shown in Fig. 3, ADNN model receives data from
multiple sensors at the same time by taking a frontal slice
from a training three-way data. Each input slice represents
all feature signals across all locations at a particular time.
This data from multiple sensors is fed into the input layer to
extract damage sensitive features via the encoder layers. The
resultant new features in the middle layer (Z) are then used
by the decoder layers to determine the damage detection
results.

4.2 Probabilistic anomaly detection

The rational idea of anomaly detection in ADNN is to see
how well a new data point follows the normal examples.
We mentioned before that ADNN aims to learn (encoder)
a lower dimensional space Z for input features X, and
then try to reconstruct (decode) the original feature space
X̂. Let’s denote the encoder and decoder by qφ(Z |
X) and pθ(X | Z), respectively. This representation is
known as the conditional probability. For example, pθ(X |
Z) is the conditional of X such that Z has happened.
Intuitively, the decoder process yields to information loss
because the data goes from a low dimensional space Z to
a larger dimensional space X̂. This loss is known as the
reconstruction error which can be measured by calculating
the log-likelihood logpθ(X | Z) and it will be eventually
used as an anomaly score. This measure allows us to see
how effectively the decoder has learned to reconstruct an
input features X given its latent representation Z.

Our probabilistic anomaly detection method follows the
concept of VAE to find a distribution of some latent variable
Z which we can sample from Z ∼ qφ(Z | X) to generate
new samples X̂ from pθ(X | Z). Each latent variable
zi represents a probability distribution for a given input
feature. In the decoding process, we randomly sample from

this latent state distribution to generate a vector to be used
as an input for the decoder model.

Given X be a set of observed variables and Z is the
set of latent variables, the objective function of VAE is
considered as an inference problem which aims to compute
the conditional distribution of latent variables Z given the
observations X i.e. p(Z | X). Using Bayesian theorem, we
can write it as follows:

pθ(Z | X) = Pθ(X | Z) × P(Z)

P (X)
(8)

However, calculating the evidence p(X) is not practical
since it requires computing a multidimensional integral
in the d unknown variables z1, . . . , zd [33]. Thus, the
variational inference (VI) tool is used here to perform
approximate Bayesian of the posterior distribution pθ(Z |
X) with a parametric family of distributions Qφ(Z | X) in a
such way that it has tractable solution. The main idea of VI
is to pose the inference problem as an optimization problem
by modeling p(Z | X) using Q(Z | X) where Q(Z | X)

has a simple distribution such as Gaussian.
The KL divergence method defined in (9) is used here

to measure the information loss between the two probability
distributions p(Z | X) and Q(Z | X). In this sense, the
optimization problem is to minimize the KL divergence
denoted by DKL i.e. (minKL p(Z | X) || Q(Z | X))).

DKL(pθ (Z | X) || Qφ(Z | X)) =
∑

z

Qφ(Z | X) log(
Qφ(Z | X)

pθ (Z | X)
)

= EZ∼Qφ(Z|X)

[
log

Qφ(Z | X)

pθ (Z | X)

]

= EZ∼Qφ(Z|X)

[
log(Qφ(Z | X))

− log(pθ (Z | X))
]

(9)
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By substituting (8) in (9), the resultant equation will be
as follows:

DKL(pθ (Z | X) || Qφ(Z | X)) = EZ

[
log(Qφ(Z | X))

− log
Pθ(X | Z) × Pθ(Z)

Pθ (X)

] = EZ

[
log(Qφ(Z | X))

− logPθ(X | Z) − logPθ(Z) + logPθ(X)
]

(10)

where Z = Z ∼ Qφ(Z | X). Since the the expectation (E)
is based on Z and Pθ(X) does not involveZ, we can remove
Pθ(X) from (10) and write it as follows:

logPθ (X) − DKL(pθ (Z | X)||Qφ(Z | X))

= EZ

[
log(pθ (X | Z))

] − EZ

[
log(Qφ(Z | X)) − logPθ (Z)

]
(11)

The final objective function of variational autoencoder is
as follows:

logPθ (X) − DKL(pθ (Z | X)||Qφ(Z | X))

= EZ

[
log(pθ (X | Z))

] − DKLQφ(Z | X)||pθ (Z) (12)

The first term i.e. log(pθ (X | Z)) represents the
reconstruction likelihood and the second term i.e DKL
is the regularization parameter which forces the posterior
distribution Qφ(Z | X) to be similar to the prior distribution
pθ(Z). The loss functionJ (θ, φ) of our autoencoder is the
negative value of the objective function and its defined as:

J (θ, φ) = −EZ

[
log(pθ (X | Z))

] + DKL
[
Qφ(Z | X)||pθ (Z)

]
(13)

In variational Bayesian method, this loss function is
known as the variational lower bound or evidence lower
bound (ELBO). This “lower bound” part comes from the
fact that KL divergence is always non-negative. Thus
J (θ, φ) is the lower bound of logPθ(X), and it is also
known that DKL

[
qφ(Z | X, λ)||pθ(Z | X)

] ≥= 0. As a
result J (θ, φ) ≤ logPθ(X). Therefore by minimizing the
loss, we are maximizing the lower bound of the probability
generating real data samples.

Now we need to train the variational autoencoder to learn
Qφ(Z | X) using gradient descent algorithm to optimize
the loss with respect to the parameters θ, φ . This is where
the VAE can relate to the autoencoder where the encoder
model learns Qφ(Z | X) by mapping X to Z and the
decoder model learns pθ(Z | X) by mapping Z back to
X. For stochastic gradient descent with step size α, the
encoder parameters are updated using (6). Once Qφ(Z | X)

is learned, we sample the latent vector Z from qφ(Z | X)

and then feed it into the decoder network pθ(X | Z) to
generate the new data X̂. The training steps of MO-VAE are
illustrated in Algorithm 3.

Algorithm 3 MO-VAE training algorithm.

To get the reconstruction X̂, we generate L random
samples from z ∼ N(μz(i) , σz(i) ) where μz(i) and σz(i) are
the mean and standard deviation of the middle layer z|xi

in ADNN, respectively. For each random sample in L, we
calculate μx̂(i) and σx̂(i,l) for the output layer in ADNN. The
final reconstruction probability (RB) can be estimated as
follows:

RP(xnew) = 1

L

L∑

l=1

pθ(x | z(i,l)|μx̂(i,l) , σx̂(i,l) ) (14)

The damage detection steps of MO-VAE are illustrated in
Algorithm 4.

4.3 Damage localization

Once a new data slice is identified as anomaly by ADNN,
the values from the output nodes are further propagated
into another layer called localization layer as illustrated in
Fig. 3. It consists from a set of n nodes each representing
one sensor data source. The purpose of this layer is to solve
the problem of fault localization. The output values to this
layer are obtained by calculating the average of the total
reconstruction probability for each m output nodes related
to one sensor. The resultant outputs are stored in a matrix
S ∈ �n×m where n is the number of sensors and m is
the number of features for each sensor. Using S matrix, it
is possible to perform a k-nearest neighbouring algorithm
on new output scores Snew with each row of matrix S to
locate the anomalous rows. The average distance difference
between S and Snew is used as another anomaly score for
damage localization.
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Algorithm 4 MO-VAE damage detection algorithm.

5 Experimental results

5.1 Data collection

We conducted experiments on three case studies represent-
ing typical types of civil structures. Two case studies are
based on real data collected from an Arch Bridge and Cable-
Stayed Bridge in Western Sydney, Australia (Fig. 4). The
third one is a laboratory based building structure obtained
from Los Alamos National Laboratory (LANL) [34].

5.1.1 The cable-stayed bridge

The bridge was instrumented by 24 uniaxial accelerometers
and 28 strain gauges. The locations of these sensors were
selected using domain-based knowledge from structural
engineers, in order to capture the most relevant response
signal from the bridge. In this paper we are using only
features based on accelerations data collected from sensors
Ai with i ∈ [1; 24]. Figure 5 shows the locations of these
24 sensors on the bridge deck. The acceleration data are
collected at 600 Hz, with a range of 2G and a sensitivity of
2 V/G.

For the sake of experiments, we emulated two different
kind of damage on this bridge by placing a large static load
(vehicle) at different location of a structure. Thus, three
scenarios have been considered which include: no vehicle
is placed on the bridge (healthy state), a light vehicle with

approximate mass of 3 t is placed on the bridge close to
location A10 (“Car-Damage”) and a bus with approximate
mass of 12.5 t is located on the bridge at location A14 (“Bus-
Damage”). This emulates slight and severe damage cases
which were used in our evaluation Section 5.2.1.

5.1.2 A reinforced concrete jack arch from the Sydney
Harbor Bridge

The second case study is a major structural component
from the iconic Sydney Harbour Bridge (SHB). There
are approximately 800 jack arches distributed over a total
distance of 1.2 km in Lane 7, see Fig. 6(a). The jack
arches are difficult to access and are inspected typically at
two yearly intervals according to standard visual inspection
practices.

A concrete cantilever beam with an arch section which
has a similar geometry to those on the Sydney Harbour
Bridge was manufactured and tested, as shown in Fig. 6(b).
We instrumented the specimen with ten accelerometers
to measure the vibration response resulting from impact
hammer excitation. The structure was excited using an
impact hammer with steel tip, which was applied on the top
surface of the specimen just above the location of sensor
A9, as shown in Fig. 6 (b). The acceleration response of the
structure was collected over a time period of 2 seconds at a
sampling rate of 8 kHz, resulting in 16000 samples for each
event (i.e. a single excitation). A total of 190 impact test
responses were collected from the healthy condition.

A crack was then introduced into the specimen in the
location marked in Fig. 6(b) using a cutting saw. The crack
is located between sensor locations A2 and A3 and it is
progressively increasing towards sensor location A9. The
length of the cut was increased gradually from 75 mm to
270 mm to introduce four different damage cases as shown
in Fig. 7(a-d), and the depth of the cut was fixed to 50
mm; a description is provided in Table 1. This experiment
generates a total of 760 impact tests related to four damage
cases.

Fig. 4 The cable-stayed bridge from our first case study, Western
Sydney, Australia (source: Google Earth)
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Fig. 5 The locations on the bridge’s deck of the 24 Ai accelerometers used in this study. The cross girder j of the bridge is displayed as CGj

5.1.3 Building data

Our second case study was based on the a data collected
by [34] from three-story building structure. It is made up
of Unistrut columns and aluminum floor plates connected
by bolts and brackets as presented in Fig. 8. Eight
accelerometers were instrumented on each floor (two
on each joint). A shaker was placed at corner D to
generate excitation data. It generates 240 samples (a.k.a.
events) separated into two main groups, Healthy (150

samples) and Damaged (90 samples). Each event consists
of acceleration data for a period of 5.12 seconds sampled
at 1600 Hz, resulting in a vector of 8192 frequency values.
The Damaged samples were further partitioned into two
different damaged cases based on their location: damage in
location 3C (60 samples), and the damage in both locations
1A and 3C (30 samples). The damage was introduced by
detaching or loosening the bolts at the joints, allowing the
aluminum floor plate to move freely relative to the Unistrut
column.

Fig. 6 Illustration of the bus
lane on the Sydney Harbour
Bridge and the manufactured
concrete jack arch
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Fig. 7 The crack introduced into
the test specimen

5.2 Results and discussions

This section demonstrates how our MO-VAE method can
successfully detect and assess the severity of structural
damage, and further localize it. It is using the sensor-
based data from the above three case studies described in
Section 5.1.

For all experiments, six hidden layers were used in
MO-VAE and the accuracy values were obtained using the
F-Score (FS) measure defined as F-score = 2· Precision×Recall

Precision+Recall

where Precision = TP
TP+FP and Recall = TP

TP+FN (the
number of true positive, false positive and false negative are
abbreviated by TP, FP and FN, respectively).

5.2.1 The cable-stayed bridge

Our MO-VAE method was initially validated using vibra-
tion data collected from the cable-stayed bridge described in

Table 1 Description of the four damage cases in the test datasets of
the reinforced concrete jack arch (specimen)

Case Damage Description

Damage Case 1 75 mm x 50 mm

Damage Case 2 150 mm x 50 mm

Damage Case 3 225 mm x 50 mm

Damage Case 4 270 mm x 50 mm

Section 5.1.1. We used 24 uni-axial accelerometers to gener-
ate 262 samples (a.k.a events) each consists of acceleration
data for a period of 2 seconds at a sampling rate of 600 Hz.

For each reading of the uni-axial accelerometer, we
normalized its magnitude to have a zero mean and one
standard variation. The fast Fourier transform (FFT) is
then used to represent the generated data in the frequency
domain. Each event now has a feature vector of 600
attributes representing its frequencies. The resultant three-
way data has a structure of 24 sensors × 600 features ×
262 events. We separated the 262 data instances into two
groups, 125 samples related to the healthy state and 137
samples for damage state. The 137 damage examples were
further divided into two different damaged cases: the “Car-
Damage” samples (107) generated when a stationary car
was placed on the bridge, and the “Bus-Damage” samples
(30) emulated by the stationary bus.

We randomly selected eighty percent of the healthy
events (100 samples) from each sensor to form training
multi-way of X ∈ �24×600×100 (i.e. training set). The
137 examples related to the two damage cases were added
to the remaining 20% of the healthy data to form a
testing set, which was later used for the model evaluation.
Our probabilistic anomaly detection algorithm was able to
successfully detect 98% the healthy and damage events in
the testing data set, and achieved an F-Score of 0.98±0.01.
Moreover, this model was able to assess the progress of
damage severity in the structure based on the obtained
probability decision values. To illustrate that, we plotted
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Fig. 8 Three-story building and
floor layout [34]

these values for all test samples which are shown in
Fig. 9. The horizontal axis indicates the index of the test
samples and the vertical axis indicates the magnitude of the
probability decision values. A value above the horizontal
dashed line indicates a sample classified as healthy, whereas
a value below that line indicates an event classified as
damage.

As can be seen in Fig. 9(a), the first 25 healthy events
denoted by green dot were all correctly classified as
healthy samples with a probability decision values above
the anomaly threshold value of 3% (97% of confidence
interval). 98% the damage samples denoted by yellow
and orange dot refer to the “Car-Damage” and “Bus-
Damage”, respectively, generate high probability decision

Fig. 9 Damage identification
results of MO-VAE compared to
the state-of-the-art methods
applied on the Cable-Stayed
Bridge datasets
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values, thus identified as damage. We further calculated
the mean of all the probability decision values for each
state to illustrate how the MO-VAE model was also able to
asses the severity of the identified damage. Fig. 9(a) shows
a solid black line which was drawn to connect the mean
values. It can be clearly observed that the MO-VAE model
was able to separate the two damage cases (“Car-Damage”
and “Bus-Damage”) where the probability decision values
were further increased for the samples related to the more
severe damage cases related to “Bus-Damage”. The last
step in MO-VAE model was to localize the position of
the detected damage by analyzing the identity matrix Snew

where each row captures meaningful information for each
sensor location. We calculated the average distance from
each row in matrix S to k-nearest neighbouring to Snew. The
resultant k-nn score for each sensor is presented in Fig. 10
which clearly shows the capability of MO-VAE for damage
localization. As expected, sensors A10 and A14 related
to the “Car-Damage” and “Bus-Damage”, respectively,
behaved significantly different from all the other sensors
apart from the position of the emulated damage.

The next experiment was to compare our obtained results
with the state-of-the-art methods described in Section 2
i.e GANomaly EGBAD, AnoGAN, Skip-GANomaly and
VAE proposed in [24, 27, 28, 30, 31], respectively. The
same training data set as above was used to construct these
models, and the same testing data set was used to evaluate
their classification performance. The resulted accuracies are
shown in Table 2 which demonstrates that our MO-VAE
consistently outperforms the other approaches. Moreover,
the probability decision values as shown in Fig. 9(b-f) of
these state-of-the-art methods are not able to clearly assess
the progress of the damage severity in the structure since
only one single anomaly score for each event is generated
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Fig. 10 Location anomaly score in the localization layer applied on
the cable-stayed bridge dataset using MO-VAE

by the model using the inputs from sensors {Ai}24i=1.
Consequently, these models are lacking the capability to
implement a method for damage localization

5.2.2 A reinforced concrete jack arch from the Sydney
Harbor Bridge

Damage identification process was carried out in the same
way that was performed in the previous case study. This
dataset consists of 950 samples (events) separated into two
main groups, healthy state (190 samples) and damaged
states (760 samples). Each sample is the measured vibration
response of the structure with eight thousand attributes in
the frequency domain (8 kHz × 2 sec × 0.5 (considering
Nyquist frequency)).

The measured acceleration responses collected from the
10 sensors were utilized to construct the damage sensitive
features. Eighty percent of the healthy data were randomly
selected for the training stage, while the remaining 20% of
the healthy samples and all the damage cases were used for
testing. The dimension of the data was reduced into 80 using
random projection method. The resultant three-way data has
a structure of 10 locations × 80 features × 950 events.

As shown in Table 2, the MO-VAE model significantly
outperformed the other state-of-the-art methods. The
average F-score value of MO-VAE was equal to 0.92±0.03.
A small number of events (8 events) in Damage Case 1
were miss-classified as healthy. This illustrates that our
MO-VAE has capability to identify small defects as well
as the progression of the damage as shown in Fig. 11(a).
The GANomaly, AnoGAN and Skip-GANomaly methods
performed badly on the 10 sensor datasets as shown in
Table 2. This is what we anticipated dealing with individual
sensors for building GAN models which may lack of
capability for capturing the underlying structure of the
sensing data. With respect to the VAE method, as we
expected, it generates comparable results to our MO-VAE
model with an average F-score equal to 0.89±0.02 since it
encodes the distribution and regularize it during the training
to capture the latent space. The damage progression results
using the state-of-the-art methods are presented in Fig. 11.
It can be readily realized that by using this approach the
performance of the method to monitor the progress of
damage is not consistent where the decision values are
increasing with the development of the damage as shown in
Fig. 11(b) and (c). Based on this, it can be concluded that
compared to the MO-VAE, these state-of-the-art methods
lack the ability to provide reliable information about the
severity of damage in the structure. Damage localization
was not carried out in this experiment due to the small size
of the specimen.
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Table 2 F − score of various methods applied on the three case study datasets

MO-VAE GANomaly EGBAD AnoGAN Skip-GANomaly VAE

Cable 0.98±0.01 0.96±0.02 0.93±0.03 0.94±0.04 0.95±0.04 0.95±0.02

Specimen 0.92±0.02 0.84±0.02 0.88±0.05 0.84±0.06 0.84±0.04 0.89±0.02

Building 0.96±0.02 0.88±0.01 0.91±0.03 0.90±0.04 0.93±0.02 0.92±0.04

5.2.3 Building data

Our last experiments were conducted using the acceleration
data acquired from 24 sensors instrumented on the three-
story building as described in Section 5.1.3. Similar to
the previous experiments, we normalized the accelerometer
data to have zero mean and unity variance. Then we applied
FFT method to represent the data in frequency domain. For
each two adjacent accelerometers at a location, we used
the difference between their signals as variables and only
the top 150Hz were selected as input features to our MO-
VAE model. The resultant three-way data has a structure of
12 locations × 768 features × 240 events. We randomly
selected 80% of the healthy events (120 samples) from the
12 locations as a training multi-way data X ∈ �12×768×120

(i.e.training set). The remaining 20% of the healthy data and
the data obtained from the two damage cases were used for
testing (i.e.testing set).

Our constructed MO-VAE model achieved an F-score
of 96%. The false alarm rate was equal to zero where all
the healthy samples are correctly detected in the testing

data set. Figure 12(a) shows the plot of the probability
decision values generated by our MO-VAE. It can be clearly
observed from Fig. 12(a) that the more severe damage test
data related to locations 1A and 3C were more deviated
from the training data with lower probability decision
values. Similar to the last case study, we further propagated
the probability decision values obtained by the output layer
into the localization layer to construct Snew matrix. Then
we computed the k-nn score for each sensor based on
the average distance between each row of matrix S to
Snew. Figure 13 shows the resultant k-nn score for each
sensor. It clearly shows that MO-VAE method correctly
captures damage locations. As expected, sensors 1A and 3C
produced very high k-nn score due the introduced damage
at these two locations. The k-nn score of 3C was higher than
1A because that damage was introduced in both locations
1A and 3C at the same time.

The last experiment was to compare our obtained
results with the other state-of-the-art methods . The F-
score accuracy of Skip-GANomaly was recorded at 93%
with no clear separation between the different levels of

Fig. 11 Damage identification
results of MO-VAE compared to
the state-of-the-art methods
applied on the Reinforced
Concrete Jack Arch datasets
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Fig. 12 Damage identification
results of MO-VAE compared to
the state-of-the-art methods
applied on the Building dataset
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damage as illustrated in Fig. 12(f). GANomaly, on the other
hand, generates high false alarm rates with several healthy
samples predicted as damage. Moreover, these methods
don’t have the capability to implement a method for damage
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Fig. 13 Location anomaly score in the localization layer on the
Building dataset using MO-VAE

localization since only one single anomaly score for each
event is generated by these models using input data from
sensors {Ai}12i=1.

6 Conclusion

Multiway data analysis has gained a lot of interest in many
fields where standard two way analysis don’t have the
capabilities to learn underlying structure of the multi-way
data. We proposed a multi-objective variational autoencoder
method for damage detection, localization and severity
assessment in multi-way structural data based on the
reconstruction probability of the autoencoder deep neural
network. The proposed method performs data fusion by
taking input features from a networked sensors attached to
a structure. Stochastic gradient descent algorithm is then
used to learn reconstructions that are close to its original
input slice followed by constructing a sensor identity
matrix which used for damage localization. For each new
incoming data slice we calculate its anomaly score based
on reconstruction probability and we use the obtained
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reconstruction probability values for damage assessment.
The sensor identity matrix is finally utilized to locate the
identified damage.

We evaluated our method on multi-way datasets in the
area of structural health monitoring for damage detection
purposes. Experimental results showed that our approach
succeeded at detecting the damage events with an average
F-score of 0.95% and higher for all datasets. Moreover, Our
model demonstrated the capability to work very well in
localizing damage and estimating different levels of damage
severity in an unsupervised aspect. Compared to the state-
of-the-art approaches, our proposed method shows better
performance in terms of damage detection and localization.
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