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Abstract 

Short-term wind power prediction has a considerable effect on improving the productivity of 

wind energy systems and increasing economic benefits. In recently years, various wind velocity 

predictive models have been designed to raise the prediction effect. However, numerous predictive 

systems are limited by single type, and many ordinary predictive systems ignore the advantage of 

optimized parameters and the significance of data preparation, which bring about the lower 

predictive precision. To fill this gap, in this article, a novel predictive system is come up, which is on 

the basis of data denoising strategy, statistical predictive systems, artificial intelligence forecasting 

system and multi-objective optimization strategy. After using the data denoising strategy for 

denoising, the reconstructed data is used for the forecasting of different sub-systems, to obtain stable 

forecasting results, multi-objective dragonfly algorithm is used to estimate the weight coefficient of 

sub-systems. To evaluate the availability of the designed predictive system, five wind velocity 

datasets from different wind farms are used for the purpose of a case research. According four 

experiments and four analyses, it can be concluded that the designed combined system has a well 

predictive effect in short-term wind speed prediction. And it is in favor of grid regulation and 

operation. 
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1. Introduction 

Due to routine energy resources such as petroleum and coal, have brought severe problems of 

environment, the research of renewable energy sources has aroused widespread concern from 

countries the world over [1]. After extensive research, wind energy has been recognized as a green, 

sustainable and emission-free energy resource, so it has been supported by national funding[2]. And 

in recent years, countries around the world have been positively goosing the growth of wind 

energy[3]. On the basis of the Global Wind Power Report 2019, the new installed capacity exceeded 

the 60GW milestone for the second time in history, with a year-on-year increase of 19%. In 2019, 

the installed capacity of onshore market was 54.2 GW, a growth of 17% compared with 2018[4], and 

the circumstance of other major markets can be seen in Fig.1. Nevertheless, in the wake of the 

increase in the equipped capacitor, the efficient use of wind energy source has become a problem 

that must be solved. In wind farms, since wind energy is highly random and intermittent, the 

dependability of model prediction and the quality of wind power will decline[5]. Accordingly, to 

guarantees the safety operation and rationally regulation of the electrical power systems, it is 

essential to correctly forecast wind speed[6]. 

Motivated by the need for enhance the forecasting accuracy, various researches in view of 

wind velocity prediction have been carried out over the past several years [7]. Through these 

researches, wind speed prediction technology has been relatively mature. And there are mainly 

two prediction modes for data from different sources. The first mode is mainly used for numerical 

forecasts where forecasting periods of over than four hours[8]. Nevertheless, the forecasting 

system is more costly and complex. The second mode uses some wind power mathematical 

models to direct forecast wind power based on historical wind velocity series, wind direction and 

temperature[9]. And it is noteworthy that the principal body of this research is using historical wind 

velocity sequences to make short-term prediction.  

Since the wind speed series depend on the climate system, there is noise in the sequences, 

which bring about large errors in the prediction results. Therefore, before predicting wind speed, 

some preprocessing algorithms must be performed on the wind speed sequence data[10,11]. In [12] 

WD as an traditional data denoising, it can be used to identify the chaotic and repeatable features 

of frequencies with the signal, and Li LL etc.[13] use this method to decompose the original wind 
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power data. But in general, it’s difficult to choose an appropriate wavelet base. Although PCA can 

decrease the dataset’s dimension and the complicacy of the wind velocity series[14], this method 

may cause data loss and it is not easy to perfectly reserve the valid information of the raw set. 

Amjady N etc.[15] proposed the use of EMD method to decompose the volatile wind power time 

sequences, and got relatively good results. And Abedinia O etc.[16] designed a novel strategy 

based on EMD to decompose the wind power measurement. By adding the white noise sequence 

to the primitive sequences, EEMD technique further processes the data set to solve the complex 

mixed mode problem[17]. However, it may cause residual noise and increase the time required for 

processing time sequences. The VMD is proposed on the basis of EMD, which is a totally non 

recursive and quasi-orthogonal decomposition method[18]. And this technique is widely used to 

decompose the raw wind velocity sequences, which can resolve the modal aliasing problem 

effective and increase the wind speed forecasting reliability [19]. Therefore, in this research, VMD 

is selected as the data denoising technique of the wind power time sequences. 

After the data preprocessing, the quality of the data has been improved to a certain extent. 

Then, there are four main methods to deal with time series data: physics[20], statistics[21,22], 

artificial intelligence[23,24], and hybrid[25–27]. 

(1) Physical models usually need to use current meteorological and geographic data, such as 

temperature, velocity, density etc.[28]. Generally speaking, for this model, effective prediction 

results depend on physical information rather than wind speed time series. Therefore, we cannot 

easily obtain accurate prediction results through this model, and prediction requires various 

financial resources and time[29]. 

(2) Statistical models, include traditional ARIMA[30,31], exponential smoothing[32] and 

KF[33,34], can deal with linear features well, but they often cannot give very good results with the 

nonlinearity. Furthermore, under the input series are normal, the statistical models can produce good 

predict outcomes [35]. Nevertheless, these models are not often apply to the short-term wind 

velocity forecasts [36], since most of data in reality are non-linear, noisy, unstable and volatile, and 

the features in the original time series are always uncontrollable, which makes most modeling 

unable to obtain complete and effective information. 
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Fig. 1. New and total capacity of installed wind power in six major markets in 2019. 

(3) In recent year, the emergence of artificial intelligence algorithms [37]has promoted the 

development of short-term wind speed prediction. Artificial intelligence algorithms include 

SVM[38], ANN[39,40] and TCN[41] can provide greater prediction precision than physical and 

statistical models. But, it cannot be ignored that the performance of its prediction mostly depends on 

the training set, which also makes it easy to fall into situations like over-fitting and local optimum 

[42]. 

(4) Since each of the above models has its inherent shortcomings, researchers began to study 

the effect of combined models on prediction. In[43], a new combined system in the light of neural 

network and chaotic shark smell optimization was designed to handle the intermittency and 

variability of the wind power. Particularly, the hybrid techniques combine different single 

algorithms to get better prediction performance, and increase the precision, effectiveness and 

constancy of wind velocity forecasts[44]. Therefore, the application of the hybrid models in wind 

speed forecast has much enhanced in the past few years. And the forecast accuracy and effect are 

also satisfactory[45–47]. Furthermore, Table 1 summarizes the pros and cons of the above four 

types of models.  
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Therefore, in this research, a hybrid predictive model is designed, combining multiple 

forecasting models. The test and predictive results display that the designed model not only 

effectively enhances the prediction precision and stability, but also has a good prediction effect for 

data from multiple sites. 

The contribution of this article can be summarized as:  

1) This research has designed a special model in the light of the data denoising method 

and the multi-objective optimization algorithm. Which to enhance the efficiency and accuracy of 

prediction. Furthermore, the data from five sites were chosen to validate the performance of 

designed predictive system. 

2) A unique data processing technique is selected, which can significantly decrease the 

noisy information in the time sequences data and decrease or reject the influences of 

high-frequency noise. Moreover, the reconstructed data is used for model prediction, which 

improves the performance of forecasting. 

3) In this research, five systems are chosen as sub-systems of the designed system. And 

the multi-objective dragonfly algorithm is chosen to estimate the weights of the sub-systems. 

Comparing with the ordinary model, the predictive combined model significantly increases the 

prediction precision and prediction constancy. 

4) In this research, four compact and rational indicators are selected as the evaluation 

metrics for evaluating whether the predictive result of the designed model is good. Which 

including root mean square error, mean square error, mean absolute percentage error and mean 

absolute error. 

5) To research the predictive stability and availability of the designed model, the 

Diebold-Mariano test, Sensitivity analysis and Forecasting effectiveness test are selected to 

compare the difference and degree of stability between the designed system and other models. 

Moreover, the experimental conclusions indicate that in this research the predictive model 

developed is greater than other models in terms of stability and effectiveness. 
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Table 1 

Overview of four types of models. 

Model Ref. Variable Result Advantage Disadvantage 

Physical models 

NWP [20] Weather data 

Using the weather data from NWP model can improve 

performance, especially in the hottest regions where temperature is 
most affected by power consumption. 

The physical model shows preferable 
performance in terms of long-term 

prediction and have broad 

application prospects. 

Physical model requires extensive 

financial resources and time. 

Statistical models 

ARIMA 
[21] Wind power 

The designed predictive system has a certain efficiency on the 

forecast of wind velocity sequences data. 

Under the input series are normal, the 

statistical model such as traditional 
ARIMA, exponential smoothing and 

Kalman filter can produce good 

prediction outcomes. And statistical 
methods can deal with linear features 

well. 

In short-term wind energy 
forecasts, especially multi-step 

forecasts, the statistical model often 
performs poorly. And they often 

cannot give very good results when 

nonlinear problems are involved. 

[31] Time sequence The designed model is a suitable strategy for analyzing statistics. 

Kalman filter 

[22] Wind power 
The proposed system can supply more accurate estimation results 

than other comparison systems. 

[33] Wind power 

The results show that the model forecasting skill have been 

obviously enhanced, especially in the aspect of wind power 

forecasts. 

STES [32] Daily volatility 

Experimental result shows that compared to the multiple GARCH 

system and the fixed parameter exponential smoothing, the 

proposed strategy performs better. 

Artificial intelligence models 

ANN/SMEs [23] Wind energy 
The SMES controlled by ANN improves the temporary state 
constancy of the wind farms connected to the multi machine power 

systems. 
The artificial intelligence models 

include SVM and artificial neural 

networks can provide higher 
prediction accuracy than statistical 

models and physical models. 

The performance of artificial 

intelligence model prediction 
mostly depends on the training set, 

which also makes it easy to fall into 

situations such as local optimal, and 
over-fitting. 

BP 

[39] Wind power 
Neural network wind power predictive model on the basis of tabu 
search algorithm can enhance the forecasting precision. 

[40] Stock price 
The prediction result of the stock price trend predictive system 

based on BP model is greater than other comparison model. 

Jaya-SVM [38] Wind speed 

The designed system can produce the best results than other eight 

ordinary models and has accurate wind power prediction 

capabilities. 

Hybrid forecasting models 

DWT/LSSVM/GARCH [45] Wind speed 
In the part of precision and constancy, the designed model has 
approved performance. 

The hybrid system can enhance the 
accuracy, effectiveness and 

constancy of wind velocity 

prediction. And it is more adaptable 
to the predicting situations than the 

single model. 

In most studies, a single data 

preprocessing and target algorithm 

are needed to improve the stability 
of prediction. 

CEEMDAN/LSTM [46] Wind speed 
The proposed system performs greater than other considered 

systems without double decomposition. 

MLP-WOA [47] Wind power 
As for the MLP model, the WOA optimization strategy can 

enhance the predictive precision of it. 



 

7 

 

The paper is structured as below. The principle of each method in the combined model is 

introduces in the second section, and the third section introduces the general formation of the model 

which is proposed. The fourth part introduces the wind speed sequences data used in the experiment 

in detail, and not only designs four control experiments to conclude the forecasting precision of the 

predictive model, but details the compare outcomes of the designed model and other commonly 

used models. Moreover, in the fifth section, four test technologies are chosen to discuss the 

precision validity and constancy of the designed predictive system and compare with other 

commonly used systems. And lastly, the sixth section is the conclusion part. 

The abbreviations and corresponding explanations of the models and algorithms involved in 

this article are displayed in Table 2. 

2. Methodology 

In this part, the theoretical strategies of the designed predictive system are introduced, which 

include the VMD strategy and MODA. 

2.1. Variational Mode Decomposition 

The VMD proposed on the basis of EMD is not only a new type of complex signal 

decomposition method, but also an self-adaptive signal processing technique[48]. Generally 

speaking, under the present count of patterns decomposed K , the primitive signals ( )f t  is break 

down into K  pattern functions and a center frequency, namely ( )k tU  and ( 1,2,..., )k k K  in 

turn. Furthermore, the variational mode decomposition technique break real signals down into a 

specified count of bandwidth limited patterns and minimizes the sum of evaluated bandwidth for 

patterns.[49,50]  

Solving the variational problem is the essence of VMD strategy. And the main steps are as 

below. 

1) The Hilbert transform to be used for computing the analytical signals of each mode 

function, then to get the unilateral spectrum, and the mathematical modeling of the Hilbert 

transform is    k
t j t t    U . Where 1 2{ } { , , , }k Ku u uU  represents the set of k  patterns 

decomposed, ( )t represents the impulse function and   represents convolution. 
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Table 2 

Symbol abbreviation and corresponding explanation. 

Nomenclature  

Abbreviate 

  \MOALO Multi-objective ant lion optimization \MOGWO Multi-objective grey wolf optimization 

\EEMD Ensemble empirical mode decomposition \EMD Empirical mode decomposition 

\MODA Multi-objective dragonfly algorithm \WD Wavelet denoising 

\BPNN Back propagation neural network \VMD Variational mode decomposition 

\ELMAN Elman neural network \TCN Temporal convolutional networks 

\LS-SVM Least square support vector machine \LSTM Long short-term memory  

\ELM Extreme learning machine \CNN Convolutional neural network 

\GRNN General regression neural network \MAPE Mean absolute percent error 

\ARIMA Autoregressive integrated moving average \MAE Mean absolute error 

\ANN Artificial neural network \RMSE Root mean square error 

\PCA Principal component analysis \MSE Mean square error 

\KF Kalman filter \FE Forecasting effectiveness 

\NWP Numerical weather predictor \DM Diebold-Mariano 

\STES Smooth transition exponential smoothing \SMEs Superconducting magnetic energy storage system 

Function 

  ( )kU  Mode function k  Center frequency  

( )  Impulse function ( )Le'vy  The levy fight method 

ˆ ( )n   Augmented Lagrangian function iS  The separation function of ith  individual 

iA  The alignment function of ith  individual iC  The cohesion function of ith  individual 

iF  The attraction function of ith  individual iE  The Distraction function of ith  individual 

nA  Forecasting accuracy n  Forecasting error 

Variables 

    Convergence threshold X  The position of food source 
X  The position of enemy ub  The upper bound of weight 

lb  The lower bound of weight t  The number of current iterations 
j

iMAPE  MAPE value obtained by the ith  model at Site j  MAPE  The value matrix of MAPE 

DM  The maximum value of DM DM  The minimum value of DM 
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2) Obtain the baseband signal by mixing the pattern function with the unilateral spectrum, the 

center frequency and the exponential signal. The mathematical modeling of that is 

  ( ) kj t

t kj t t e  
    U .Here, 1 2{ } { , , , }k K     expresses the central frequency sets of the 

patterns decomposed. 

3) For each pattern, computer the bandwidth of them, and the obtained model of variational 

constraint is as below. 

   

2

,
1 2

1

min ( )

. . ( )

k

k k

K
j t

t t k

k

K

k

k

j
t e

t

s t f t



 






           
     









u
U

U



                        (1)   

4) For transform the restricted question into an unrestricted question, we introduce he 

Lagrangian function and secondary penalty term, and the augmented Lagrangian expression is 

obtained as: 

    

 

2

1 2

2

2
1

, , ( )

( ) ( ) ( ), ( ) ( )

k

K
j t

k k t t k

k

K

k k

k

j
L t e

t

f t t t f t t

  










  
     

  

 
    

 





U U

U U



                   (2) 

In Eq. (2),   and   indicate the augmented Lagrangian function and the secondary penalty 

term respectively. 

5) Let 1n   and start the loop, as 1:k K , bring up to date { }kU , { }k  and  . 

i. As  0 , iteratively bring up to date the kU  values by using Eq. (3). 

1

2

ˆ ( )ˆ ˆ( ) ( )
2ˆ ( )

1 2 ( )

ii k
n

k

k

f


 


  




 


 


U

U

U                           (3) 

ii. Iteratively bring up to date the values of k , the specific mathematical expression is: 

2

1 0

2

0

ˆ ( )

ˆ ( )

kn

k

k

d

d

  


 











U

U

                                    (4) 

iii. Iteratively bring up to date the   values by using Eq. (5). 
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1 1

1

ˆˆ ˆ ˆ( ) ( ) ( ) ( )
K

n n n

k

k

f       



 
   

 
U                        (5) 

Where   represents a convergence threshold. 

6) Set convergence threshold  , then stop the iteration if the following conditions are met: 

2
1

2
1

2

2

ˆ ˆ

ˆ

K
n n

k k

k

n

k










 U U

U

                                  (6) 

2.2. Multi-Objective Dragonfly Algorithm 

In recent years, heuristic algorithms based on natural group behavior have been widely used. 

Which including the biologically inspired computing[51] and Swarm Intelligence [52] have 

attracted the attention of many researchers[53]. So in this research, we use a special natural heuristic 

optimized algorithm, the multi-objective dragonfly algorithm.[54]  

The mathematic model of MODA is expressed in the sub-section that follow[55]. In the 

following equations, the positions of current and jth  nearby individual are represented by X  and 

jX  in turn. And N  represents the number of neighboring individuals.  

Separation refers to the method that guarantees keeping the search individual away from each 

other nearby individuals. This behavior is calculated by using = 
N

i jS X X
j =1

.  

Alignment shows how an individual’s speed matches that of other neighboring individuals. 

The alignment is estimated by using  
=1

1 
N

i j
j

A = VN . Here, jV  expresses the jth  nearby 

individual velocity. 

Cohesion expresses the individual tend to approach the nearby centroid. This behavior is 

calculated by using
=1

(1 )
N

i j
j

C = N X X .  

Attraction refers to the individuals tend to approach the source of food. The attraction is 

estimated by using  iF X X . Here, X represents the food source’s position. 

Distraction indicates the tendency which an individual is far away from an enemy in nature. 

And this behavior is described by using  iE X X .Here, X  expresses the location of enemy. 

The step vector is expressed as the dragonflies’ movement direction and the mathematical 

model of it is as below:  1Δ tt+ i i i i i+X = aA sS + cC + fF + eE + wΔX . Here, , , ,c a f s and e  represent 
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the weights of the cohesion iC , the alignment iA , the attraction iF , the separation iS  and the 

distraction iE  of the ith  individual in turn. In addition, w  is the inertia weight. 

According to the calculated step vector, the mathematical model for updating the position of an 

individual is calculated by using  1 1t t tX X X  .  

In order to further optimize the algorithm, when there is no nearby solution of neighboring 

similar individuals, the individual’s position is updated by using the Le vy  method: 

( )d  1 1t t tX X Le vy X  . Here, the position vector’s dimension is represented by d , and the 

Le vy  is estimated as below. 

1

1/

2

( ) 0.01
r

x
r




  Le vy                                (7) 

Here, 1 2,r r  express two random number,   is a constant. In addition,   is represented by 

Eq. (8). 

1

(1 ) sin
2

, ( ) ( 1)!
1 1

2
2 2

x x





 



  
     

     
     

      
    

                (8) 

In this algorithm, Seyedali Mirjalili use the non-inferior solutions obtained in the archive set 

storage optimization process in the swarm intelligence algorithm, then the roulette strategy and the 

adaptive grid strategy are used to choose the position of the enemy and the location of the food 

source from the archive set, the best result is finally obtained. 

Algorithm: MODA. 

Parameters: 

d —Dragonfly number. 

nI —Iteration number. 

sA —Archive size. 

i jX ,X —the positions of ith  and jth  grasshoppers. 

1：/* Install the parameters of MODA */ 

2：Initialize the grasshopper position , , , ,, ub lbi md sX N I A ; 

3：Initialize external archive W ; 

4： 1iter  ; 

5: /* Calculate the inertia weight */ 

6: WHILE ( )iter  mI  DO 

7： (1/ 4)( ) ( ) 2 /r ub lb ub lb t      mI ; 

8： 
0.9 0.7* /w iter  mI ; 
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9： /* Initialize relative weights include f,a,c,s,e  */ 

10：  FOR (all agents) DO 

11:  /* Normalize distance between grasshoppers in [1,4] */ 

12:  Update f, a,c,s  and e ; 

13:   IF ( 1)neighboring outcome >  THEN 

14:   /*Update the location of the current search entity */ 

15:   Δ1 1t+ t t+X = X + X ; 

16:    Update W ; 

17:   ELSE  

18:   ( )d 1 1t+ t t+X = X + Le vy X ; 

19:    Δ 0X = ; 

20:    Add the new solution to W ; 

21:   END IF 

22:  END FOR 

23: 1iter iter  ; 

24: END WHILE 

25: 1 2 3 4 5
ˆ ˆ ˆ ˆ ˆˆ( ) (1) ( ) (2) ( ) (3) ( ) (4) ( ) (5) ( )z i W Y i W Y i W Y i W Y i W Y i          ; 

26: RETURN ẑ  

3. Framework of the designed system 

Combined models, which is a weighted and combined combination of other single models, 

and it is widely applied in terms of forecasting[56]. Nevertheless, the result obtained by the 

conventional weighting method may differ greatly from the actual value[57]. To improve the 

forecast effect, a novel predictive system is designed in this article. The main flow of this designed 

system and specific sequence feature are both demonstrated in Fig. 2, and the more concrete 

processes are described as follows. 

Stage 1 Data decomposition 

Since the raw wind velocity sequences are usually random and unstable, the use of the raw 

data modeling to predict will cause large errors. The VMD technique is chosen to decrease the 

volatility of the wind velocity sequences, the original series are decomposed into several 

sub-sequences, after the data reconstruction, the final series are used for the future prediction. On 

the basis of the numerical results of the trial-and-error method, we can conclude that when the 

main parameter values of VMD strategy are 7dK , 2000d  and 0.001  , the reconstructed 

sequence has the optimal effect of prediction. 

Stage 2 Sub-systems selection 

Since no single system can adapt well to all types of data sequences, in this paper, we 

combine several single systems to fit as many data types as possible. And according to the 

reference and the accuracy of prediction, five single predictive systems with better prediction 
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effects are selected as the sub-systems of designed combined system, namely BPNN, ELM, 

LS-SVM, Elman neural network (ELMAN) and GRNN respectively, and the main parameter 

values of those five systems and other major forecasting system are shown in Table 3.  

Stage 3 Optimization Algorithm 

To additional increase the predictive efficiency, the weight of each sub-system is determined 

by the MODA. After data preprocessing and sub-systems forecasting, we can obtain a value 

matrix 1 2 3 4 5
ˆ ˆ ˆ ˆ ˆ[ , , , , ]Y Y Y Y Y , where ˆ

jY  indicates the forecasting sequence obtained by jth  single 

system. Then through the MODA method, the weights coefficient W  can be determined. And for 

this method, the iteration number is 200nI , the dragonfly number is 40dN  , and the single 

weight upper and lower bound are 2ub   and 2lb    in turn. In the light of the prediction 

outcomes of sub-systems and weights coefficient obtained, we can gain the final result.  
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Fig. 2. Structure of the designed system 

4. Analysis and results of experiment 

To test and prove the predictive performance of the designed predictive system, in this part, 

we design four experiments, which compare the availability of designed system with VMD-based 

single predictive systems, traditional single predictive systems, combined system on the basis of 

different denoising strategy, and other popular predictive systems respectively. Moreover, the more 

concrete procedures are described as follows. 
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Table 3 

Parameters explanations and details of main systems. 

System Symbol Explanation Value Reason 

GRNN im  Number of input layer nodes 8 Number of feature inputs 

 
hd  Desire spread - Iterative optimization 

 
om  Number of output layer nodes 1 Time series regression 

     

ELM、BPNN、ELMAN 
im  Number of input layer nodes 8 Number of feature inputs 

 
om  Number of output layer nodes  5 Trial-and-error manner 

 
hm  Number of hidden layer nodes  1 Time series regression 

     

LS-SVM lc  Penalty parameter 2 Trial-and-error manner 

 lg  Kernel function parameter 1 Trial-and-error manner 

  

  

  WD lD  Decomposition Layer Number 5 Trial-and-error manner 

     

EEMD stdN  Standard deviation of Gaussian white noise 0.1 Common value [0.01,0.05,01, ] 
 eN  Number of times to add noise 100 Common value [50,100, ] 
     

VMD dK  Count of modes decomposed 7 Trial-and-error manner 

 
d  Penalty factor 2000 Common value [500,1000,2000, ] 

     

LSTM e  Epochs of training 250 Trial-and-error manner 

     

CNN sK  Kernel size of the convolutional layer 40 Trial-and-error manner 

 
nK  Number of kernels in the convolutional layer 3 Trial-and-error manner 

 
hm  Number of hidden layer nodes  [384, 384] Trial-and-error manner 

     

MODA n  Archive size 500 Common value [100, 200, 300, 400, 500] 

 
m  Iteration number 200 Common value [50, 100, 150, 200, 250] 

 
d  Dragonfly Number 40 Common value [20, 40, 60, 80, 100] 

     

MOGWO、MOALO 

n  Archive size 500 Common value [100, 200, 300, 400, 500] 

n  Iteration number 200 Common value [50, 100, 150, 200, 250] 

d  Dragonfly Number 40 Common value [20, 40, 60, 80, 100] 
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4.1. Information of datasets 

In this research, five different wind generators in a certain region in eastern China are selected. 

Therefore, five groups of wind power sequences are obtained, and each group includes 6300 

observations. We divide each group of samples into two parts, the training sample and verifying 

sample. Among them, the 1st to 5670th data constitute the training sample, and the 5671th to 6300th 

data constitute the verifying sample. The major numeric characteristics of the chosen series are 

displayed in Fig.3 and Table 4. 

To particular, this paper uses historical wind velocity series as the only input for wind velocity 

prediction. Therefore, the feature selection of the data mainly includes the processing of missing 

values and outliers. For observations where the wind speed or power in the data is negative, 

considering it will cause unnecessary errors in the prediction, we use the nearest neighbor mean 

interpolation method to reduce the error. 

 
Fig. 3.  Information of the original data. 
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Table 4 

Main numerical characteristics of five wind speed series. 

Period 
 

Site 1 Site 2 Site 3 Site 4 Site 5 

Sample 
 

All Train Verify All Train Verify All Train Verify All Train Verify All Train Verify 

Numbers 
 

6300 5670 630 6300 5670 630 6300 5670 630 6300 5670 630 6300 5670 630 

statistical 

indicator 

(m/s) 

Max 18.2 18.1 18.2 18.8 18.7 18.8 17.7 17.7 17.1 17.8 17.8 17.3 17.4 17.4 17 

Min 1 1 4 0.8 0.8 4.3 1.1 1.1 3.4 0.8 0.8 3.3 0.7 0.7 3 

Mean 8.4072 8.2288 10.0124 8.4828 8.3367 9.7979 6.9727 6.7709 8.7887 7.5976 7.4153 9.2376 7.0672 6.9033 8.5422 

Std. 3.0729 3.028 3.0104 3.2895 3.2908 2.9731 2.9611 2.9081 2.8136 3.0919 3.0401 3.0729 2.9887 2.9428 2.9962 

Note: The number of samples in all samples, training samples and verifying samples are represented by All, Train, Verify in turn. There are 6300 observations in each of the five data sets, 

and the ratio of the verifying sample to the training sample is 1:9. In this table, the calculation formula of Mean is 
1

(1/ )
N

i
i

N


 mean Y , N  expresses the sample capacity. And the calculation 

formula of Std. is 2

1
(1/ ( 1)) (

N

i
i

N


  std. )Y Y . 
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4.2. Evaluation criteria of forecast results 

To quantify and analyze the forecast performance of the designed system, it is indispensable 

to use some evaluation indices to test the precision of different model predictions. In this research, 

four indicators are used as evaluation indicators, namely the mean square error, the root mean 

square error, the mean absolute percent error and the mean absolute error. In particular, the smaller 

the value of the above assessment metrics, the more accurate the forecast. And the mathematical 

formulae of main metrics are displayed in Table 5. 

Table 5   

Details of four assessment indicators.  

Indicators Definition Equation of indicators 

MSE Mean square of error  2

1
ˆ(1/ ) ( )

N

i i
i

N y y


 MSE  

RMSE Root mean square error  
2

1
ˆ(1/ )

N

i i
i

N y y


 RMSE  

MAPE Mean absolute percent error (%) 
1

ˆ(1/ ) (| | / ) 100%
N

i i i
i

N y y y


  MAPE  

MAE Mean absolute error 
1

ˆ(1/ ) | |
N

i i
i

N y y


 MAE  

Note: In Table 5, N represents the sample size, iy  represents the actual result of ith  sample and ˆ iy  is the 

forecast result of ith  sample. 

4.3. Testing strategy 

In this part, through Diebold-Mariano (DM) test, Forecasting effectiveness (FE) test, Model 

validity and stability test, and Sensitivity analysis, from the side of statistics, the practicality of the 

combined model is further verified[58]. 

4.3.1. Diebold-Mariano test 

A hypothesis test such as the DM test is used to judge whether the prior hypothesis is right by 

computing the test statistics. In this research, for the prediction results of two models, we use this 

method to validate whether there is a significant difference, and the computational procedure of this 

test is shown below. 

The error between the forecasting result and the true result is described as below. 

1 1

2 2

ˆ

ˆ

n n n

n n n

e y y

e y y

 


 
                                        (9)  

In Eq. (9), ny  represents the actual value of the sequence, ˆny  represents the forecasting result 

of the sequence and n  is sequence size.  
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Loss function ( ), 1,2i
nF e i   is defined as an index of predictive precision. For define the loss 

function, there are generally two ways, the calculation formula of absolute deviation error loss is

( ) | |i i
n nF e e , and the squared error loss is calculated by using 2( ) ( )i i

n nF e e . 

Therefore, we can calculate the DM statistic as follows. 

 1 2

1

2

1
( ) ( )

/

T

n n

n

F e F e
T

S T








DM                                  (10) 

In Eq. (10), the variance estimation of 1 2( ) ( )n nF e F e  is represented by 2S . 

In this test, we have established the priori hypothesis about testing. The null hypothesis is 

1 2
0H : ( ) ( )n nF e F e ,and the alternative hypothesis is 1 2

1H : ( ) ( )n nF e F e . 

The null hypothesis indicates that between the forecasts of two systems have no significant 

differences, which means that the two models’ predictive performance is identical. On the contrary, 

the alternative hypothesis indicates that the two models’ forecast is significantly different. The 

DM statistics abide the standard normal distribution, and   represents the significance level. 

Therefore, /2Z  represents the critical value. If /2| | | |ZDM , then there is enough evidence that 

the two models are significant difference. And if /2| | | |ZDM , the result is opposite. 

4.3.2 Forecasting effectiveness (FE) test 

In this paper, the mean squared deviation of the prediction accuracy and sum of squares of 

forecasting error are chosen as the metrics to measure the forecasting effectiveness. And the specific 

detail of this index is as below. 

nA  is the prediction accuracy, and it can be calculated by using Eq. (11). 

1 | |n n A                                                   (11) 

ˆ( ) / 11,
ˆ ˆ( ) / , 1 ( ) / 1

ˆ1, ( ) / 1

n n n

n n n n n n n

n n n

y y y
y y y y y y

y y y

  
     

 

                          (12) 

In Eq. (12), n  expresses the forecasting error of the nth  predictive system. And the 

-orderk  FE ingredient is defined as k
k n n

n
m Q A , 1n

n
Q  . Where nQ  represents the 

discrete probability distribution at a certain time. Furthermore, H  expresses continuous function 

of the FE ingredient, and 1 2( , , , )km m mH  is named the -orderk FE. 



 

20 

 

While there is a unary continuous function, namely ( )a aH , the 1-order  FE is represented 

as 1 1( )m mH . 

4.3.3. Model validity and stability test 

The effectuality and the stability of the model are reflected by the improvement rate and the 

performance difference of predictive indicators. In this research, the index selected is MAPE, and 

we calculate the index improvement rate by using Eq. (13). 

100%
compared proposed

compared

MAPE MAPE

MAPE


 MAPEP                          (13) 

Here, comparedMAPE  represents the MAPE value of the system for comparison, and proposedMAPE  

is the MAPE value of the designed predictive system. 

4.3.4 Sensitivity analysis 

In order to research the sensitivity of system state and output to changes in primary 

parameters of the model, we conduct the sensitivity analysis by changing a parameter of the 

designed system at a time, while keeping the remaining parameters fixed. And in this analysis, the 

standard deviations of MAPE, MAE, RMSE and MSE are selected to estimate the sensitivity.  

When the parameter changes, the degree of the difference of error indicator G  can be 

indicated by  

   
2

1

1


 
m

ii
S G G G

m
                                (14) 

where iG  expresses the ith  forecasting time on the indicator, G  indicates the mean of all 

testing time, and m  is the number of tests. It is clear that the sensitivity will increase as the 

evaluation indicators enhance. 

4.4. Experiment and result analysis 

4.4.1. Experiment 1: Comparison with other ordinary systems on the basis of VMD 

In Experiment 1, to verify the prediction performance of the designed system, the designed 

predictive system is compared to the VMD ( 7dK , 2000d )-based model, namely 

VMD-ELM ( 8im , 5hm , 1om ), VMD-ELMAN ( 8im , 5hm , 1om ), VMD-LS-SVM 

( 2lc , 1lg ), VMD-BPNN ( 8im , 5hm , 1om ) and VMD-GRNN ( 0.1hd ) systems. The 
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specific values of each evaluation indicator of Site 1,2 and 3 are shown in Table 6, and the 

detailed description is described below. 

(a) In this experiment, for Site 1, when the parameters of MODA are 500sA , 200nI  and 

40dN , we can observe that the designed system gets the optimal predictive performance for the 

wind power forecast. With the values of assessment metrics are 2.954%1
modaMAPE , 

0.2581
modaMAE , 0.1101

modaMSE  and 0.3321
modaRMSE . Furthermore, the other single 

systems based on VMD ( 7dK , 2000d ) technique, from lowest to highest according to the 

predicted mean absolute percent error are VMD-BP, VMD-ELM, VMD-LS-SVM, VMD-GRNN, 

and VMD-ELMAN with the value matrix is [2.772%,2.866%,3.066%,3.431%,4.833%]MAPE . 

This experimental result shows that for Site 1, the forecasting precision and effect of the designed 

system have a certain improvement compared with other VMD-based models. 

(b) For Site 2, under the four error criteria, the forecasting performance of the VMD 

( 2000d , 7dK )-MODA ( 500sA , 200nI , 40dN ) system is optimal, and the MAPE 

value of this model is 2.049%2
modaMAPE . And the values of other indicators are 

0.2022
modaMPE , 0.0842

modaMSE  and 0.2892
modaRMSE  respectively. And among the other 

ordinary systems, it can be drawn that the VMD-BPNN ( 1om , 5hm , 8im ) system has the 

lower assessment metrics value, followed by VMD-ELM, VMD-LS-SVM, VMD-GRNN, and the 

predictive effect of VMD-ELMAN system is the worst. Take the value of MAE as an example, the 

metrics values of the five VMD-based systems are stable between 0.21 and 0.59, and the 

minimum gap with the designed model is about 8%, this gap is relatively notable. In addition, the 

forecast results of Site 2 and Site 3 are shown in Fig. 4. 

(c) For Site 3 to Site 5, after processing the raw sequence with the data preprocessing method 

proposed, it can be seen that the predictive system on the basis of VMD-MODA still obtains the 

lowest values of assessment indicators, and the value matrix of RMSE is 

[0.280,0.332,0.378]modaRMSE . Consequently, it can be drawn the conclusion that the designed 

predictive model is greater than the ordinary single model. 
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Fig. 4.  Prediction performance by VMD-MODA model and ordinary models for Site 2 and Site 3. 

Remark 1. According to Experiment 1, it can be concluded that the predictive system 

designed in this study has the smallest forecasting error and the best overall effect. The experiment 

results also demonstrate that the designed system is better than the ordinary system on the basis of 

VMD ( 2000d , 7dK ) technique. In addition, it is worth noting that VMD-BPNN ( 5hm ) 

and VMD-ELM ( 5hm ) have certain competitiveness in short-term wind power forecasting. 



 

23 

 

Table 6 

Comparisons between the designed model with other VMD-based ordinary models. 

Models 
Site 1 Site 2 Site 3 

MAPE (%) MAE MSE RMSE MAPE (%) MAE MSE RMSE MAPE (%) MAE MSE RMSE 

VMD-LS-SVM 3.066 0.311 0.161 0.401 3.117 0.301 0.150 0.388 3.715 0.310 0.153 0.391 

VMD-ELM 2.866 0.294 0.159 0.399 2.945 0.298 0.184 0.429 3.444 0.295 0.150 0.388 

VMD-GRNN 3.431 0.341 0.200 0.447 3.934 0.396 0.334 0.578 5.206 0.424 0.309 0.556 

VMD-ELMAN 4.833 0.508 0.497 0.705 5.777 0.585 0.627 0.792 5.383 0.456 0.356 0.596 

VMD-BPNN 2.772 0.281 0.130 0.361 2.176 0.218 0.091 0.302 2.835 0.243 0.116 0.341 

VMD-MODA 2.594 0.258 0.110 0.332 2.049 0.202 0.084 0.289 2.707 0.223 0.078 0.280 

Note: In this table, VMD-MODA represents our proposed forecasting model. And through the three datasets, we can notice that different predictive models get different results, which 

means that there is different between the comparison models. Moreover, as four assessment metrics, MAPE is calculated by using 
1

ˆ(1/ ) (| | / ) 100%
N

i i i
i

N y y y


  MAPE , MAE is estimated by 

using
1

ˆ(1/ ) | |
N

i i
i

N y y


 MAE , we computed MSE by using 2

1
ˆ(1/ ) ( )

N

i i
i

N y y


 MSE , and the calculation formula of RMSE is 2

1
ˆ(1/ ) ( )

N

i i
i

N y y


 RMSE . 
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4.4.2. Experiment 2: Comparison with other ordinary forecasting systems 

In Experiment 2, the designed predictive model is compared to five classic predictive models, 

ELM, ELMAN, BP, LS-SVM and GRNN, to further validate the precision of the designed 

predictive system. Moreover, the specific values of the evaluation indicators of Site 3, 4 and 5 are 

shown in the Table 7, and the detailed description are given below. 

(a) For Site 1, the predictive effect of VMD ( 7dK , 2000d )-MODA ( 500sA , 

200nI , 40dN ) model is the best among the comparison classic predictive model. And the 

results of assessment indexes are 0.2581
modaMAE , 0.3321

modaRMSE , 0.1101
modaMSE  and 

2.594%1
modaMAPE  respectively. By contract, the other ordinary models get the higher evaluation 

metrics values, for example, the specific MSE values are 0.3311
ls-svmMSE , 0.3941

elmMSE , 

0.3961
grnnMSE , 0.3911

elmanMSE  and 0.3701
bpnnMSE  in turn. The outcome can be obtained 

that for site 1, comparing with other five ordinary single models, the VMD-MODA based model is 

the satisfactory model in the field of forecasting precision and effect. 

(b) For Site 2, in this experiment, it can be observed that the VMD-MODA system has the 

lowest metrics error of forecasting, as proven by four indicators values 2.049%2
modaMAPE , 

0.2022
modaMAE , 0.0842

modaMSE and 0.2892
modaRMSE respectively. Furthermore, when the 

parameter is 8im , according the specific evaluation indicators (MAPE), the classic single 

predictive systems have the higher error, with the values are 4.280%2
ls-svmMAPE , 

4.418%2
elmMAPE , 6.089%2

grnnMAPE , 5.786%2
elmanMAPE  and 4.495%2

bpnnMAPE  in 

turn. And for the rest three metrics, there are apparent differences between the designed system 

and other ordinary systems. 

(c) For Site 3, 4 and 5, the metrics values of the designed system are generally lower than 

comparison predictive systems, with the values of MAE are 0.2233
modaMAE , 0.2694

modaMAE

and 0.2925
modaMAE . By contrast, for the other five systems, the MAE values are main between 

0.4 and 0.8, and take the BPNN ( 1om , 5hm , 8im ) system as an example, the value matrix of 

error metrics is [0.463,0.595,0.520]bpnnMAE . Moreover, the forecast results of Site 3, 4, and 5 are 

shown in Fig.5.  
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Remark 2. According to Experiment 2, the result expresses that the values of evaluation 

metrics gathered from the VMD-MODA model are lower than collected from other ordinary 

model, it can be drawn the conclusion that the excellence of the designed model is more clearly, 

and the forecasting efficiency of it is significantly greater than other single predictive models, in 

short-term wind speed forecasting. 

 
Fig. 5.  The forecasting results by six systems for Site 3, 4 and 5. 

4.4.3. Experiment 3: Comparison with hybrid systems on the basis of different data 

denoising techniques 

In this part, we compare the predictive efficiency of the MODA-based combine system with 

different data denoising strategies, namely VMD, EEMD and WD. The assessment indicators are 

consistent with the above, which are still MAPE, MAE, MSE and RMSE. Furthermore, Table 8 

display the comparison results, and we can draw the conclusion that as below. 
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Table 7 

Comparisons between the designed system and ordinary systems in site 3, 4 and 5. 

Models 
Site 3 Site 4 Site 5 

MAPE (%) MAE MSE RMSE MAPE (%) MAE MSE RMSE MAPE (%) MAE MSE RMSE 

ELM 5.424 0.449 0.312 0.559 5.423 0.524 0.491 0.700 6.499 0.518 0.471 0.686 

GRNN 6.314 0.550 0.531 0.729 7.552 0.711 0.886 0.941 7.659 0.566 0.574 0.758 

ELMAN 5.295 0.443 0.308 0.555 6.247 0.613 0.649 0.806 6.988 0.544 0.513 0.716 

BPNN 5.279 0.463 0.382 0.618 6.138 0.595 0.696 0.834 6.622 0.520 0.468 0.684 

LS-SVM 5.291 0.449 0.314 0.561 5.074 0.486 0.411 0.641 6.468 0.510 0.448 0.669 

VMD-MODA 2.707 0.223 0.078 0.280 2.952 0.269 0.110 0.332 3.448 0.292 0.143 0.378 

Note: For three datasets, different predictive models get different results, which express that the prediction effect of the patterns are dissimilar. In this Table, MAPE is calculated by using 

1
ˆ(1/ ) (| | / ) 100%

N

i i i
i

N y y y


  MAPE , the calculation formula of MAE is 
1

ˆ(1/ ) | |
N

i i
i

N y y


 MAE , we computed MSE by using 2

1
ˆ(1/ ) ( )

N

i i
i

N y y


 MSE , and the calculation formula of 

RMSE is 2

1
ˆ(1/ ) ( )

N

i i
i

N y y


 RMSE . 
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(a) For Site 1, we can observe that the predictive model on the basis of VMD ( 2000d ,

7dK )-MODA obtains the smallest assessment indicators value. And the results of each 

assessment indicator are 0.2581
modaMAE , 2.954%1

modaMAPE , 0.3321
modaRMSE and 

0.1101
modaMSE  respectively. Among the other two data denoising techniques in comparison, the 

combined system in the light of WD ( 5lD ) strategy has a lower evaluation values, for instance, 

the value of MSE is 0.3071
c-wdMSE , and the value of metrics predicted by the EEMD 

( 0.1stdN , 100eN )-based combined system is 0.3181
c-eemdMSE . 

(b) For Site 2, according to Table 8, our designed system still archives better predictive 

performance than the combined system on the basis of WD ( 5lD ) and EEMD ( 0.1stdN , 

100eN ) techniques, which the four assessment indicators values are 0.2892
modaRMSE , 

0.0842
modaMSE , 0.2022

modaMAE , 2.049%2
modaMAPE  in turn. Furthermore, opposite to Site 

1, among other predictive systems, the forecasting effect of the EEMD-based combined system is 

slightly better than WD-based combined system, with the metrics values are 

4.787%2
c-eemdMAPE  and 4.967%2

c-wdMAPE . 

Table 8 

Comparison the combined forecasting system on the basis of different data denoising methods. 

Period Models 
Metrics 

MAPE (%) MAE MSE RMSE 

Site 1 

C-EEMD 4.298 0.424 0.318 0.564 

C-WD 3.725 0.359 0.307 0.455 

VMD-MODA 2.594 0.258 0.110 0.332 

Site 2 

C-EEMD 4.787 0.477 0.436 0.660 

C-WD 4.967 0.441 0.307 0.554 

VMD-MODA 2.049 0.202 0.084 0.289 

Site 3 

C-EEMD 5.018 0.430 0.311 0.558 

C-WD 4.86 0.383 0.248 0.498 

VMD-MODA 2.707 0.223 0.078 0.280 

Site 4 

C-EEMD 4.939 0.468 0.355 0.596 

C-WD 4.843 0.412 0.292 0.541 

VMD-MODA 2.952 0.269 0.110 0.332 

Site 5 

C-EEMD 6.175 0.501 0.428 0.654 

C-WD 5.594 0.416 0.300 0.547 

VMD-MODA 3.448 0.292 0.143 0.378 

Note: C-EEMD, C-WD and VMD-MODA indicate the predictive system on the basis of EEMD technique, 

the predictive model based on WD technique and the combined model we proposed respectively. And for five 

datasets, different predictive systems get different results, which indicates that the predictive effect of the system 

are different. The mathematical formula of evaluation metrics can be defined as: 

1
ˆ(1/ ) (| | / ) 100%

N

i i i
i

N y y y


  MAPE , 
1

ˆ(1/ ) | |
N

i i
i

N y y


 MAE , 2

1
ˆ(1/ ) ( )

N

i i
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N y y


 MSE , and 
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1
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

 RMSE . 
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(c) For Site 3, 4 and 5, in general, the forecasting efficiency of our designed system is 

optimal, as can be observed from obviously smaller evaluation indicator values, take the RMSE as 

an example, the value matrix is [0.280,0.332,0.378]modaRMSE . And the metrics values of 

EEMD-based, and WD-based systems are [0.558,0.596,0.654]c-eemdRMSE  and 

[0.498,0.541,0.547]c-wdRMSE . It is noteworthy that the forecast effect of Site 5 in each system 

is worse than that of other sites, which indicates that the randomness of the data of this site 

fluctuates greatly, and it also make known that the advantage of the designed predictive system on 

the basis of VMD technique. 

Remark 3. In this experiment, the prediction effect and accuracy of the designed predictive 

model is greater than those of the WD ( 5lD )-based combined system and the EEMD 

( 0.1stdN , 100eN )-based combined system. The experiment result not only illustrates the 

applicability of the designed model, but also displays the rationality of using VMD ( 2000d ,

7dK ) strategy. 

4.4.4. Experiment 4: Compared to other popular forecasting systems 

To preferably explore the forecast constancy of the designed model, for relatively popular 

predictive model are chosen to compare to the designed combined system, namely the predictive 

system based on multi-objective grey wolf algorithm (MOGWO), multi-objective ant lion 

optimization (MOALO), convolutional neural network (CNN) and long short-term memory 

network (LSTM). The comparison results are displayed in Table 9, and Fig. 6 depicts the 

prediction conclusion in Experiment 3 and 4. Moreover, the specific description is shown below. 

(a) Comparing with the combined systems in the light of MOALO, and MOGWO, when the 

parameter are ( 500sA , 200nI , 40dN ), it can be concluded from Table 9 that for the data 

from Site 1 to 5, the forecast effect of the proposed predictive system is superior to the other two 

systems. About this proposed system, the values of MAPE for each site are 

[2.954%,2.049%,2.707%,2.952%,3.448%]modaMAPE . For the predictive system on the basis of 

MOGWO, the MAPE values are [3.791%,3.395%,3.212%,3.772%,4.634%]mogwoMAPE , and 

the assessment indicator values of hybrid system based on MOALO strategy are, 
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[3.695%,5.007%,4.356%,4.194%,5.195%]moaloMAPE . Compare those above sequences and 

other evaluation metrics values in Table 9, it can be drawn the conclusion that MOGWO-based 

system is more practical than MOALO-based system in this test. 

Table 9 

Comparison results of Experiment 4. 

Period Metrics 
Models 

MOGWO MOALO LSTM CNN VMD-MODA 

Site 1 MAPE (%) 3.791 3.695 3.030 3.447 2.594 

MAE 0.333 0.350 0.308 0.368 0.258 

MSE 0.172 0.190 0.158 0.268 0.110 

RMSE 0.414 0.436 0.397 0.518 0.332 

Site 2 MAPE (%) 3.395 5.007 2.777 2.710 2.049 

MAE 0.317 0.509 0.264 0.248 0.202 

MSE 0.165 0.425 0.120 0.113 0.084 

RMSE 0.407 0.652 0.347 0.335 0.289 

Site 3 MAPE (%) 3.212 4.356 3.457 4.3965 2.707 

MAE 0.272 0.360 0.288 0.4015 0.223 

MSE 0.131 0.216 0.125 0.2841 0.078 

RMSE 0.361 0.465 0.354 0.533 0.280 

Site 4 MAPE (%) 3.772 4.194 3.772 4.132 2.952 

MAE 0.360 0.402 0.360 0.377 0.269 

MSE 0.215 0.307 0.213 0.234 0.110 

 
RMSE 0.464 0.554 0.461 0.484 0.332 

Site 5 MAPE (%) 4.634 5.195 4.636 4.521 3.448 

MAE 0.390 0.400 0.3772 0.378 0.292 

MSE 0.241 0.258 0.231 0.238 0.143 

RMSE 0.490 0.508 0.481 0.488 0.378 

Note: This table displays the comparison results between the designed model with other popular predictive 

models, including the combined model based multi-objective optimization algorithms (MOALO and MOGWO), 

LSTM model and CNN model. In this table, VMD-MODA indicates the predictive system which we designed. 

The calculation formula of evaluation metrics can be defined as:
1

ˆ(1/ ) (| | / ) 100%
N

i i i
i
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 RMSE . 

(b) For the comparison between the VMD-MODA system with LSTM and CNN system, we 

can observe that the designed system obtained the best accuracy of the prediction. And take Site 3 

as an example, the main evaluation metrics values are 2.707%3
modaMAPE , 0.2233

modaMAE , 

0.0783
modaMSE , 0.2803

modaRMSE  respectively. Among the other two models, the LSTM 

model has the smaller metrics values, and the specific values are 3.457%3
lstmMAPE , 

0.2883
lstmMAE , 0.1253

lstmMSE , 0.3543
lstmRMSE . But at Site 2 and Site 5, the forecasting 

performances of LSTM ( 250e ) model are lower than it of CNN ( 40sK , 3nK ,

[384,384]hm ) model, it can be observed that there is relatively no difference between those two 

models.  
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Fig. 6.  The predicting outcomes of combined models for Site 1 and Site 2. 

5. Discussion 

In this section, four methods are selected to further analyze the comparison results of the four 

experiments, which includes the DM test, FE test, Improvement rate of the indicators, Sensitivity 

analysis. The result and specific description of each part are shown below. 

5.1. Diebold–Mariano test and Forecasting effectiveness test 

In order to examine the predictive performance of the designed predictive system further. In 

this part, the Diebold–Mariano test on account of the squared error loss function, and predictive 

validity test are chosen to compare the forecast differences between the designed combined model 

and comparison model. The results of DM test are listed in Table 10, and the specific description 

is as follows. 

(a) In this test, the results of DM test between the designed predictive model on the basis of 

WD strategy and the predictive model in the light of EEMD strategy are obviously higher than 

1.96, which expresses that between the two above models and the designed system, there are 
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significant differences. And it can also be seen that the superiority of choosing VMD as the data 

preprocessing method. 

(b) Comparing with the ordinary system, it can be observed that the DM test values of all 

systems are much higher than 2.58, which is the critical value of the 0.01   significance level. 

And for five sites, the DM maximum value of the LS-SVM, ELMAN, BPNN, the ELM model 

and the GRNN model are 5.512DMls-svm , 5.642DMelman , 4.990DMbpnn , 5.307DMelm

and 4.974DMgrnn  respectively, which indicate that our designed system is significantly 

different from ordinary single system, in this comparison. we can also conclude that the designed 

predictive system is greater than the general predictive system. 

(c) Comparing with the popular forecasting systems, including the combined predictive 

model on the basis of MOALO strategy, and MOGWO technique, the LSTM model and CNN 

model, most of DM values are higher than 1.96, and all value of DM is greater than 1.645, which 

means that at the significance level of 10%, 0H  could be rejected. Consequently, it can be 

considered that there are significant differences between the designed system and others. 

Through the DM test, we can conclude that the designed predictive system not only has 

greater forecasting precision than others, but has significant differences in prediction precision 

level from other comparison models. It preferably validates the advantage of the designed 

predictive system in wind speed forecast. 

Table 10 

DM test of comparison models 

Models 
Period 

Site 1 Site 2 Site 3 Site 4 Site 5 

C-MOALO 3.051* 2.223 3.410* 2.191 3.291* 

C-MOGWO 2.899* 3.044* 2.039 2.323 2.059 

LSTM 2.690* 2.460 1.742 2.235 1.737 

CNN 2.269 1.939 3.725* 3.084* 1.964 

C-WD 4.253* 4.984* 3.926* 3.447* 2.921* 

C-EEMD 4.293* 3.361* 4.132* 3.859* 3.418* 

VMD-LS-SVM 2.620* 6.485* 2.206 2.521 1.993 

VMD-ELMAN 3.488* 3.302* 1.695 3.164* 2.948* 

VMD-BP 1.984 1.949 1.960 1.972 1.834 

VMD-ELM 1.985 2.838* 2.662* 2.118 3.039* 

VMD-GRNN 3.277* 2.748* 3.697* 3.040* 2.403 

LS-SVM 5.192* 5.512* 4.303* 3.317* 3.268* 

ELMAN 5.642* 4.873* 4.715* 3.839* 3.342* 

BP 4.990* 4.119* 3.407* 3.032* 3.310* 

ELM 4.675* 5.307* 4.291* 3.453* 3.263* 

GRNN 4.974* 3.835* 4.249* 4.043* 3.515* 

Note: This table displays the differences between the designed predictive model with other comparison 

models. C-MOALO, C-MOGWO, C-WD and C-EEMD represent the combined model based on MOALO 

strategy, and the MOGWO method, the predictive model in view of WD technique, and the EEMD technique. 
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And in this table, if the result is better than 2.58, That means 0H  could be rejected at the significance level of 1%, 

the symbol * indicates significance level 0.01  . Moreover, for the DM test, the null and the alternative 

hypotheses are expressed as below: 1 2
0H : ( ) ( )n nF e F e , 1 2

1H : ( ) ( )n nF e F e . 

The next step is to evaluate the efficiency of the forecast to further validate the practicability 

of the designed predictive model. In this test, the effective result of the forecasting is closer to 1, 

the more accurate the prediction result is. And through the data in Table 11, it can be observed that 

our designed model obtains the highest value of assessment metrics, with the value matrix is 

[0.974,0.980,0.974,0.971,0.961]Hmoda . Consequently, we can conclude that the result of the 

designed combined model is greater than others, which also means that it is better than other 

models. 

Table 11 

Forecasting effectiveness of different systems. 

Models 
Period 

Site 1 Site 2 Site 3 Site 4 Site 5 

VMD-MODA 0.974 0.980 0.974 0.971 0.961 

C-MOALO 0.963 0.975 0.956 0.958 0.948 

C-MOGWO 0.962 0.966 0.968 0.962 0.954 

LSTM 0.970 0.972 0.965 0.962 0.954 

CNN 0.966 0.973 0.956 0.959 0.955 

C-WD 0.963 0.95 0.951 0.952 0.944 

C-EEMD 0.957 0.952 0.95 0.951 0.938 

VMD-LS-SVM 0.969 0.891 0.963 0.961 0.952 

VMD-ELMAN 0.952 0.942 0.973 0.949 0.935 

VMD-BPNN 0.972 0.978 0.972 0.967 0.961 

VMD-ELM 0.971 0.971 0.966 0.955 0.954 

VMD-GRNN 0.966 0.961 0.948 0.949 0.941 

LS-SVM 0.956 0.957 0.947 0.949 0.935 

ELMAN 0.951 0.952 0.947 0.938 0.93 

BP 0.953 0.955 0.947 0.939 0.934 

ELM 0.952 0.956 0.946 0.946 0.935 

GRNN 0.952 0.939 0.937 0.925 0.923 

Note: C-MOALO, C-MOGWO, C-WD, C-EEMD, and VMD-MODA represent the combined model on 

the basis of MOALO strategy, and MOGWO method, the hybrid model in the light of WD technique, and the 

EEMD technique, and the combined model which we proposed respectively. And for this table, the value of test is 

closer to 1, the more effective the forecasting. 

Remark 4. Based on the result of the DM test and Forecasting effectiveness test (see Table 

10 and 11), the prediction performance of different systems is analyzed from the two sides of 

prediction error and prediction value. And we can see that the designed predictive system has 

higher predictive precision, lower error, and has significant differences compared with other 

models. 

5.2. Model validity and stability test 

To determine the prediction improvement efficiency of the designed model, we use MAPE 

value to calculate the improvement percentage of the designed model in this test, namely the 
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improvement rate, and the improvement rate is chosen to represent the forecasting improvement 

effectiveness of the combined system. Furthermore, four comparisons are performed with 

designed predictive system, the single systems based on VMD method, the traditional single 

predictive systems and other combined systems. Table 12 is displaying the specific results, and the 

detailed data analysis is as follows. 

(a) Comparing with other ordinary systems on the basis of VMD strategy, the forecast 

availability of the designed combined model is fairly improved. The average of improvement rate 

of predictive indicator is 29.59%MAPEP , the maximum and minimum of improvement rate of 

predictive indicator are 64.53%MAPEP  and 4.50%MAPEP  respectively. 

(b) Comparing with traditional single predictive models, it can be observed that the designed 

system greatly improves the forecasting precision. Take Site 1 as an example, the maximum and 

minimum of MAPEP  are 47.45%MAPEP  and 41.13%MAPEP  respectively, and the average of 

improvement rate of predictive indicator is 44.95%MAPEP . So, it can be clearly that our 

designed system has a satisfactory performance of wind speed forecasting. 

(c) As contrasted with other predictive models based on different data denoising techniques, 

the proposed combined system has played a great improvement in forecasting precision. For 

example, comparing with the predictive model on the basis of EEMD method and the combined 

model based on WD strategy, the averages of improvement rate of predictive indicators are 

45.46%WD
MAPEP  and 42.17%EEMD

MAPEP  in turn. And the minimum of MAPEP  are 39.66%WD
MAPEP  

and 30.38%EEMD
MAPEP  in turn. Consequently, the designed combined model can get better prediction 

effect. 

(d) Compared with the combined model on the basis of MOGWO technique and the 

predictive model on the basis of MOALO strategy, the minimums of improvement rate of 

assessment indicators are 15.73%MOGWO
MAPEP  and 59.08%MOALO

MAPEP in turn. Otherwise, as for the 

comparison between the designed predictive model with LSTM and CNN model, the 

improvement matrixes of evaluation index are [14.39%,26.23%,21.70%,21.74%,25.60%]LSTM
MAPEP
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and [24.74%,24.38%,38.43%,28.56%,23.73%]CNN
MAPEP in turn, those values are all relatively 

significant. Consequently, we can conclude that the designed predictive system has a greater 

improvement than the comparison systems. 

 Table 12 

The result of improvement rate of predictive indicator for each model. 

Models 
Period 

Site 1 Site 2 Site 3 Site 4 Site 5 

LSTM 14.39% 26.23% 21.70% 21.74% 25.63% 

CNN 24.74% 24.38% 38.43% 28.56% 23.73% 

ELM 45.63% 53.62% 50.09% 45.57% 46.95% 

GRNN 46.01% 66.35% 57.13% 60.91% 54.99% 

ELMAN 47.45% 64.59% 50.73% 52.74% 50.67% 

BPNN 44.51% 54.42% 48.72% 51.91% 47.93% 

LS-SVM 41.13% 52.12% 48.83% 41.82% 46.70% 

C-WD 30.38% 58.75% 44.30% 39.05% 38.37% 

C-EEMD 39.66% 57.19% 46.05% 40.23% 44.17% 

C-MOALO 29.80% 59.08% 37.86% 29.61% 33.63% 

C-MOGWO 31.57% 39.64% 15.73% 21.74% 25.60% 

VMD-ELM 9.49% 30.42% 21.39% 34.80% 25.03% 

VMD-GRNN 24.42% 47.91% 48.00% 42.24% 41.37% 

VMD-ELMAN 46.34% 64.53% 49.71% 42.69% 46.64% 

VMD-BPNN 6.44% 5.81% 4.50% 10.26% 7.69% 

VMD-LS-SVM 15.42% 34.25% 27.13% 24.94% 28.46% 

Note: In this table, C-MOALO, C-MOGWO, C-WD and C-EEMD represent the combined model based on 

MOALO strategy, and MOGWO method, the predictive model on the basis of WD technique and the combined 

model based on EEMD technique. For sixteen models, the improvement rate of predictive indicator is different of 

each other. It means that different model has different prediction. And in this table the improvement rate of the 

mean absolute percent error can be calculated by using | | 100%
compared proposed

compared

MAPE MAPE

MAPE


 MAPEP . 

5.3. Sensitivity analysis 

In this research, we mainly analyze the sensitivity of the designed predictive system, and 

there are three primary parameters in this system, namely the Iteration number, Archive size and 

Dragonfly number. And the matrix of Iteration number is set as [50,100,150,200 ,250]nI , the 

matrix of Dragonfly number is [50,100,150,200 ,250]dN , and matrix the Archive size is set as 

[100,200,300,400,500 ]sA . The symbol   expresses the satisfactory value of each parameter, 

which is determined by trial-and-error method. The assessment metrisc results are expressed in 

Table 13, and Fig. 7 shows the comparison of three patterns at Site 5, and specific described is as 

follows. 
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Table 13  

Sensitivity analysis results for the designed system. 

Period Parameters MAPES  MAES  MSES  RMSES  

Site 1 
Iteration number 0.2806 0.0227 0.0153 0.0209 

Dragonfly number 0.1625 0.014 0.0084 0.0121 

Archive number 0.1385 0.0115 0.0068 0.0093 

Site 2 
Iteration number 0.6982 0.0573 0.0403 0.0563 

Dragonfly number 0.1737 0.0162 0.0119 0.0186 

Archive number 0.2481 0.0248 0.0169 0.0265 

Site 3 
Iteration number 0.2907 0.0284 0.0324 0.0453 

Dragonfly number 0.1832 0.0169 0.0108 0.0170 

Archive number 0.1033 0.0091 0.0096 0.0142 

Site 4 
Iteration number 0.3595 0.0236 0.0212 0.0286 

Dragonfly number 0.1078 0.007 0.0052 0.0077 

Archive number 0.2673 0.0177 0.0143 0.0201 

Site 5 
Iteration number 0.1029 0.0056 0.0062 0.0080 

Dragonfly number 0.0630 0.0048 0.0010 0.0020 

Archive number 0.1128 0.0107 0.0096 0.0126 

Note: This table displays the sensitivity analysis results for the proposed system. Among the three main 

parameters, the Iteration number can be from 50 to 250 with a step size of 50, the Dragonfly number is set to 24, 

40, 60, 80, 100, and the Archive number grow from 100 to 500 with the increase interval of 100. Moreover, in this 

table, the evaluation metrics can be computed by    
2

1
(1/ )


 

n

ii
S nG G G , where iG  indicates the ith  

forecasting time on the indicator, G  express the mean of all testing time, and n  is the number of testing times. 

Based on the sensitivity analysis for the five sites, our combined model is most sensitive to 

the parameter of Iteration number. More specific, take Site 2 as an example, the evaluation metrics 

of this parameter are 0.6982MAPES , 0.0573MAES , 0.0403MSES  and 0.0563RMSES  

respectively. Moreover, among the three primary parameters for the combined model, the Dragonfly 

number obtained the smallest value of the evaluation metrics. It means that the combined model has 

the lowest sensitivity and the highest stability to the changes of this parameter. In a word, although 

the sensitivity of the combined is difference between three primary parameters, the values of 

evaluation metrics in Table 13 are not very large. Thence, it can be drawn the conclusion that the 

transformation of the main parameters has a low degree of influence on the prediction results, and 

the combined model is stable of the change of primary parameters. 
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Fig. 7 Comparison results of three main parameters for the combined model 

5.4 Future work 

Since the combination proposed in this paper plays a role not be ignored in short-term wind 

speed forecast. It is recommended to apply an improved multi-objective optimization algorithm 

and more effective model combination as the future work of this article. Furthermore, in the study, 

the parameters of the data preprocessing method are obtained through trial and error. When the 

processed data is different, the parameters are possible not uniform. Therefore, the strategy of 

automatically optimizing parameters is also a part worthy of research. 

6. Conclusions 

Today, wind and solar energy are more cost-competitive than new coal or natural gas in 

two-thirds of the world. In the next ten years, building new wind and solar energy will be more 

cost-effective than operating existing coal or natural gas plants. Therefore, it is very essential and 

pressing to find an efficient and steady wind power prediction strategy. However, because the 

uncontrollability and variability of wind velocity, it is very laborious to predict velocity of wind 

with a general algorithm strategy. In this research, we combine the preponderance of variational 

mode decomposition, multi-objective dragonfly optimization algorithm and hybrid model, then a 
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new combined forecasting system is designed. Specifically, the variational mode decomposition is 

used for data decomposition and denoising, and the strong global search ability of the 

multi-objective dragonfly algorithm is chosen to certain the weights of the sub-systems. Moreover, 

the corresponding strategy is selected to optimizes the parameters of the sub-systems. In this 

research, for the five datasets from different wind farm, the final MAPE value matrix of the 

designed predictive system is [2.954%,2.049%,2.707%,2.952%,3.448%]modaMAPE . In addition, 

this paper also proves the superiority and predictive stability of the combined system studied from 

the four aspects of Diebold-Mariano test, Forecasting effectiveness test, predictive index 

improvement rate and Sensitivity analysis. And verify that the designed system is optimal than 

other comparison systems.  

On the whole, we got the following conclusions: 1) The proposed combined system has 

achieved great precision in short-term wind velocity forecast; 2) The combined effect of 

multi-objective dragonfly algorithm and variational mode decomposition technique is better than 

that of wavelet denoising strategy and ensemble empirical mode decomposition strategy; 3) 3) For 

the designed system, the promotion effect of the multi-objective dragonfly algorithm is superior to 

the promotion effect of the multi-objective ant lion optimization strategy, the multi-objective grey 

wolf optimization method and other popular predictive system. 
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