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Abstract: One of the keys to the success of the fourth industrial revolution (Industry 4.0) is to em-

power machinery with cyber–physical systems connectivity. The digital twin (DT) offers a promis-

ing solution to tackle the challenges for realizing digital and smart manufacturing which has been 

successfully projected in many scenes. Electrical machines and drive systems, as the core power 

providers in many appliances and industrial equipment, are supposed to be reinforced on the verge 

of Industry 4.0 in the fields of design optimization, fault prognostic and coordinated control. There-

fore, this paper aims to investigate the DT modelling method and the applications in electrical drive 

systems. Firstly, taking the high-speed permanent-magnet machine drive system as an example, 

multi-disciplinary design fundamentals and technologies, aiming at building initial mechanism and 

simulation models, are reviewed. The state-of-the-art of DT technologies is figured out to serve for 

high-precision and multi-scale dynamic modelling, by which a framework for DT models of electri-

cal drive systems is presented. More importantly, fault diagnosis and optimization strategies of elec-

trical drive systems in the decision and application layer are also discussed for the DT models, fol-

lowed by the conclusions presenting open questions and possible directions. 

Keywords: permanent magnet synchronous motor (PMSM); electrical drive system; system-level 

optimization; digital twin (DT); data-driven modelling; industry 4.0 

 

1. Introduction 

The fourth industrial revolution (Industry 4.0), first introduced by German scholars, 

has brought increasing opportunities and challenges to manufacturing, energy, construc-

tion and other industries, which refers to the use of the cyber-physical system (CPS) to 

digitize and make intelligent the manufacturing and business information in supply 

chains, and finally achieve rapid, effective and personalized industrial system architec-

tures [1]. In recent years, still in the early stages of Industry 4.0, a remarkable diversity of 

new concepts and multi-disciplinary technologies has visibly blossomed, such as smart 

manufacturing, distributed factories, Made in China 2025, advanced technologies includ-

ing sensors and data transmission, machine learning and artificial intelligence, cloud com-

puting, data storage, etc. [2,3]. However, how to aggregate their value and shape the fu-

ture manufacturing thoroughly in the context of reduced costs, efficient automatic pro-

duction and affordable services has triggered broad reflections and interactions. 

Meanwhile, the rising concerns on digitalization, networking and intelligence in In-

dustry 4.0 have contributed to the great attention to the digital twin (DT) technique from 

industry and academia areas due to its deep integration of new-generation information 

and digital models [4,5]. The DT technique, known as the dynamic mapping from physical 

space to virtual space, can realize the closed-loop interaction between humans, machines 
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and the environment throughout the product entire lifecycle. This technique aspires to 

mirror the real-time operating status synchronized with the physical entity via mass data, 

allowing analysis, deduction and control via the data-driven models in the digital space, 

to thus implement more accurate modelling, performance optimization, rational decisions 

as well as improved production efficiency [4–6]. 

Nowadays, DT has shown achievements in many fields, such as aerospace, urban 

management, medical treatment, agriculture, etc. NASA first applied DT to monitor and 

predict the status of space vehicles to optimize subsequent operations [7]. Then, DT tech-

nology was introduced to urban construction and the medical industry for decision mak-

ing and human health tracking [8,9]. In electrical engineering, scholars worldwide are also 

trying to apply DT technology to the new-type power system. In [10], Pu et al. reviewed 

the key technologies and the research prospects & challenges of digital twin used in power 

systems. In [11], Song et al. proposed a state estimation method based on DT, which can 

be used to not only monitor but also predict the power grid state according to possible 

future events. In [12], a DT design method for fault diagnosis of a distributed photovoltaic 

system is proposed, and the feasibility of DT utilization for fault diagnosis of electrical 

equipment was verified by simulation. In [13], an ultra-short-term prediction method for 

PV power generation using the DT-optimized genetic algorithm (GA)—back propagation 

(BP) neural network was put forward, which effectively improves the prediction accuracy. 

Considering the cyber-physical system as an important supporting technology for build-

ing a DT system, in [14], a CPS-based DT model information-physical system was con-

structed, which can alleviate collaborative false data injection and network attack by in-

teracting with the control system to guarantee safe operation. Although lots of efforts have 

been made towards development of the DT technique, seldom have further technical 

routes and general construction frameworks been presented systematically and compre-

hensively yet, even in some leading manufacturing sectors. Moreover, the application and 

usage of DT in other involved industries should be emphasized and rapidly developed as 

well. 

Electric machines and their drive systems act as the main power source role in many 

developed and developing powered devices, such as machine tools, flywheels, centrifugal 

compressors, distributed power generation systems, as well as road, rail, marine and aer-

ospace transportation; as such, in the future context of big data, artificial intelligence and 

the Internet of Things (IoT), it is of great significance to make an attempt towards the DT 

development of electrical drive systems. However, the DT technique implemented in elec-

trical drive systems is still in its infancy, and has been seldom leveraged to date.  

Therefore, this paper aims to survey and summarize the research trends & develop-

ment of the DT technique and its application to the design optimization of electrical drive 

systems. By the DT definition [15], ‘twin’ means that the physical entity and its mathemat-

ical model have ‘the same gene’. In other words, they have the same physical laws and 

operating mechanisms. Considering that the physical process of an entity is usually ob-

servable with fixed mathematical models, and that the analytical model can be applied 

with less computational cost, a comprehensive overview of the design fundamentals and 

technologies for electric machines and their drive systems is firstly conducted to support 

the theoretical foundation for the DT modelling. The high-speed permanent-magnet (PM) 

machine (HSPMM) is regarded as a typical example due to the distinct characteristics of 

multi-disciplinary and broad industrial potential. Then, the state-of-art of involved DT 

technologies are summarized, followed by the proposed overall framework for the DT 

models of electrical drive systems. At the same time, considering the specialized objectives 

of the DT decision-making layer served for electrical drive systems, the fault diagnosis 

and optimization methods are also outlined, including demagnetization fault caused by 

high temperature and system-level optimization algorithms. The outcomes of this work 

strive toward accelerating the transition of motor drive system industries and providing 

theoretical reference, adhering to the ‘informatization, digitalization and interaction’ con-

cepts. 
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The rest of this paper is organized as follows. Section II reviews the design funda-

mentals and technologies of HSPMM drive systems. Section III reflects the state-of-art of 

DT concept and the general guidelines for DT modelling of electrical drive systems. In 

Section IV, two major services in the decision-making layer are investigated. Conclusions 

including application prospects and future work are illustrated in Section V. 

2. Design Technologies of HSPMM and Drive Systems 

Compared with conventional electric motors, the high-speed motors possess unique 

merits and a wide range of application prospects in hybrid electric vehicles, flywheels, 

machine tools, centrifugal compressors, and distributed power generation systems [16], 

fulfilling the requirements of future or smart manufacturing. The major merits include the 

following aspects: (a) the high speed motors operate with higher frequency, resulting in a 

compact and light-weight structure; (b) they are capable of being connected directly with 

a prime mover or a mechanical load without additional transmission systems, leading to 

reduced gear costs, maintenance expenses, power losses, mechanical vibration and noise; 

and (c) the high-speed motors feature a fast dynamic response thanks to the small moment 

of inertia [16–18]. For the electric motor drives, permanent-magnet synchronous motors, 

induction motors, and switched reluctance motors are usually chosen in high-speed situ-

ations. Among the different motors, the HSPMM is often considered as the favorite thanks 

to its advantage of high-power high-torque densities, low torque ripple and relatively 

simple configurations. 

To design and analyze an HSPMM, fundamental electromagnetic theories are still 

applied. However, the high-speed operation condition with minimized space and weight 

may cause a series of electrical, mechanical or thermal constraints. These issues have be-

come the major challenges that motor designers need to address. Moreover, the basic 

physical layer in the DT model has desired the multidisciplinary models to mirror the 

entity to the digital space. It is noted that just the DT model cannot completely replicate 

the current state of physical entities yet, but it is necessary to have the knowledge of basic 

design technologies to guarantee the scientific relationships between physical quantities. 

Therefore, in this section, the computational models for the stator iron loss (SIL), sta-

tor copper loss (SCL), rotor eddy-current loss (RECL), air-friction loss (AFL) and control 

system loss (CSL) are firstly overviewed. Then, the motor control strategies including the 

traditional field-oriented control (FOC) and the modern adaptive robust control are illus-

trated. Considering that effects of high working temperature on the power loss in 

HSPMMs are not trivial, various computation methods are investigated for calculating 

the temperature rise and distribution as well as different cooling approaches. The status 

on studying the HSPMM mechanical characteristics, such as the dynamic behaviors, rotor 

material strength and bearing support are also summarized. 

2.1. Power Losses 

HSPMMs feature high-speed high-frequency operation, high power density and a 

low thermal dissipation area. The power loss density is relatively large, which may cause 

a temperature rise and lower motor operation safety and stability. In order to acquire a 

good design, e.g., the motor temperature rise being within the limit, substantive research 

works have been carried out for more accurate calculation of HSPMM power losses, such 

as the SIL, SCL, AFL and PM REL. 

The SCL is the power dissipated in stator and rotor windings caused by the copper 

wire resistance. Normally, the DC resistance is used in the calculation [19,20]. However, 

this method is not accurate for the HSPMM as the high speed causes high current fre-

quency and the AC effect on the resistance becomes non-negligible. The high frequency 

stimulates the increase of skin and proximity effects and the decrease of effective area of 

current flowing, which then enhances the SCL. For calculating the copper losses, analyti-

cal models such as Dowell and Ferreira’s have been applied and the effectiveness has been 

verified. However, the accuracy does not meet the requirement as some structural 
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assumptions are made and nonlinear factors are ignored [21]. To address these problems, 

a finite element model (FEM) may be applied, which can not only accurately determine 

the copper loss, but also calculate the current density and magnetic flux density distribu-

tions in the motor. Some approaches have been applied for reducing the skin and prox-

imity effects such as: (a) the copper wire is made with a few thin strands in parallel, (b) 

the wire radius is chosen to be smaller than the skin depth at the highest operation fre-

quency, (c) the number of parallel strands for a certain frequency is optimized, (d) the 

current waveform harmonics are reduced, and (e) proper slot-openings are designed 

[20,21]. 

The SIL refers to the power loss in a magnetic core caused by the varying magnetic 

flux. Because an HSPMM works with a high-frequency magnetic field, high temperature 

rise and large mechanical stress, its iron loss can be much higher than that in a conven-

tional motor. The generating mechanism of SIL, however, is quite complex. In general, the 

SIL calculation development process can be described as Figure 1. It can be seen that sev-

eral millstones about the SIL calculation models include the simplified magnetic circuit 

model, Bertotti’s classical three-term model [22], Zhu’s model considering the effect of 

rotating magnetization [23], and orthogonal decomposition model [24]. These models are 

developed to consider the effects of both the alternating and rotating magnetizations, but 

the skin effect has not been included, which may cause large SIL calculation errors in the 

HSPMMs. In [25], Tumberger et al. studied the mechanism of how the skin effect may 

influence the SIL in HSPMM, but the effect of various magnetizations was neglected. In 

[26], the authors’ team presented an improved model for predicting the core loss in an 

interior PMSM, in which the effects of pulse-width modulation (PWM) carrier harmonics, 

slotting harmonics, temperature rise and mechanical stress were all considered. 

(a) Magnetic circuit method (before 1980s)

(b) Bertotti model (1988)
(c) Jianguo Zhu model (1998)

(d) Orthogonal decomposition model (2007)
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Figure 1. Development process of iron loss calculation models. Note: Ph is the hysteresis loss density, 

Pe the eddy current loss density and Pad the additional loss density. The detailed explanations can 

also be found in the listed reference [22–24]. 

The RECL is basically due to the time harmonics and space harmonics of stator wind-

ing magnetic flux and slot openings. Compared to conventional motors, the RECL in 

HSPMMs would have a significant increase because it is proportional to the square of the 

magnetic flux frequency. On the other hand, non-contact bearings are extensively used in 

high operating speeds, which may reduce the rotor heat dissipation capability and in-

crease the motor temperature rise, resulting in deteriorated PM characteristics. The RECL 

can increase significantly [27,28]. 

To predict the RECL, analytical models and FEMs are usually applied. The ad-

vantages of analytical models include a very short calculation processing time with rea-

sonable accuracy, as well as acting as a bridge to illustrate the relations between the motor 

dimensions and electromagnetic parameters. The properties of the rotor materials such as 
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conductivity and permeability, however, may vary with the operating conditions and de-

viate far from the model assumption. The analytical models often neglect the effects of 

core saturation, flux leakage and hysteresis, so the calculation accuracy may not meet the 

requirement. Therefore, FEMs are often applied for improving the RECL modelling accu-

racy. In [27], 2D FEM was applied for calculating the RECL of a surface-mounted PMSM 

with concentrated winding. The 2D FEM modelling has very short computation time, but 

the end effect and axial segmentation effect cannot be considered. To handle these, 3D 

FEM has been applied for the RECL analysis. Zhao [28] et al. calculated the RECL in 

sleeves and magnets of a surface-mounted PMSM by building a 3D FEM. The accuracy of 

the proposed methods is verified by the experimental results. 

To reduce the RECL, the PM sleeve material and motor structure can be optimized, 

e.g., reducing the stator slot width, increasing the air gap length and using appropriate 

protective sleeve material. Recently, inserting a thin non-magnetic shielding ring between 

the sheath of the rotor and PM was studied. Taking advantage of the shielding effect of 

eddy current, the RECL in shielding rings and sheath can be effectively reduced [28,29]. 

Because a violent friction may happen between the rotor surface and air in HSPMMs, 

the AFL can be significantly higher than that of a conventional motor. Usually, the AFL 

on the rotor radial surface and axial end surface can be computed by (1) and (2) [30]. 

3 4

_Af rad f f airP k C r l =  (1) 

3 5 5

_ 2 1

1
( )

2
Af end f airP C r r = −  (2) 

where kf is the rotor surface roughness coefficient, Cf is the air friction coefficient of radial 
surface, l is the rotor axial length, air is the air mass density, r, r1 and r2 are respectively 

the average, internal and external radius of the rotor end surface, and  is the motor an-
gular speed, respectively. 

However, the air in the HSPMM gap may be in the turbulent state and it is difficult 

to accurately calculate the friction coefficient. Hence, the empirical formulae need modi-

fication, e.g., with the help of computational fluid dynamic (CFD) simulations. Research 

shows that the AFL is mainly related to the rotor size, surface roughness and rotating 

speed. It is effective to reduce AFL in HSPMMs by inserting non-magnetic conductive 

filler material into the stator slot, smoothing the initial air flow and reducing the fluid 

resistance [30]. 

2.2. Thermal Design 

The following factors determine the highest operating temperature in an HSPMM: 

(1) if the insulation temperature exceeds the rated value, the motor life expectancy would 

decrease significantly, (2) irreversible PM demagnetization may happen due to the high 

temperature, and (3) the thermal stress in relevant components may increase and the rotor 

sleeve strength, especially composite sleeve, may decrease due to high winding tempera-

tures [31,32]. All the above-mentioned issues reveal that thermal field analysis is necessary 

in HSPMM and the corresponding heat dissipation should be well designed to limit the 

temperature rise. Commonly, three types of models are applied for the thermal analysis 

in HSPMMs, which are the lumped-parameter thermal-network (LPTN) model, FEM and 

CFD models [31–34].  

The LPTN method features merits like high calculation speed and hence it is effective 

for predicting the motor temperature rise at the design stage. However, the LPTN needs 

huge effort to determine the heat dissipation coefficient and equivalent thermal resistance. 

Furthermore, a lot of assumptions and estimations may be required in the LPTN and these 

would increase the calculation error [31]. In practice, the FEM, combined with the LPTN, 

is often conducted for the 2D and 3D thermal analysis. With the FEM, the machine can be 

divided into finite elements loaded with different power losses and thermal conditions, 

which are capable of solving detailed temperature rise distribution inside the motor. 
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However, the FEM may suffer from the same problems as the LPTN, i.e., the thermal con-

ditions at each boundary still need to be determined with the help of empirical formulas 

and CFD simulations. Furthermore, the FEM is much slower than the LPTN in terms of 

parametric analysis [31,32]. To handle this problem, the FEM may be used to enhance the 

accuracy of equivalent thermal resistance, which is then used in the LPTN or to study the 

temperature distribution details at the local parts of the motor such as the windings. On 

the other hand, FEM can be considered as a convenient tool for complex geometries, which 

cannot be solved by using the LPTN. 

In addition, according to the finite-volume technique, modern CFD algorithms can 

solve the Navier–Stokes equations complemented by a selection of validated and proven 

physical models, and then accurately solve the 3D laminar and turbulent flows and the 

heat transfer. The CFD can jointly model and solve the heat transfer in the whole motor, 

the external and internal cooling fluids, as well as the internal temperature rise distribu-

tion. In this case, the LPTN or FEM temperature rise modelling methods can be completely 

replaced. Furthermore, there is no need to determine the convective heat transfer coeffi-

cient of each part with the help of the empirical method, so more accurate and detailed 

results can be obtained. Despite the advantages, the CFD also has advantages such as long 

modelling and calculation time [33]. Recently, it has become an application trend to com-

bine all the methods and use their respective advantages for motor thermal analysis. In 

[34], the temperature rise of a 30 kW, 60,000 r/min HSPMM was computed by combining 

the FEM and CFD. The heat transfer coefficient of air gap and the heat dissipation coeffi-

cient of the motor surface were calculated by the CFD and then the coefficients were as-

signed to the FEM. This can avoid large amount of calculation while the motor tempera-

ture rise distribution can be accurately obtained. 

In summary, with the continuous advancement of computer hardware and software 

technologies as well as the continuing pursuit of higher HSPMM power density and effi-

ciency, the employment of CFD technology in thermal analysis has become very popular. 

The temperature directly affects the PM working state and power losses. To accurately 

predict the temperature rise and working state, the coupling of power losses and thermal 

field analysis should be taken into account [33,34]. 

It is noted that, in order to keep the motor to operate within the allowed temperature 

rise, a proper design of the cooling system for the HSPMM is requested, particularly for 

high-power HSPMMs. The machines may employ the air cooling, oil cooling, water cool-

ing and hybrid cooling approaches. In [35], different cooling approaches for the high-

speed motor were investigated. It is found that compared with the air-cooling approach, 

oil cooling can reduce the loss of rotor surface ventilation, so as to reduce the temperature 

rise of the rotor effectively. However, the oil cooling equipment occupies a large space, 

and its design is quite complicated. Considering the disadvantages of oil cooling, the air- 

and water-cooling approaches are usually applied in rotating electrical machines. The air-

cooling system has the merits of a simple structure, low cost and easy management and 

maintenance, but it needs large amounts of power, and its cooling effect and efficiency are 

poorer than the water cooling. Compared with air cooling, the water-cooling approach 

has higher effectiveness, higher efficiency and lower power consumption thanks to the 

large specific heat capacity of the water. However, the water-cooling system is featured 

with high cost caused by the complex structure. Therefore, a specific cooling approach is 

designed according to the actual temperature distribution of the motor, and the hybrid 

cooling approach may be the best for high power density motors. 

2.3. Mechanical Characteristics 

As for HSPMMs, the mechanical characteristics, especially the rotor material 

strength, bearing support and dynamic performance, are also important issues to consider 

in the design and optimization process. Generally, the requirements for rotor strength and 

bearing support can be easily satisfied based on the empirical design, while the dynamic 

performance requires special attention for most motors with high working speeds. In the 
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dynamic analysis, the natural frequencies and dynamic responses are the most important 

issues to be addressed and are critical for the operating safety and stability of HSPMMs.  

The permanent magnet materials employed in HSPMM have a low tensile strength, 

which indicates that the rotor may be broken without difficulty through the centrifugal 

pressure or thermal stress induced by the excessive velocity and temperature rise. There-

fore, it is essential to be certain that the permanent magnet and matching shielding sleeve 

can stand up to the allowable stress by means of inspecting the rotor strength in static and 

excessive velocity dynamic working conditions. So far, the internal stresses of permanent 

magnets and sleeves can be calculated through different methods with analytical models 

or FEM [36]. Taking advantage of these achievements in the rotor strength prediction, the 

motor rotors can be designed and optimized to obey the listed prerequisites in terms of (i) 

the stresses inside all rotor components are limited in the safe range, (ii) positive pressures 

are always maintained between the parts in fit, (iii) compressive stresses always exist in 

the permanent magnets for various operating conditions, and (iv) no considerable 

changes should happen for the internal stress of protective sleeves even under changing 

speed and temperature conditions [36].  

The dynamic behaviors and operating stability of HSPMM rotors rely significantly 

on the bearing support quality. In the machinery industry, the ball, oil-filled, air and mag-

netic bearings are usually selected for supporting the rotor in HSPMMs [37]. Meanwhile, 

based on the collected data [37], it is convincing that ball bearings are more suitable for 

HSPMMs with low-rated power, while air bearings and magnetic bearings have better 

functions used in electrical machines with high rated power and speed. In recent years, 

the concepts of bearing-less electrical motors were presented, in which the rotors can be 

suspended by the electromagnetic force. Academic institutions such as the Swiss Federal 

Institute of Technology in Zurich [38], Darmstadt University of Technology [39], Jiangsu 

University [40] and Nanjing University of Aeronautics and Astronautics [41] have re-

ceived preliminary achievements concerning bearing-less electrical machines. 

Dynamic behavior is an important characteristic for rotating machinery, and the dy-

namic analysis is helpful to solve the stability features, key frequency calculation and un-

balance response for an HSPMM. The stability mandates the motor to return to stable 

working status after experiencing external disturbances. The key frequency calculation 

can be finalized to extenuate the noise/vibration aroused by the rotor unbalance and to 

avoid resonance. The unbalance analysis requires studies on the sensitivity of noise/vibra-

tion to the imbalance extent, thus to provide solutions for rotor unbalance [37,42]. The 

transfer matrix methods and FEM are usually employed for rotor dynamics and FEM has 

relatively higher accuracy. Through extensive studies, it can be concluded that factors in-

cluding shaft length/diameter, bearing stiffness/position have a great influence on the nat-

ural frequency of the rotor. Despite the achievements in rotor dynamics, the nonlinear 

factors, bearing stiffness matching, parameter sensitivity and dynamic physical experi-

ments are still difficult and more efforts are required for the design and optimization of 

HSPMMs. 

2.4. Control Methods/Strategies 

Control strategies play an essential function in the determination of dynamic- and 

static-state performances of electrical drive systems. Substantial efforts have been put for-

ward for the development and application of various control algorithms in commercial 

drive systems, including traditional methods as the field-oriented controller (FOC), direct 

torque controller (DTC) and constant voltage–frequency (V-F) ratio controller [43–48], as 

well as modern control strategies as sensor-less controller (SLC), sliding mode controller 

(SMC), adaptive robust controller (ARC) and model predictive controller (MPC) [49–58].  

Among the traditional control methods, the FOC decouples the stator current into 

excitation component and torque component in the d-q coordinate system, so that the con-

trol of the AC motor can be equivalent to that of separately excited DC motor [43–45]. 

FOC, proven to have superiorities concerning good control precision, wide speed 
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regulating range and fast response speed, has been commonly applied in sorts of electrical 

drive systems [43–45]. Figure 2a shows the schematic diagram of a FOC control scheme 

used in a PMSM drive system. The DTC abandons the decoupling idea of FOC, which 

calculates and directly controls the flux and torque of the motor in the stator coordinate 

system, as shown in Figure 2b. It is distinguished by the merits of fast dynamic response, 

simple structure (thus low cost) and strong robustness against motor parameter variation. 

However, the torque and flux ripples reduce the performance in low-speed conditions, 

and the excessive acoustic noises restrict DTC application [46,47]. The V-F control is a kind 

of open-loop control, such that it can hardly complete the real-time control of machines 

[48]. 
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Figure 2. Control diagrams of typical FOC and DTC for PMSM drive systems. Note: Id and Iq stand 

for the d- and q-axis currents, respectively. Ye is the flux, Te the torque. For FOC, the d-axis current 

is set to zero for achieving the maximum torque per ampere. The current/torque loop and speed 

loop are set as feedback loops to keep the reference speed Wref as well as to make a smaller d-axis 

reference current Id_ref. 

The ever-developing modern industry has contributed to the widespread investiga-

tions of modern control strategies, among which the SLC, SMC, ARC and MPC are the 

most studied and widely used methods. To save costs and reduce the impacts of external 

disturbances on sensors, SLC was proposed to obtain the rotor position through calcula-

tion instead of sensors. So far, estimation methods using an open loop, fuzzy adaptive 

algorithm and observer can be used for rotor position when the machines work at rela-

tively high speeds, while high frequency signals are often employed to predict the rotor 

position in low-speed conditions [49,50]. SMC, originally proposed by Utkin [51], pos-

sesses excellent features including simple algorithm derivation, a fast response speed and 

strong robustness for handling parameter uncertainties and external disturbances, which 

has been widely used in many plants. To guarantee and convergence properties and to 

relieve the chattering phenomenon, fractional calculus can be integrated into SMC for 

PMSM control [52,53]. Results in [52,53] showed the improved control performance of 

SMC, especially for dealing with the uncertain and nonlinear system, i.e., electrical drive 

systems. In combination with the functions of adaptive control in handling unstructured 

uncertainties and robust control in attenuating disturbances, Yao and Tomizuka pre-

sented ARC [54,55] and proved that it could handle both structured and unstructured 

uncertainties. In [56], Yin et al. presented an adaptive robust backstepping controller with 

an extended state observer, as shown in Figure 3, for the speed regulating drive system of 

a new-type hybrid drive wind turbine. Experimental results illustrated the excellent con-

trol performances under disturbances from both wind wheel and power grid ends. Taking 

advantage of the development of artificial intelligence, MPC with an advanced predictive 

algorithm was investigated and applied to electrical machines. This kind of control strat-

egy does not need the fixed control model but has three basic parts. These are model pre-

diction, iterative optimization and feedback correction. MPC has the merits of good ro-

bustness and dynamic performance used in complex industrial processes, but requires 
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improvements in terms of stability, anti-interference ability and model adaptability 

[57,58]. 
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Figure 3. Control diagrams of ABC with ESO for PMSM drive systems [56]. Note: x1 = ωm, x1d = ωmd, 

θ = [θ1  θ2]T = [kt/J  B/J]T. d(x, t) = TL / J and represents the lumped disturbances. ωm is the PMSM 

rotor angular velocity, TL the load torque or lumped disturbances, B the viscous friction coefficient, 

J the rotational inertia. kt = 1.5 pψf , and p is the number of poles, ψf  the flux linkage of permanent 

magnet. 

In industrial application, engineers should choose the control strategy and the match-

ing processors according to the machine characteristics and operating scenarios to guar-

antee the best control performance and price/performance ratio. Meanwhile, more and 

more innovative control methods for PMSM drive systems will be presented based on the 

development of modern control theory, which will break through the limitations of tradi-

tional controllers and achieve parameter identification & control more easily by using ar-

tificial intelligence algorithms. 

3. Digital Twin 

The DT, first proposed by Grieves for product lifecycle management [15], can realize 

the complete mapping of the physical entity of electrical drive systems to the virtual space 

in real-time, which provides a simulated test and evaluation environment for the mecha-

nism model, so as to carry out the simulation, calculation, analysis, decision making, and 

feedback optimization. So far, DT technique has shown achievements in manufacturing, 

urban management, medical treatment, agriculture, etc. [10–14]. NASA firstly applied the 

DT to monitor and predict the status of space vehicles to optimize subsequent operations 

[7]. Then, DT technology was introduced to the urban construction and medical industry 

for decision-making and human health tracking by Barricelli and Dang et al. [8,9]. The DT 

technique is showing a thriving development trend and may have great benefits to the 

electrical drive systems. However, although there are general guidelines for DT model 

design, there is no specific standard procedure. Therefore, more effort should be paid to 

receive a deeper understanding for the design and optimization of electrical machines 

based on the DT models. This section focuses on key technologies for developing the over-

all framework of the DT models for electrical drive systems. 

Existing achievements have shown that DT technique possesses characteristics such 

as data-driven, real-time interaction and closed-loop feedback, which provide great ad-

vantages for application to electrical drive systems in the aspects of online analysis, real-

time monitoring, state prediction, coordinated control, and design optimization, etc. As 

given in Figure 4, there are four key parts in the DT modelling process of the electrical 

drive system, including the physical entities, a perception layer for data collection, middle 

layer for data processing and decision layer for human–computer interaction. Generally, 

the data perception layer comprehensively collects the motion drive data, action signals, 

status data, command data, etc. in the workshop, the middle layer completes the manu-

facturing modeling, production process modelling and production system modelling in 
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the workshop, and the decision layer maps the information of entity areas to digital area 

to realize the synchronous operation functions between digital models and physical 

spaces [59]. 
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Figure 4. Framework of electrical machine DT modelling process. 

3.1. System Physical Entity Layer 

An electrical drive system mainly comprises a power source, an inverter with control 

devices and an electric motor. In order to drive this system, the circuits between the power 

supply and the motor must be connected, in which two key pieces of equipment, a motor 

controller and power converter, are needed. The motor controller is managed by using the 

battery administration system, while the power converter is managed via the motor con-

troller. Therefore, to realize the motor drive, we need to firstly manage all controllers at 

low voltage to ensure the regular operation of a number of controllers. Then, the battery 

administration machine judges the charging status of the battery and completes the ma-

nipulation of the electrode. Finally, the motor controller completes the management of the 

power converter, which determines the quantity of cutting-edge flow to the motor and 

adjusts the pace of the motor [60]. 

3.2. Data Perception Layer 

The data perception layer is based totally on the backside layer of the physical bodies 

for data collection, transmission and communication. Affected by factors such as environ-

mental changes and equipment aging, there may additionally be mistakes in the model 

built up in accordance with the system theoretical knowledge and simulation require-

ments. In order to comprehend the real-time monitoring and accurate evaluation of the 

operation states of the electrical drive system, it is so vital to establish a number of sensing 

devices to finish the comprehensive perception of its state quantity in all aspects, such as 

temperature, stress, current or voltage, torque, speed, etc., as well as the programmable 

logic controller [61]. The parameters and states of DT models will depend on the data 

collected through the sensors, and will be always up to date in an iterative and incremen-

tal manner, such that the quality of the digital model can be consistently improved. At 

present, with the deep penetration and integration of optics, chemistry, biology, electron-

ics and other disciplines, multi-sensor fusion has more and more emerged as a vitally im-

portant research hotspot around equipment sensing devices in order to reap high fault 

tolerance, great complementarity and intelligence [62]. 

Aiming at electrical drive system, the important challenges confronted with the data 

perception layer are as follows. 

(1) Developing highly reliable advanced sensors for complex working conditions and 

environments. When the electrical drive systems operate at conditions of excessive 

temperature or excessive pressure, the sensors should nevertheless maintain the 
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traits of miniaturization, low power consumption, little delay in communication and 

high-precision time synchronization, etc. 

(2) Realizing multi-faceted and overall in-depth monitoring. An electrical drive system 

is a multi-coupling system in the fields of electricity, magnetism, heat, force and 

sound. Many parameters can be difficult to observe or measure directly, such as mag-

netic field distributions and losses. 

(3) Improving the accuracy of collected data. Due to the different sensor types and work-

ing environments, the current and voltage records gathered with the aid of the sensor 

are prone to harmonic interference with large noise. The low-quality data will cause 

the system to misjudge or pass over the operating state, affecting the accuracy of the 

DT models. The accumulated online statistics have to be similarly processed via data 

cleaning and other operations to enhance the information amount and supply a de-

pendable statistics foundation for the building of DT models. 

3.3. Data Processing Layer 

Depending on the data obtained from the previous step, this layer plays an important 

role in further processing the data. It mainly includes abnormal data judgment, data elim-

inating, data completion and data fitting [4,59]. 

Based on the historical data of abnormal sensor devices, we can train and construct 

intelligent classifiers or extract key statistics. We can also usually use the method of offline 

online data mutual verification to realize the evaluation. Based on the technique of multi-

criteria fusion, the sensor devices in abnormal operation can be discovered in time. In 

practice, due to the external environment and human factors, the data will have some 

missing values, mutation values, etc. Although this part of abnormal data accounts for a 

small proportion of the overall data, it will additionally have an effect on the reliability of 

the model. Therefore, it is necessary to clean this part of abnormal data, then mine effec-

tive information and improve data quality, which involves data completion and data 

smoothing technology. The optimal data set used to build the DT model of the system is 

then obtained by data fitting. 

For the data fitting, knowledge-driven methods represent the deterministic, linear 

and representable parts in the modelling process while data driven methods represent the 

non-deterministic, non-linear, and non-representable parts. The specific ideas are as fol-

lows. A massive quantity of data-driven statistical correlation models generated by the 

operation of electrical drive systems under multi conditions is used to represent the un-

certainty, and then for every condition, the knowledge driven differential algebraic mech-

anism model is used to calculate the certain parameters. In the end, the simulation conse-

quences of all conditions are built-in to comprehend the integration of the two models, in 

which the probability distribution of random variables is calculated based totally on the 

differential algebraic mechanism model, and the knowledge driven deterministic alge-

braic mechanism model is transformed into the knowledge driven probability distribution 

function model to realize the fusion of the two models [63]. 

3.4. Decision-Making Layer 

After obtaining the real-time operation data of all sorts of sensors, we can carry out 

the synchronous operation and interactive assessment of the equipment in physical space 

and virtual space, and realize the fault diagnosis, operation control parameter setting and 

optimization, as well as cluster management, by means of obtaining access to the PMSM 

drive system-DT model which integrates the mechanism model and data drive model, 

and combining the environment data, equipment process manufacturing data, equipment 

offline test, operation and maintenance data, fault case data, etc. [64]. In Section 4, two 

types of the most commonly used applications are introduced, in which the faults caused 

by temperature rise and system level optimization methods are investigated. 
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3.5. General Technique Route 

The specific steps for building a DT for electrical drive systems are concluded below. 

(1) The DT is initialized with the current state of the physical entity of electrical drive 

systems, so that the initial conditions of the DT and the physical entity are consistent. 

By customizing various working conditions according to research needs, simulation 

software is used to provide unobservable training and test data for intelligent algo-

rithms. The initial training data set can then be obtained after data preprocessing, 

feature attribute selection and dimension reduction. 

(2) The processed data are introduced into the neural algorithms to train the models. In 

addition to the data-driven statistical correlation models, the differential algebraic 

models (mechanism models) also need to be integrated into the DT models, because 

the genes of DTs and physical entity are consistent. 

(3) Then, the physical entity is always in changing and developing, and constantly cor-

rects its own structure and parameters in accordance with the real-time records from 

the sensors, in order to accurately reflect the state of the physical model in the virtual 

digital space. 

(4) The objectives of DTs in short term are predicted, while the optimal control strategies 

are selected simultaneously. 

(5) The optimization results obtained from the simulation are fed into the test entity to 

control the device, while the DTs will be improved simultaneously by using the up-

dated running state data of electrical drive systems. 

(6) Another optimization and control strategy can be conducted in this section with the 

stakeholders’ advice. The same process as (5) will occur. 

4. Fault Diagnosis and Optimization Strategy 

The DT technology enhances the cognition and regulation of electrical drive systems 

through coupled dynamic and accurate digital modeling driven by data, knowledge and 

experience. The following is a combination of two typical applications of DT based on the 

requirements of the electrical drive system. 

4.1. Fault Diagnosis 

PMSM fault diagnosis can be divided into several types mainly including electrical 

faults, mechanical faults and permanent magnet faults, which are shown in Figure 5. Judg-

ing from the existing literature, a number of achievements have been received in PMSM 

electrical faults, while the research on permanent magnet fault diagnosis started late [65]. 
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Figure 5. PMSM fault type. 

Among them, the demagnetization fault is a relatively serious fault. For permanent 

magnet materials, when their stability is challenged by comprehensive factors such as 

temperature, external magnetic field, acid-base corrosion, manufacturing defects and 
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natural life, the magnetic induction intensity is prone to amplitude reduction or distortion, 

forming a uniform demagnetization or local non-uniform demagnetization failure mode 

[66]. Sintered rare earth materials, such as samarium cobalt (SmCo) and neodymium bo-

ron iron (NdFeB), are typically used to manufacture rotor permanent magnets of high-

performance applications. These materials are susceptible to cracking and corrosion un-

der excessive humidity or heavy dew. During the installation of the motor, the permanent 

magnet exposed to mechanical pressure may produce small cracks, resulting in disassem-

bly under high-speed operation. In addition, metallurgical changes in magnet materials 

caused by high temperature, corrosion and oxidation may lead to irreversible permanent 

magnet demagnetization failures. Direct impacts on the motor may additionally damage 

the permanent magnet, resulting in local loss of excitation. 

After the motor stops, the reversible demagnetization can be restored as long as the 

working point of the permanent magnet is not lower than the maximum demagnetization 

working point. However, if the working point of the permanent magnet is below the max-

imum demagnetization working point, the magnetic flux cannot return to the initial value 

after the motor is cooled, which will lead to the irreversible permanent demagnetization 

and thus the unbalanced distribution of electromagnetic force, as well as the increasing of 

electromagnetic vibration and noise [67]. The mechanical torque will be greatly reduced, 

and catastrophic failures may even happen. Therefore, in order to realize the efficient and 

stable operation of the PMSM drive system, the health status of the permanent magnets 

must be monitored and diagnosed in real time. 

The special requirement of PMSM demagnetization fault diagnosis is to seek a simple 

and reliable fault eigenvector to realize the real-time fault diagnosis of the motor. At pre-

sent, according to the literature, the demagnetization fault diagnosis strategies are primar-

ily developed from four aspects: the direct analysis method, model analysis method, sig-

nal processing method and artificial intelligence method. 

(i) Direct analysis method 

The traditional demagnetization fault detection of PMSM is generally judged by spe-

cialists or professional equipment. A Gauss meter is mostly used to directly measure the 

magnetic field axis and magnetic field distribution of permanent magnets [68]. Although 

this method can precisely diagnose the local demagnetization and uniform demagnetiza-

tion fault of a permanent magnet, this technique ought to be disassembled in fault diag-

nosis such that it cannot become aware of the PMSM state in real time. Therefore, this 

method is mostly used for design stage rather than online fault monitoring and diagnosis. 

(ii) Model analysis method 

In the model diagnosis method, an accurate demagnetization fault model needs to be 

established starting from the operating mechanism and the internal electromagnetic rela-

tionship of PMSM. However, this method depends on the ideal conditions. Once the mo-

tor fails and the model establishment conditions do not exist, it needs to be remodeled 

and the model accuracy cannot be guaranteed, which greatly increases the difficulty of 

online fault diagnosis. Therefore, there is less literature reported on the PMSM demagnet-

ization faults with parameters or mathematical models. The finite element model is not 

limited to this condition. Some satisfactory results have been achieved through the study 

of the magnetic field and the output data in the simulation environment. In [69], Wang et 

al. used the finite element analysis technology to build the motor model for simulating 

the demagnetization fault state, and then made use of the wavelet transform technology 

to extract the fault feature vector from the current data under the fault. In [70], Ruoho et 

al. found the relationship between machine parameters and permanent magnet demag-

netization by simulating the motor operating state under different temperatures and 

loads. They also established an accurate mathematical model through this connection, so 

as to diagnose the motor demagnetization faults. 

Although the finite element modeling can directly acquire the magnetic field distri-

bution of a permanent magnet and analyze the influence of the internal electromagnetic 
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field and motor output characteristics caused by the demagnetization fault, it is a physical 

model, with which it is difficult to comprehend the grafting with the control system, and 

can only be analyzed offline. The level of calculation is too large, and it is mostly used to 

furnish the groundwork for the optimal design of the PMSM rotor structure. 

(iii) Signal processing method 

This method is the most widely used in motor fault diagnosis. Scholars have found 

that when a PMSM has a demagnetization fault, some acquired signals have specific har-

monic content, from which the feature vector can be extracted for determining the demag-

netization faults [71]. However, the accuracy of this method is affected by factors such as 

inverter, vibration and load fluctuation. Based on the fault feature information contained 

in the branch current spectrum, in [72], Ruschetti et al. quantified the demagnetization 

degree of the permanent magnet and realized the demagnetization fault detection of the 

motor. Ruiz et al. used continuous wavelet transform to analyze the stator current to judge 

the demagnetization fault. 

(iv) Artificial intelligence method 

In recent years, researchers have utilized artificial intelligence algorithms to study 

the demagnetization fault in the context of industry 4.0. At present, only a small range of 

literatures use artificial intelligence algorithms for fault diagnosis of PMSMs, and there 

are even fewer studies on demagnetization faults based on artificial intelligence. Several 

scholars have combined neural sensor networks with signal analysis techniques such as 

wavelet analysis and empirical modal analysis. However, there are many problems with 

these algorithms, such as large training samples, large calculation burden, over-learning 

and complex parameter space [73]. This is also the future focus of research on artificial 

intelligence diagnosis. In [74], the Vold–Kalman filter order was delivered to track the 

order of the PMSM torque ripple to extract the characteristic parameters. The dynamic 

Bayesian network (DBN) was employed to detect and predict the demagnetization fault. 

The reliability of the proposed method was verified by experimental case studies. 

However, most of the modern-day demagnetization fault prognosis techniques are 

based on the attribute statistics of a single sign to diagnose the demagnetization faults. 

Because the attribute records of a single sign are too simple, it is challenging to compre-

hensively represent the fault attribute information, which makes the accuracy of the de-

magnetization fault diagnosis low and susceptible to misdiagnosis. The DT models pro-

vide a virtual representation for real PMSMs, in which the various operating parameters 

and states can be monitored and recorded online. The information can thus be trans-

formed to the above-mentioned methods to realize the fast, accurate and comprehensive 

diagnosis of demagnetization faults in PMSMs. 

4.2. Design Optimization of HSPMM 

The design optimization of HSPMMs is a high-dimensional and high-nonlinear issue, 

coupled with the characteristics of being multi-objective and multi-disciplinary. Through 

the significant efforts of researchers, the design optimization of electrical machines (in-

cluding HSPMMs) has been developing very fast. The most important parts in the design 

optimization process include (a) design methods with analysis models, and (b) optimiza-

tion methods with algorithms. The first stage aims to provide enough information includ-

ing motor parameters and performance evaluations to the development of optimization 

models, while the second stage can be utilized to improve motor performance via optimi-

zation methods or strategies [75–96]. 

4.2.1. Optimization Models 

(i) Multi-physics optimization model 

In the design optimization process of HSPMM, due to the super-high rotation speed 

and sometimes special operating requirements, severe uncertainties appear in different 
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physical fields including the electromagnetic, thermal and mechanical force fields. Cou-

pled with intense interaction and confliction among these physics, it is necessary to estab-

lish optimization models of HSPMMs with multi-physics analysis [43,75]. 

Figure 6 shows the design framework of modern HSPMMs regarding the multi-phys-

ics analysis, which can also be used by other types of electrical machines. As shown, the 

first step is to define the motor specifications, mainly including the cost, output power, 

working efficiency, temperature rise, and resonance frequency. Then, the key designs/se-

lections process, related to the motor topology, dimension, material and manufacturing 

method, need to be investigated based on the defined constraints. After that, multi-phys-

ics analysis models, composed of electromagnetic models with an advanced core loss 

model, thermal model, and mechanical model with vibration and noise analysis, can be 

developed. Finally, the performance of the designed motor needs to be evaluated and then 

utilized for the next optimization [43,75,76]. 

Motor specifications 

Output power, efficiency, cost, etc

Selection of motor type and topology

Material

Performance calculation

Dimensions Manufacturing methods
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Figure 6. Design framework of HSPMMs and other electrical machines with multi-physics analysis. 

In view of a single-objective optimization problem with N constraints, the multi-

physics design optimization model of HSPMM can be shown as follows [76]. 
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where X is the design parameter vector, Xu and Xl are respectively the upper and lower 

boundaries of X, N is the number of constraints, and f and g are respectively the objective 

function and constraints. 

In (3), different multi-physics constraints should be defined via (4) [75,76]. 
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As shown, eight key constraints are commonly used in multi-physics optimization. 

These are respectively related to (a) the flux density at the rotor yoke (Bry) and stator tooth 

(Bst), (b) the residual contact pressure between magnets and rotor iron (Pc), (c) the maxi-

mum temperature rise of the winding ( wΔT ), stator tooth ( stΔT ) and yoke ( syΔT ), (d) the 

power density ( pρ ), (e) the efficiency (), output power (Pout), (f) the maximum torque per 



Energies 2022, 15, 6186 16 of 26 
 

 

loss per mass (Tlm), (g) the total rotating tangential stress (
d
tδ ), and (h) the equivalent Von 

Mises stress (
d
VMδ ). 

(ii) Multi-objective optimization model 

Considering the design optimization process of HSPMM, there are many design pa-

rameters, objectives and constraints. For example, maximizing the average torque or 

torque density and motor efficiency as well as minimizing the cost, loss and volume, 

weight and torque ripple can all be selected as direct optimization objectives. At the same 

time, some other parameters are also closely related to the performance of motors, such 

as magnetic flux density, air gap, back-EMF, and sleeve thickness. These parameters are 

often selected as indirect optimization objectives for motors [43,75]. Therefore, the design 

optimization of HSPMM is normally a multi-objective optimization problem. The multi-

objective optimization model with p objectives and Nd constraints can be established as 

(5). 

 1 2min : ( ), ( ), ( )

s.t.   ( ) 0 1,2,

        

d d d d dp d

di d d

dl d du

f f f

g i N =

 

X X X

X

X X X

，    (5) 

where Xd is the design parameter vector, Xdu and Xdl are the upper and lower boundaries 

of Xd, fd and gd are the objective functions and constraints, respectively. 

Theoretically, the multi-objective optimization solutions are a compromise among 

different objectives. That is, to obtain the optimum for each of these objectives is always 

impossible. In this case, one can only acquire the non-inferior solutions that can be called 

as Pareto optimal solutions by the way of getting the objectives as close as possible to their 

optimums [43,75]. However, different from the solutions of single-objective optimization, 

the Pareto solutions may have a very large or even infinite number, which should be 

passed around as evenly as possible at the front of Pareto solutions. The detailed defini-

tion of the Pareto front can be found in [75]. A specific case of Pareto optimal front with 

two objective functions is shown in Figure 7. We can see that points ‘B’ and ‘C’ are located 

at the Pareto frontier. Then, the results solved from ‘B’ and ‘C’ are the Pareto optimal 

solutions. Moreover, based on the definitions, we can say that the solutions of points ‘B’ 

and ‘C’ dominate the solutions of point ‘A’. So far, plenty of algorithms such as MOGA, 

NSGA and the improved NSGA II and MPSO methods can all be utilized for completing 

the design and optimization of various multi-objective problems [77]. 
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Figure 7. A specific case of the Pareto optimal solution. 

(iii) System-level optimization model 

With the purpose of further improving the operating performance of HSPMM, the 

steady-state performance such as torque, average output power, and efficiency, as well as 

the dynamic responses including settling time, speed overshoot and torque ripple should 

be considered comprehensively. Generally, during the design optimization, multi-physics 
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analysis of the motor is always required to estimate these steady-state performances, 

while simulation analysis for the control systems of the machines needs to be conducted 

to evaluate the dynamic responses. Moreover, electrical drive systems have become a pop-

ular part of future applications, which aims to integrate electrical machines and control 

systems together. Therefore, the system-level design optimization of the whole electric 

drive system is very meaningful in the future to ensure the best optimal system perfor-

mance, instead of assembling the motor, inverter and other individual optimized compo-

nents into a drive system [43,75,78,79]. 

Figure 8 illustrates a succinct system-level design optimization framework of electri-

cal drive systems with particular HSPMM and its control system. As shown, there are five 

key steps: (a) determine system requirements and specifications for input, (b) select motor 

type, drive and controller units according to the system specifications, (c) joint design of 

the motor and controller, (d) construct design optimization models for the whole system 

including both the motor and controller, and (e) evaluation of the system performance 

[43,75,78,79]. 
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Figure 8. System-level design optimization framework for an electrical drive system with specific 

HSPMM and control system. 

(iv) System-level optimization model 

With the higher application requirements and standards for HSPMMs, industrial de-

sign and manufacturing factors should be considered during the motor design optimiza-

tion due to inevitable manufacturing uncertainties and variations in the practical electrical 

machines’ production process. Generally, for a permanent magnet motor, manufacturing 

tolerances, material diversities and assembling inaccuracy are the key issues to affect the 

final performance like back EMF and cogging torque, which indicates that the determin-

istic optimization models might sometimes be not appropriate for improving motor per-

formance and manufacturing quality [43,75,78–80]. 

As a result, robust approaches have been investigated for the multi-disciplinary op-

timization of electrical machines with single- or multi-objective conditions [80–83]. Figure 

8 shows a robust design optimization framework for an electrical drive system. As shown, 

compared to the framework shown in Figure 9, the practical process design and manufac-

turing quality are considered. Moreover, to solve the robust models, design for six-sigma 

(DFSS) [43,81], Taguchi parameter design [82], and worst-case design [83] methods can be 
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used. The DFSS method, developed from quality engineering, focuses on different specific 

objectives for probabilistic analysis and/or optimization, and has attracted much attention 

recently. In this method, assuming all parameters in deterministic models as variables 

follow the normal distributions with different means and standard deviations. In this case, 

all constraints and objectives can be formulated as functions of mean and standard devi-

ations [43,81]. Meanwhile, different examples have been investigated to illustrate the ad-

vantages of the robust optimization method, by which the improvements in motor per-

formances and reliabilities were verified [43,75,80–85]. 

Maximal defect-ratio in batch production

And required system performance

Selection / design of motor 

type and topology design

Dimension and loading design, selection of material 

and manufacturing method
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Control system 
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Electromagnetic 
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Thermal 
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Manufacturing 
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Figure 9. Robust design optimization framework of an electrical drive system. 

4.2.2. Optimization Methods/Strategies 

After developing the optimization models of HSPMMs, the optimization solutions 

can be obtained by using an appropriate optimization method/strategy. 

(i) Conventional optimization method 

The conventional one is simple in implementation that can be used to evaluate objec-

tives and constraints by optimizing the physical models (such as analytical, magnetic cir-

cuit, FEM and thermal network models). For example, taking advantages of electromag-

netic analysis’s analytical models, the conjugate gradient and sequential quadratic pro-

gramming algorithms have been successfully used to realize the design optimization of 

several kinds of motors. Additionally, intelligent algorithms and FEM can also be coupled 

(GA&FEM, DEA&FEM and MOGA&FEM) in conventional optimization methods [75,86]. 

Generally, the conventional direct optimization method can present good optimal 

design schemes for electrical machines by using an optimization algorithm such as GA. 

Although the classical optimization methods are relatively simple to implement, the opti-

mization accuracy cannot always be guaranteed, especially for the high-dimensional de-

sign and optimization of HSPMM. The main reason lies in that the number of limited 

samples is insufficient for approximate models to replace FEM with satisfactory accuracy 

for high-dimensional problems. These challenges by using classical or traditional direct 

optimization methods based on both FEMs and the approximation models have contrib-

uted to the investigation of new optimization strategies. 

(ii) Multi-level optimization method 

The design optimization of HSPMM is generally a non-linear multi-physics and 

multi-objective problem. In this process, a number of design parameters should be con-

cerned and may have different sensitivities related to different design objectives. Addi-

tionally, more attention should also be paid to reduce the huge computation cost required 

by conventional methods when high dimensional optimization problems exist. To address 

these challenges and better optimize the sensitive parameters, a kind of new multi-level 
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optimization method is recently investigated, by which the initial big and high-dimen-

sional design parameter space can be refined into two or three low dimensional subspaces 

by using sensitivity analysis methods for all the covered parameters [87–89]. The key 

flowchart for multi-level optimization method with three subspaces is given as Figure 10. 

As shown, compared to conventional methods, with the multi-level optimization 

method, the initial high and big dimensional design space is divided into three subspaces 

(X1, X2 and X3). The first subspace (X1) includes all the highly significant factors, and all 

the significant factors are in the second subspace (X2), while all the non-significant factors 

fill the third subspace (X3). The design optimization of subspaces X1, X2 and X3 can be 

realized one by one, and the optimization results in the up-level can be used in the next 

level. It is seen that for each subspace, the dimensions are much smaller than that in the 

initial space. As a result, the general optimization approximate models can be utilized in 

all sublevels and the calculation complexity can be reduced. 

Start-Problem defination

Sensitivity analysis for all the design parameter of HSPMM
Divide the initial design space into three subspace, X1, X2, and X3

X1: All highly significant parameters

X1: All significant parameters

X1: All non-significant parameters

      optimization process

Optimization in X1

Parameter in X2 and X3 are fixed

Optimization in X2

Parameter in X1 and X3 are fixed

Optimization in X3

Parameter in X1 and X2 are fixed

Performance 

evaluation

/ ?f f  

YES

Output

Update the parameters

in X2 and X3

k = k+1

thk
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Figure 10. Flowchart for the multi-level optimization method. 

Taking advantages of multi-level optimization method, in [87], Putek et al. synthe-

sized a multi-level set method with the incorporation of a topological gradient to optimize 

the topology of a permanent magnet machine. In [88], the optimization of all sensitive 

parameters of permanent magnet synchronous generators was realized through both 

dual-level response surface methodology and Booth’s algorithm by Asef et al. Then, a 

multi-level design optimization method for double-stator permanent magnet synchro-

nous motor was also proposed, by which the rotor weight and mechanical stress distribu-

tion in the rotor core are effectively reduced [89]. In [90], a multi-level optimization design 

method for the flux-concentrating permanent-magnet brushless machine was proposed 

with considerations of permanent-magnet demagnetization limitation. Results showed 

that the optimized motor’s output torque was increased while the torque ripple was 

greatly decreased. In our previous works [91–93], the multi-level optimization method 

with sensitivity analysis was employed for various types of electrical machines. 

The above-mentioned achievements published on the same topic have showed the 

significant advantages of multi-level method in improving the optimization performance 

and calculation efficiency, which have contributed a lot to the research and development 
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of the design optimization for electrical machines. However, the following critical issues 

still need to be solved: (a) The sensitivities of the design parameters are usually calculated 

separately, which means that the correlations or mutual sensitivities among different de-

sign parameters are neglected. Thus, the accuracy of optimization results may be affected. 

(b) In previous works, researchers fully-considered the correlations between optimization 

parameters and objectives, without giving concerns about the correlations among differ-

ent optimization objectives fully. So far, cross-factor variance analysis and Pearson corre-

lation coefficient methods can be utilized to classify the optimization objectives. (c) It is 

difficult to set multiple objectives for each optimization level since only Pareto solutions 

can be obtained without specific parameters, and traditional methods cannot be used. Fu-

ture works about multi-level optimization should be carried out to solve problems in 

terms of analyzing correlations of design parameters and objectives, as well as selecting 

the key points from Pareto solutions of each level. Consequently, the multi-objective op-

timization can be employed at each level and the final optimization accuracy can thus be 

guaranteed. 

(iii) Multi-disciplinary optimization method 

Explanations concerning the multi-physics nature of HSPMM indicate that the de-

sign optimization processes of electrical machines and drive systems are complex and 

challenging since multiple disciplines such as structural mechanics, electromagnetics, 

heat transfer and control, as well as multi-constraints and multi-objectives should be in-

volved. Moreover, the related disciplines are not isolated but normally strongly coupled. 

In this case, the systematic multi-disciplinary analysis and optimization method can be 

utilized to achieve the multi-objective optimization of electrical drive systems in wind 

power generation and electric vehicles, which need challenging specifications [43,75]. 

Figure 11 shows the basic framework of the systematic multi-disciplinary optimiza-

tion method. In the disciplinary level, the indirect optimization models (IOMs) for opti-

mization variables, constraints, objectives and models can be obtained by the analysis and 

modelling of electrical machines in different disciplines based on the methods (such as 

LPTN model, FEM and CFD methods) introduced in the electromagnetic design part. 

Then, system level robust optimization variables, constraints, objectives and models can 

be derived by using collaborative algorithms to finally complete the systematic multi-dis-

ciplinary optimization of a specific electrical drive system. In [76,94], the multi-discipli-

nary design optimization method was utilized for the drive systems based on permanent 

magnet machines with soft magnetic composite cores. The results showed the satisfactory 

optimization performance of the multi-disciplinary optimization method in terms of in-

creasing motor reliability, reducing computation cost and improving the manufacturing 

quality for drive systems. 
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Figure 11. Flowchart for systematic multi-disciplinary optimization method. 

(iv) Space reduction sequential optimization method 

Apart from the multi-level optimization method, the sequential optimization method 

is another kind of space reduction strategy for completing the design optimization of elec-

trical machines, especially with the considerations of inevitable uncertainties in manufac-

turing processes [43,75,95]. In contrast to the multi-level method, the idea of the sequential 

optimization method is to reduce the unnecessary waste in computation costs that comes 

from the samples outside the interested subspaces [95,96]. Figure 12 illustrates the 

flowchart of a multi-objective sequential optimization method for HSPMMs. 

Start-Problem defination
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Analyze the data 

 optimize the models by using a multi-

objective optimization algorithm

Obtain the Pareto optimal solutions P
(k)

Compute the motor performance 

Compare it with the last objective

Performance 

evaluation

/ ?f f  

YES

Output

Update S
(k) 

 with  P
(k)

Modify the sampling method

k = k+1

thk

No

 

Figure 12. Flowchart for space reduction sequential optimization method. 
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Generally, the shape of interesting spaces is a critical issue in this method, which 

requires an advanced space reduction method to guarantee optimization accuracy. Based 

on the modified central composite design technique, a multi-objective sequential optimi-

zation method was presented [96]. In [95], by using a convergence measure consisting of 

an orthogonal design method and a hyper-volume indicator, the authors proposed a 

multi-objective sequential optimization method for electrical machines’ deterministic and 

robust design optimization. Case studies verified that, once the proposed method is em-

ployed, the motor performance can be enhanced and the computational cost can also be 

reduced by about 10–40% compared with that of the direct optimization method (like 

DEA plus FEM). 

Although the sequential optimization methods are efficient for the optimization of 

HSPMM, these strategies are difficult to use for extremely high-dimensional optimization 

problems due to the high computation cost of FEM. Moreover, since the sequential opti-

mization method is a kind of iterative optimization, the efficiency of the sequential opti-

mization method is not highly dependent on the type of surrogate models. 

5. Conclusions and Future Directions 

The modeling for electrical drive systems covers multi-disciplinary areas such as 

magnetic, thermal, mechanical fields, and control circuits. Traditional or single-compo-

nent modelling methods may not be able to meet the needs of characteristic analysis, op-

timization design and predictive control of the whole electrical drive system. Targeting 

Industry 4.0 or smart manufacturing, PMSM drive systems based on DT models have been 

attracted with the superiorities of embodying multi-scale and full life cycle of entities, in-

tegrating typical services at the decision-making level as well as making up for the imbal-

ance and lack of original data categories, and so on. This paper overviews and summarizes 

the development of DT technology as well as the design requirements and fundamentals 

of PMSM drive systems. The overall framework and technical route of building DT mod-

els for PMSM drive systems have been put forward. In addition, it also expounds the key 

problems and technologies to be solved in the specific implementation of the two typical 

stakeholders’ application scenarios, including system design optimization and fault diag-

nosis caused by temperature rise. 

Aiming at the application and development of the PMSM drive system–digital twin, 

there are the following prospects. 

(1) With the flourishing of involved areas such as intelligent algorithms, engineering au-

tomation tools and simulation methods, in the domain of electrical drive systems, we 

should leverage our expertise in electrical machines and their drive systems to de-

velop DT models with multiscale and multi-operating modes for realizing system 

level and multidisciplinary modelling. To ensure the consistent state between the en-

tity and the DT model, effort should be given to the combined modelling of mecha-

nism and data, the special working conditions considered for improving the DT 

model database and the life prediction of key components. 

(2) Based on the PMSM drive system–DT technology, the coordinated control strategy 

served for system and subregion levels should be put forward. Improving the capa-

bility of optimal decision making regarding multiple timescales, multi-objective and 

multi-constraint will be another issue. Moreover, substantial work should also be 

done towards promoting the technologies concerning data perception, transmission 

and real-time processing & sharing. 

(3) It is necessary to tap into the potential information from massive data to deal with 

uncertainty, error, coupling interaction and other disturbances. Therefore, a series of 

services, such as fault diagnosis and detection, health management, state prediction, 

system control optimization, etc., will be greatly developed at the decision-making 

level, which will be beneficial to engineering efficiency, accuracy and practicality. 
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This review could bring reflections and guidance for the future developing directions 

for the PMSM drive system towards Industry 4.0. Furthermore, there are types of pressing 

issues to be addressed by researchers in this decade, in order for the digital twin to be 

used to its full potential. 
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