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Computational Model of Robot Trust in Human
Co-worker for Physical Human-Robot Collaboration

Qiao Wang1, Dikai Liu1, Marc G. Carmichael1, Stefano Aldini1, and Chin-Teng Lin2

Abstract—Trust is key to achieving successful Human-Robot
Interaction (HRI). Besides trust of the human co-worker in the
robot, trust of the robot in its human co-worker should also be
considered. A computational model of a robot’s trust in its human
co-worker for physical human-robot collaboration (pHRC) is
proposed. The trust model is a function of the human co-worker’s
performance which can be characterized by factors including
safety, robot singularity, smoothness, physical performance and
cognitive performance. Experiments with a collaborative robot
are conducted to verify the developed trust model.

Index Terms—Physical Human-Robot Interaction, human fac-
tors and human-in-the-loop, trust.

I. INTRODUCTION

W ITH the advancement of collaborative robots (cobots)
[1], these types of robots can now actively interact with

human co-workers in the same workspace. The collaboration
between humans and robots combines the strengths of both
parties, the perception and decision-making of human co-
workers and the power (e.g., force and torque) and endurance
of robots.

There are various ways in which humans could actively
interact with cobots. In this paper, we focus on physical
Human-Robot Collaboration (pHRC). pHRC defines a human
co-worker physically contacts or exchanges force continu-
ously with a robot to accomplish a shared goal in the same
workspace. There are various applications for pHRC, such as
rehabilitation and material handling [2], [3]. A pHRC scenario
is shown in Figure 1.

Trust is key to achieving successful Human-Robot Inter-
action (HRI) [5]. The human may disuse (under-reliance),
or misuse (over-reliance) the robot without an appropriate
level of trust [5]. Research on computational trust models
in HRI has been conducted by several research groups. Lee
and Moray [6] developed an auto-regressive moving average
trust model based on operator’s subjective rating scales of

Manuscript received: July, 10, 2021; Revised November 26, 2021; Accepted
December 23, 2021.

This paper was recommended for publication by Editor Angelika Peer upon
evaluation of the Associate Editor and Reviewers’ comments. This work is
supported in part by the Australian Research Council (ARC) Discovery Project
Grant [DP210101093].

1Qiao Wang, Dikai Liu, Marc G. Carmichael, and Stefano Aldini are with
the Robotics Institute, Faculty of Engineering and Information Technology,
University of Technology Sydney, 81 Broadway, Ultimo NSW 2010, Australia
{Qiao.Wang-1}@student.uts.edu.au;

2 Chin-Teng Lin is with the Australian Artificial Intelligence Institute,
School of Computer Science, Faculty of Engineering and Information Tech-
nology, University of Technology Sydney, 81 Broadway, Ultimo NSW 2010,
Australia

Digital Object Identifier (DOI): see top of this page.

Fig. 1. A pHRC scenario with a human co-worker physically controlling a
robot manipulator [4]

trust, the automatic controller’s performance and fault. Xu [7]
proposed a human-to-robot online probabilistic trust inference
model which employs a dynamic bayesian network to estimate
the trust based on the subjective human feedback. Saeidi
proposed a trust-based control of a semi-autonomous mobile
robot [8] and Sadrfaridpour proposed a trust-based control of
a manipulator [9].

In human-human interaction (HHI), trust is bidirectional.
In order to emulate HHI for HRI, models of robot trust in
humans were also studied by several researchers. Rahman [10]
proposed a robot-to-human trust model for handover tasks and
Tran [11] proposed a robot-to-human confidence model based
on the Fluid Stochastic Petri Net model in pHRC.

For the existing human-to-robot trust models [6]-[9], sub-
jective questionnaires about trust are used to identify models’
parameters. However, this cannot be realized in robot-to-
human trust model development. Performance measurements
in these robot-to-human trust models [10]-[11] are restricted
to a particular task. The proposed approach in this research
directly uses measurements from sensors during pHRC, which
is objective and without human bias. In addition, the robot-
to-human trust model takes into account many pHRC factors,
including safety, robot singularity, smoothness, physical per-
formance and cognitive performance, which evaluates human
co-worker performance more comprehensively. Therefore, the
main contribution of this paper is the development of a rel-
atively accurate, objective and comprehensive computational
model of robot trust in a human co-worker for physical
human-robot collaboration. The organization of the paper is
as follows. The computational model of robot trust in a
human co-worker is described in Section II. The human co-
worker performance modelling is presented in Section III. An
experimental testbed and design of experiments are presented
in Section IV. The results and discussion are shown in Section
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V and the conclusion and future work are in Section VI.

II. COMPUTATIONAL TRUST MODEL

The trust of humans in robots is dynamic and highly
depends on the robot performance [12]. Therefore, We as-
sumed that the trust could be estimated based on performance
[12]. When developing a model of robot trust in humans,
a similar dynamic model is used. We introduce a real-time
computational robot-to-human trust model:

T [n] =

∑N
k=0 β

kp[n− k]∑N
k=0 β

k
(1)

T ∈ [0, 1] is the robot’s trust in human co-worker. T = 0 or
T = 1 represents no trust or complete trust respectively in
the human co-worker. p ∈ [0, 1] is a normalised measure of
human performance, which may be comprised of multiple per-
formance measures. A discount factor β ∈ [0, 1] is introduced
that reduces sensitivity to historic performance as more recent
performance has greater impact on trust value [6]. βk is the
weighting of p at the time step n − k. When k is larger, βk

is smaller. N is the length of the moving time window and n
is the current time step. β and N determine the sensitivity of
T to past performance. The past performance has less effect
on T if β and N are small.

III. HUMAN CO-WORKER PERFORMANCE MODELLING

In order to evaluate the human co-worker performance p
in the context of pHRC in Equation 1, factors that affect the
human co-worker performance in pHRC need to be identified
and quantified. In this work, the human co-worker performance
is characterized by Safety Performance pS ∈ [0, 1], Singularity
Performance pSP ∈ [0, 1], Smoothness Performance pSM ∈
[0, 1], Physical Performance pPW ∈ [0, 1] and Cognitive
Performance pCP ∈ [0, 1]. These factors are important and
common measurements of safe and intuitive pHRC. Details
on justification of selecting these pHRC factors have been
provided in each sub-section in Section III. Tran [11] proposed
a method to incorporate different performance factors:

p =

Nc∏
A=1

pcA(C + (1− C)×
Nnc∑
A=1

γAp
nc
A ) (2)

pcA and pncA are the critical and non-critical performance fac-
tors, respectively. Critical factors pcA are strongly relevant with
the continuation of a task, safety of the human co-worker and
the robot. Non-critical factors pncA are used for assessing the
performance of the human co-worker that is not essential to the
task and safety of the human co-worker and the robot. Nc and
Nnc are the number of critical and non-critical performance
factors. γA is the weighting coefficient and represents the
relative importance of each pncA ,

∑Nnc

A=1 γA = 1. C represents
the maximum contribution of the pncA .

In this paper, the Safety Performance pS and the Singularity
Performance pSP are safety-related which are regarded as
pcA. The other three performance factors are not safety-related

which are regarded as pncA . Hence, based on Equation 2, the
human co-worker performance is modelled as:

p[n] = pSpSP (C+(1−C)(γSMpSM+γPW pPW+γCP pCP ))
(3)

The weighting coefficients γSM + γPW + γCP = 1 are
positive constants that could be adjusted based on the relative
importance of the corresponding pncA according to specific task
requirements.

A. Safety Performance

In order to achieve safe pHRC, collisions between the robot
and surrounding objects need to be avoided to prevent potential
damage to both the robot and surrounding objects. As a result,
a safety performance pS is defined based on the possibility
of collision between the robot and surrounding objects whilst
under control by the human co-worker. The possibility of
collision increases from low (pS = 1) to high (pS = 0). An
interpolation function is employed to acquire a smooth curve
of pS [13] which is shown as:

pS [n] = f(a[n], a−, a+, 1, 0) (4)

f is a fifth-order polynomial with null first and second
derivatives at a− and a+ and f is bounded in the range
between 1 and 0.

a[n] =
v2[n]− v20 [n]

2∆s[n]
(5)

a[n] is the magnitude of the constant deceleration required
to stop the robot when it reaches the position to collide with
an object which is based on the kinematic Equation 5. a−

is the threshold deceleration at which pS starts to reduce as
shown in Figure 2(a) and a+ is the maximum deceleration
allowed. v[n] is the velocity of the robot when reaching the
position to collide with an object which is assumed to be zero
(v[n] = 0m/s). ∆s[n] is the distance between the robot and
the object. v0[n] is the current robot velocity toward the object.
Employing a takes consideration of both the robot velocity
toward an object v0 and the distance between the robot and
an object ∆s. When ∆s is small or v0 is large, a is large
which represents the possibility of collision is high.

Figure 2(a) shows the change of Safety Performance with
deceleration a. pS starts to reduce once a > a− because
the possibility of collision increases. pS reaches the minimum
value (pS = 0) once a ≥ a+. pS needs to be evaluated for
each surrounding object i by using algorithm 1. Nobj is the
total number of surrounding objects.

B. Singularity Performance

In the pHRC scenario showing in Figure 1, when the manip-
ulator is close to a singular configuration, the joint velocities
are large, causing the robot behaviour to be unpredictable
and dangerous. Hence, Singularity Performance pSP ∈ [0, 1]
is proposed to quantify the possibility of entering a singular
configuration. When pSP = 1 (or pSP = 0), the possibility of
entering a singular configuration is extremely low (or high).

In this work, pSP is defined as a function of the small-
est singular value σmin, which can be calculated through
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Fig. 2. (a) An example of the Safety Performance pS versus deceleration a
(Equation 4) when x− = a− = 5, x+ = a+ = 25, y− = 1 and y+ = 0. (b)
An example of the Singularity Performance pSP versus the smallest singular
value σmin (Equation 6) when σ+ = 0.4, σ− = 0.1 and φ = 0.02.

Algorithm 1 Safety Performance Calculation
for i← 1 to Nobj do
d⃗i = s⃗i − s⃗robot // Position vector from the position of
robot s⃗robot to the position of object i s⃗i
v⃗i = 0 // The velocity toward object i
// If the angle between vector of robot velocity v⃗robot
and di is less than or equal to 90 degree, calculate the
velocity toward the object i
if v⃗robot · d⃗i ≥ 0 then

v⃗i = projd⃗i
v⃗robot

end if
ai = 02−∥v⃗i∥2

2×∥d⃗i∥
// Deceleration for object i based on

Equation 5.
piS = f(|ai|, a−, a+, 1, 0) // Safety Performance for
object i based on Equation 4.

end for
pS = min(piS),∀i ∈ 1, 2, 3...Nobj // Safety Performance pS
is defined as the smallest safety performance among all the
surrounding objects

singular values decomposition (SVD) of the Jacobian matrix
(J). Inspired from [14], an exponentially-shaped function was
introduced to scale the singular value.

pSP [n] =

1− φ
σmin[n]−σ−

σ+−σ− σmin[n] > σ−

0 otherwise
(6)

σ+ is the smallest singular value threshold at which pSP starts
to reduce as shown in Figure 2(b). σ− is the minimum value
allowed for the smallest singular value (σ+ > σ− > 0). The
difference between σ+ and σ− should not be too small to
ensure a smooth transition of pSP with respect to σmin. φ
determines the smoothness of transition between σ− and σ+

(1 >> φ > 0). φ should be tuned to ensure both smooth
transition and pSP (σ

+) ≈ 1 as shown in Figure 2(b).
From Figure 2(b), when σmin > σ+, pSP ≈ 1 which

indicates that the possibility of entering a singular config-
uration is low. When σmin < σ−, pSP = 0, indicates
that the possibility of entering a singular configuration is

high. In addition, whether the manipulator is approaching a
singular configuration is also another important factor to be
considered when calculating pSP . pSP should be higher when
the manipulator is heading away from a singular configuration
because the possibility of entering a singular configuration is
lower compared with heading toward a singular configuration.
Based on [14], if the desired robot end-effector velocity in
Cartesian space xd causes the decrease of smallest singular
value σmin, it indicates that the manipulator is approaching a
singular configuration and vice versa.

The Jacobian matrix J [n+1] at the next time step is calcu-
lated based on the robot’s current pose and desired velocity.
σmin[n + 1] is calculated based on J [n + 1] through SVD.
Therefore, σ+ = σ+

AW and σ− = σ−
AW when the manipulator

is leaving a singular configuration (σmin[n + 1] ≥ σmin[n])
and σ+ = σ+

AP and σ− = σ−
AP when approaching a singular

configuration (σmin[n+ 1] < σmin[n]):

σ+, σ− =

{
σ+
AW , σ−

AW if σmin[n+ 1] ≥ σmin[n]

σ+
AP , σ

−
AP if σmin[n+ 1] < σmin[n]

(7)

The parameters in Equation 7 should be tuned that σ+
AP >

σ+
AW > 0 and σ−

AP > σ−
AW > 0 to ensure

pSP (σmin|σ+
AW , σ−

AW ) > pSP (σmin|σ+
AP , σ

−
AP ) to reflect

that the possibility of entering a singular configuration is
lower when heading away a singular configuration compared
to heading toward a singular configuration.

C. Smoothness Performance

An experienced human co-worker normally operates the
robot with smoother movements when compared with novice
users. One way to measure smoothness is to use jerk, the first
time derivative of acceleration [15]. As a result, smoothness
sm can be calculated as:

sm[n] = ∥¨⃗v[n]∥ (8)

v⃗[n] is the vector of the velocity of the end-effector of the
robot in Cartesian space. And ∥.∥ is the Euclidean norm.

Smoothness Performance pSM ∈ [0, 1] is used to quantify
the degree of smoothness when the human co-worker moves
the robot during performing a pHRC task. pSM = 0 is defined
as an extremely unsmooth movement. pSM = 1 corresponds
to when the smoothness of human co-worker’s movement
is within an acceptable range. The interpolation function in
Equation 4 is used to measure a pSM .

pSM [n] = f(sm[n], sm−, sm+, 1, 0) (9)

sm− is the threshold smoothness at which pSM starts to
reduce from 1 and sm+ is the maximum smoothness allowed.

D. Physical Performance

The human co-worker’s performance is also affected by the
physical workload the human co-worker has to take during
a period of time. Heavy workload causes muscle fatigue and
thus affects performance. Sadrfaridpour [9] proposed a human
physical performance model for collaborative manufacturing
which can be used for pHRC because the force applied by the
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human co-worker could be measured through a force-torque
sensor in real-time. The human physical performance, pPW ,
is calculated by Equation 10. (Note that the human co-worker
physical performance is extremely complex to model, the
physical performance model in this paper is just a simplified
model).

pPW [n] =
Fmax,iso[n]− Fth

MVC − Fth
(10)

Fth is the equilibrium point at which the fatigue and re-
covery balance out. Maximum Voluntary Contraction (MVC)
is the maximum isometric force with zero level of fatigue
(Fmax,iso = MVC). Fmax,iso[n] is the maximum isometric
force which will reduce when a human co-worker’s muscle
applies a force for some time due to the level of fatigue
increases. Hence, the physical performance pPW degrades
correspondingly when the Fmax,iso decreases as shown in
Equation 10. Fmax,iso is shown as:

Fmax,iso[n+ 1] = Fmax,iso[n]

−CfFmax,iso[n]
∥F [n]∥
MVC

+ Cr(MVC − Fmax,iso[n])
(11)

Cf and Cr are the fatigue and recovery coefficients which
are individual-dependent. ∥F [n]∥ is the magnitude of force
applied by the human co-worker. Fth is defined as:

Fth = MVC
Cr

2Cf
(−1 +

√
1 +

4Cf

Cr
) (12)

E. Cognitive Performance

Cognitive workload is a measure of mental work when
executing a task. Therefore, it is believed to have an effect
on human performance [9]. Sadrfaridpour [9] proposed using
the Yerkes-Dodson (YD) law to describe a human co-worker’s
cognitive performance. The YD law [16] stated that when the
level of arousal increases, the human cognitive performance
increases correspondingly. However, it will only happen before
the level of arousal increases up to the point that is known
as the optimal level of arousal (OLA). After this point, the
human cognitive performance reduces as the level of arousal
increases. The OLA value is smaller for a more difficult
task. Saeidi [8] proposed a dynamic model, which describes
the relationship between human arousal, task difficulty and
performance based on the YD law:

pCP [n] = (p+CP − p−CP )(
r[n]

βCP
)βCP (

1− r[n]

1− βCP
)1−βCP + p−CP

(13)
r[n] ∈ [0, 1] is the utilization ratio of the human co-worker,
which represents the amount of time that the human co-worker
has been controlling the robot. p+CP and p−CP are the upper
and lower limits of the Cognitive Performance pCP which
are individual-specific. The value of βCP is determined by
task difficulty. A larger βCP represents a less difficult task.
The most difficult task is when βCP = 0. Figure 3 shows
the human performance compared with different task difficulty
βCP . When the utilization ratio r[n] gradually increases, pCP

increases up to the highest point (OLA point) then decreases.

In addition, the OLA point shifts to the right when the task
becomes easier (βCP → 1).

r[n+ 1] = arr[n] + brM [n]

ar = 1− 1

τ
∈ (0, 1) br =

1

τ
∈ (0, 1)

(14)

τ is the time constant that defines the sensitivity of the next
time step utilization ratio r[n + 1] to the current utilization
ratio r[n]. Larger τ causes less variation in utilization ratio r.
M [n] is the control mode. M [n] = 1 refers to manual control
mode and M [n] = 0 represents autonomous control mode [8].
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Fig. 3. Examples of the Cognitive Performance pCP versus utilization ratio
r with different levels of task difficulty βCP (Equation 13).

IV. EXPERIMENTAL EVALUATION

This section explains the design of three experiments to
verify the proposed trust model by using a human-robot
collaborative system.

A. Experimental Testbed

The experiment testbed is called ANBOT [17] (Figure
4a) which is a collaborative robotic system for human-robot
collaborative operation. ANBOT consists of a UR10 arm from
Universal Robots and a six-axis force-torque sensor mounted
between the robot end-effector and the robotic arm to measure
the interaction forces applied by the human co-worker. The
human co-worker constantly hold the handlebar mounted on
the robot end-effector.

There is a monitor to display the actual trajectory of the
robot end-effector, as shown in Figure 4b. In this experiment,
the movement of the robot is constrained into two dimensions
to reduce the complexity of experiment. Hence, the human
co-worker can only move the robot in vertical and horizontal
directions, which are parallel to the monitor.

B. Design of Experiments

Three experiments are designed for verifying the proposed
computational trust model. Figure 5a shows the trajectory that
the robot end-effector needs to track in Experiments 1 and
2. Figure 5b is for Experiment 3. The big filled red circles
represent objects (or obstacles) located on the trajectory. The
white line is the desired trajectory that needs to be followed.
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(a) (b)
Fig. 4. (a) Experimental Testbed - ANBOT. (b) The human co-worker is
operating the ANBOT to follow a desired trajectory.

Each of the experiments starts and ends at the bottom left
corner of the rectangle with clockwise movement.

Experiment 1: This experiment is designed for verifying
the Smoothness Performance model in Section III-C and
the Singularity Performance model in Section III-B. In this
experiment, the human subject is asked to move the robot end-
effector to follow the path (shown in Figure 5a) as accurately
and smoothly as possible. There is no limitation on time to
complete the entire path. During the path following, the robot
manipulator will approach and leave singular configurations.
Therefore the Singular Performance model can be verified.

Experiment 2: This experiment is for verifying the Physical
Performance model in Section III-D and Cognitive Perfor-
mance Model in Section III-E. The Physical Performance pPW

and Cognitive Performance pCP are mainly affected by the
duration of operating the robot. pPW is also affected by the
magnitude of interaction force. Therefore, the human subject
is asked to move along the path (Figure 5a), which is similar
to Experiment 1, but as quickly as possible to ensure that
the human subject exerts a large force while executing the
task. Also, the human subject is asked to move around the
path continuously for five loops to ensure that the duration of
Experiment 2 is longer than other two experiments.

Experiment 3: This experiment is designed for verifying
the Safety Performance model in Section III-A by introducing
two objects/obstacles on the same path in Experiments 1
and 2. Besides avoiding the objects, the requirement on the
human subject is the same as in Experiment 1. However,
the human subject is required to move as fast as possible
from the top right corner of the path toward the top left
corner to demonstrate the effect of the velocity component
in Equation 5 on Safety Performance pS . This experiment is
also conducted for verifying the combined models of human
co-worker performance in Section III and the computational
trust model in Section II because the variation of all the
performance factors can be observed.

V. RESULTS AND DISCUSSION

All the experiments are conducted by one human subject.

(a) (b)
Fig. 5. (a) Trajectory tracking path for Experiments 1 and 2. (b) Trajectory
tracking path for Experiment 3.

A. Experiment 1 – verifying the Smoothness Performance
model and the Singularity Performance model

1) Singularity Performance: The values of the parameters
in Singularity Performance model are φ = 0.02, σ+

AW = 0.25,
σ−
AW = 0.15, σ+

AP = 0.35, σ−
AP = 0.25 [14]. The desired

workspace and sensor noise need to be considered when
determining the values of σ+

AW , σ−
AW , σ+

AP , and σ−
AP . When

the values are larger, the amount of configurations regarded
as unsafe movement is larger (Figure 2(b)), which results in
decrease of the desired workspace. Moreover, if the sensor’s
noise is large, those values should be larger to increase the
robustness.

Figure 6 shows the smallest singular value σmin and Sin-
gularity Performance pSP in Experiment 1. Before 8.5s, σmin

is larger than σ+
AP = 0.35, hence, pSP ≈ 1 (Equation 6). At

around 8.5s, pSP starts to decrease because σmin < σ+
AP until

pSP = 0 due to σmin < σ−
AP at around 14.5s. After this time,

the robot starts to head away from a singular configuration
(yellow shaded area) which can be seen that σmin starts
to increase, then pSP increases up to 1 instantaneously due
to σmin > σ+

AW . It is noted that Equation 7 successfully
predicts whether the manipulator is heading toward a singular
configuration.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0.1

0.15

0.25
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0.43

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

0.5

1

Fig. 6. (a) The smallest singular value σmin. (b) The Singularity Performance
pSP . Yellow shaded area is the prediction on whether the robot is heading
away a singular configuration based on Equation 7.

2) Smoothness Performance: The smoothness sm in Equa-
tion 8 is calculated through the second time derivative of
second degree polynomial curve fitting of the velocity using
the least-squares method with a time window of 1 second for
noise reduction.

Figure 8(a) shows that sm is much higher at the beginning
of the experiment and at the turning points (corners) of
the desired path (Figure 7). The human co-worker needs to
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decelerate before a turning point and accelerate after passing
the turning point, which causes the unsmooth movement. sm
is high at the beginning of the experiment because the human
co-worker starts to move from rest. In order to show the details
of Figure 8(a), sm is bounded between [0, 1]m/s3.

Because a human co-worker tends to move with minimum-
jerkiness-profile. sm− should be set to as small as possible
(sm− −→ 0). sm+ depends on whether the requirement on the
smoothness is high or not. In this experiment, the requirement
for smoothness of the human co-worker’s movement is high.
Therefore, sm− = 0.1m/s3 and sm+ = 0.9m/s3 (Equation
9). In Figure 8(b), the Smoothness Performance pSM decreases
correspondingly when sm increases as long as sm > sm−.
It can also be seen that pSM = 0 when sm >= sm+ at the
beginning of the experiment.

Fig. 7. The blue line corresponds to the actual robot end-effector Trajectory.
The labelled time corresponds to the time when the human co-worker changes
the directions on the corners of the trajectory.
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Fig. 8. (a) Smoothness sm.(b) Smoothness Performance pSM . The green
vertical lines correspond to the time when human co-worker changes the
directions at the corners of the trajectory.

B. Experiment 2 – verifying the Physical Performance model
and the Cognitive Performance model

1) Physical Performance: The values of parameters in
the physical performance model are set MVC = 200,
Fth = 151.9, Cf = 10−4 and Cr = 2.4 × 10−4 which
are similar to the literature [9]. However, the parameters
are individual-dependent. The detailed method for measuring
those parameters can be found in [9].

Figure 9 shows the magnitude of interaction force ∥F∥, the
maximum isometric force Fmax,iso and physical performance
pPW versus time in Experiments 1, 2 and 3. In Experiment 2,
the human subject applied a much larger force and executed
the task for the longest time (around 40.6s) because the human
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Fig. 9. (a) Magnitude of interaction force ∥F∥ applied by human co-worker
and measured by force-torque sensor. (b) The maximum isometric force
Fmax,iso. (c) Physical Performance pPW .

subject is required to move along the trajectory as fast as possi-
ble for five loops. It can be seen that Fmax,iso = 196.16N and
pPW = 0.92 are the lowest at the end of experiments which
represent the highest level of fatigue. The results demonstrate
that the Physical Performance model could measure the human
co-worker fatigue level effectively.

Figure 9(b) shows that the value of maximum isomet-
ric force Fmax,iso starts to reduce from maximum volun-
tary contraction (MVC = 200) at the beginning of the
experiments. At the end of the experiments, Fmax,iso =
198.97N, 196.16N, 198.88N in Experiments 1, 2 and 3 and
those values are close to 200 because the durations of all the
experiments are short (28.6s, 40.6s, 20.4s), which indicates
that the fatigue level of human co-worker increases slightly.
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Fig. 10. (a) Utilization Ratio r (b) Cognitive Performance pCP in Experi-
ments 1, 2 and 3.

2) Cognitive Performance: The parameters in the Cognitive
Performance model are subject and task-dependent. The details
for selecting the parameters can be found in [8]. Based
on [8], the parameter values used in this experiment are:
p−CP = 0.391, p+CP = 0.4602, βCP = 0.74 and ar = 0.9991.
ar depends on the system sampling rate. The sampling rate
in [8] is 10Hz, and the sampling rate for this paper is
125Hz, therefore, ar = 0.999928. Because the human subject
constantly moves the robot during the experiment, the control
mode is always 1 (M = 1 in Equation 14).
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Fig. 11. (a) The actual robot end-effector trajectory along the designed trajectory. The blue trajectory refers to the safe movement (max(a1, a2) ≤ a−) and
the green trajectory refers to the unsafe movement (max(a1, a2) > a−) which corresponds to the shaded green regions in Figures 11b and 11c. The yellow
vectors are the robot velocity vector. (b) Top: The distance between the robot and Object 1 ∥d⃗1∥ (Object 2 ∥d⃗2∥). Bottom: the velocity of the robot toward
Object 1 ∥v⃗1∥ (Object 2 ∥v⃗2∥). (c) Top: The magnitude of the constant deceleration required to stop the robot when it reaches the position to collide with
Object 1 a1 (Object 2 a2). Bottom: The safety performance for Object 1 p1S (Object 2 p2S ).

As shown in Figure 10(a), the utilization ratio r starts to
increase from 0 when the human subject starts to operate the
robot. r constantly increases during the experiment because
r represents the amount of time the human co-worker has
operated the robot. At the end of the experiments, r ≈ 0.3
in Experiment 2 is the highest because the time the human
subject have controlled the robot is the longest (around 40.6s).
In Figure 10(b), Cognitive Performance pCP starts to increase
correspondingly from the lower threshold of cognitive per-
formance p−CP = 0.391. The reason why pCP constantly
increases during the experiment is that r is smaller than the
optimal level of arousal (OLA), which is when βCP = 0.74.
The reason why r and pCP are the same between 0s and 20.4s
for the three experiments due to all the cognitive performance
parameters are the same (ar, p−CP , p

+
CP , βCP ) and the human

subject constantly operates the robot (M = 1 in Equation 14).

C. Experiment 3 – verifying the Safety Performance model,
Human Co-worker Performance and the Computational Trust
Model

1) Safety Performance: In Figure 11a, the green section
indicates the period in which the movement of a human co-
worker is regarded as unsafe. The blue section is regarded
as a safe movement. The period of unsafe movement for
approaching Object 2 (0.18s) is much shorter compared to
Object 1 (2.47s) because the velocity toward Object 1 is much
larger than that of Object 2 as shown in Figure 11b. It can also
be seen in Figure 11a that the length of the robot velocity
vector is much longer in green section when approaching
Object 1.

The movement is identified as unsafe only when the robot is
very close to Object 2 (1.15cm). Therefore, when the velocity
is low, the distance will be the major factor determining the
safety of movement.

Another essential factor for determining the safety move-
ment is the direction of motion of the robot. At around 15.62s,
the robot is heading away from Object 1 as shown the yellow
arrow in Figure 11a. The movement is regarded as safe even

though the distance between robot and Object 1 is small
(0.22cm) as shown in Figure 11b.

The parameter values selected include a− = 5cm/s2 and
a+ = 25cm/s2 (Equation 4). Similar considerations from
singularity performance (Section V-A1) can be applied on
selecting a− and a+. In Figure 11c, the safety performance
piS decreases correspondingly when ai > a−, indicating the
possibility of collision starts to increase. It is hard to observe
the decrease of p2S because a2 is a little over the a−.
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Fig. 12. (a) Singularity Performance pSP . (b) Smoothness Performance pSM .
(b) The combined Human co-worker performance p

2) The combined Human Co-worker’s Performance: γSM ,
γPW and γCP in Equation 3 are determined by the rela-
tive importance. For this experiment, the requirement on the
smoothness of movement is high. In addition, the duration
of experiment is short which result in the variation of pPW

and pCP is subtle. Hence, we set γSM = 0.8, γPW = 0.1
and γCP = 0.1. pncA is important because the smoothness
requirement of human co-worker is high, therefore, C = 0.

Figure 12 shows that p is low at the beginning of the
experiment because pSM = 0 and γSM = 0.8. It can be
observed that p decreases immediately when pS (Figure 11c)
or pSP reduces because they are critical performance factors
(Equation 3). p < 1 all the time due to pCP bounds within
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the interval [0.391, 0.4602] along the experiment as shown
in Figure 10. The effect of pPW on p is trivial because the
variation of pPW is small (Figure 9) and γPW = 0.1.

3) The Computational Trust Model: The trust with different
values of β and N is simulated as shown in Figure 13 based
on the combined human co-worker performance (Figure 12).
The time interval of p is bounded into [10 14]s to show the
comparisons more clearly. Larger values of β and N will result
in T becoming smoother. A good choice of values for β and
N should balance the smoothness and responsiveness of T to
p.

10 11 12 13 14

0.4

0.6

0.8

1

10 11 12 13 14

0.4

0.6

0.8

1

Fig. 13. (a) Trust plots for different values of time window size N when
β = 0.999. (b) Trust plots for different values of β when N = 125.

VI. CONCLUSIONS AND FUTURE WORK

A computational model of robot trust in a human co-worker
was proposed. This model takes into account many factors
in physical human-robot collaboration, including robot safety,
robot singularity, smoothness of robot motion, and human
physical and cognitive performance. Three experiments were
conducted for verification of all the factors of the model. The
experimental results show that the modelling is appropriate.

Future work includes how the proposed trust model can
be fit into a larger context of trust in human-robot interaction.
When the human-to-robot trust is low, the human’s dependence
on the robot is low. If at the same time, the robot trust in
human is low, the robot may not rely on the human. This may
therefore result in a conflict of intents between the human
and the robot and cause human trust in the robot to reduce
further, leading to a reduction in performance of the combined
human-robot system. Experimental validation of the proposed
framework applied to real-world scenarios is required.

Real-world evaluation requires the proposed trust model to
be integrated with robot control, such as trust-based impedance
or admittance control, or trust-based role arbitration. For
example, in trust-based admittance control, the damping in
admittance control could be adapted based on the level of
robot-to-human trust. When the trust decreases, the damping
can be increased to impede or slow down the human co-
worker’s movement. For trust-based role arbitration, when the
robot trust in the human co-worker decreases to a certain level,
the robot may gradually take control of the collaboration.

The trust model could also be applied to other human-
robot interaction applications such as a teleoperated medical
robot. Smoothness performance could be used to evaluate
human co-worker performance in control accuracy. Cognitive
performance might be an essential factor due to the high
demand for attention during a medical task.

ACKNOWLEDGMENT
This study is supported in part by the Australian Research

Council (ARC) Discovery Project Grant [DP210101093]. The
authors would like to thank Jonathan Woolfrey, Yujun Lai,
Tiancheng Li and Sheila Sutjipto for their assistance.

REFERENCES

[1] J. E. Colgate, W. Wannasuphoprasit, and M. A. Peshkin, “Cobots: robots
for collaboration with human operators,” American Society of Mechan-
ical Engineers, Dynamic Systems and Control Division (Publication)
DSC, vol. 58, pp. 433–439, 1996.

[2] H. Yu, S. Huang, G. Chen, Y. Pan, and Z. Guo, “Human-robot interaction
control of rehabilitation robots with series elastic actuators,” IEEE
Transactions on Robotics, vol. 31, pp. 1089–1100, 2015.

[3] E. Gambao, M. Hernando, and D. Surdilovic, “A new generation of
collaborative robots for material handling,” 2012 Proceedings of the 29th
International Symposium of Automation and Robotics in Construction,
ISARC 2012, 2012.

[4] S. Aldini, A. Akella, A. K. Singh, Y. K. Wang, M. Carmichael, D. Liu,
and C. T. Lin, “Effect of mechanical resistance on cognitive conflict in
physical human-robot collaboration,” Proceedings - IEEE International
Conference on Robotics and Automation, vol. 2019-May, pp. 6137–6143,
2019.

[5] M. Lewis, K. Sycara, and P. Walker, The Role of Trust in Human-Robot
Interaction, pp. 135–159. Cham: Springer International Publishing,
2018.

[6] J. Lee and N. Moray, “Trust, control strategies and allocation of function
in human-machine systems,” Ergonomics, vol. 35, no. 10, pp. 1243–
1270, 1992.

[7] A. Xu and G. Dudek, “Optimo: Online probabilistic trust inference
model for asymmetric human-robot collaborations,” ACM/IEEE Inter-
national Conference on Human-Robot Interaction, vol. 2015-March,
pp. 221–228, 2015.

[8] S. Hamed, Trust-Based Control of (Semi)Autonomous Mobile Robotic
Systems. PhD thesis, Clemson University, 2016.

[9] B. Sadrfaridpour, Trust-Based Control of Robotic Manipulators in Col-
laborative Assembly in Manufacturing. PhD thesis, Clemson University,
2018.

[10] S. M. Mizanoor Rahman, Y. Wang, I. D. Walker, L. Mears, R. Pak, and
S. Remy, “Trust-based compliant robot-human handovers of payloads in
collaborative assembly in flexible manufacturing,” in 2016 IEEE Inter-
national Conference on Automation Science and Engineering (CASE),
pp. 355–360, 2016.

[11] A. Tran, “Robot confidence modeling and role change in physical
human-robot collaboration,” 2019.

[12] P. A. Hancock, D. R. Billings, K. E. Schaefer, J. Y. Chen, E. J. De
Visser, and R. Parasuraman, “A meta-analysis of factors affecting trust
in human-robot interaction,” Human Factors, vol. 53, no. 5, pp. 517–
527, 2011.

[13] B. Navarro, A. Cherubini, A. Fonte, G. Poisson, and P. Fraisse, “A frame-
work for intuitive collaboration with a mobile manipulator,” pp. 6293–
6298, 09 2017.

[14] M. G. Carmichael, D. Liu, and K. J. Waldron, “A framework for
singularity-robust manipulator control during physical human-robot in-
teraction,” International Journal of Robotics Research, 2017.

[15] N. Hogan and D. Sternad, “Sensitivity of smoothness measures to
movement duration, amplitude, and arrests,” Journal of motor behavior,
vol. 41, pp. 529–34, 11 2009.

[16] J. D. Dodson, “The relation of strength of stimulus to rapidity of habit-
formation in the kitten.,” Journal of Animal Behavior, vol. 5, pp. 330–
336.

[17] M. G. Carmichael, S. Aldini, R. Khonasty, A. Tran, C. Reeks, D. Liu,
K. J. Waldron, and G. Dissanayake, “The anbot: An intelligent robotic
co-worker for industrial abrasive blasting,” IEEE International Confer-
ence on Intelligent Robots and Systems, pp. 8026–8033, 2019.




