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Abstract
The authors investigate the use of deep learning in wireless indoor localization to address
the shortcomings of the existing range‐based (e.g. trilateration and triangulation) and
range‐free (e.g. fingerprinting) localization. Instead of relying on geometric models and
hand‐picked features, deep learning can automatically extract the relationship between the
observed data and the target's location. Nevertheless, a deep neural network (DNN)
model providing a satisfactory accuracy might perform differently when it is retrained in
the deployment. To mitigate this issue, the authors propose an ensemble method where
DNN models obtained from multiple training sessions are combined to locate the target.
In the authors' evaluation, several DNN models are trained on the data, which consists of
the received signal strength (RSS), angle of arrival (AOA), and channel state information
(CSI), used in the existing hybrid RSS/AOA and RSS/CSI fingerprinting, and their root‐
mean‐square error (RMSE) values are compared accordingly. The results show that the
proposed method achieves the lower RMSE than the existing methods, and the RMSE
can be lowered by up to 1.47 m compared with the ones obtained from a single model.
Moreover, for some DNN models, the RMSE values are even lower than the minimum
RMSE obtained by their single‐model counterparts.
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1 | INTRODUCTION

Wireless localization has gained an unprecedented interest over
the recent years. With an advancement of computing devices
and radio frequency (RF) technologies, the need for location‐
based services has begun to extend beyond military use.
Today, wireless localization can be found in a wide variety of
industries, including security, commercial, healthcare, and
tourism, with applications ranging from intruder detection
[1, 2], asset tracking [3–5], and emergency call locating system

[6–8] to capsule endoscope tracking [9–11], geo‐fencing
[12, 13], and automated museum tour [14–16].

Since first introduced in the 1970s, the global positioning
system (GPS) is a well‐established radio navigation system for
outdoor positioning. As the fundamental operations of the GPS
rely on line‐of‐sight (LOS) communication between the target's
receiver and the GPS satellites, the accuracy for indoor posi-
tioning is heavily impaired by the obstruction of the LOS path.
Consequently, shorter‐range wireless technologies, such as
Wi‐Fi [14, 17, 18], Bluetooth [14, 17, 18], and ultra‐wideband
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(UWB) [19–22], have been considered as alternative technolo-
gies for indoor and non‐line‐of‐sight (NLOS) localization.

Selecting which type of technology to use depends largely
on the requirements of the application at hand. Although the
UWB‐based localization can achieve an accuracy of a few cen-
timetres, the cost of its infrastructure and the device needed on
an object being tracked are much higher than the system based
onWi‐Fi or Bluetooth. Conversely, the Wi‐Fi‐based localization
has an accuracy of 1–5 m, but the implementation cost is lower
since the infrastructure and related devices are already available
in most places. Similar to Wi‐Fi, Bluetooth operates in the same
2.4‐GHz band and shares an accuracy of 1–5 m. However, its
coverage is only around 10–40 m, which makes it impractical for
localization in large areas [23]. Therefore, if high‐precision
localization is the first priority, such as those in capsule endo-
scope tracking, then choosing UWB is reasonable. For a more
relaxed accuracy, such as those in human tracking, then
choosing Wi‐Fi or Bluetooth is more cost‐effective.

The mechanisms used in wireless indoor localization can be
broadly categorized into the range‐based and range‐free ap-
proaches [24]. In the range‐based approach, such as trilateration
and triangulation, the received signal strength (RSS), time of
arrival (TOA), and angle of arrival (AOA) are first transformed
into their geometric line of positions (LOPs), and the target's
location is obtained from the intersection of the LOPs.However,
in the range‐free approach, these parameters are considered as
the fingerprints for the reference locations, and the target's
location is obtained by performing fingerprint matching.

In trilateration based on the RSS or TOA measurement, an
observed value is transformed into a range information through
a RF propagation model. From this range information, a cir-
cular LOP having the radius equal to the range is created. To
locate the target, an intersection of several circular LOPs has to
be determined. This involves solving a set of non‐linear equa-
tions. To simplify the problem, Ref. [25] proposed a method to
linearize the problem so that a simple linear least‐squares
method (LS) can be used to find the solution. The trade‐off
for this simplification is, however, the lower accuracy
compared with the non‐linear LS method. As a way to increase
the accuracy, a more complicated subspace method (SS) was
proposed in Ref. [25]. By projecting the observed signal into a
signal and a noise subspace which are orthogonal to each other,
a certain amount of noise is removed from the observation.

More recently, a hybrid RSS/AOAmethod was proposed in
Refs. [26–28]. Based on this method, the same number of the
RSS and AOA measurements are required to linearize the
problem. However, this puts the burden on the data measure-
ment as an antenna array is required on all measuring devices. To
ease this difficulty, Ref. [29] proposed an unbalanced hybrid
RSS/AOAmethodwhere only oneAOAmeasurement is needed
in the data fusion. In Ref. [30], an angle projection method was
proposed. By projecting one RSS value onto its x and y com-
ponents, additional two virtual RSS values are obtained, and
methods such as linear LS or SS can be used to locate the target.

Since the accuracy of the range‐based approach depends
on the quality of the observed signals, the existence of the LOS
path is required for accurate positioning. This is, however, not

as crucial in the range‐free approach such as fingerprinting.
The method is based on the assumption that the observed
signals are a unique fingerprint to a specific location, and
locating the target is equal to performing fingerprint matching,
hence the name. Two phases are required in fingerprinting,
namely, offline training and online testing. In the offline phase,
the fingerprints for the reference locations are stored in a
database called a radio map. In the online phase, the real‐time
fingerprint is compared with the ones in the radio map for the
closest match in order to locate the target.

One of the earliest fingerprinting methods is RADAR [31].
In their work, the RSS measurements are used as the finger-
prints, and locating the target is a problem of minimizing the
Euclidean distance between the observed fingerprint and the
reference ones. However, the RSS tends to fluctuate when
there is any change in the environment. Therefore, a proba-
bilistic method called Horus [32] proposed to use the distri-
bution of the RSS as the fingerprint instead of using the RSS
values directly. Recent works, such as Refs. [33, 34], are
exploring the use of the channel state information (CSI) since
it is considered to be more stable and is able to provide finer‐
grained information compared to the RSS.

Comparing the existing range‐based and range‐free ap-
proaches, the advantages and disadvantages are summarized in
Table 1. For large areas with LOS, trilateration and triangula-
tion can be used to reduce the burden of the data collection for
the radio map, whereas for smaller areas with many obstruc-
tions blocking the LOS path, fingerprinting would be more
appropriate. Nevertheless, these methods are still based on
predefined geometric models or features that might not be a
precise representation of the actual environment. For this
reason, the localization accuracy is restrained by the impreci-
sion of these models.

Deep learning is an emerging machine learning tool used
in many areas including indoor wireless localization [35–38].
Compared with the existing range‐based and range‐free
localization methods, deep learning does not rely on geo-
metric models or hand‐engineered features, which impose a
limitation on the localization accuracy. As a universal esti-
mator [39], deep neural networks (DNNs) are able to cap-
ture the complexity of the wireless channel through the
data‐driven learning process, which results in a learnt
model that is more robust and resilient to adversarial con-
ditions [40].

In this work, we investigate the use of deep learning in
wireless indoor localization to counteract the shortcomings of
the existing range‐based and range‐free localization methods.
Several types of DNN models are trained on the same set of
data used in the range‐based hybrid RSS/AOA and the range‐
free fingerprinting based on RSS and CSI measurements, and
their performance is compared accordingly. For brevity, the
two sets of data will be called the range‐based and range‐free
datasets, respectively. For the range‐based dataset, the prob-
lem is modelled as a regression task, whereas for the range‐free
dataset, it is modelled as a classification task. With the ability to
automatically extract the relationship between the inputs and
the outputs, the DNN approach is expected to perform better
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than the existing range‐based and range‐free methods. In most
literature, only a single DNN model is considered; however, a
model having a satisfactory performance in the development
stage might not perform as well when it is retrained in the
deployment due to the stochastic nature of the training pro-
cess. Therefore, we propose a model ensemble method where
several models obtained from multiple training sessions are
combined to locate the target. By using this method, a more
stable target estimation is obtained and localization accuracy
could be improved with the help of model diversity. Perfor-
mance of various types of DNN is explored, including the
feed‐forward neural network (FNN), 1D‐convolutional neural
network (1D‐CNN), 2D‐convolutional neural network (2D‐
CNN), and long short‐term memory network (LSTM), as each
of these DNNs operates on the input data differently.

The main contributions of this paper are as follows:

1. Investigation of the performance of the DNN models in
indoor localization from both the range‐based and range‐
free perspectives. Although the range‐free methods are
likely to perform better than the range‐based methods in
the NLOS situation, and a large amount of literature
focusses on applying the DNN to the range‐free localiza-
tion, we investigate the use of the DNN in both ap-
proaches, as they have their own merits in different
scenarios

2. Investigation of the performance of different types of
DNNs, such as FNN, 1D‐CNN, 2D‐CNN, and LSTM, for
indoor wireless localization, and comprehensively compare
their performance to the existing range‐based hybrid RSS/
AOA and range‐free RSS/CSI fingerprinting methods

3. Proposal of the model ensemble techniques that combine
the outputs from multiple DNN models to achieve a more
stable target estimation and higher localization accuracy.
The comparison of localization accuracy between a single
model and the ensemble model methods are thoroughly
presented

The rest of this paper is structured as follows. Section 2
explains the basic concepts of wireless localization and
provides the detailed information of the signal parameters
used to locate the target. Section 3 summarises the existing
range‐based localization methods. Section 4 summarises the

existing range‐free localization methods. Section 5 provides
the descriptions of the proposed DNN models. Section 6
presents the experimentation and the performance evalua-
tion of the proposed DNN models. Lastly, the conclusion is
given in Section 7.

2 | BACKGROUND

Wireless localization or wireless positioning is a process of
locating an object using radio waves. Generally, a wireless
localization system consists of two main entities, namely the
target and the anchor. The target is an object in which its
location is to be determined, whereas the anchor is a reference
object whose exact location is known. By using properties of
the propagating waves between these two entities, the location
of the target can be estimated.

The computations required for target localization can be
carried out at either the anchor or the target. However, when
they are power‐limited or computation‐limited, such as those
in wireless sensor networks [41–43], an external location en-
gine can be used to handle these computations. Figure 1 il-
lustrates a wireless localization system consisting of three
anchors, a target, and a location engine.

To infer the location of the target, information such as the
RSS, TOA, AOA, and CSI measurement is used. In this study,
we focus on using the RSS, AOA, and CSI since these pa-
rameters can be obtained without using complicated devices.
Information on each parameter and how it can be used to
localize a target is briefly presented below.

2.1 | Received signal strength

The RSS is a parameter indicating the signal power presented
at the receiver. In a NLOS condition, the transmitted signal
travels to the receiver through multiple paths. These multipath
signals can create either a constructive or destructive effect at
the receiver, as described by Equation (1)

V ¼
XP

p¼1
jVpje−jθp ; ð1Þ

TABLE 1 Pros and cons of localization
techniques

Range‐based approach Pros:
� A radio map is not required prior to real‐time positioning
Cons:
� LOS path is required for accurate positioning
� More than one anchor is required

Range‐free approach Pros:
� Accurate positioning in NLOS conditions is possible
� Positioning using a single anchor is possible
Cons:
� A radio map is required prior to real‐time positioning

Abbreviations: LOS, line‐of‐sight; NLOS, non‐line‐of‐sight.

WISANMONGKOL ET AL. - 35



where V is the overall amplitude, Vp and θp are the amplitude
and phase of the pth path, and P is the total number of
propagating paths. The RSS (dB) is simply the received power,
that is,

RSS¼ 10log10 jV j
2� �
: ð2Þ

As the distance between the anchor and the target in-
creases, the RSS value reduces. Various propagation models
can be used to describe the relationship between the RSS and
the range information. A common model is the log‐normal
path loss shown below.

RSSr ¼ RSSr0 − 10γlog10
r
r0

� �

þ wσr; ð3Þ

where RSSr is the RSS (dB) at distance r from the transmit
anchor, RSSr0 is the RSS (dB) at the reference distance r0, γ is
the path loss exponent, and wσr is the shadowing factor that
follows the Gaussian distribution with zero mean and standard
deviation σr. By using the distance or range information ob-
tained from several anchors, the location of the target can be
estimated.

2.2 | Angle of arrival

The AOA represents the direction of the incoming signal. In
wireless localization, it is used to infer the direction of the
target with respect to the anchor. With an assumption that the
receiver antenna array is in the far‐field region, where the
incoming signals can be considered as plane waves, the AOA
can be measured with a uniform linear array, as shown in
Figure 2. By measuring the time delay of the received signal
between the antennas in the array, the observed AOA, θ, can
be found from Equation (4) as

θ ¼ arccos
cτ
d

� �
þ wσa; ð4Þ

where c is the speed of the travelling wave, τ is the time delay
between adjacent antennas, d is the antenna spacing, and wσa is
the measurement noise that follows the Gaussian distribution
with zero mean and standard deviation σa.

2.3 | Channel state information

The CSI has received increasing attention in the field of
wireless localization over the recent years. Compared to the
RSS, the CSI provides finer‐grained information, including the
information about each of the multipath components. In the
time domain, the channel impulse response (CIR), hτ, is
modelled as a filter with multiple taps, each tap represents a
time‐delay path of the transmitted signal as shown in
Equation (5)

hτ ¼
XP

p¼1
ape−jθpδ τ − τp

� �
; ð5Þ

where ap, θp, and τp are the complex amplitude, phase and
delay of the pth path, respectively, P is the number of multi-
paths, and δ is the Dirac delta function.

In the frequency domain, the Fourier transform of the CIR
yields the channel frequency response (CFR), H, which pro-
vides information about the amplitude and phase of the sub-
carriers, as shown in Equation (6)

Hi ¼ jHijejϕi ; ð6Þ

where Hi is the complex frequency response of the ith sub-
carrier, with |Hi| and ϕi being the magnitude and phase of the
ith subcarrier, respectively.

By applying signal processing techniques, the TOA and the
AOA can be extracted from the CSI, which can be used to
generate the range and angle information for the range‐based
localization methods. In addition, since the CSI provides a
nearly complete radio profile for a specific location, the target's
location can be found by performing a pattern matching of the
CSI values.

In this work, the DNN models are trained using the RSS,
AOA, and CSI measurements. The obtained root‐mean‐square
error (RMSE) values are compared with the ones from the
existing range‐based hybrid RSS/AOA, where angle and RSS

F I GURE 2 Angle‐of‐arrival measurement using uniform linear array
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measurements are used, and the range‐free fingerprinting is
based on RSS and CSI measurements. The detailed description
of the existing hybrid RSS/AOA and fingerprinting used in the
comparison can be found in Sections 3 and 4, respectively.

3 | EXISTING RANGE‐BASED
LOCALIZATION

In the range‐based approach, signal parameters, such as the
RSS and AOA, are first transformed into the range and angle
information through (3) and (4), respectively. A set of LOP
equations with respect to the obtained ranges and angles are
created, and the target's location is found by solving these LOP
equations using methods such as least square (LS) or subspace
(SS). A review of related range‐based methods is given below.

3.1 | RSS‐least square

We first consider the case where only the RSS or range infor-
mation is observed. For a general localization, we assume that
there are a total of N anchors and M targets in the system. The
anchors are placed at known locations an = [anx, any] while the
targets are at locations bm = [bmx, bmy], whereN = 1, …,N and
M = 1, …, M, respectively. The range between any anchor and
target pair can be found from Equation (3) as

rm;n ¼ kbm − ank ¼ r010
RSSr0−RSSnþwσr

10γ ; ð7Þ

where rm,n is the range between the nth anchor andmth target,
and RSSn is the RSS at the nth anchor, and ‖⋅‖ is the Euclidean
distance between an and bm.

From the range information, a circular LOP with the radius
of rm,n is formed around the nth anchor. In an ideal envi-
ronment where there is no obstruction between the anchor and
the target, the intersection of the two circular LOPs obtained
from two anchors is enough to accurately determine the tar-
get's location. However, in a real‐world environment, this sit-
uation rarely happens, thus at least three anchors are required.

Without loss of generality, the problem of locating a single
mth target using N anchors is considered. Based on Equa-
tion (7), N circular LOP equations are constructed as

bmx − anxð Þ
2
þ bmy − any
� �2

¼ r2m;n; ð8Þ

for n = 1, …, N. The solution to this problem can be found
through various methods. Here, a simple LS method is
presented.

The problem in Equation (8) is first linearized by some
mathematical manipulations. As proposed in Ref. [25], the oth
anchor located at ao = [aox, aoy] is initially selected as the
reference anchor. Then, the remaining N − 1 LOP equations
are subtracted from the LOP of the reference anchor. The
results are as shown below

anxð − aoxÞbmx þ any − aoy
� �

bmy

¼
1
2
a2nx þ a

2
ny − a2ox − a2oy − r2m;n þ r

2
m;o

h i
;
ð9Þ

where n = 1, …, N and n ≠ o. In a matrix form, Equation (9)
can be written as Arb⊤

m ¼ Cr , where

Ar ¼
a1x − aox a1y − aoy

⋮ ⋮
aNx − aox aNy − aoy

2

4

3

5; ð10Þ

and

Cr ¼
1
2

a21x þ a
2
1y − a2ox − a2oy − r2m;1 þ r

2
m;o

⋮
a2Nx þ a

2
Ny − a2ox − a2oy − r2m;N þ r

2
m;o

2

6
4

3

7
5: ð11Þ

By using the LS method, the estimated location of the mth
target, ~bm, can be found from Equation (12)

~b
⊤
m ¼ ATr Ar

� �−1
ATr Cr: ð12Þ

Although the problem is much simplified by linearization,
the accuracy obtained from the linear LS method is generally
lower than the one obtained from its non‐linear counterpart.

3.2 | RSS‐subspace

In the subspace method, a certain amount of noise is removed
from the observed RSS through a subspace projection.
Therefore, the subspace offers higher localization accuracy
compared with the RSS‐LS method. However, it also requires
higher computational effort. Details of the signal projection are
described below.

As proposed in Ref. [44], a symmetric matrix D is first
defined as

D¼ XXT ; ð13Þ

where

X¼
a1x − bmx a1y − bmy

⋮ ⋮
aNx − bmx aNy − bmy

2

4

3

5: ð14Þ

Clearly, D and X have the rank of 2. The elements Di,j can
be found as

Di;j ¼ aix − bmxð Þ ajx − bmx
� �

þ aiy − bmy
� �

ajy − bmy
� �

¼
1
2
d2i þ d

2
j − d2ij

h i
;

ð15Þ
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where di and dj are the real distances from the ith and the jth
anchors to the mth target respectively, and dij is the real dis-
tance between the ith and the jth anchors. By using eigenvalue
decomposition, D can be written as

D¼UΛUT ; ð16Þ

where Λ is a diagonal matrix of eigenvalues diag(λ1, λ2, …, λN),
and U¼ u1; u2;…; uN½ � is a matrix whose columns are the
orthonormal eigenvectors corresponding to the eigenvalues.
Since D is a rank‐2 matrix, we have λ3 = λ4 = … = λN = 0. By
defining the subspace matrices Λs = diag(λ1, λ2) and
Us ¼ u1; u2½ �, we have

D¼UsΛsUTs

¼UsΛ1=2
s UsΛ1=2

s
� �T

¼UsΛ1=2
s Ω UsΛ1=2

s Ω
� �T

;

ð17Þ

where Ω is a rotational matrix satisfying ΩΩT = IN, that is,
identity matrix of order N. From Equations (13) and (17), we
have

X¼UsΛ1=2
s Ω; ð18Þ

and an estimate of Ω obtained using the LS method is

Ω¼ UsΛ1=2
s

� �T
UsΛ1=2

s
� �h i−1

UsΛ1=2
s

� �T
X: ð19Þ

Then, by substituting Equation (19) back into Equa-
tion (18), we obtain

X¼UsUTs X: ð20Þ

Here, the subspace matrix Us is obtained from the matrix
D whose elements are generated from the real distances.
However, in practice, D cannot be obtained directly since we
have no knowledge about the distances di and dj. Therefore, an
estimate of D, denoted as ~D, is used instead, and its elements
can be found as

~Di;j ¼
1
2
r2i þ r

2
j − d2ij

h i
; ð21Þ

where ri and rj are the approximate distances from the ith and
the jth anchors, respectively. Similarly, if we define ~Us as a
subspace obtained from ~D, we have an approximation

X ≈ ~Us ~U
T
s X: ð22Þ

To find the location of the target, bm, we first define matrix
A as

A ¼
a1x a1y
⋮ ⋮
aNx aNy

2

4

3

5; ð23Þ

then from Equation (14), X can be written as

X¼ A − 1Nbm; ð24Þ

where 1N is an N � 1 column vector with all elements equal to
1. By using the LS method, an estimate of bm is

b
∼⊤

m ¼
1TN IN − ~Us ~U

T
s

� �
A

1TN IN − ~Us ~U
T
s

� �
1N
: ð25Þ

3.3 | Hybrid RSS/AOA least square

Next, we consider the case where the AOA or the angle in-
formation is observed in addition to the RSS. In Figure 3, the
shaded area represents the possible locations of the target
based on the RSS measurements. After the AOA measure-
ments are added to the calculation, the shaded area becomes
smaller, as shown in the diagonally‐shaded area.

We assume that N RSS and N AOA measurements are
obtained from N anchors. From this information, N linear
equations for the target's x‐ and y‐axis coordinates can be
constructed as

~bmx ¼ anx þ rm;ncosαn
~bmy ¼ any þ rm;nsinαn;

ð26Þ

for n = 1, …, N. In a matrix form, Equation (26) can be
written as E~b

⊤
m ¼ Ca where

E¼ 1N 0N
0N 1N

� �

; ð27Þ

and

Ca ¼

a1x þ rm;1 cosα1
⋮

aNx þ rm;N cosαN
a1y þ rm;1 sinα1

⋮
aNy þ rm;N sinαN

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

: ð28Þ

The estimate location of the target obtained from the LS
method is then

~b
⊤
m ¼ ETE

� �−1
ETCa: ð29Þ

3.4 | Hybrid RSS/AOA weighted least
squares

Since the anchors closer to the target are likely to provide a
smaller estimation error, Ref. [27] proposed a weighted LS
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method, where the ranges obtained from the anchors closer to
the target are weighted higher, that is,

~b
⊤
m ¼ ETWTE

� �−1
ETWTCa; ð30Þ

where E and Ca are the matrices described in Equations (27)
and (28). The weight matrix, W, is defined as

W¼ I2 ⊗ diagfwg; ð31Þ

where I2 is an identity matrix of order 2, ⊗ is the Kronecker
product, w¼

ffiffiffiffiffiffi
w1
p

;
ffiffiffiffiffiffi
w2
p

;…;
ffiffiffiffiffiffiffi
wN
p� �

, and wn ¼ 1 − rm;n=
�

PN
n¼1rm;nÞ. Results show that the weighted least squares

(WLS) method is able to achieve higher localization accuracy,
compared with the standard LS method.

3.5 | Unbalanced hybrid RSS/AOA

In previously mentioned methods, N RSS and N AOA values
are required in the calculations. This means that every anchor
must be equipped with an antenna array for AOA measure-
ment. For a system with limited resources, such as wireless
sensor networks, installing an antenna array on every sensor
node would add a large amount of complexity to the system.
Therefore, Ref. [30] proposed an unbalanced hybrid RSS/
AOA localization, where only the master anchor is respon-
sible for the AOA measurement. As a result, the information
obtained from all N anchors consists of N RSS and 1 AOA
values.

To combine 1 AOA measurement with N RSS measure-
ments, the authors used a simple range projection method, as
shown in Figure 4. At the master anchor aa, range ra and angle
αa are used to create two virtual ranges rv1 and rv2 corre-
sponding to the two virtual anchors at av1 and av2 by

av1 ¼ aa þ ra cosαa; 0½ �;

av2 ¼ aa þ 0; ra sinαa½ �;

rv1 ¼ ra sinαa;
rv2 ¼ ra cosαa:

ð32Þ

Thus, we have a total of N + 1 anchors and their N + 1
range measurements. The location of the target can then be
determined using the LS method or the SS method as previ-
ously described. In addition, to further improve the localization
accuracy, Ref. [30] proposed that the anchor with the smallest
distance to the target should be selected as the master anchor.

In theory, the Cramer–Rao lower bound (CRLB) indicates
the performance limit of an unbiased estimator. The CRLB of
the hybrid RSS/AOA method is given in Ref. [30]. In addition
to the RSS, the CSI has been used for the range‐based local-
ization as well. By applying signal processing techniques such
as the multiple signal classification (MUSIC) algorithm on the
obtained CSI, the TOA and AOA can be extracted without the
need for a dedicated equipment. The CRLB for the range‐
based TOA/AOA CSI localization is presented in the Ap-
pendix. However, an extended information and experimenta-
tion on the hybrid TOA/AOA localization based on the CSI
measurement are out of scope of this paper.

Since the range‐based methods usually locate the target in
the geometric domain, its accuracy depends highly on the ac-
curacy of the range and angle measurements, which in turn
depends on the existence of LOS paths.

4 | EXISTING RANGE‐FREE
LOCALIZATION

Another approach to wireless localization is fingerprinting. The
method is based on fingerprint matching. Unlike the range‐
based approach, the LOS path is not a requirement. In this
section, we cover some of the well‐known fingerprinting
methods, that is, RADAR, Horus, and Fine‐grained Indoor
Fingerprint System (FIFS).

4.1 | RADAR

RADAR [31] is one of the earliest fingerprinting methods for
indoor localization. The RADAR system uses three anchors to
collect the RSS information to create the radio map. Let X be
the set of reference locations, three average RSS values ob-
tained from the three anchors are stored as the fingerprint for
each x 2 X .

F I GURE 4 Virtual anchors obtained from one received signal strength
and one angle‐of‐arrival measurement

F I GURE 3 Hybrid received signal strength/angle‐of‐arrival
localization system
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To determine the location of the target, the distance be-
tween the real‐time fingerprint and the ones in the radio map
are calculated. We define dx as the distance between the real‐
time fingerprint and the reference fingerprint at the location
x, si as the real‐time RSS value obtained from the ith anchor,
and fi,x as the reference RSS value obtained from the ith an-
chor at the location x. The Euclidean distance between the
real‐time and the reference fingerprints, dx, is defined as

dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s1 − f1;x
� �2

þ s2 − f2;x
� �2

þ s3 − f3;x
� �2

q

; ð33Þ

for all x 2 X . The estimated target's location is the location x,
which minimizes dx.

4.2 | Horus

Unlike the deterministic approach used in RADAR, a proba-
bilistic approach is used in Horus [32]. We assume that there
are N anchors covering a set of reference locations X , the RSS
distributions P{si|x} for i = 1, …, N are stored as the ra-
dio map for every location x 2 X . Given the real‐time
RSS readings from N anchors, s = {s1, …, sN}, the esti-
mated target's location x

∼
is the location that maximises the

probability P{x|s}, or mathematically

~x¼ arg max
x
Pfxjsg ¼ arg max

x
Pfsjxg; ð34Þ

where the second equality comes from an assumption that the
target is equally likely to be in any location. The conditional
probability P{s|x} can be computed using information from
the radio map as

Pfsjxg ¼∏
N

i¼1
P sijxf g: ð35Þ

Based on Equation (34) and (35), x
∼
is approximately one of

the reference locations. To improve an accuracy, weighted
average of the location can be used.

4.3 | Fine‐grained Indoor Fingerprint
System

FIFS [34] uses a probabilistic approach similar to Horus;
however, the CSI is used instead of the RSS. A radio map is
created using the distributions of the effective CSI from N
anchors, which is defined as

He;n ¼
XNsc

i¼1
jHi;nj2; ð36Þ

where He,n is the effective CSI of the nth anchor, Hi,n is the
CSI for the ith subcarrier of the nth anchor, and Nsc is the total
number of the subcarriers.

During the online phase, given a vector of the real‐time
effective CSI, He = {He,1, …, He,N}, the estimated target's
location ~x is the location x 2 X that maximises the posterior
probability P{x|He}, which is defined as

P xjHef g ¼
PfxgP Hejxf g

P
x2XPfxgP Hejxf g

¼
PfxgP Hejxf g

P Hef g
: ð37Þ

Similar to Horus, using the posterior probability to
perform a weighted average of the locations can be used to
improve the accuracy.

5 | PROPOSED DNN‐BASED
LOCALIZATION

As the performance limits of the existing range‐based and
range‐free localization methods come from the imprecision of
the hand‐designed geometric models and algorithms, in this
work, the DNN approach is used to automatically extract the
relationship between the observed signals and the target's
location. We investigate the performance of several types of
DNN models when they are trained on both the range‐based
and range‐free datasets. The range‐based data sample is
formatted as shown below.

input signal parameters; outputs: bmx; bmy
� �

; ð38Þ

where the input parameters consist of a number of the RSS
and AOA measurements from the anchors, bmx and bmy are the
true target's location in terms of x and y‐axis coordinates. The
range‐free data sample is formatted as

input: signal parameters; output: reference location IDÞ;ð

ð39Þ

where the input parameters are either the RSS or the CSI
measurements, and the output location ID is a unique identi-
fication number for each reference location. For the range‐
based dataset, the problem is modelled as a regression task,
whereas for the range‐free dataset, it is modelled as a classi-
fication task. The structure of the proposed DNN‐based
localization for the two tasks is shown in Figure 5.

There are four main units in the proposed system: data
collection, data pre‐processing, location regression/classifica-
tion, and location estimation. In the training phase, the RSS,
AOA and CSI are first collected by the data collection unit.
Then, the data are filtered and sanitized by the data pre‐
processing unit. Next, Nm base models are trained to pro-
duce a set of Nm outputs, where the outputs are the target's
coordinates for the location regression unit, and the probability
of the target being in each of the reference locations for the
location classification unit, respectively. In the testing phase,
the real‐time RSS, AOA, and CSI measurements are collected,
calibrated, and then passed onto the trained models where the
outputs obtained from the Nm models are combined using the
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ensemble method to produce the final target's location in the
location estimation unit. The detailed description of the units is
presented below.

5.1 | Data collection unit

The data collection unit is responsible for collecting the RSS,
AOA, and CSI measurements. To generate the range‐based
dataset, a system of N (N ≥ 3) anchors is considered, and
the RSS and AOA obtained from the N anchors are generated
according to Equations (3) and (4). To generate the range‐free
dataset, a system with a single anchor is considered, and the
RSS and CSI are collected from a real environment in our
Telecommunications building.

To measure the RSS and CSI, a commodity 2.4 GHz Wi‐Fi
access point (AP) is used as the anchor while the target is a
laptop equipped with the Intel Wi‐Fi Link 5300 network inter-
face card (IWL5300‐NIC). The IWL5300‐NIC is running on a
modified driver developed by the authors in Ref. [45], which
allows the laptop to extract the RSS and CSI from the packets
transmitted by the anchor. According to the IEEE 802.11n‐2009
standard [46], 56 subcarriers are used in the 20‐MHz band.
However, the IWL5300‐NIC only supports the measurement of
30 subcarrier groups, which corresponds to a grouping number
of 2 as defined by the standard. The CSI obtained from the
IWL5300‐NIC is normalized such that there is unit noise pre-
sented at the receiver. Generally, for an anchor with Nt transmit
antennas and a target with Nr receive antennas, Nr RSS and
Nt�Nr� 30 complexCSI values are obtained fromeachpacket.

5.2 | Data pre‐processing unit

Data pre‐processing is a necessary step prior to model training
and testing as it helps to reduce the learning time and

complexity of the model. A moving filter defined in Equa-
tion (40) is used for the RSS and AOA while a three‐step
filtering method is proposed for the CSI.

yi ¼
1
W

XW−1

j¼0
xiþj; ð40Þ

where y is the filtered output, x is the input, and W is the
number of points used in the calculation.

The CSI obtained from the 2.4‐GHz anchor may contain
some inconsistent readings due to the interference from other
2.4‐GHz Wi‐Fi APs, which can be seen as large drops in the
magnitude response of the CSI in some packets. Figure 6
shows a surface plot of normalized CSI magnitudes from 200
consecutive packets when the receiver is placed at a fixed
location. To sanitize the CSI, three steps consisting of multi-
path filtering, outlier filtering, and phase calibration are used.

5.2.1 | Multipath filtering

In multipath filtering, the effect of insignificant paths pre-
sented in the CIR is removed. To achieve this, the CSI is first
converted into a time‐domain CIR using the inverse Fourier
transform, as shown in Figure 7. From the CIR, only the first l
channel taps are considered, and the rest of the channel taps
are filtered out. The filtered CIR is converted back to the
frequency domain using the Fourier transform to obtain the
filtered CSI.

5.2.2 | Outlier filtering

Next, the outliers in the filtered CSI are removed. For each
packet, an average CSI magnitude is computed over the 30

F I GURE 5 Structure of the proposed deep‐
neural‐network‐based localization system
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subcarrier groups. Then, using a sliding of size w packets, only
the packet with the highest average magnitude within the
window is selected. This is based on the idea that a higher CSI
magnitude indicates a more reliable packet reading.

Let N p be the set of valid packet indices, w be the size of
the sliding window (in packets), and |H|n,i be the magnitude
of the complex CSI Hn,i of the ith subcarrier from the nth
packet. The algorithm for outlier filtering is summarised by a
pseudocode in Algorithm 1. The outlier filtering result in a
more consistent CSI is shown in Figure 8.

Algorithm 1 Outlier filtering

1: set N p ¼∅
2: set w
3: set c = 0
4: while c + w ≤ number of packets available
do
5: for n = 1 to w do
6: collect Hc+n,i8i 2 {1, …, 30}
7: calculate jHj

_

cþn ¼
1
30 ∑

30
i¼1 jHjcþn;i

8: end for
9: find n* ¼ arg maxnjHj

_

cþn
10: update N p ←N p [ n*

11: c = c + 1
12: end while

5.2.3 | Phase calibration

Although the filtered CSI magnitudes are more consistent,
their phases are still random due to the fact that the AP and the
receiver are not synchronized. The dash lines in Figure 9 show
the raw CSI phases (after unwrapping) of a subcarrier over 200
packets.

To calibrate the phase, a linear transformation as proposed
in Ref. [47, 48] is used. Let ϕ̂i be the measured (raw) phase of
the ith subcarrier, which is defined as

ϕ̂i ¼ ϕi − 2π
ki
NFFT

δþ βþ Z; ð41Þ

where ϕi is the true phase of the ith subcarrier, ki is the
subcarrier index (−28, …, 28 in the 20‐MHz operating mode),

F I GURE 6 A surface plot of normalized channel state information
magnitudes of 200 consecutive packets for a single location

F I GURE 7 Time‐domain channel impulse response (CIR)

F I GURE 8 A surface plot of filtered channel state information (CSI)
readings from 200 packets when the receiver is placed at a fixed location
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Nsc is the total number of subcarriers, NFFT = 64 is the FFT
size as defined in the IEEE 802.11 a/g/n, δ is the timing offset
at the receiver, β is the unknown phase offset, and Z is the
measurement noise. Hence, removing the unknown δ and β
terms would stabilise the phase. First, we define the parameters
a and b as

a¼
ϕ̂Nsc

− ϕ̂1

kNsc − k1
; ð42Þ

b¼
1
Nsc

XNsc

i¼1

ϕ̂i; ð43Þ

where the calibrated phase of the ith subcarrier, ~ϕi, is obtained
by performing a linear combination of the true phases as
shown below

ϕ
∼
i ¼ ϕ̂i − aki þ bð Þ

¼ ϕi −
ϕNsc

− ϕ1

kNsc − k1
ki −

1
Nsc

XNsc

i¼1

ϕi þ
1
Nsc

2πδ
NFFT

XNsc

i¼1

ki

≈ ϕi −
ϕNsc

− ϕ1

kNsc − k1
ki −

1
Nsc

XNsc

i¼1
ϕi;

ð44Þ

where we assume that measurement noise is negligible, andPNsc
i¼1 ki ¼ 0. The calibrated phase is shown in Figure 9.
After the magnitude and phase of the RSS and CSI mea-

surement are processed, the data are passed onto the location
regression/classification unit.

5.3 | Location regression/classification unit

The location regression/classification unit roughly determines
the location of the target. For the range‐based dataset, a
regression model is used, whereas, for the range‐free dataset, a
classification model is used. Within this unit, a base DNN
model is trained Nm times using the same set of training data,
but with different initial conditions, thus generating Nm
models that have the same architecture with a different set of
weights. Several types of DNN models are considered for the
base model, including the FNN, 1D‐CNN, 2D‐CNN and
LSTM. An overview of the DNN models is provided below.

5.3.1 | Feed‐forward neural network

FNN is a multi‐layer network of neurons, where information
are passed only in the forward direction. The mechanism of a
neuron is shown in Figure 10. Here g1, g2, …, gN are the
weights corresponding to the inputs x1, x2, …, xN, respectively,
b is the bias term, and φ(⋅) is the activation function. To
compute the output y, the inputs are multiplied by their
weights, then summed with the bias, and fed into the activation
function, as described below

y¼ φ g1x1 þ g2x2 þ…þ gNxN þ bð Þ: ð45Þ

For the FNN to be able to estimate non‐linear mapping
between the inputs and outputs, non‐linear activation func-
tions, such as sigmoid, hyperbolic tangent, and rectified linear
unit (ReLU), are used. For more complicated models, the
neurons are connected into layers consisting of an input layer,
several hidden layers, and an output layer, as shown in
Figure 11. Based on this structure, the outputs of the prior
layer are the inputs to the subsequent layers and so on, until the
final output layer is reached. In addition, the order of the data
is not considered in this type of model.

5.3.2 | 2D‐convolutional neural network

2D‐CNN is a neural network designed to work with 2D inputs
such as images. The architecture of the 2D‐CNN consists of
an automatic feature extraction unit stacking on top of the
FNN, as shown in Figure 12. The feature extraction unit
contains two types of layers called a convolutional layer and a
pooling layer. The convolutional layer uses a number of filters
to perform convolutional filtering on the input data and
creating the outputs called feature maps. By stacking multiple
convolutional layers on top of each other, higher‐order fea-
tures, such as lines and shapes, can be extracted. The pooling
layer behaves as a down‐sampling layer. It compresses an input
feature map by taking the average or the maximum of the
inputs. The use of convolutional layer, pooling layer, and FNN
allows this type of neural network to be resilient to input
transformations, such as translation, rotation, and scaling.

F I GURE 9 Channel state information phase of a subcarrier over 200
packets

WISANMONGKOL ET AL. - 43



5.3.3 | 1D‐convolutional neural network

1D‐CNN is a variant of the 2D‐CNN designed to work with
1D inputs, such as time series. The architecture of the 1D‐
CNN is the same as the one presented in the 2D‐CNN, with
an automatic feature extraction stacking on top of the FNN.
The 1D‐CNN also share similar operations as the 2D‐CNN;
however, the convolutional filters now cover the entire length
of the features and move in only one direction, as shown in
Figure 13. Much like the 2D‐CNN, the 1D‐CNN is also
resilient to the 1D input transformations.

5.3.4 | Long short‐term memory network

LSTM is a type of recurrent neural networks, which contains
loops in them, as shown in Figure 14. These loops allow the
network to memorize prior input sequences, making them
suitable for tasks with sequential inputs, such as time‐series
prediction and speech recognition. Unrolling the loop, an
LSTM is a chain of multiple LSTM cells, where each cell
contains a cell state Q, which carries information through an
entire chain and a mechanism to decide which piece of in-
formation should be passed along or dropped from the chain.
This mechanism is controlled by 3 types of gates, that is, forget
gate, input gate, and output gate, as shown in Figure 15.

The forget gate decides which piece of information is to be
kept or removed from the cell state Q. Given the current input
sequence xt and the output of the previous hidden state ht−1,
the output ft is expressed as

f t ¼ σ wf ht−1; xt½ � þ bf
� �

; ð46Þ

where wf and bf are the weights and the biases related to the
forget gate, respectively. A zero in ft indicates the part of the
previous cell state Qt−1 that should be dropped, while a one
indicates the part that should be kept.

F I GURE 1 0 A single neuron

.

.

.

. . .

. . .

. . .

input layer hidden layers output layers

F I GURE 1 1 Feed‐forward neural network

2D input data convolution pooling convolution pooling FNN
F I GURE 1 2 2D‐convolutional neural
network

F I GURE 1 3 Comparison between 1D‐convolutional neural network
and 2D‐convolutional neural network

F I GURE 1 4 A long short‐term memory network (LSTM) cell with an
input xt and an output ht
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The input gate decides which parts of the input should be
stored in the cell state. From the diagram, we have

it ¼ σ wi ht−1; xt½ � þ bið Þ

~Qt ¼ tanh wq ht−1; xt½ � þ bq
� �

;

ð47Þ

where wi, bi, wq and bq are the weights and biases related to
the sigmoid function, and the weights and biases related to the
hyperbolic tangent function, respectively. Then, the operation
to update Qt−1 to Qt is performed as shown below

Qt ¼ f tQt−1 þ it ~Qt: ð48Þ

The output gate decide which part of the information
should be outputted as ht. The process is described by

ot ¼ σ wo ht−1; xt½ � þ boð Þ;

ht ¼ ottanh Qtð Þ;
ð49Þ

where ht is the output of the current hidden unit, Qt is the
current cell state, and wo and bo are the weights and the biases
related to the output gate.

We have seen that different types of DNN models offer
different benefits, for example, the FNN can be applied to any
type of data, the 2D‐CNN and 1D‐CNN offer automatic
feature extraction, and LSTM can process sequential inputs.
Therefore, in wireless localization, these models can be used to
process raw input data from different aspects.

5.4 | Location estimation unit

Since the training of the DNNmodels is stochastic in nature, we
assume that the Nmmodels perform poorly in different regions
of feature space, and by combining the outputs of the models,
the accuracy should be improved as a result of model diversity.
The location estimation unit combines theNm outputs obtained
from the location regression/classification unit into the target's
final location. For the range‐based dataset, the outputs of theNm
models are stacked to create a Nm � 2 matrix B.

B¼

b1;x b1;y
b2;x b2;y
⋮ ⋮
bNm;x bNm;y

2

6
6
4

3

7
7
5; ð50Þ

where bi,x and bi,y are the target's x‐ and y‐axis coordinates
estimated by the ith model. The target's location is simply an
average of the outputs in matrix B, that is,

~bmx ¼
1
Nm

XNm

n¼1
bn;x

~bmy ¼
1
Nm

XNm

n¼1
bn;y;

ð51Þ

where ~bmx and ~bmy are the estimated x‐ and y‐axis coordinates
of the target.

Similarly, for the range‐free dataset, the outputs of the Nm
models are stacked to create a Nm � L matrix V.

V¼

v1;1 v1;2 ⋯ v1;L
v2;1 v2;2 ⋯ v2;L
⋮ ⋮ ⋱ ⋮
vNm;1 vNm;2 ⋯ vNm;L

2

6
6
4

3

7
7
5; ð52Þ

where L is the total number of the reference locations, and the
element vi,j is the posterior probability obtained from the ith
model for the jth reference location. The target's location is the
weighted average of the reference locations, where the weights
are found by summing along the columns of the matrix V. Let
g be the matrix of the weights, we have

g¼ g1 g2 ⋯ gL½ �; ð53Þ

where gl is the weight for the lth reference location, which can
be calculated from

gl ¼
PNm
n¼1vn;l

PL
l¼1
PNm
n¼1vn;l

: ð54Þ

Finally, the location of the mth target is the average of the
reference location using the weights in g as

b
∼
m ¼

~bmx; ~bmy
h i

¼
XL

l¼1

glxl; ð55Þ

where xl is the coordinate of the lth reference location.

6 | EXPERIMENTATION AND RESULTS

The experiment is separated into two parts based on the range‐
based and range‐free datasets. The performance of the pro-
posed and the existing methods in both experiments are
evaluated in terms of the RMSE, as defined by

F I GURE 1 5 A long short‐term memory network cell
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RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
K

XK

k¼1

d2k;e

v
u
u
t ; ð56Þ

where K is the total number of samples, and dk,e is the distance
error for the kth sample, which is given by

dk;e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bk;mx − ~bk;mx
� �2

þ bk;my − ~bk;my
� �2

r

; ð57Þ

where bk,mx and bk,my are true coordinates of the mth target
for the kth sample, ~bk;mx and ~bk;my are the estimated co-
ordinates of the mth target for the kth sample.

6.1 | Experimentation on the range‐based
dataset

In our first experiment, the range‐based dataset is considered.
The training and testing samples are formatted as shown in
Equation (38), where the input parameters consist of anchors'
locations, observed ranges, and observed angles while the
outputs are the target's coordinates.

6.1.1 | Simulation setting

We consider the case where the number of anchors N ≥ 3 are
used to locate a single target. The location of the anchors and
the target are generated randomly according to a uniform
distribution within an area of 50� 50 m2. The observed ranges
and angles follow the relationship given in Equations (4) and
(7), respectively.

Since the samples are generated independently from sam-
ple to sample, a FNN model is used as the base model in the
location regression unit. The structure of the model is deter-
mined through a series of experiments. The result is shown in
Table 2. The model consists of an input layer, five hidden
layers, and an output layer. The information in the bracket in
each layer are the number of neurons and the activation
function, respectively. Here, a dropout layer is added as a

regularization strategy. The ReLU activation function is used in
the hidden layers to reduce the likelihood of vanishing gradient
while the linear activation function is used in the output layer
to produce the real‐value target's coordinate.

To generate the Nm ensemble models, random initial
weights are used in each round of the training. The models are
trained to minimize the mean‐squared error cost function,
where the adaptive moment estimation (ADAM) is selected as
the optimization algorithm since it only requires small tuning
of the hyper‐parameters [49]. To avoid overtraining, early
stopping is used. After the training, we have Nm trained
models, which are used to generate Nm outputs for the loca-
tion estimation unit.

6.1.2 | Effects of the training sample size

As the model's performance depends heavily on the number of
training samples, we first vary the number of training samples
to see its effects on the RMSE of the estimated target's loca-
tion. A model is trained on a various number of training
samples, varying from 100,000 to 1,000,000 samples. After the
model is trained, the RMSE of the estimated target's location is
computed from a separated 100,000 testing samples. The
RMSE at a different number of training samples is plotted in
Figure 16.

Here, the number of anchor N is set to 3, with γ = 4,
σr = 1 dB, and σa = 5°. We denote NRNA as the hybrid RSS/
AOA methods, which are based on N RSS and N AOA
measurements, and LS, WLS, and CRLB as the least‐squares
method, the weighted least‐squares method, and the CRLB
given in Ref. [30], respectively.

Results show that the larger the training samples, the lower
the error. For this problem, at least 300,000 training samples
are required for the FNN to achieve the lower RMSE
compared with the hybrid RSS/AOA methods. In practice,
data augmentation techniques, such as noise injection, can be
used to reduce the burden of collecting that large amount of
samples.

6.1.3 | Effects of the number of ensemble
models (Nm)

After the base model is sought, it is trained using 1,000,000
training samples with random initial weights Nm times, thus
creating Nm ensemble models of the same structure but
different sets of weights. By using the model‐averaging
ensemble method presented in Equation (51), the final tar-
get's location is obtained. Figure 17 shows the RMSE of the
estimated target's location obtained from the ensemble method
using a different number of ensemble models Nm.

As shown in the plot, the minimum RMSE obtained from
a single model is around 1.41 m. Adding a second model to the
computation reduces the RMSE to around 1.38 m. Results
show that increasing Nm lowers the RMSE until a saturated
point is reached at around 1.34 m at Nm ≈ 9–10 models.

TABLE 2 Structure of the FNN model for the range‐based
localization

Layers FNN

1 Input

2 Dense (512, ReLU)

3 Dropout

4 Dense (256, ReLU)

5 Dense (64, ReLU)

6 Dense (16, ReLU)

7 Output (2, linear)

Abbreviations: FNN, feed‐forward neural network; ReLU, rectified linear unit.
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6.1.4 | Effects of the number of anchors (N)

Using Nm = 10, we next vary the number of anchors N to see
its effects on the RMSE of the estimated target's location.

Figure 18 shows the RMSE when N is varied from 3 to 7. The
solid lines represent the use of N RSS and N AOA (NRNA)
input values, whereas the dash lines represent the use of N RSS
and 1 AOA (NR1A) input values. The RMSE obtained from

F I GURE 1 6 RMSE versus number of training
samples. CRLB, Cramer–Rao lower bound; FNN,
feed‐forward neural network; LS, least square;
RMSE, root‐mean‐square error; WLS, weighted least
squares

F I GURE 1 7 Root‐mean‐square error (RMSE)
versus number of ensemble models
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the proposed FNN, LS, WLS, and SS methods are compared
with the CRLB given in Ref. [30].

Results show that the RMSE decreases as N increases for
both NRNA and NR1A inputs. This is due to the fact that
more useful information is added to the calculation for the
target's location. From the plot, the methods using NRNA
input are able to achieve lower RMSE compared with the
methods using NR1A input, with the FNN providing the
lowest RMSE in its respective NRNA and NR1A input types.

6.2 | Experimentation on the range‐free
dataset

For the range‐free dataset, the training samples are formatted
as shown in Equation (39). The input parameters consist of the
observed RSS, observed CSI, whereas the output is the refer-
ence location ID. We evaluate the performance of the pro-
posed DNN localization in two types of environments, that is,
a crowded closed room and a corridor. The experiment set-
tings are as follows.

6.2.1 | Experiment setting

In this experiment, a single anchor is used to locate a single
target. The anchor is a Wi‐Fi AP equipped with one antenna
(Nt = 1) while the target is a laptop equipped with three an-
tennas (Nr = 3). As a result, the information extracted from a
packet reading consists of three RSS values and 3 � 30 com-
plex CSI values, or 3� (30 real CSI magnitudes and 30 real CSI
phases). The training and testing locations for the closed room

and corridor settings are selected so that they do not coincide
with each other, as shown in Figures 19 and 20, respectively.

The base model considered in this classification task in-
cludes the FNN, 1D‐CNN, 2D‐CNN, and LSTM. To train the
base models, the same CSI values are used as the input for all
base models; however, the values are formatted differently, as
shown in Table 3. For the FNN base model, the CSI values are
flattened into a 180‐feature vector, whereas for the 1D‐CNN
and LSTM base models, the CSI values are considered as a
series of data points in the frequency domain over the 30
subcarrier groups. For the 2D‐CNN base model, the CSI
values are formatted into a rectangular image.

The structure for the base models in closed room and
corridor settings are shown in Tables 4 and 5, respectively.
Note that the models presented here are merely a proof of
concept to show that there exists a DNN model that performs
better than the existing methods. A more advanced DNN ar-
chitecture may provide higher localization accuracy, but it is
not our main focus.

For the closed room setting, the FNN base model is a
simple 1 hidden layer network as this is enough to achieve the
lower RMSE than the existing fingerprinting methods. The
ReLU activation function is used in the hidden layer to mini-
mize the vanishing gradient, while the softmax activation is
used in the output layer to generate categorical outputs. The
1D‐CNN and 2D‐CNN base models are similar in that they
use a convolutional layer to extract the input features, followed
by a pooling layer to down‐sampling the extracted features.
The difference is that the filters in the convolutional layer are
1D and 2D for the 1D‐CNN and 2D‐CNN, respectively.
Lastly, a single LSTM layer is used in the LSTM base model.
From our experiment, we found that more complex base

F I GURE 1 8 RMSE versus number anchors N. CRLB, Cramer–Rao
lower bound; FNN, feed‐forward neural network; LS, least square; RMSE,
root‐mean‐square error; SS, subspace; WLS, weighted least squares

120 cm

30 cm

testing pointtraining point

240 cm

6 m

6 m

anchor (access point)

F I GURE 1 9 Training and testing locations for the closed room setting
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models are required for the corridor setting as there are not as
many unique multipath components as in the closed room
setting. Additional hidden layers and filters are added to the
FNN and LSTM, and the 2D‐CNN base models, whereas no
adjustments are needed for the 1D‐CNN base model.

Here, the base models are trained to minimize the cate-
gorical cross‐entropy cost function using the ADAM opti-
mizer. Early stopping is also used to avoid overtraining. To
train the models, we use a total sample size of 40,000 samples,
with 4000 samples per reference location. The observed RSS
and CSI values are first processed in the data pre‐processing
unit, where the RSS is filtered using a moving average win-
dow size ofW = 5, and the CSI is calibrated using l = 10 first
channel taps in the multipath filtering and sliding window size
of w = 3 packets in the outlier filtering. Similar to the range‐
based dataset, Nm = 10 ensemble models are used. To eval-
uate the performance of the proposed DNN models, a sepa-
rate 20,000 testing samples collected from the testing locations
are used. The cumulative distribution function (CDF) of the
distance error for the closed room and the corridor are plotted
in Figures 21 and 22.

According to the two CDF plots, the maximum distance
error is around 5 m for the closed room setting and is around
9 m for the corridor setting. The 50th percentile error for the
proposed DNN models is all lower than Horus and FIFS for
both settings. It is also worth mentioning that, in the closed
room setting, Horus that uses the RSS measurement in
fingerprinting performs worse than FIFS that uses the CSI
measurement in terms of the 50th percentile error. However, in
the corridor setting, Horus is able to achieve a lower distance
error compared with FIFS. This means that the performance
of the existing fingerprinting methods not only depends on the
type of the input parameters but also on the selected features.
One of the important reasons for the DNN approach to
perform better than the existing methods is that the features
are automatically learnt, not manually hand‐picked.

The overall RMSE of the estimated target's location ob-
tained from the ensemble method for both closed room and
corridor settings are listed in Table 6. For the closed room
setting, Horus has the highest RMSE of 3.08 m, followed by
FIFS that has a RMSE of 2.34 m. The proposed DNN models
are able to achieve the lower RMSE compared with the two
existing methods at 1.86, 2.02, 2.23, and 1.95 m for the FNN,
1D‐CNN, 2D‐CNN, and LSTM, respectively. For the corridor
setting, the RMSE shares a similar trend with the closed room
setting. Horus has the highest RMSE of 4.12 m, followed by
FIFS that has the RMSE of 3.50 m. All proposed DNN
models offer the lower RMSE at 3.37, 3.26, 3.18, and 3.40 m
for the FNN, 1D‐CNN, 2D‐CNN and LSTM, respectively.

8 m

17 m

122 cm

30 cm

testing pointtraining point

anchor (access point)

F I GURE 2 0 Training and testing locations for the corridor setting

TABLE 3 CSI input format

Deep neural network type CSI input format

Feed‐forward neural network 1 step � 180 features

1D‐CNN 30 frequency steps � 6 features

2D‐CNN 30 frequency steps � 6 features image

Long short‐term memory network 30 frequency steps � 6 features

Abbreviations: CNN, convolutional neural network; CSI, channel state information.

TABLE 4 Structure of the base models for the closed room setting

Layers
Feed‐forward neural
network 1D‐CNN 2D‐CNN LSTM

1 Input (180) Input (30 � 6) Input (30 � 6) Input (30 � 6)

2 Dense (16, ReLU) Conv1D (filters = 16, kernel size = 9,
ReLU)

Conv2D (filters = 20, kernel size = (13, 6),
ReLU)

LSTM (40)

3 Output (10, Softmax) GlobalMaxPooling1D GlobalMaxPooling2D Output (10,
Softmax)

4 ‐ Output (10, Softmax) Output (10, Softmax) ‐

Abbreviations: CNN, convolutional neural network; LSTM, long short‐term memory network; ReLU, rectified linear unit.
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We next investigate the effects of the ensemble method.
The RMSE obtained from a single DNN model versus the
RMSE obtained from an ensemble of Nm = 10 models are
listed in Table 7 for the closed room setting and Table 8 for
the corridor setting. In both settings, we observe a high
variation of the RMSE obtained from the single‐model
method, where the difference between the minimum and
the maximum RMSE obtained from the same DNN structure
in different training sessions exceeds 1 m, and some of the
single models perform even worse than Horus and FIFS. By
using the ensemble method, we are able to obtain the RMSE
that is lower than the existing methods as well as the average
RMSE obtained from a single method for all types of DNN
models. In the case where the single model with the highest
RMSE is used, the difference between the RMSE obtained
from the single model and the ensemble methods could be as

large as 1.47 m, as seen in the case of the FNN model in the
corridor setting. Moreover, the RMSE obtained from the
ensemble method for the FNN, 2D‐CNN, and LSTM is even
lower than the minimum RMSE obtained from their single‐
model counterparts.

7 | CONCLUSION

In this work, we investigate the performance of the DNN‐
based wireless indoor localization when the models are
trained on the range‐based and range‐free datasets. Several
types of DNN models are considered, including the FNN, 1D‐
CNN, 2D‐CNN, and LSTM. A model ensemble technique is
also proposed to improve the performance of the target
localization.

TABLE 5 Structure of the base models for the corridor setting

Layers FNN 1D‐CNN 2D‐CNN LSTM

1 Input (180) Input (30 � 6) Input (30 � 6) Input (30 � 6)

2 Dense (6, ReLU) Conv1D (filters = 16, kernel size = 9, ReLU) Conv2D (filters = 32, kernel size = (13, 6), ReLU) LSTM (44)

3 Dense (4, ReLU) GlobalMaxPooling1D GlobalMaxPooling2D LSTM (16)

4 Dense (4, ReLU) Output (10, Softmax) Output (10, Softmax) LSTM (12)

5 Dropout ‐ ‐ Output (10, Softmax)

7 Dense (4, ReLU) ‐ ‐ ‐

8 Output (10, Softmax) ‐ ‐ ‐

Abbreviations: CNN, convolutional neural network; LSTM, long short‐term memory network; ReLU, rectified linear unit.

F I GURE 2 1 CDF of the distance error in the
closed‐room setting. CDF, cumulative distribution
function; CNN, convolutional neural network; FIFS,
Fine‐grained Indoor Fingerprint System; FNN,
feed‐forward neural network; LSTM, long short‐
term memory network
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For the range‐based dataset, we found that the proposed
DNN model is able to achieve a lower RMSE compared with
the existing hybrid RSS/AOA methods, given that enough
training samples are provided. Fortunately, data augmentation
can be easily applied to generate more training samples.

For the range‐free dataset, we found that the proposed
DNN models provide a lower RMSE compared with the

existing fingerprinting methods, that is, Horus and FIFS, in
both closed room and corridor settings. This is because the
proposed DNN models have the ability to automatically
extract useful features, unlike the existing methods where the
features are hand‐picked. We also found that by using the
ensemble technique, the obtained RMSE can be even lower
than the minimum RMSE obtained from a single model for the
FNN, 2D‐CNN, and LSTM models.

As a result, the proposed DNN approach offers a better
performance than the traditional methods. A DNN regression
model can be applied to a system where range‐based trilater-
ation and triangulation are preferred, such as a large area with
LOS, while a DNN classification model can be applied to a
system where the range‐free fingerprinting is preferred, such as
a relatively smaller area with NLOS. In addition, by using the
ensemble method, a more stable target estimation and higher
localization accuracy can be achieved. Based on our experi-
ment, we believe that the use of model ensemble could be
considered as a good practice when employing deep learning in
wireless localization.

Our future work includes several adjustments to the
ensemble technique. In this work, we only consider combining
the models of the same structure. By combining different
structures or different types of DNN models, the localization
accuracy might be improved. In addition, we currently
combine the models randomly, adding criteria, such as applying
a threshold on the training accuracy, for the model selection
for the ensemble method should be further investigated.
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TABLE 6 Root‐mean‐square error (m) obtained from the ensemble
method for the closed room and corridor settings

Methods Closed room Corridor

Horus 3.08 4.12

Fine‐grained Indoor Fingerprint System 2.34 3.50

Feed‐forward neural network 1.86 3.37

1D‐CNN 2.02 3.26

2D‐CNN 2.23 3.18

Long short‐term memory network 1.95 3.40

Abbreviation: CNN, convolutional neural network.

TABLE 7 Root‐mean‐square error (m) comparison between a single‐
model method and an ensemble method in the closed‐room setting

Methods

Single model

EnsembleMin Max Average

Feed‐forward neural network 1.97 2.53 2.14 1.86

1D‐CNN 1.99 2.51 2.22 2.02

2D‐CNN 2.25 2.58 2.41 2.23

Long short‐term memory network 1.96 2.69 2.36 1.95

Abbreviation: CNN, convolutional neural network.

TABLE 8 Root‐mean‐square error (m) comparison between a single‐
model method and an ensemble method in a corridor setting

Methods

Single model

EnsembleMin Max Average

Feed‐forward neural network 3.45 4.84 3.97 3.37

1D‐CNN 3.08 4.53 3.94 3.26

2D‐CNN 3.35 3.92 3.71 3.18

Long short‐term memory network 3.49 4.75 3.96 3.40

Abbreviation: CNN, convolutional neural network.
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APPENDIX
To derive the CRLB for the CSI‐based localization, we first
consider a localization system as shown in Figure A1. We as-
sume that the anchor is centred at a¼ ax; ay

� �⊤ and the target
is centred at b¼ bx; by

� �⊤. The anchor is equipped with Nt
antennas, where the ith element is located at rt;i ¼ rt;i cos

�

ϕt;i
� �

; rt;i sin ϕt;i
� �

�⊤ for i = 1, …, Nt. Similarly, the target is
equipped with Nr antennas, where the ith element is located at
rr;i ¼ rr;i cos ϕr;i

� �
; rr;i sin ϕr;i

� �� �⊤ for i = 1, …, Nr. A total of
K + 1 paths exist between the anchor and the target. The
direction for the DOD and DOA of the kth path are char-
acterized by the unit vector Ωt;k ¼ cos θt;k

� �
; sin θt;k
� �� �⊤ and

Ωr;k ¼ − cos θr;k
� �

; sin θr;k
� �� �⊤, respectively.

For a transmission symbol g, the Nr � Nt CFR for the nth
subcarrier is given by

Hn ¼
XK

k¼0

hkexp
−j2πnτk
NscTs

� �

ar Ωr;k
� �

a⊤
t Ωt;k
� �

; ðA:1Þ

where hk and τk are the complex channel gain and the TOA for
the kth path, Nsc is the number of subcarriers, Ts is the sam-
pling period, ar(Ωr,k) and at(Ωt,k) are the target's and the an-
chor's antenna steering vectors such that

ar Ωr;k
� �

¼ ej2π
Ωr;k ⋅rr;1

λc ⋯ ej2π
Ωr;k ⋅r1;Nr

λc

h i
⊤; ðA:2Þ

and

at Ωt;k
� �

¼ ej2π
Ωt;k ⋅rt;1

λc ⋯ ej2π
Ωt;k ⋅rt;Nt

λc

h i
⊤; ðA:3Þ

where λc is the wavelength of the carrier frequency, Ω r,k
⋅rr,i = −rr,i cos(θr,k − ϕr,i) and Ωt,k ⋅ rt,i = rt,i cos(θt,
k − ϕt,i), respectively.

The received signal on the nth subcarrier, Yn, is defined as

Yn ¼Hnxn þ wn; ðA:4Þ

where xn is a Nt � 1 vector of transmitted signal, and wn is an
additive white Gaussian noise with zero mean and variance of
σ2
w
2 per real dimension.

We define ξ as a vector of unknown parameters of all
K + 1 paths, that is,

ξ¼ τ0; θr;0; θt;0; hR;0; hI ;0;…;
�

τK ; θr;K ; θt;K ; hR;K ; hI ;K
�
;

ðA:5Þ

where hR,k and hI,k are the real and imaginary parts of hk,
respectively. For a complex Gaussian data vector, the Fisher
information matrix I(ξ) can be computed from

½IðξÞ�i;j ¼
XNsc

n¼1
tr C−1

Yn ðξÞ
∂CYnðξÞ
∂ξi

C−1
Yn ðξÞ

∂CYnðξÞ
∂ξj

" #

þ 2Re
∂μHn ðξÞ
∂ξi

C−1
YnðξÞ

∂μnðξÞ
∂ξj

" #

;

ðA:6Þ

where CYnðξÞ ¼ σ2
wI is the covariance matrix of Yn, and

μn = Hnxn. Therefore, Equation (A.6) can be written as

½IðξÞ�i;j ¼
XNsc

n¼1

2
σ2
w
Re

∂μHn ðξÞ
∂ξi

∂μnðξÞ
∂ξj

" #

: ðA:7Þ

The values for the components of the FIM are listed below.

∂μnðξÞ
∂τi

¼
−j2πn
NscTs

� �

hi exp
−j2πnτi
NscTs

� �

� ar Ωr;i
� �

a⊤
t Ωt;i
� �

xn;

ðA:8Þ

∂μnðξÞ
∂θr;i

¼ hi exp
−j2πnτi
NscTs

� �

�Dr;iar Ωr;i
� �

a⊤
t Ωt;i
� �

xn;

ðA:9Þ

∂μnðξÞ
∂θt;i

¼ hi exp
−j2πnτi
NscTs

� �

� ar Ωr;i
� �

Dt;iat
� �⊤ Ωt;i

� �
xn;

ðA:10Þ
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∂μnðξÞ
∂hR;i

¼ exp
−j2πnτi
NscTs

� �

� ar Ωr;i
� �

a⊤
t Ωt;i
� �

xn;

ðA:11Þ

∂μnðξÞ
∂hI ;i

¼ j exp
−j2πnτi
NscTs

� �

� ar Ωr;i
� �

a⊤
t Ωt;i
� �

xn;

ðA:12Þ

where

Dr;i ¼ diag
−j2π

λn
rr;1 sin θr;i − ϕr;1

� �
;

�

…;
−j2π

λn
rr;Nr sin θr;i − ϕr;Nr

� �
�

;

ðA:13Þ

Dt;i ¼ diag
j2π
λn
rt;1 sin θt;i − ϕt;1

� �
;

�

…;
j2π
λn
rt;Nt sin θt;i − ϕt;Nt

� �
�

:

ðA:14Þ

To relate the FIM of the channel parameters with target
positioning, a reparametrization is performed by introducing a
vector of unknown positions

P¼ bx; by; s1;x; s1;y;…; sK;x; sK;y
� �⊤; ðA:15Þ

where bx and by are the coordinates of the target, and sk,x and
sk,y are the coordinates of the scatterer on the kth path. The
relationships between these position parameters P and the
channel parameters ξ are described by

τ0 ¼
kb − ak
c

; ðA:16Þ

θt;0 ¼ sin−1 by − ay
kb − ak

� �

¼ cos−1 bx − ax
kb − ak

� �

; ðA:17Þ

θr;0 ¼ sin−1 ay − by
ka − bk

� �

¼ cos−1 ax − bx
ka − bk

� �

; ðA:18Þ

τk ¼
kb − skk þ ksk − ak

c
; ðA:19Þ

θt;k ¼ sin−1 sk;y − ay
ksk − ak

� �

¼ cos−1 sk;x − ax
ksk − ak

� �

; ðA:20Þ

θr;k ¼ sin−1 sk;y − by
ksk − bk

� �

¼ cos−1 sk;x − bx
ksk − bk

� �

: ðA:21Þ

We define a Jacobian matrix J as

J¼
∂ξ
∂P
; ðA:22Þ

where the elements for the LOS path can be computed as

∂τ0
∂bx
¼

1
c
cos θt;0
� �

; ðA:23Þ

∂τ0
∂by
¼

1
c
sin θt;0
� �

; ðA:24Þ

∂θt;0
∂bx
¼

−1
kb − ak

sin θt;0
� �

; ðA:25Þ

∂θt;0
∂by
¼

1
kb − ak

cos θt;0
� �

; ðA:26Þ

∂θr;0
∂bx
¼

1
ka − bk

sin θr;0
� �

; ðA:27Þ

∂θr;0
∂by
¼

−1
ka − bk

cos θr;0
� �

; ðA:28Þ

the elements for the NLOS paths are

F I GURE A 1 Channel‐state‐information‐based
localization system model

54 - WISANMONGKOL ET AL.



∂τk
∂bx
¼

−1
c
cos θr;k
� �

; ðA:29Þ

∂τk
∂by
¼

−1
c
sin θr;k
� �

; ðA:30Þ

∂τk
∂sk;x
¼

1
c
cos θt;k
� �

þ
1
c
cos θr;k
� �

; ðA:31Þ

∂τk
∂sk;y
¼

1
c
sin θt;k
� �

þ
1
c
sin θr;k
� �

; ðA:32Þ

∂θt;k
∂sk;x
¼

−1
ksk − ak

sin θt;k
� �

; ðA:33Þ

∂θt;k
∂sk;y
¼

1
ksk − ak

cos θt;k
� �

; ðA:34Þ

∂θr;k
∂bx
¼

1
ksk − bk

sin θr;k
� �

; ðA:35Þ

∂θr;k
∂by
¼

−1
ksk − bk

cos θr;k
� �

; ðA:36Þ

∂θr;k
∂sk;x
¼

−1
ksk − bk

sin θr;k
� �

; ðA:37Þ

∂θr;k
∂sk;y
¼

1
ksk − bk

cos θr;k
� �

; ðA:38Þ

and the other components are all zero. The FIM for position
parameters can be written as

IðPÞ ¼ J⊤IðξÞJ: ðA:39Þ

The CRLB for the target localization error is then

CRLB ¼ I−1ðPÞ
� �

1;1 þ I−1ðPÞ
� �

2;2: ðA:40Þ

WISANMONGKOL ET AL. - 55


	An ensemble approach to deep‐learning‐based wireless indoor localization
	1 | INTRODUCTION
	2 | BACKGROUND
	2.1 | Received signal strength
	2.2 | Angle of arrival
	2.3 | Channel state information

	3 | EXISTING RANGE‐BASED LOCALIZATION
	3.1 | RSS‐least square
	3.2 | RSS‐subspace
	3.3 | Hybrid RSS/AOA least square
	3.4 | Hybrid RSS/AOA weighted least squares
	3.5 | Unbalanced hybrid RSS/AOA

	4 | EXISTING RANGE‐FREE LOCALIZATION
	4.1 | RADAR
	4.2 | Horus
	4.3 | Fine‐grained Indoor Fingerprint System

	5 | PROPOSED DNN‐BASED LOCALIZATION
	5.1 | Data collection unit
	5.2 | Data pre‐processing unit
	5.2.1 | Multipath filtering
	5.2.2 | Outlier filtering
	5.2.3 | Phase calibration

	5.3 | Location regression/classification unit
	5.3.1 | Feed‐forward neural network
	5.3.2 | 2D‐convolutional neural network
	5.3.3 | 1D‐convolutional neural network
	5.3.4 | Long short‐term memory network

	5.4 | Location estimation unit

	6 | EXPERIMENTATION AND RESULTS
	6.1 | Experimentation on the range‐based dataset
	6.1.1 | Simulation setting
	6.1.2 | Effects of the training sample size
	6.1.3 | Effects of the number of ensemble models (Nm)
	6.1.4 | Effects of the number of anchors (N)

	6.2 | Experimentation on the range‐free dataset
	6.2.1 | Experiment setting


	7 | CONCLUSION
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT


