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Abstract: The magnetic properties of magnetic cores are essential for the design of electrical machines,
and consequently appropriate mathematical modeling is needed. Usually, the design and analysis
of electrical machines consider only the one-dimensional (1D) magnetic properties of core materi-
als, i.e., the relationship of magnetic flux density (B) versus magnetic field strength (H), and their
associated power loss under 1D magnetization, in which the B and H are constrained in the same
orientation. Some studies have also been performed with the two-dimensional (2D) magnetizations in
which the B and H are vectorial, rotating on a plane, and they may not be in the same direction. It has
been discovered that the 2D rotational property is very different from its 1D alternating counterpart.
However, the magnetic fields in an electrical machine, in particular claw pole and transverse flux
machines, are naturally three-dimensional (3D), and the B and H vectors are rotational and may not
lie on the same plane. It can be expected that the 3D vectorial property might be different from its 2D
or 1D counterpart, and hence it should be investigated for the interests of both academic research
and engineering application. This paper targets at a general summary about the magnetic material
characterization with 3D vectorial magnetization, and their application prospect in electrical machine
design and analysis.

Keywords: magnetic material; magnetic property measurement; magnetic property modeling;
three-dimensional (3D) vectorial magnetization; electrical machine

1. Introduction

Electrical machines play crucial roles in modern societies, e.g., the majority of electricity
is generated by electric generators, and a large number of mechanical loads are driven
by electric motors. To overcome the problems of fossil fuel depletion, environmental
pollution and global warming, it is anticipated that most of the future electrical power
will be produced by clean energy sources and most of the mechanical loads will be driven
by electric motors. For example, the transportation electrification has recently attracted
extensive research interests and the electric motor is among the key technologies. Various
electric motors have been developed for driving various electrified vehicles, such as electric
bicycles [1], electric cars [2–5], electric buses [6,7], electric trains [8–10], electric ships [11–13]
and even electric aircrafts [14,15]. In these vehicles the allowed room and weight are
generally quite restricted, so the electric motors should be designed with high power
density, but the power loss within certain volume and the associated temperature rise
would increase, deteriorating the machine performance and reliability. Therefore, it is
crucial to properly consider and predict the power loss and temperature rise in the motor
design [16–20].
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Magnetic materials, in particular soft ferromagnetic materials, are usually applied
as the core of electrical machine and their properties affect the machine performance
directly. For electrical machine analysis and design, the core material properties must be
available, including the relationship of magnetic flux density (B) versus field strength (H),
and associated magnetic power loss, which are usually provided by the material supplier.
In general, the magnetic property data are measured on material samples, which usually
have magnetic circuits of closed path constructed by stacked lamination steel rings, wound
ribbon, solid ring of sintered or bonded powders, or Epstein frame of assembled strips on a
frame [21]. In all these types of samples, the B and H are restrained in one orientation.

In electrical machines, however, the tips of B and H vectors are generally two-
dimensional (2D) and rotational, and it has been found by various researchers that the
magnetic properties under the 2D magnetizations are very different from those under the
one-dimensional (1D) alternating flux densities [22–26]. At a low flux density range, the
magnetic power loss (core loss) with 2D rotational magnetic fluxes is about twice that
with 1D alternating fluxes and goes up with the increase of flux density, but around the
saturation point, the core loss may drop greatly if the flux density further increases. This is
very different from that the 1D alternating core loss always goes up with the B increase.
A number of research works have been performed for modeling the B-H relations under
2D rotation magnetization, such as Stoner–Wohlfarth models [27–29], vectorial Preisach
models [30–32], combined models [33,34], E&S model [35,36], and Jiles–Atherton mod-
els [37,38]. Some models have also been reported for calculating the 2D rotational core loss
in electrical machines [39–43].

In some types of electrical machines, such as claw pole machines and transverse flux
machines, the magnetic fields are three-dimensional (3D) and rotational. Naturally, the core
material properties under 3D magnetization should be studied and appropriately modeled
for the machine design and analysis. This paper targets at an overview about the research
works on 3D vectorial magnetic properties of magnetic materials, including the magnetic
measurement, mathematical modeling and application prospect.

The rest of the paper is planned as follows. Section 2 introduces a relatively new
3D flux material, soft magnetic composite, which is considered as an ideal core material
for designing 3D flux electrical machines. In Section 3, the development of 3D magnetic
property testing systems is described. Section 4 discusses the mathematical modeling of
the 3D vectorial magnetic properties and how to apply it in the design and analysis of
electrical machines. In Section 5, some experimental results of soft magnetic composite
(SMC) materials under different 1D, 2D and 3D magnetization patterns are described for
implementing and evaluating their application in the electrical machine design and analysis
with 3D flux. Finally, Section 6 concludes the paper by discussing possible future research
works with the major challenges highlighted.

2. SMC Materials and SMC Electrical Machines

SMC materials possess a number of merits over traditional electrical steel sheets,
and hence the materials and their applications in electrical machines have acquired great
popularity of research in the past three decades [44–46]. The SMC material basis is the iron
powder of high purity and compressibility, and the iron particles are covered with thin
insulation, so the material features very high electrical resistivity and very low eddy current
loss under varying magnetic fields. The insulated powder articles are pressed into mag-
netic components with desired shape and dimensions by using the powder metallurgical
techniques, so the manufacturing cost can be very low when performing mass production.

The most notable advantage might be the 3D magnetic isotropy caused by the powder
nature. This creates the key design benefit as now the electrical machines can be designed
with 3D magnetic circuits. In conventional electrical machines with laminated steel sheet
cores, the magnetic field path must be within the lamination plane, i.e., 2D. Any magnetic
flux component in the third direction, i.e., vertical to the lamination, might induce huge
eddy current loss. The SMC material removes this restraint, so that electrical machines can
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be designed with great flexibility, and novel configuration with very high-power density
becomes possible.

To study the SMC application in electrical machines, a large number of works have
been conducted by different scholars. Nearly all kinds of electrical machines have been
investigated with the SMC cores, but the most promising types appear to be those with 3D
magnetic flux paths, e.g., claw pole machines [47–54] and transverse flux machines [55–60].
As a result, the SMC magnetic properties with 3D magnetic fluxes should be obtained and
appropriately modeled for the design and analysis of these 3D flux machines.

3. Measurement of Magnetic Materials under 3D Vectorial Magnetization
3.1. Measuring System of 3D Magnetic Properties

Led by J. Zhu, the University of Technology Sydney (UTS) Magnetic Testing Group
developed the world-first 3D magnetic testing system in 2001, as illustrated in Figure 1 [61].
A photo of the 3D magnetic property tester is shown in Figure 2.
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Figure 1. 3D Vectorial Magnetic Property measurement system: (a) Block diagram, and (b) structure
of 3D view.



Energies 2023, 16, 417 4 of 11Energies 2023, 16, x FOR PEER REVIEW 4 of 11 
 

 

Sensor box

Core polesExcitation 
windings

Yokes

 
Figure 2. A photo of the 3D vectorial magnetic property measurement system. 

The measurement system consists of a 3D magnetic property tester, a computer data 
acquisition and control system, and a 3-channel power amplifier. Three pairs of excitation 
windings wound around the six yokes of the tester are used to produce 3D magnetic flux 
in the material sample, which is located in the tester center. By controlling the magnetic 
excitations in three axes, i.e., the magnitudes and phase angles of excitation currents, the 
tester is capable of producing various flux patterns, such as 1D alternating in any specified 
orientation, 2D circularly or elliptically rotating in a plane tilted for a specified angle from 
an axis and rotating in a 3D pattern with the loci of the B vector tip forming a specified 
surface, according to the measurement requirement [62–71]. 

3.2. Material Sample in the 3D Measurement System 
As seen in Figures 1 and 2, a sample of the testing material is put in the middle of the 

testing system, in which a 3D vectorial magnetization is generated by the currents passing 
the three excitation coils. In our studies, the sample of cubic shape was manufactured by 
cutting the preformed SMC material. The size was determined by pre-analysis, e.g., cal-
culating the magnetic field distribution based on 3D finite element analysis. It is important 
to design the tester and sample capable of generating the requested flux density magni-
tude and uniformity in the sample with the measurement range of frequency. 

3.3. Measurement of 3D Magnetic Field 
The magnetic flux density (B) and magnetic field strength (H) sensing coils are em-

ployed to measure the B and H components at three axes. As shown in Figure 3, on each 
surface there are two H coils for measuring the two H components tangential to the sur-
face, and for each axis four coils are connected in series. Three B coils are wrapped around 
the sample for measuring the B components along three axes. 

Figure 2. A photo of the 3D vectorial magnetic property measurement system.

The measurement system consists of a 3D magnetic property tester, a computer data
acquisition and control system, and a 3-channel power amplifier. Three pairs of excitation
windings wound around the six yokes of the tester are used to produce 3D magnetic flux
in the material sample, which is located in the tester center. By controlling the magnetic
excitations in three axes, i.e., the magnitudes and phase angles of excitation currents, the
tester is capable of producing various flux patterns, such as 1D alternating in any specified
orientation, 2D circularly or elliptically rotating in a plane tilted for a specified angle from
an axis and rotating in a 3D pattern with the loci of the B vector tip forming a specified
surface, according to the measurement requirement [62–71].

3.2. Material Sample in the 3D Measurement System

As seen in Figures 1 and 2, a sample of the testing material is put in the middle of the
testing system, in which a 3D vectorial magnetization is generated by the currents passing
the three excitation coils. In our studies, the sample of cubic shape was manufactured by
cutting the preformed SMC material. The size was determined by pre-analysis, e.g., calcu-
lating the magnetic field distribution based on 3D finite element analysis. It is important to
design the tester and sample capable of generating the requested flux density magnitude
and uniformity in the sample with the measurement range of frequency.

3.3. Measurement of 3D Magnetic Field

The magnetic flux density (B) and magnetic field strength (H) sensing coils are em-
ployed to measure the B and H components at three axes. As shown in Figure 3, on each
surface there are two H coils for measuring the two H components tangential to the surface,
and for each axis four coils are connected in series. Three B coils are wrapped around the
sample for measuring the B components along three axes.
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By measuring the induced electromotive force of the sensing coils, the B and H compo-
nents along each axis can be worked out by

Bi =
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KBi
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VBi dt (1)

Hi =
1

µ0KHi

∫
VHi dt (2)

where i = x,y,z, KBi and KHi are respectively the constants of the B and H coils, and the
constants are determined by calibration [72,73].

3.4. Core Loss Testing under 3D Magnetization

When the B and H values have been obtained, the sample core loss Pt in W/kg can be
computed according to Poynting’s theorem by

Pt =
1

Tρm

T∫
0

H · dB
dt

dt =
1

Tρm

T∫
0

(
Hx

dBx

dt
+ Hy

dBy

dt
+ Hz

dBz

dt

)
dt (3)

where T = 1/f is the excitation period, f is the excitation frequency, and ρm is the mass
density of the sample material.

4. 3D Vectorial Magnetic Property Modeling and Application

The prediction of B from H or vice versa is necessary for magnetic field analysis
of electrical machines. Michelakis et al. proposed a 3D moving vectorial Preisach-type
model of hysteresis for magnetic material composed of uniaxial interacting particles [74].
Zhong et al. presented a 3D vector magnetization model based on the 3D Stoner–Wohlfarth
element operator, in which a phenomenological mean-field approximation was used to
consider the magnetic interactions among particles [75]. Cardelli et al. extended their
study on 2D vector hysteresis operator to a 3D case [76]. Li et al. presented a 3D magnetic
hysteresis model based on a 3D operator according to the minimum energy principle of a
stable magnetization state [77].

The term of magnetic reluctivity or permeability is usually applied to relate the B
and H. For 1D alternating magnetic field, the B and H are in the same direction and the
constitutive equation can be expressed as

H = νB (4)
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The reluctivity ν is a scalar and its value may vary with the change of B, which is called
magnetic nonlinearity. For 2D or 3D rotational magnetization, the reluctivity becomes a
full 2D or 3D tensor [78–81], and the constitutive equation is

Hi = ∑
j

νijBj (5)

where νij is the reluctivity tensor, i,j = x,y,z in Cartesian coordinates, or r,θ,z in cylindrical
coordinates.

The nine elements in the tensor can be obtained by a few measurements under 3D
or quasi-3D magnetizations [78]. Then they can be used to solve the 3D magnetic field
distribution in electrical machines [82].

5. Implementation and Evaluation of 3D Vectorial Properties of Soft Magnetic
Composite Materials in 3D Flux Electrical Machines

Based on the 3D magnetic testing system shown in Figures 1 and 2, some experi-mental
results have been obtained with the soft magnetic composite (SMC) samples under various
magnetization patterns, e.g., 1D alternating (Figure 4a), 2D circularly rotating (Figure 4b),
and 3D spherical flux densities (Figure 4c) at 50 Hz. For 1D case, the relationship of
magnetic flux density (B) versus magnetic field strength (H) can be plotted as a series of
loops, but the B-H relations under 2D or 3D case become more complex. To work out the
corresponding core losses, the Poynting’s theorem, given in Equation (3), can be used.
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For implementing the measured properties of SMC material samples to the electrical
machines with SMC cores, e.g., calculation of core losses, a few SMC machines have been
designed, analyzed and prototyped. According to the literature, it might be sufficient to
measure the quasi-3D properties, i.e., the 2D circularly rotational magnetic properties on
the three orthogonal planes [83]. Based on the 1D alternating and 2D circularly rotating
properties, the core losses of SMC electrical machines with 3D flux path have been calculated
and the results are found quite close to experiments on motor prototypes, e.g., all within
8% error compared with the measurements [84–87]. By comparison, the calculations using
1D data only would cause a discrepancy of 20–50% from the measurements.

6. Discussions and Challenges

This paper has presented an overview about the study on 3D vectorial magnetic
properties of magnetic materials, specifically SMC, for design and analysis of electrical
machines with 3D magnetic flux path. In particular, this paper extends greatly the coverage
of previous works [65] and discusses the existing challenges and future research trends
in this area from a perspective view. As explored above, it would be significant both
theoretically and practically to apply 3D vectorial magnetic properties for proper electrical
machine design and analysis, but only a couple of groups have conducted research in this
area due to the complexities of 3D testing system setup and measurement. The possible
future works and challenges are summarized below.

6.1. Standard Masurement and Modeling of 3D Vectorial Magnetic Properties

Although the study on 3D vectorial magnetic properties has already been conducted
for two decades, it appears to be still at a very early research stage. For example, the
magnetic properties of SMC under true 3D flux density patterns such as a sphere can be
measured by using the 3D magnetic testing system, but it is still a pending issue how to
apply these properties.

In addition, the sample shape might be an issue. The currently used cubic sample may
cause measurement error due to shape factor, but the preferred spherical sample would
have difficulties in placing the B and H sensing coils.

6.2. Infludences of Various Paramaters on Magnetic Properties

The magnetic properties are also influenced by many other parameters, e.g., op-
erational temperature and mechanical stress, which should be properly measured and
modeled [88–91]. This is also true for 1D or 2D measurements, but it appears much more
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difficult to measure the effects under 3D case, e.g., how to apply 3D compressive or shear
forces on the sample which is surrounded by magnetic poles in all three axes. The 3D
testing system is generally quite large in size, so a large oven with controllable temperature
is needed.

The core loss affects directly the temperature rise as well as mechanical stress, and the
temperature and stress also affect the core loss. Therefore, a dynamic modeling considering
the two-way effects is desired based on the digital-twin concept [92,93].

Besides the magnetic flux density pattern including waveform, magnitude and fre-
quency, machine operational temperature and mechanical stress, there are many other
factors which affect the core loss, such as DC bias of magnetic flux and magnetostriction of
the ferromagnetic material. It is very challenging to properly account for all these influenc-
ing factors, and in general an appropriate compromise between accuracy and complexity is
needed in practice.
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