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forecasting system. Therefore, a novel and advanced combined forecasting system
comprising a data preprocessing, an integration strategy and several single models is
designed in this study. The proposed model not only eliminates the impact of noise, but
also integrates several single-model forecasting results through a weight optimization
operator. In addition, the uncertain prediction of wind speed is also discussed in detail.
The results show that: (a) The MAPE values of the proposed model are 2.8645%,
2.1843% and 2.8727% respectively for the point prediction. (b) The FICP values of the
proposed model are 85.1697, 89.5410 and 88.0111 respectively at the significant level
α  = 0.05 for the uncertainty forecasting. The AWD values are 0.0559, 0.0400 and
0.0361 and the FINAW values are 0.0478, 0.0404 and 0.0390. It is reasonable to
conclude that the proposed system can effectively boost the precision and stability of
wind speed forecasting and provide a new approach for the exploitation of wind
energy.
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Highlights  

 A combined forecasting system including a data preprocessing, a combined and 

uncertainty prediction module is designed. 

 An advanced data preprocessing technique is intended to remove the noise. 

 A combined prediction strategy including optimal sub-model selection and weight 

optimization operators is proposed.  

 The Pareto optimality of the solutions is theoretically proven.  

 Interval prediction increases the accuracy and certainty of prediction results. 
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Response: Thank you very much for your valuable advice and it is helpful to improve 

the quality of our paper. We have corrected the error in the heading. Please see the 

revised manuscript in section 1.1 in 3th page for more details.  

 

********************************************************************* 

Comment 2: In Section 2, the description of all algorithms should be given, rather than 

just that of denoising and optimization algorithm. This section should be re-written. 

 

Response: Thank you for your suggestions. We have added the description of 

algorithms used in the study, with the additions shown below. Please see the revised 

manuscript in section 2.2 in 7th-9th page for more details. Thank you again for your 

valuable advice.  

LSTM (long short-term memory) is a special type of RNNs. The key components 

of LSTM are memory cells and gates. The forget gate determines the number of the 

unit state ( 1)C t  remaining at current moment ( )C t and is calculated as

1, , ( ) ( { , } )
f t t fb t b x hF   


   . The number of inputs ( )x t stored in the cell state ( )C t

is determined in the calculation process of the input gate
1, , ( ) ( { , } )

i t t ib t b x hI


      . 

Finally, the output gate controls the number of unit states ( )C t to be output to the present 

output value ( )h t and is given by
1, , ( ) ( { , } )

o t t ob t h x b


       where b and are bias 

and weight, respectively. The calculation principle of GRU (gated recurrent unit) is very 

similar to LSTM. The difference is that GRU combines the forgetting gate and input 

gate in LSTM algorithm into update gate, so GRU consists of two gates, the update gate 

and the reset gate. 
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The hidden layer of CNN (convolutional neural network) consists of convolution 

CL, pooling PL and full connection FL. The convolution process is represented as

,

p q

x y i ii
C v


 , which is the sum of the product of the kernel weight and the brightness 

of the corresponding element in the input image. The main goal of pooling is to reduce 

the feature space of the maps. The fully connected layer is greatly important in 

combining the extracted features to obtain the output. 

TCN (temporal convolutional networks) is suitable for sequence model 

construction under causal constraints, that is, the output 0 1
ˆ ˆ ˆ{ , , , }

t
y y y  can only be 

predicted based on the past observation 0 1{ , , , }
t

x x x .Therefore, TCN can be designed 

as a nonlinear function with the mapping :
T T

f X Y . In addition, TCN also adds the 

dilated convolution and residual block to better extract historical information. 

QRNN (quasi-recurrent neural networks) is the LSTM acceleration algorithm, 

including two components of convolution and pooling. In the convolution operation, 

the output of the input, forget and output gates can be expressed as tanh( )
z

Z W X  ,

( )fF W X  and ( )
O

O W X  , where X is the input, z
W , fW and O

W are the 

convolution filters. There are three ways the pooling process can reduce the number of 

features, named f-pooling, fo-pooling and ifo-pooling based on the number of gates 

used. 

ANFIS (adaptive neuro-fuzzy inference system) is a neural network based on 

fuzzy reasoning. The first layer is a fuzzy layer. 1

i=1,2
( )

i
A

x   and 1

1,2
( )

i
j B

y


   are 

output functions where x and y are the inputs with the respective membership functions

iA and
iB . The second layer calculates the weights of each membership function 

according to the previous outputs. The third layer normalizes the weights as
3

i 1 2
/ ( )

ii       . The fourth layer provides the output of the rule inference
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ELM (extreme learning machine) is a kind of feedforward neural network that 

includes input, hidden and output layers. The thresholds b and input weights ω are 

randomly generated. The input and output are 1 2
( , , )

n n

i i i
x x xX    and 

1 2
( , , )

m m

i i i
t t tT   . The hidden layer output is ,
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 ,where 

( )F   is the activation function. The final output is 
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( ) ( ) ( )

n

ii

b

n x H x i


 
 

 , where 

the output weights are 
1

( , , )
n

   . 

BPNN (back propagation neural network) consists of input, hidden and output 

layers, and the calculation is:  1
0 1( , )

t

i I j jm m j jmm t n
y f y   


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
      ( , ) , where m

y and jy are the inputs of the input 

and hidden layers, t
y is the predicted value at time t. N and I are the number of nodes 

in the input and the hidden layers. In the hidden and output layers, j and 0 are the 

threshold values, jm and 0 j
 are weights, I

f and 0f are activation functions. 

On the basis of BPNN structure, ENN (elman neural network) adds a continuation 

layer to the hidden layer as a delay operator to achieve the purpose of memory. The 



learning process is: 1 2 1( ) ( ( ) ( ( )))
c

x k f w x k w u k   , 3( ) ( ( ))y k g w x k , where y is 

the m-dimensional output vector, x is the unit vector of n-dimensional middle layer, u 

is the r-dimensional input vector, 1 2 3( , , )
i

w i  is the connection weight of each layer, 

( )g and ( )f are activation functions of output and middle layer neurons respectively. 

GRNN (general regression neural network) is a kind of radial basis neural network, 

which is composed of input, pattern, summation and output layers.
22 1 2T

i i i
p X X X X i n    exp[ ( ) ( ) / ]  , , , is the neuron transfer function of the 

pattern layer, where X is the input variable and Xi is the learning sample of the i-th 

neuron. The output of neuron j can be calculated as /
i Nj D

y S S , where NjS and D
S are 

the arithmetic sum and weighted sum of neurons at the pattern layer. 
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Furthermore, there is another reviewer’s comment in the attachment. We have 

also carefully revised according to these suggestions. 

 

Comment raised by respected Reviewer 2: 

Thank you again for your valuable suggestions and it is helpful to improve the 

quality of our paper. 
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Furthermore, there is another reviewer’s comment in the attachment. We have 

also carefully revised according to these suggestions. 

 

Comment raised by respected Reviewer 3: 

Comment 1: Introduction: The reviewer suggested that the author add the following 

content: The reason why wind speed prediction technology can effectively improve the 

stability of wind power system. 

 

Response: Thank you very much for your valuable advice and it is helpful to improve 

the quality of our paper. We have added the reason why wind speed prediction 

technology can effectively improve the stability of wind power system in the 

introduction section, and the corresponding modifications are listed as follows. Please 

see the revised manuscript in section 1 in 3th page for more details.  

Owing to the rapid growth of the world economy, traditional energy sources such 

as natural gas and oil are being consumed in large quantities. Therefore, the 

development of sustainable green energy resources has received increasing attention 

[1]. Wind energy is a renewable energy resource with clean and effective characteristics 

that play an irreplaceable role in wind power generation. However, the instability and 

nonlinearity of wind speed limit the development of wind power and bring many 

obstacles to the wind power grid. Accurate wind speed prediction technology can 



reduce the impact of wind speed characteristics, which not only helps power grid 

operators and decision makers to timely plan and dispatch the power system, but also 

reduces the failure risk of wind power system and improves power quality [2]. Hence, 

accurate wind speed prediction technology can effectively improve the stability of wind 

power generation system [3]. 

References 

[1] Zhang Z, Qin H, Liu Y, Wang Y, Yao L, Li Q, et al. Long Short-Term Memory 

Network based on Neighborhood Gates for processing complex causality in wind speed 

prediction. Energy Conversion and Management. 2019; 192:37-51. 

[2] Zhang Y, Pan G, Chen B, Han J, Zhao Y, Zhang C. Short-term wind speed prediction 

model based on GA-ANN improved by VMD. Renewable Energy. 2020; 156:1373-88. 

[3] Wang J, Wang Y, Li Z, Li H, Yang H. A combined framework based on data 

preprocessing, neural networks and multi-tracker optimizer for wind speed prediction. 

Sustainable Energy Technologies and Assessments. 2020; 40:100757.  

********************************************************************* 

Comment 2: 1.2. Previous literature: First, I think the title number should be 1.1, not 

1.2, and the same goes for 1.3. Then, it is suggested that the author divide the 

decomposition technique, prediction method and ensemble method into several 

paragraphs, so that scholars can read and understand them more clearly. 

 

Response: Thank you for your suggestions. We have corrected the error in the heading, 

and we have also divided the content of section 1.1 into several paragraphs to make the 

reader read more clearly. Please see the revised manuscript in section 1.1 in 3th and 4th 

page for more details. 
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Comment 3: 2. Design of the combined forecasting model: I think the following 

sentence is not very good: "The data denoising algorithm and multi-objective grey wolf 

optimization algorithm are presented in this part." The reviewer suggested that the 

authors change this part into a brief introduction of their proposed model. 

 

Response: Thank you very much for your valuable advice and it is helpful to improve 

the quality of our paper. We have revised the introduction at the beginning of section 2. 

The corresponding modifications are as follows. Please see the revised manuscript in 

section 2 in 7th page for more details.  

The proposed prediction model in this study is mainly composed of data 

preprocessing technology, multiple single models, multi-objective weight optimization 

operator and uncertainty prediction, which is used to improve the prediction accuracy 

and quantify the uncertainty of prediction results. The corresponding algorithm and 

theoretical introduction are presented in this part. 
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Comment 4: 2.1 Data denoising strategy: Details of the authors' techniques and 

modeling to avoid data leaks can be added here. 

 

Response: Thank you for your suggestions. We have added details of the techniques 

and modeling to avoid data leakage in section 2.1. The corresponding modifications are 

as follows. Please see the revised manuscript in section 2.1 in 7th page for more details. 

Before data denoising, we process the original data to prevent data leakage. 

Specifically, data leakage can cause the model to look accurate, but when applied to 

real life, the model can become very inaccurate, which is mainly divided into feature 

leakage and training data leakage. For feature leakage, features generally have a strong 

correlation with target variables. In this study, prevention of training data leakage is of 

greater concern to us. Before dividing the datasets, preprocessing the whole data set 

will lead to data leakage and make the information of the test set appear in the training 

set. Therefore, after dividing the datasets, we use decomposition technology for training 

set and test set respectively to prevent data leakage. The corresponding data denoising 

strategy is presented as follows. 
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the quality of our paper. We have adjusted the figures in the study to make them more 

clear and beautiful and easy for readers to understand. The modified figures are listed 

below. 



 

Fig.4 Results of CFM and denoising models 

 

Fig.5 The interval forecasting results 
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Abstract 
Accurate wind speed prediction has become increasingly important in wind power 

generation. However, the lack of efficient data preprocessing techniques and integration 

strategies has been a big obstacle to the development of wind power forecasting system. 

Therefore, a novel and advanced combined forecasting system comprising a data 

preprocessing, an integration strategy and several single models is designed in this study. 

The proposed model not only eliminates the impact of noise, but also integrates several 

single-model forecasting results through a weight optimization operator. In addition, 

the uncertain prediction of wind speed is also discussed in detail. The results show that: 

(a) The MAPE values of the proposed model are 2.8645%, 2.1843% and 2.8727% 

respectively for the point prediction. (b) The FICP values of the proposed model are 

85.1697, 89.5410 and 88.0111 respectively at the significant level α = 0.05 for the 

uncertainty forecasting. The AWD values are 0.0559, 0.0400 and 0.0361 and the 

FINAW values are 0.0478, 0.0404 and 0.0390. It is reasonable to conclude that the 

proposed system can effectively boost the precision and stability of wind speed 

forecasting and provide a new approach for the exploitation of wind energy. 

Keywords: Artificial intelligence; Data preprocessing; Combined forecasting model; 

Multi-objective optimization;
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1. Introduction 

Owing to the rapid growth of the world economy, traditional energy sources such 

as natural gas and oil are being consumed in large quantities. Therefore, the 

development of sustainable green energy resources has received increasing attention 

[1]. Wind energy is a renewable energy resource with clean and effective characteristics 

that play an irreplaceable role in wind power generation. However, the instability and 

nonlinearity of wind speed limit the development of wind power and bring many 

obstacles to the wind power grid. Accurate wind speed prediction technology can 

reduce the impact of wind speed characteristics, which not only helps power grid 

operators and decision makers to timely plan and dispatch the power system, but also 

reduces the failure risk of wind power system and improves power quality [2]. Hence, 

accurate wind speed prediction technology can effectively improve the stability of wind 

power generation system [3]. 

1.1 Previous literature 

At present, the wind speed forecasting approaches adopted in a large number of 

wind speed prediction studies include: (i) physical models, (ii) statistical models, (iii) 

Artificial intelligence models. Physical models are more suitable for long-term 

prediction, but have obvious defects for short-term prediction [4, 5]. Systematic errors 

can be easily generated in the predictions and the direction near the ground that result 

in differences in the predicted power generation when physical models are used [6, 7]. 
Dong et al. presented a hybrid model based on K-means cluster and general regression 

neural network (K-means-GRNN) of numerical weather forecasts; however, the 

practical application of the K-means-GRNN was difficult due to its high requirements 

on computation and information [8]. In contrast, statistical models have lower 

requirements for datasets [9]. Statistical models are usually linear models, such as the 

autoregressive moving average (ARMA) [10], the autoregressive integrated moving 

average model (ARIMA) [11, 12]. Movahed et al. predicted the development of cancer 

cells based on ARMA and Auto-Regressive (AR), and improved the forecasting 

accuracy [13]. However, for sequences with random and nonlinear characteristics, the 

statistical models were difficult to mine the information accurately and effectively [14]. 

 Aiming at the deficiency of the above models, many researchers have performed 

in-depth studies on artificial intelligence (AI) prediction models [15, 16], which mainly 

include support vector machines (SVM) [17, 18], deep learning [19], and artificial 

neural networks (ANN) [20, 21]. AI prediction methods have strong generalization 

abilities, and fast calculation speeds, however, these single AI models may be affected 

by the initial parameters and are prone to fall into local optima during computations 

[22]. Considering the deficiency of the above approaches, combined models have been 

widely concerned, which often contain data preprocessing techniques and optimization 

algorithms [23].  

On the one hand, because of the fluctuation and instability in wind speed, the use 

of data preprocessing techniques such as empirical mode decomposition (EMD) [24] 

and ensemble empirical mode decomposition (EEMD) [25] has been explored. In fact, 

disadvantages such as modes mix and boundary effect exist in EMD, although EEMD 

improves the shortcomings of EMD, it causes residual white noise [26]. Thus, an 

advanced strategy named improved complete ensemble empirical mode decomposition 

with adaptive noise (ICEEMDAN) is proposed in this study, which can add special 

white noise to obtain accurate modal values and improve model accuracy.  
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On the other traditional single models may not be able to balance accuracy and 

stability in prediction [27]. Wang et al. designed a hybrid model of wavelet neural 

network optimized by genetic algorithm (GA-WNN) based on variational mode 

decomposition (VMD) for wind speed forecasting, however, it remains to be explored 

that both accuracy and stability can be satisfied [28]. Based on this, this paper adopts 

the multi-objective grey wolf optimizer (MOGWO), which can combine multiple single 

models and optimize the assigned weight through to obtain stable and accurate results. 

Moreover, many studies ignore the reliability and uncertainty of wind speed prediction, 

which will cause potential risks in practical applications [29]. Thus, the uncertainty of 

wind speed prediction based on interval prediction has been discussed in this study. 

Table 1 summarizes the common model types in the literature in recent years.  

1.2 Contribution  

Through the above analysis, a novel combined predictive framework is built based 

on neural networks, deep learning approaches, and multi-objective optimization to 

improve the forecasting accuracy. The developed system consists of four modules: a 

data preprocessing module, a combination prediction module, an uncertainty prediction 

module and an assessment module. Modal decomposition is adopted in the data 

preprocessing module decomposition of the original sequence to eliminate noise and 

obtain a smooth reconstructed sequence. The combination prediction module is 

designed to combine several single prediction models and optimize the assigned weight 

to obtain stable and accurate results, and interval prediction is used for quantifying 

uncertainty and improving model reliability. Nine metrics are proposed to evaluate the 

prediction performance in the last module. The contributions and innovations are 

summarized below: 

(1) A novel and advanced wind speed combined forecasting model (CFM) that 

includes data preprocessing and combined prediction and assessment is developed 

in this work. Considering the uncertainty and fluctuation of the initial sequence, the 

prediction system given can overcome these shortcomings and achieve accurate and 

reliable prediction performance. 

(2) An advanced data preprocessing technique based on the decomposition 

and ensemble theory is intended to remove the noise in the initial sequence. An 

advanced data preprocessing technique is chosen to reduce fluctuations and uncertainty 

to obtain a smooth sequence and improve the forecasting accuracy.  

(3) A new combined prediction strategy that includes the selection of several 

sub-models to minimize the combination error and weight optimization operators 

is proposed. Four sub-models are used to predict the original sequence, and their 

prediction results are integrated by the multi-objective grey wolf optimizer (MOGWO) 

to gain more precise and stable predictive effect. 

(4) The Pareto optimality of the solutions from the combined system is 

theoretically proven. The proof ensures that the optimal weight vector is obtained in 

the combined system through the leader selection mechanism and superior to those 

generated by the individual models, thus improving the prediction performance of the 

proposed system. 

(5) An integrated and detailed assessment system was built to assess the point 

prediction (PP) and interval prediction (IP) results of CFM. In the assessment 

module, nine metrics and several sites are used in the experiment with intervals of 10-

min, 20-min and 30-min. In addition, the multi-step prediction and rolling input steps 

further are investigated to further ensure the accuracy and reliability of CFM. 

The overall structure of this paper is as follows. The approaches used in this study 
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are introduced in Section 2, the flow of CFM described in detail in Section 3, the 

experimental processes presented in Section 4, and the discussion and conclusion are 

given in Sections 5 and 6, respectively.
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Table 1 Various studies on wind speed. 

 

Method 
Published 

year 
Contribution Disadvantages 

NWP-K means-GRNN [8] 2016 

NWP and ANNs are combined and the 

parameters of clustering are discussed in 

detail. 

high requirements on computation and 

information.  Lack of comparison with other 

ANNs models. 

ARMA-AR [13] 2021 
The parameter values of AR and ARMA 

models are discussed. 
Not suitable for non-linear data. 

VMD-phase-space reconstruction (PSR) - 

BPNN, ELM, ENN-multi objective multi 

verse optimization (MOMVO) [15] 

2021 

A two-stage preprocessing way VMD-PSR is 

to analyze noise. MOMOVO is applied to 

combine BPNN, ELM and ENN. 

The change of key parameter values needs to 

discuss. 

ICEEMDAN- ARIMA, BPNN, ENN, 

GRNN, ELM-Modified MODA [23] 
2020 

The modes mix is solved in EMD and 

EEMD. Modified MODA enhances the 

optimization of weight coefficient. 

The predictive power of selected single 

models is not fully demonstrated. 

Flexible ensemble patch transformation 

(EPT)-CEEMDAN-CNN [26] 
2022 

EPT-CEEMDAN enhances the detection of 

local patterns embedded.  Multiple deep 

learning models are compared.   

Robustness and precision are not well 

balanced. 

VMD-GA-WNN [28] 2017 
VMD and GA are used to eliminate data 

noise and optimize WNN. 

The optimization effect of single objective is 

limited. 

CEEMDAN-ELM, RBF, GRNN, BPNN-

MOGWO [29] 
2021 

MOGWO is adopted to integrate ELM, RBF, 

GRNN, BPNN. 

Parameter setting of optimization algorithm 

is not explained. 

ICEEMDAN-SVM- whale optimization 

algorithm (WOA) [30] 
2017 

WOA is used to optimize the parameters of 

SVM. 

Fewer contrast models and optimization 

effect of single objective is limited. 

VMD-BPNN, random vector functional 

link network (RVFL), ANFIS, GRNN- 

multi objective salp swarm algorithm 

(MSSA) and support vector regression 

(SVR) [31] 

2021 

Using the hybrid algorithm MSSA-SVR 

assigns coefficients to single models and the 

Pareto optimal solution of the optimization 

algorithm is analyzed.   

Model parameter values are not displayed. 

CEEMDAN-ELM, GRNN, ARIMA, 

BPNN, ENN- MOGOA[32] 
2019 

MOGOA can optimize individual model 

weights. 

Lack of discussion on parameter setting and 

comparison of other deep learning models. 
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2. Design of the combined forecasting model 

The proposed prediction model in this study is mainly composed of data 

preprocessing technology, multiple single models, multi-objective weight optimization 

operator and uncertainty prediction, which is used to improve the prediction accuracy 

and quantify the uncertainty of prediction results. The corresponding algorithm and 

theoretical introduction are presented in this part.  

2.1 Data denoising strategy 

Before data denoising, we process the original data to prevent data leakage. 

Specifically, data leakage can cause the model to look accurate, but when applied to 

real life, the model can become very inaccurate, which is mainly divided into feature 

leakage and training data leakage. For feature leakage, features generally have a strong 

correlation with target variables. In this study, prevention of training data leakage is of 

greater concern to us. Before dividing the datasets, preprocessing the whole data set 

will lead to data leakage and make the information of the test set appear in the training 

set. Therefore, after dividing the datasets, we use decomposition technology for training 

set and test set respectively to prevent data leakage. The corresponding data denoising 

strategy is presented as follows. 

The ICEEMDAN (ICE) is adopted to decompose the initial sequence, which is 

characterized by instability and fluctuation [30, 33]. ICE, which is based on 

CEEMDAN, can further reduce the noise and aliasing in IMF, which has a good 

decomposition ability. Suppose is the original sequence, and the operators ( )jD  , ( )L  , 

and ( )i
 are introduced. ( )jD  generates the j-th mode decomposed from the initial time 

series, ( )L  produces the local average of the original sequence , and ( )i
 denotes white 

gaussian noise with μ=0 and unit variance σ2. The specific processes in ICE are as 

follows: 

The local mean of the i-th realizations
0

( )
1( ) ( ( ))

i i
t D t     is first calculated 

to obtain the first residue
1
( )R t :  1

( ) ( ))( i
R t L t , where

i
 is an operation item to 

remove noise and{ } is the tool of the averaging process. The first mode can then be 

computed as 1 1
( ) ( )IM t R t  . 

The second residue
2

R can be computed as
1

( )
21
( ( ))( )

i
tR t D   , and the second 

mode 2IM is obtained: 

 ( )

2
1

2 1 2 1 1
( ( ( ))( ) ( ) ( ) ( ))

i
tIM R t R t R t R tL D                (1) 

For 3,4, ,j n ,the j-th residue is calculated as: 

   ( )

1 1
( ( ( ))( ) ( ))

i

j
jj j

tR t R tL D 
 

                       (2) 

1
( ) ( )j j j

IM R t R t


  can also be obtained. After obtaining all the modes, the 

original sequenc  can be reconstructed as ( ) ( )'
j

R t R t , where R is the residual 

sequence.  

2.2 Neural network models 

LSTM (long short-term memory) is a special type of RNNs. The key components 

of LSTM are memory cells and gates. The forget gate determines the number of the 
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unit state ( 1)C t  remaining at current moment ( )C t and is calculated as

1, , ( ) ( { , } )
f t t fb t b x hF   


   . The number of inputs ( )x t stored in the cell state ( )C t

is determined in the calculation process of the input gate
1, , ( ) ( { , } )

i t t ib t b x hI


      . 

Finally, the output gate controls the number of unit states ( )C t to be output to the present 

output value ( )h t and is given by
1, , ( ) ( { , } )

o t t ob t h x b


       where b and  are bias 

and weight, respectively. The calculation principle of GRU (gated recurrent unit) is very 

similar to LSTM. The difference is that GRU combines the forgetting gate and input 

gate in LSTM algorithm into update gate, so GRU consists of two gates, the update gate 

and the reset gate. 

The hidden layer of CNN (convolutional neural network) consists of convolution 

CL, pooling PL and full connection FL. The convolution process is represented as

,

p q

x y i ii
C v


 , which is the sum of the product of the kernel weight and the brightness 

of the corresponding element in the input image. The main goal of pooling is to reduce 

the feature space of the maps. The fully connected layer is greatly important in 

combining the extracted features to obtain the output. 

TCN (temporal convolutional networks) is suitable for sequence model 

construction under causal constraints, that is, the output 0 1
ˆ ˆ ˆ{ , , , }

t
y y y  can only be 

predicted based on the past observation 0 1{ , , , }
t

x x x .Therefore, TCN can be designed 

as a nonlinear function with the mapping :
T T

f X Y . In addition, TCN also adds the 

dilated convolution and residual block to better extract historical information. 

QRNN (quasi-recurrent neural networks) is the LSTM acceleration algorithm, 

including two components of convolution and pooling. In the convolution operation, 

the output of the input, forget and output gates can be expressed as tanh( )
z

Z W X  ,

( )fF W X  and ( )
O

O W X  , where X is the input, z
W , fW and O

W are the 

convolution filters. There are three ways the pooling process can reduce the number of 

features, named f-pooling, fo-pooling and ifo-pooling based on the number of gates 

used. 

ANFIS (adaptive neuro-fuzzy inference system) is a neural network based on 

fuzzy reasoning. The first layer is a fuzzy layer. 1

i=1,2
( )

i
A

x   and 1

1,2
( )

i
j B

y


   are 

output functions where x and y are the inputs with the respective membership functions

iA and
iB . The second layer calculates the weights of each membership function 

according to the previous outputs. The third layer normalizes the weights as
3

i 1 2
/ ( )

ii       . The fourth layer provides the output of the rule inference

4

i i i
F . The last layer generates the sum of each output 

 5

i
/i ii i i

F F w      . 

ELM (extreme learning machine) is a kind of feedforward neural network that 

includes input, hidden and output layers. The thresholds b and input weights ω are 

randomly generated. The input and output are 1 2
( , , )

n n

i i i
x x xX    and 

1 2
( , , )

m m

i i i
t t tT   . The hidden layer output is ,

1, ,
( ) ( ) 

b T

i n i i
H x F x b


 


 ,where 

( )F   is the activation function. The final output is 
1

, ,
( ) ( ) ( )

n

ii

b

n x H x i


 
 

 , where 

the output weights are
1

( , , )
n

   . 
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BPNN (back propagation neural network) consists of input, hidden and output 

layers, and the calculation is:  1
0 1( , )

t

i I j jm m j jmm t n
y f y   



 
    , 

 0 0 0 0 01
0 1

I

t j j jj
y f y


      ( , ) , where

m
y and jy are the inputs of the input 

and hidden layers,
t

y is the predicted value at time t. N and I are the number of nodes 

in the input and the hidden layers. In the hidden and output layers, j and 0 are the 

threshold values, jm and 0 j
 are weights,

I
f and 0f are activation functions. 

On the basis of BPNN structure, ENN (elman neural network) adds a continuation 

layer to the hidden layer as a delay operator to achieve the purpose of memory. The 

learning process is: 1 2 1( ) ( ( ) ( ( )))
c

x k f w x k w u k   , 3( ) ( ( ))y k g w x k , where y is 

the m-dimensional output vector, x is the unit vector of n-dimensional middle layer, u 

is the r-dimensional input vector, 1 2 3( , , )
i

w i  is the connection weight of each layer, 

( )g and ( )f are activation functions of output and middle layer neurons respectively. 

GRNN (general regression neural network) is a kind of radial basis neural network, 

which is composed of input, pattern, summation and output layers.
22 1 2T

i i i
p X X X X i n    exp[ ( ) ( ) / ]  , , , is the neuron transfer function of the 

pattern layer, where X is the input variable and Xi is the learning sample of the i-th 

neuron. The output of neuron j can be calculated as /
i Nj D

y S S , where NjS and
D

S are 

the arithmetic sum and weighted sum of neurons at the pattern layer. 

2.3 Multi objective grey wolf optimizer 

 Mirjalili et al. first proposed the MOGWO algorithm, who were inspired by social 

leadership and hunting technique of grey wolves [29, 34]. The alpha wolf αw is defined 

as the fittest solution, and the beta wolf βw and delta wolf δw, the second and third best 

solutions, respectively. The other candidate approaches are the omega wolves ωw. αw, 

βw, and δw play a key role in capturing prey, and ωw follow αw, βw, and δw to catch prey. 

Definition 1 Encircling process. During the hunting of prey, the grey wolf location is 

updated as 1 ( )( )wolf prey DL L H
     


  
, ,

tt , where ( )preyL


t  and wolfL
    , ,

represent the 

location of prey and grey wolf, respectively, and ( ) ( )prey wolfD C L L
    

  
, ,

t t  is the 

distance between the grey wolf and its prey. C and H are coefficient vectors that are 

calculated as
2

2C   and
1

2H      , respectively, where  is the convergence 

factor, which decreases linearly from 2 to 0 with the number of iterations, and is a 

random vector
1 2

[ , ] [0,1]   . 

Definition 2 Hunting behavior. Suppose that αw, βw and δw have a better command of 

the potential location of the prey and their distance from the prey is: 
, ,

wolfpreyD C L L
    

   . The current location of the wolves is then obtained as 

, ,

wolf preyL L H D
     

   , and the location of ωw can be calculated as 

, ,
/ 3wolf

wolf
L L

   

 


 . 
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Definition 3 Exploitation. When H [ 1,1]  is random vector, the wolves can move at 

will between themselves and the prey. This narrows down the estimated location of the 

prey provided by αw, βw and δw. 

Definition 4 Searching prey. When | | 1H , the wolf is forced to separate from its prey 

while | | 1H helps to converge towards the prey. Moreover, the random vector [0, 2]C   

facilitates the discovery of new solutions. 1C indicates that the location of the wolf 

has a great influence on the prey and 1C indicates that the location of the wolf has 

little effect on the prey. 

Definition 5 Archive. The archive is a store tool that saves or retrieves non-dominated 

Pareto optimal solutions. 

Definition 6 Leader selection mechanism. This selection mechanism adopts the 

roulette wheel approach of /
i i

P c N  to choose the non-dominated pareto optimal 

solution where c is a fixed value and 1c . N denotes the sum of Pareto optimal 

solutions obtained.  

2.4 Multi objective problems (Mop) 

In multi-objective problems, it is critical to find vector solutions. The concept of 

Pareto dominance is designed to facilitate the choice of the vector solutions. The Pareto 

optimal solution is defined as follows: 

(1)
1

 is considered to dominate
2

 , i.e., 
1 2

  ，if and only if 
1

 and 
2

 meet: 
1 2 1 2

[ {1 2 } ( ) ( )] [ {1 2 } ( ) ( )]t t q qp t F F q t F F        , , , , , , , where F is a 

function and t denotes a vector of numbers. 

(2) The solution
1

 is called the Pareto optimal solution if the conditional equality 
1i i

 / ,   is satisfied, where denotes solution space. 

(3) The Pareto optimal solution set s
 includes all the Pareto optimal solutions and can 

be expressed as { | / , }
i i

s
       .  

To improve the precision and stability of the combined system, the MOGWO objective 

function is defined as: 
1

2

(1/ ) ) / 100%
min

( ) 1, ,

(
i i iQ

i

i i

F Q P A A

F std P A i Q

  

  








                  (3) 

where F is the objective function, P and A represent the forecasted and true values. 

2.5 The Pareto solution proof   
The objectives in MOPs may often conflict with one another. The solutions in such 

problems can usually be expressed as the Pareto solution ( * ). For MOPs, the Pareto 

solution (
*

) that satisfies
* *

. .
/ ( ) ( )

s t
FIT FIT   is adopted rather than the 

accurate solution. Arc is a tool for storing the non-dominated solutions (  ); however, 

the storage capacity of Arc is limited and has the upper bound of , that is,   . 

Hence, in the process of updating Arc , it is necessary to compare the new solution   

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



11 

 

and the present non-dominated solutions 1 2{ , , , }
p p p

 in Arc . When
p

i or
p

i ,

[1, ]i  ,  is added into Arc and
p

i is removed or ranked behind  .Once the Arc

capacity has reached the upper bound  , the most crowded segments will be 

removed with the deletion probability / ( 1) 
i i

Pd c c . Then, the roulette-wheel 

technique is employed to compare the present solution with with the probability 

/ ( 1) 
i i

Pd c c to determine the Pareto optimal solution  . The pseudocode is listed 

as Table 2. 

Table 2 Pseudo code. 

Algorithm: MOGWO 

 Input: 
 (0) (0) (0) (0)( (1), (2), , ( ))trm m m m a  –training data 

 (0) (0) (0)( ( 1), ( 2), , ( ))m a m a m a i    –testing data 

 Output: 
 (0) (0) (0)ˆ ˆ ˆ( ( 1), ( 2), , ( ))n a n a n a i     –forecasting data 

 Parameters: 

 Fi – the fitness function of i-th wolf 

 Itermax – maximum iteration times. 

 t – present iteration times. 

 d –dimensions numbers. 

 n –wolves numbers 

 
i

L – the position of i-th wolf 

1 /*Set up the parameters of MOGWO.*/ 

2 /* Random initialization of the n wolves iL population (i=1,2…n).*/ 

3 FOR EACH i=1:n DO 

4 /*Calculate the Fi using the process of ranking.*/ 

5 END FOR 

6 /*Decide the best search agent
, ,

wolfL
   

.*/ 

7 WHILE (t< Itermax) DO 

8 FOR EACH i=1:n DO 

9 /*Update , H , C and choose a wolf randomly from the archive.*/ 

10 
2

2C   ,
1

2H       

11 /* In the archive choose the elite from by roulette wheel */ 

12 IF( | | 1H ) THEN 

13 /* Update the location from the search proxy at present .*/ 

14 
, ,

| |prey wolfD C L L
    

    

15 ELSE ( | | 1H  ) THEN 

16 /*Update the location from the search proxy at present.*/ 

17 
, ,

wolf preyL L H D


  
     

 

18 END IF 

19 END FOR 

20 /* Compute all wolves’ objective values.*/ 

21 /* Search the non-dominated solutions.*/ 

22 /* Renew the file depending on the non-dominated solutions.*/ 

23 IF this file is up to its limit DO 

24 
/* To contain new solutions, remove some solutions from the file and use 

roulette wheel with Pi = Ni /c (c>1).*/ 
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25 END IF 

26 IF the file capacity exceeds boundary DO 

27        /*Renew the boundary to hold the new ones.*/ 

28 
, ,

/ 3wolf
wolf

L L


    

 

 

29 END IF 

30 T=t+1 

31 END WHILE 

32 RETURN L* 

2.6 Uncertainty prediction  
Interval prediction is proposed to quantify the uncertainty. According to maximum 

likelihood estimation (MLE), Weibull, Gamma, Rayleigh and Lognormal distribution 

are adopted to fit the data. Interval prediction results of CFM is testified and compared 

with basic models, the upper and lower bound is expressed as: 

1 2 2

i th i th
i th i th

Dis Dis
Up Fr Dis n Lo Fr Dis n

 
   


     ，

 
 

/ /
/ / , where 1 2/Dis  and

2/
Dis are the critical values of optimal distribution and α is the significance level (α= 

0.05, 0.1 and 0.2 in this study). 

3. Flow of the combined forecasting system 

In this study, a strategy of combining interval prediction with point prediction is 

adopted. A smooth sequence is first obtained using the ICE data preprocessing 

technique. Then, some single neural models are applied to forecast a stable sequence 

and obtain the forecasted values
1 2 3 4
ˆ ˆ ˆ ˆ( , , , )F f f f f . In addition, the optimization 

operator is used to provide the most reasonable weights
1 2 3 4

( , , , )W     to combine 

the forecasted values in F . Finally, confidence intervals of 80%, 90%, and 95% are set 

for the experiment. The main framework is illustrated in Fig.1.  

 
Fig.1 The main structure of this paper 

3.1 Information of datasets  

A wind power plant in Penglai (37°48′N 120°45′E), Shandong Province, China, is 
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used as the example. Seven sites are chosen to verify the performance of the proposed 

system, which include 10-min, 20-min and 30-min intervals. Besides, seven sites have 

the same sample size of 2220. The first 2000 samples are used for training, and the 

remaining 220 are used for testing. The details of the dataset are presented in Table 3 

and the features of the dataset are also visually depicted in Fig. 2. 

Table 3 Datasets. 

SET Sample  Size 
Indicators(m/s) 
Maximun Minimun Mean Std. 

Site1: 10-min 
Total samples 2220 17.2000 2.0000 8.5566 2.8012 
Train-set 2000 16.1000 2.0000 8.1810 2.5671 
Test-set 220 17.2000 5.1000 11.9707 2.5207 

Site2: 10-min 
Total samples 2220 18.1000 2.3000 9.6626 2.9661 
Train-set 2000 18.1000 2.3000 9.2664 2.7311 
Test-set 220 17.5000 6.6000 13.2641 2.5688 

Site3: 10-min 
Total samples 2220 18.4000 2.0000 9.0219 3.1068 
Train-set 2000 18.4000 2.0000 8.6368 2.8735 
Test-set 220 17.6000 5.4000 12.5236 2.9601 

Site4: 20-min 
Total samples 2220 16.7000 0.9000 6.7181 2.7697 
Train-set 2000 16.7000 0.9000 6.6773 2.7774 
Test-set 220 12.9000 2.6000 7.0886 2.6763 

Site5: 20-min 
Total samples 2220 18.2000 0.8000 7.8146 3.0395 
Train-set 2000 18.2000 0.8000 7.7815 3.0340 
Test-set 220 15.6000 2.1000 8.1159 3.0796 

Site6: 30-min 
Total samples 2220 18.2000 1.3000 8.4859 3.2925 
Train-set 2000 17.9000 1.3000 8.4406 3.2510 
Test-set 220 18.2000 2.8000 8.8977 3.6307 

Site7: 30-min 
Total samples 2220 17.5000 1.0000 7.5488 3.1403 
Train-set 2000 17.5000 1.0000 7.5082 3.0817 
Test-set 220 17.2000 2.7000 7.9182 3.6172 

 
Fig.2 Wind speed data 

3.2 Metrics 

In the point prediction, six commonly used indicators are applied to evaluate 

model performance, namely RMSE, MAE, MAPE, R2, IA and PE, which can better 

reflect the prediction accuracy. The smaller the index values of RMSE, MAE and 
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MAPE are, the higher the prediction accuracy of the models are, while R2 and IA are 

opposite. Three indicators named FINAW, AWD, and FICP are designed for interval 

forecasting. FINAW calculates the width of the interval. AWD is used to estimate the 

degree of deviation of the interval. FICP measures the extent to which ranges cover 

true values. The detailed information of metrics is presented in Table 4. 

Table 4 Metrics. 

Metric Expression Definition 

RMSE 2

1
(1 / ) ( )RMSE


 

Q

i ii
Q F A  Root mean square error 

MAE 
1

(1 / )MAE


 
Q

i ii
Q F A  Mean absolute error 

MAPE 
1

(1 / ) ( ) / 100%MAPE


  
Q

i i ii
Q F A A  Absolute percentage error mean 

R2 

2

1

2

1

( )
1

( )

2
R















Q

i ii

Q

i i

F A

F A
 Coefficient of determination 

IA 

2

1

2

1

1
( )

( )
IA





 


  





Q

i ii

Q

ii i

A F

A A A F
 Consistency of the predicted results 

PE ( ) ( ) / 100%PE   
i i i

i F A A  
The percentage of the predicted 

value in a specified error range 

FICP  
1

/ ) 100%FICP


 
Q

ii
C Q  

Coverage probability of the forecast 

interval 

FINAW 
1
( ) /FINAW


 

Q

i ii
U L FR  

Normalized averaged width of the 

forecast interval 

AWD 

 
1

( ) / ( )

0 [ , ]

( ) / ( )

/

  

AWD   

  

AWD AWD




 

 

 









i i i i i i

i i i

i i i i i i

Q

ii

i

A U U L A U

A L U

L A U L A L

FR

 

AWDi denotes the cumulative 

deviation of the forecast interval and 

AWD is the mean of cumulative 

deviation 

Note: Fi, Ai represents the forecasting and actual value of i-th. In the point prediction 

evaluation index, ±5%, ±10% and ±15% error range are chosen to calculate the index PE; 

In the interval prediction evaluation index, if Ai belongs [Ui, Li], then ci=1, otherwise ci=0; 

FR means the range of predicted values. 

3.3 Model parameter setting 

The parameters for the neural network approaches are presented in Table 5 and 

those for MOGWO and ICE in Table 6. 

Table 5 Parameters of single models. 

Model Symbol Meaning Value Setting reasons 

BPNN 
Tg Training goal 0.00004 Preset 

Tfhid Activation function of hidden  tansig Preset 

ENN 
Emax The maximum epochs 1000 Trial- error method 

Tg Training goal 0.00004 Preset 

ELM 

 

Tf Activation function of hidden  sig Preset 

ANFIS 
CANf The number of the cluster  10 Preset 

Emax The maximum epochs 1500 Trial- error method  

GRNN SGRnn Spread 1 Preset 

LSTM 
Lr Training learning rate 0.005 Preset 

Emax The maximum epochs 2000 Trial- error method 

CNN 
Lr Training learning rate 0.005 Preset 

Bmin MiniBatchsize 16 Trial- error method 

GRU HL Numbers of hidden layers 40 Trial- error method 
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Emax The maximum epochs 2000 Preset 

TCN 
HL Numbers of hidden layers 50 Trial- error method 

Emax The maximum epochs 500 Preset 

Table 6 Parameters of ICE and MOGWO. 

Model Symbol Meaning Value Setting reasons 

ICE 
Itermax The maximum number of iterations 1000 Trial- error method 

NR Realization Number 100 Trial- error method 

MOGWO 

Itermax The maximum number of iterations 100 Trial- error method 

As Archive size 100 Trial- error method 

Ps Population size 200 Trial- error method 

α Grid inflation  0.1 Preset 

g Sum of grids per dimension 10 Preset 

β Leader selection pressure 3 Preset 

4. Experiment results    

In this section, the results of the four comparative experiments and two validation 

tests to evaluate CFM are shown. 

4.1 Selection of excellent sub models 

Seven single predictive models named ANFIS [35, 36], LSTM [37, 38], CNN [39, 

40], ELM [41-43], BPNN [44], GRNN [45, 46], and ENN [47] were chosen to forecast 

the original sequence in this study. To choose the most suitable models for improving 

the accuracy of CFM, the SEM strategy was developed [48]. The strategy is introduced 

below: 

(1) The MAPE, MAE, and RMSE of every sub-model are calculated for one hundred 

iterations. 

(2) Each index value is normalized as, for example, 

1 11

(( min( )) / (max( ) min( ))i
i

i Q i Qi Q

MAE MAE MAE MAE MAE
    

            (4) 

(3) Weights are assigned to each index value and the SEM value is calculated as 

(1/ 3) (1/ 3) (1/ 3)i i ii
SEM MAE MAPE RMSE      . 

The SEM values are listed in Table 7. A smaller SEM value indicates a higher 

model precision. Based on the results, ANFIS, LSTM, CNN, and ELM were chosen as 

the sub-models. 

Table 7 Results of SEM. 

SEM 
Model 

GRNN LSTM ELM BPNN ANFIS CNN ENN 

Site1_SEM 0.3300 0.3021 0.3797 0.2458 0.2871 0.2590 0.2589 

Site2_SEM 0.2814 0.1587 0.2240 0.3657 0.3125 0.2200 0.4129 

Site3_SEM 0.3251 0.4011 0.2134 0.2948 0.2250 0.3100 0.3201 

SEM* 0.3122 0.2873 0.2724 0.3021 0.2749 0.2630 0.3306 

Note: * mean the average of SEM values of all sites. 

4.2 Experiment Ⅰ: Comparison between CFM and basic models 

To demonstrate the performance of CFM, seven individual models were used for 

comparison in ExperimentⅠ. The results are as shown in Table 8 and Fig. 3.  

In Table 8, CFM exhibited the smallest error with MAPE, MAE and RMSE values 

of 2.8645%, 0.3217 and 0.4114 at site1. At site2, CFM exhibited the best performance 

with the MAPE value of 2.1843% compared to the other models, which had an average 

MAPE value of 4.8747%. The superior precision of CFM was thus verified. The IA and 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



16 

 

R2 can better reflect the agreement between the actual and the forecast data. At site1, 

CFM showed a better performance with the values of R2and IA exceeding 97%, which 

was a 10% improvement in IA and R2 over the best model, GRNN.  

 
Fig.3 Results of CFM and basic models 

4.3 Experiment Ⅱ: Comparison between CFM and single model based on ICE 

Experiment Ⅱ was designed to contrast the accuracy of CFM and other models 

based on ICE. The results are presented in Table 9 and Fig.4. The following 

conclusions can be drawn from the results: 

It is obvious that CFM achieved the best prediction results at site1, with MAPE, 

MAE and RMSE values of 2.8645%, 0.3217, and 0.4114. For site2, the worst-performing 

model was ICE-ENN with MAPE exceeding 3.1044%. By contrast, the corresponding 

index value for CFM was 1% lower than that of ICE-ENN. For site3, CFM still 

exhibited the excellent performance with R2 exceeding 97%. The prediction error PE of 

CFM in the range of 5%, 10%, and 15% was greater than 80%, 90% and 95%, 

respectively. Obviously, CFM had more excellent prediction accuracy. 
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Fig.4 Results of CFM and denoising models 

4.4 Experiment Ш: Comparison between CFM and models with other denoising 

strategy 

In this section, three denoising strategies, namely, CEE, EMD, and EEMD, were 

chosen to verify the predictive abilities of CFM, and the detailed results are presented 

in Table 10. The following conclusions can be drawn: 

For site1, for the worst-performing EEMD-based model, the values of MAPE, 

MAE and RMSE were 4.6335%, 0.6592 and 0.6368, which far exceeded the 

corresponding values for CFM. For site2, MAPEEMD=3.3387% was obtained for the best 

classical model, which was based on EMD. In comparison, the smaller value of 

MAPECFM=2.1843% was obtained for CFM. Finally, for site3, the prediction errors of 

the comparison models in the range of 5% were almost less than 80%. It is not difficult 

to find that CFM performed better with
5%

CFM
PE exceeding 80%. 

4.5 Experiment Ⅳ: Comparison between CFM and other optimization strategies 

In this part, three optimization strategies called MOGOA, MOALO and MODA 

were designed to evaluate the predictive precision of CFM. The calculation results are 

listed in Table 11. It can be easily seen that the CFM had excellent performance. For 

example, for site1, the MAPECFM=2.8645% of CFM was 0.2%, 0.02% and 0.05% lower 

than those of MOGOA, MOALO, and MODA, respectively. In addition, only the R2 of 

CFM exceeded 95%, while its IA exceeded 97%. It can be found from the above 

evaluation index values that CFM has better performance in forecasting. 
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Table 8 The performances of CFM and basic models. 

 

SET Model 
     PE 

MAPE RMSE MAE R2 IA ±5% ±10% ±15% 

Site1: 10-min 

CFM 

 

2.8645 0.4114 0.3217 0.9749 0.9754 80.00 98.89 99.00 
ANFIS 6.8914 1.0924 0.8126 0.8113 0.7627 46.82 79.09 89.55 
LSTM 5.7710 0.8551 0.6705 0.8844 0.8553 49.55 85.00 95.00 
CNN 5.8641 0.8492 0.6731 0.8860 0.8576 50.00 82.27 95.45 
ELM 5.7888 0.8667 0.6737 0.8812 0.8512 50.00 85.45 96.36 
BPNN 6.0018 0.8832 0.6972 0.8767 0.8455 47.27 82.27 95.00 
GRNN 4.1138 0.7486 0.5544 0.9114 0.8879 72.73 85.45 99.09 
ENN 5.9280 0.8843 0.6943 0.8764 0.8449 48.64 82.73 96.36 
TCN 5.5340 0.8412 0.6571 0.8920 0.8588 50.50 86.67 96.69 
GRU 5.9284 0.8800 0.6877 0.8776 0.8867 49.55 80.91 95.45 
QRNN 5.4369 0.8391 0.6489 0.9012 0.8955 52.33 86.00 96.89 

Site2: 10-min 

CFM 

 

2.1843 0.3991 0.3111 0.9639 0.9942 92.22 94.23 98.20 
ANFIS 4.9404 0.8776 0.6535 0.8827 0.8550 62.73 88.64 96.82 
LSTM 4.9317 0.8474 0.6516 0.8907 0.8647 59.55 88.18 97.27 
CNN 5.0023 0.8375 0.6506 0.8932 0.8682 58.64 88.18 96.36 
ELM 4.8449 0.8369 0.6365 0.8934 0.8681 61.82 87.73 97.27 
BPNN 4.8209 0.8350 0.6341 0.8939 0.8690 61.36 88.18 95.91 
GRNN 4.1655 0.6751 0.5865 0.9306 0.9134 74.55 83.24 94.32 
ENN 

 

5.4175 0.9370 0.7183 0.8663 0.8345 57.27 85.91 96.36 
TCN 4.7569 0.8250 0.6477 0.8985 0.8799 60.60 89.71 97.92 
GRU 4.9899 0.8448 0.6504 0.8914 0.8990 58.64 88.18 96.82 
QRNN 4.9210 0.8409 0.6450 0.8920 0.8644 59.82 87.65 96.34 

Site3: 10-min 

CFM 

 

2.8727 0.4299 0.3598 0.9751 0.9582 84.44 98.89 99.00 
ANFIS 7.0114 1.0389 0.8457 0.8762 0.7934 38.64 75.00 93.18 
LSTM 6.6676 0.9739 0.8076 0.8913 0.8181 43.64 78.64 96.36 
CNN 6.6651 0.9511 0.7841 0.8963 0.8275 42.73 80.91 93.64 
ELM 6.5754 0.9697 0.7944 0.8922 0.8198 41.82 78.64 95.91 
BPNN 6.4957 0.9626 0.7789 0.8938 0.8227 43.18 80.00 94.55 
GRNN 3.2736 0.5712 0.4483 0.9626 0.9370 65.00 74.25 93.24 
ENN 6.4089 0.9378 0.7616 0.8992 0.8319 45.45 81.82 95.91 
TCN 6.7258 0.9841 0.8130 0.8842 0.8032 42.30 76.82 95.20 
GRU 6.5127 0.9622 0.7770 0.8939 0.8778 44.55 82.27 94.09 
QRNN 6.5433 0.9678 0.7820 0.8912 0.8461 44.32 81.00 94.15 

Note: The table lists the predicted results of CFM and basic models. The blacked part represents the evaluation index value 

of CFM. The equation of metrics are defined as: ( ) ( ) / 100%PE   
i i i

i F A A , 
1

(1 / )MAE


 
Q

i ii
Q A F ,

1
(1 / ) ( ) / 100%MAPE


  

Q

i i ii
Q A F A , 2 2

1 1
( ) ( ) 1/2

R
 

     
Q Q

i i ii i
A F F A  , 2 (1/ 2 )

1
((1 / ) ( ) ) ^RMSE


 

Q

i ii
Q A F ,

2 2

1 1
( ) / ( ) 1IA

 
      

Q Q

i i i ii i
A F A A F A . In addition, GRU, TCN and QRNN are introduced in experiments Ⅰ and Ⅱ 

to make a more complete comparison. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



19 

 

Table 9 The performances of CFM and the denoising models. 

SET Model 
     PE 

MAPE RMSE MAE R2 IA ±5% ±10% ±15% 

Site1: 10-min 

CFM 

 

2.8645 0.4114 0.3217 0.9749 0.9754 80.00 98.89 99.00 
ICE-ANFIS 3.3003 0.5527 0.4017 0.9517 0.9400 77.73 96.82 99.55 
ICE- LSTM 2.8753 0.4367 0.3409 0.9698 0.9625 83.18 95.09 99.00 
ICE-CNN 3.6981 0.5433 0.4330 0.9533 0.9420 73.18 96.82 98.32 
ICE-ELM 2.8631 0.4293 0.3375 0.9709 0.9638 85.45 95.02 97.20 
ICE-BPNN 2.9085 0.4329 0.3423 0.9704 0.9632 85.00 96.09 99.00 
ICE-GRNN 2.9884 0.4068 0.3790 0.9738 0.9672 95.91 99.09 99.55 
ICE-ENN 3.5534 0.5371 0.4172 0.9544 0.9432 73.18 97.73 98.50 
ICE-TCN 2.8910 0.4340 0.3545 0.9621 0.9654 84.20 97.23 98.80 
ICE-GRU 3.6746 0.5441 0.4301 0.9532 0.9571 70.91 96.36 98.20 
ICE-QRNN 2.8741 0.4220 0.3398 0.9717 0.9638 84.89 97.89 99.00 

Site2: 10-min 

CFM 

 

2.1843 0.3991 0.3111 0.9639 0.9942 92.22 94.23 98.20 
ICE-ANFIS 2.2827 0.3748 0.2978 0.9786 0.9737 90.00 93.40 98.30 
ICE- LSTM 2.3995 0.3989 0.3153 0.9758 0.9702 88.64 90.15 92.31 
ICE-CNN 3.0983 0.5160 0.4076 0.9595 0.9501 78.18 97.09 99.00 
ICE-ELM 2.2209 0.3599 0.2901 0.9303 0.9757 92.73 95.60 97.43 
ICE-BPNN 2.2658 0.3714 0.2954 0.9590 0.9742 79.09 98.64 99.55 
ICE-GRNN 1.0858 0.2071 0.1529 0.9435 0.9919 89.55 94.55 96.60 
ICE-ENN 3.1044 0.5411 0.4099 0.9554 0.9451 79.09 96.64 98.55 
ICE-TCN 2.3876 0.3847 0.3119 0.9722 0.9690 89.74 95.83 98.00 
ICE-GRU 3.1606 0.5159 0.4108 0.9595 0.9633 80.45 97.27 98.50 
ICE-QRNN 2.2531 0.3687 0.2937 0.9723 0.9714 91.52 97.03 98.11 

Site3: 10-min 

CFM 

 

2.8727 0.4299 0.3598 0.9751 0.9582 84.44 98.89 99.00 
ICE-ANFIS 3.1424 0.4798 0.3782 0.9736 0.9561 81.36 97.73 98.50 
ICE- LSTM 3.3935 0.5259 0.4132 0.9683 0.9472 79.09 97.27 99.00 
ICE-CNN 4.6616 0.7052 0.5686 0.9430 0.9046 59.09 93.64 98.64 
ICE-ELM 3.0488 0.4652 0.3629 0.9752 0.9588 82.73 97.73 98.60 
ICE-BPNN 3.0550 0.4682 0.3647 0.9749 0.9582 85.45 96.09 97.25 
ICE-GRNN 2.9030 0.2869 0.2178 0.9709 0.9542 83.45 97.09 98.44 
ICE-ENN 4.0672 0.6429 0.4986 0.9526 0.9210 67.73 94.55 98.09 
ICE-TCN 3.4184 0.5315 0.4274 0.9630 0.9426 80.05 96.30 98.17 
ICE-GRU 4.1967 0.6376 0.5032 0.9534 0.9469 63.64 91.82 99.09 
ICE-QRNN 3.0251 0.4591 0.3563 0.9680 0.9536 82.29 97.81 99.00 
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Table 10 The forecasting results of CFM and other denoising strategy models. 

SET Model 
     PE 

MAPE RMSE MAE R2 IA ±5% ±10% ±15% 

Site1: 10-min 

CFM 

 

2.8645 0.4114 0.3217 0.9749 0.9754 80.00 98.89 99.00 
CEE 4.6156 0.5576 0.6120 0.7671 0.8889 70.00 92.22 94.30 
EEMD 4.6335 0.6368 0.6562 0.7853 0.8294 76.67 85.56 92.28 
EMD 3.7898 0.5845 0.4958 0.7826 0.9341 78.89 87.45 91.32 

Site2: 10-min 

CFM 

 

2.1843 0.3991 0.3111 0.9639 0.9942 92.22 94.23 98.20 
CEE 4.4341 0.7932 0.6434 0.9440 0.8842 72.22 94.44 99.09 
EEMD 4.5079 0.8711 0.6603 0.8088 0.8597 83.33 96.67 97.78 
EMD 3.3387 0.5709 0.4832 0.8602 0.9401 78.89 94.33 96.22 

Site3: 10-min 

CFM 

 

2.8727 0.4299 0.3598 0.9751 0.9582 84.44 98.89 99.00 
CEE 5.6386 0.9667 0.8056 0.9309 0.9276 52.22 94.44 97.42 
EEMD 4.3859 0.5918 0.4114 0.8848 0.9100 86.01 87.78 96.67 
EMD 2.8755 0.5203 0.4102 0.8148 0.9500 84.44 98.89 99.01 

 

Table 11 The forecasting results of CFM and combined models using other algorithms. 

SET Model 
     PE 

MAPE RMSE MAE R2 IA ±5% ±10% ±15% 

Site1: 10-min 

CFM 

 

2.8645 0.4114 0.3217 0.9749 0.9754 80.00 98.89 99.00 
MOALO 3.0294 0.4986 0.3570 0.9214 0.9429 82.78 97.44 98.12 
MODA 2.8897 0.4387 0.3570 0.9414 0.9629 83.78 94.55 98.82 
MOGOA 2.9192 0.4544 0.3781 0.9083 0.9603 81.56 93.22 97.56 

Site2: 10-min 

CFM 

 

2.1843 0.3991 0.3111 0.9639 0.9942 92.22 94.23 98.20 
MOALO 2.1900 0.4074 0.3187 0.9435 0.9725 92.22 93.50 98.12 
MODA 2.1948 0.4083 0.3102 0.9428 0.9725 84.32 94.31 97.66 
MOGOA 2.2048 0.3999 0.3285 0.9407 0.9717 85.56 92.31 96.45 

Site3: 10-min 

CFM 

 

2.8727 0.4299 0.3598 0.9751 0.9582 84.44 98.89 99.00 
MOALO 2.9797 0.5791 0.3655 0.9430 0.9577 87.78 97.89 99.00 
MODA 2.9075 0.4800 0.3700 0.9424 0.9575 82.43 94.57 98.75 
MOGOA 2.9708 0.4894 0.3804 0.9362 0.9558 84.44 92.34 98.88 
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4.6 Uncertainty forecasting 

An interval estimate is based on a point estimate and can increase the prediction 

reliability and certainty [31]. In this subsection, four distributions were chosen to fit the 

sequence based on maximum likelihood estimation (MLE). They are Weibull, Gamma, 

Rayleigh and Lognormal distribution, which are shown in Table 12. After analysis, the 

Weibull distribution was adopted for the three sites, and the detailed parameter settings 

are presented in Table 13. Then, three indicators named FINAW, AWD, and FICP were 

designed for interval forecasting. The detailed results are depicted in Fig.5 and Table 

14.  

The indicators were evaluated for the probabilities P1=95%, P2=90%, and P3=80%. 

These probabilities can be expressed as (1 ) 100%  . It is clear that the prediction 

accuracy at the significance level of α=0.05 was superior to the accuracies at α=0.1 and 

α=0.2. At the significance level of α=0.05, the FICP for CFM at every site exceeded 

85%. In addition, at α=0.1, the FICP for CFM was between 80% to 85%. The similar 

values of AWD and FINAW at different significance levels implies that most of the 

actual values fell within the predicted ranges and that CFM achieved excellent 

performance. 

 
Fig.5 The interval forecasting results 

5. Discussion  

In this section, the results of improvement ratio, hyperparametric analysis, and the 

exploration of input and multi-step forecasting, operation time, comparative analysis 

and practical applicability are discussed to further analyze the above experimental 

results. 

5.1 Improvement ratio 

The aim of the improvement indicator is to quantify the improvement in the 

predictive precision of CFM. IRMAPE, IRMAE and IRRMSE are designed to represent the 

improvement ratio. The details are shown in Table 15. For example, the models based 

on ICE for site1 had the values of IR
ANFIS

MAPE =9.2670%, IR
LSTM

MAPE =4.1438%, IR
CNN

MAPE

=19.0262%, IR
ELM

MAPE =4.5895%, which shows that the advantages of each model were 
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combined in CFM. For the different denoising methods, it is clear from the average 

value of 34% for IR
ave

MAPE in these models that ICE played a key role in improving the 

forecasting accuracy. The various optimization strategies achieved an average value of 

7.3309% for IR
ave

MAPE . This implies that MOGWO could improve forecasting ability. 

There is no doubt that CFM was superior to the single models and the combined strategy 

achieved excellent prediction results. 

5.2 Hyperparametric analysis 

To investigate the influence of key parameter changes on the proposed model, only 

one key parameter was changed each time while the other parameters remained the 

same in this section. We changed the values of five parameters in the ICE and MOGWO 

algorithms. For ICE, the maximum iteration parameters values were [500, 3000] and 

the number realizations were [50, 100, 300]. For MOGWO, the archive size parameters 

values were [200,300,500], the maximum iteration parameter values were [50,150, 200], 

and the population sizes were [50,70,120]. The calculation results are shown in Table 

16. With the change of parameter values, the precision of the model also changed. For 

example, at site1, the number realizations were set to 50,100 and 300. When 100 was 

selected, the proposed model achieved good MAPE values with 2.8645%, 2.1843% and 

2.8727% in three sets. In general, it is not difficult to find that the parameter values 

selected in this paper perform better. 

5.3 Influence of input step and multi-step prediction  

This section adds sites 4-7 to better discuss the performance of the proposed model. 

Specifically, sites 4-5 use wind speed data at 20-minute intervals and sites 6-7 apply 

wind speed data at 30-minute intervals. The sample size and experimental mechanism 

are consistent with the above. Considering the neatness and symmetry of the table 

content, in sections 5.3.1 and 5.3.2, site1 (10-min), site2 (10-min), site4 (20-min), site5 

(20-min), site6 (30-min) and site7 (30-min) are used to test the performance of the 

proposed model. 

5.3.1 Influence of input step  
To analyze the influence of different input steps on prediction more accurately, the 

input steps λ were adjusted to 3, 4 and 6, and a comparative test was performed to 

further explore the performance of the proposed forecasting system. From Table 17, it 

is easy to see that for the 10-min sites, when the input step λ was 3, the prediction errors 

of
1

3
MAPE

site

 = 3.0833% and
2

3
MAPE

site

 = 2.4134% were larger at those of other steps. For 

the 20-min sites,
5%

3
PE

 and
5%

4
PE

 are less than 70%, which implies that better forecasting 

results were obtained by CFM compared to
5%

5
PE

 =69.33% at site4 and
5%

5
PE

 =72.22% 

at site5. The prediction accuracy for the 30-min sites was obviously inferior to those of 

the previously mentioned sites; however, the input step 5 still performed well. From the 

above analysis, it can be concluded that as the time interval increased, the prediction 

accuracy decreased continuously, but the best performance was still obtained when the 

input step was 5. 

5.3.2 Influence of multi-step prediction 

The multistep forecasting ability of the proposed system is explored in the 

subsection. The details of the two-and three-step predictions are presented in Table 18. 
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For site1, which had 10-min intervals, the smallest errors of
2

MAPE
step

CFM
=4.4556%, 

2
MAE

step

CFM
=0.5848 were achieved by CFM compared to the other models, which had the 

average errors with MAPE and MAE values of 5.0829% and 0.7960 for two-step 

predictions. In addition, the accuracy of the three-step prediction was obviously lower 

than that of the two-step prediction, but the CFM still achieved the good result with 
2

CFM
R greater than 90%. 

The accuracy decreased with longer interval times. For example, for the 20-min 

predictions by CFM, the MAPE values in two-step was 6.5225% at site4, which 

exceeded the values for the 10-min sites. For the 30-min predictions, the prediction 

error 
2

MAPE
step

CFM
increased to 9% at site6. These results indicate that the prediction 

system may be more suitable for short-term wind speed prediction.  

5.4 Operation time 

Table 19 shows the mean operation time of all models used in this paper. It is clear 

that the proposed system had the longest calculation time, at 264.8361s. For basic 

models, the running time of BPNN was 0.4111, which was the least time in all models. 

The computation time of models based on ICE denoising algorithm was also short, 

which was 57.9170s, 19.2999s, 65.4855s, 36.4029s, 20.4532s, 18.9124s and 22.8657s. 

In addition, when applying other noise reduction algorithms or optimization algorithms, 

the time spent on combined models increased significantly, which was in the 100s to 

200s range. Although the time consumed of the proposed model was longer than other 

models, it had superior predictive power. Its time was within the acceptable range and 

did not affect its practical application greatly. 

Table 19 Computing time. 

Model Computation time(s) Model Computation time(s) 

CFM 264.8361 MOALO 197.8581 

ICE-ANFIS 57.9170 MODA 207.2554 

ICE-ELM 19.2999 MOGOA 198.3225 

ICE-LSTM 65.4855 BPNN 0.4111 

ICE-CNN 36.4029 ENN 1.4821 

ICE-GRNN 20.4532 ELM 3.2169 

ICE-BPNN 18.9124 LSTM 38.3067 

ICE-ENN 22.8657 CNN 18.7405 

EMD 137.0275 ANFIS 40.2649 

EEMD 110.2881 GRNN 10.1546 

CEE 203.0657   

5.5 Comparative analysis 

Through the experiments above, the validity of the proposed model is proved. 

However, the results based only on the experimental mechanism in this paper may not 

be convincing. Therefore, in order to be fair, this section compares the proposed model 

with other similar studies. Specifically, Niu’s model [32], Shao’s model [29]and Liu’s 

model [23]are used for comparative study. Niu et al. designed the combined model 

based on data preprocessing and optimization algorithm for wind speed forecasting, 

which obtained high accuracy with the smallest MAPE value of 2.89%. However, Niu 

et al. ignored the importance of uncertain predictions and the influence of parameters 

on model performance was not considered. Shao et al. used the same MOGWO 

algorithm and proposed a combined model based on decomposition-integration, but 

also lacked the exploration of uncertainty prediction and the influence of model 
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parameters. Liu et al. not only applied the improved optimization algorithm to point 

prediction and interval prediction of wind speed, but also considered the influence of 

different seasons on wind speed prediction. However, Liu's model lacked comparison 

with other literatures, and the results of parameter adjustment were not fully 

demonstrated. Table 20 presents the comparison results of this study with other studies. 

There is no unified comparison standard for model accuracy among different 

studies [49]. Therefore, to verify the accuracy of the proposed model, the evaluation 

index and datasets in this paper are applied in the models of Niu, Shao and Liu. 

Meanwhile, parameter settings are basically consistent with those in the original 

literature. Although the error between these models was not large, it was enough to 

show that the proposed model is superior to the models from comparative studies. For 

example, the MAPE value of the proposed model was 2.8645%, while Niu, Shao and 

Liu had values of 3.4181%, 4.0200% and 3.1835% respectively. The proposed model 

also had outstanding advantages in other indicators. Therefore, it can be reasonably 

concluded that the proposed model has excellent predictive ability. 

5.6 Practical applicability  

Efficient and timely wind speed prediction plays an important role in wind power 

generation system, which can not only meet people's demand for electricity, but also 

maximize economic benefits. Meanwhile, the proposed model in this paper can also be 

applied to other fields: 

(a) Air quality forecasting. Deep learning technology has been widely used in air 

monitoring, this proposed prediction system based on deep learning methods can be 

applied to the monitoring of air quality, for example, to timely predict air pollutant 

concentrations and to provide reasonable suggestions for travelling and improving the 

environment. 

(b) Traffic forecasting. In recent years, the prediction of traffic flow has become the 

focus of attention. This proposed system can sensitively capture the change of traffic 

flow, so as to reduce traffic congestion, relieve people's travel pressure and provide 

support for the development of intelligent transportation. 

(c) Financial market forecasting. This system can also be used in the prediction of 

future trends in stocks, funds, etc, timely providing technical support for discovery of 

potential financial risks. 

6. Conclusion and future work 

Wind energy has received increasing attention as a renewable energy source to 

address the shortages in the energy market. Nevertheless, the fluctuation and instability 

of wind speed still present difficulties for wind speed forecasting. An advanced wind 

speed prediction system was developed in this study. The ICE denoising strategy was 

first used to eliminate noise to obtain stationary sequences based on the de-composition 

and ensemble theory. Several single models were then adopted to predict the processed 

data. The optimal weights and final forecasting results were obtained using the 

MOGWO operator. The Pareto optimality of the MOGWO solutions was theoretically 

proven to ensure that the optimal weight vector can be obtained in the combined system.  

The point prediction results show that the MAPE values of the proposed model were 

2.8645%, 2.1843% and 2.8727% respectively. Besides, for uncertainty forecasting, the 

FICP values of the proposed model were 85.1697, 89.5410 and 88.0111 respectively at 

the significant level α = 0.05. The AWD values were 0.0559, 0.0400 and 0.0361 and 

the FINAW values were 0.0478, 0.0404 and 0.0390. It is clear that the proposed system 
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exhibits remarkable accuracy and stability performance. This system can hence provide 

accurate and real-time wind power information and contribute to wind power 

generation.  

There are still some areas that need to be improved in future studies, for example: 
(1) In order to further improve the prediction accuracy, the influence of temperature, 

wind direction and other variables on wind speed prediction needs to be further 

discussed. (2) More advanced deep learning algorithms can be applied to future 

research to improve the accuracy of developed system. (3) Using more efficient 

preprocessing methods deals with unstable, random wind speed data. In addition, the 

effects of different preprocessing methods need to be further explored.
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Table 12 Data distribution fitting. 

Distribution 
Site1 Site2 Site3 

R2 RMSE R2 RMSE R2 RMSE 

Weibull 0.9892 0.0299 0.9932 0.0239 0.9971 0.0156 
Gamma 0.9866 0.0334 0.9914 0.0267 0.9932 0.0238 

Rayleigh 0.8903 0.0955 0.8579 0.1087 0.9066 0.0881 

Lognormal 0.9827 0.0380 0.9872 0.0326 0.9857 0.0345 

 

Table 13 Distribution parameters for three sites. 

SET Distribution 
Parameter 

λ k 

Site1: 10-min Weibull 9.5454 3.3830 

Site2: 10-min Weibull 10.7378 3.6000 

Site3: 10-min Weibull 10.0906 3.1837 

Note: λ and k are scale and shape parameter. 

  
Table 14 Interval forecasting results. 

 
 

Model 
Expectation 

probability 

Site1: 10-min Site2: 10-min  Site3: 10-min  

FICP AWD FINAW FICP AWD FINAW FICP AWD FINAW 

CFM 
95% 85.1697 0.0559 0.0478 89.5410 0.0400 0.0404 88.0111 0.0361 0.0390 
90% 83.8456 0.0646 0.0364 84.6134 0.0519 0.0339 81.1961 0.0641 0.0327 
80% 80.3296 0.0796 0.0305 81.0431 0.0659 0.0264 78.2684 0.0965 0.0255 

Note: This table lists the interval forecasting results of CFM, which can further show the accuracy of CFM. The formula 

of FICP, FINAW and AWD are:  
1

/ ) 100%FICP


 
Q

ii
C M ,

1
( ) /FINAW


 

Q

i ii
U L FR , if

i i
A U , then 

( ) / ( )AWD   
i i i ii A U U L , if [ , ]

i i i
A L U  , then 0AWD i , if

i i
A L , then ( ) / ( )AWD   

i i i ii L A U L . Thus,

 
1

/AWD AWD


 
Q

ii
FR , FR represents the range of predicted values. 
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Table 15 The improvement percentages of CFM and all other models. 

 

 

 

 

 

 

 

 

 

Model 
Site1: 10-min Site2:10-min Site3: 10-min 

IRMAPE IRMAE IRRMSE IRMAPE IRMAE IRRMSE IRMAPE IRMAE IRRMSE 

ICE-ANFIS 9.2670 2.4780 12.9021 4.3124 6.1470 6.4870 8.5813 8.3642 8.3569 
ICE-LSTM 4.1438 14.8928 10.2339 8.9694 0.2655 0.0573 15.3468 0.8169 1.1439 
ICE-CNN 19.0262 9.5438 11.4006 29.4999 22.4435 22.6521 38.3755 27.9343 26.2731 
ICE-ELM 4.5895 16.0755 12.1302 1.6459 8.9708 10.8772 5.7750 12.9224 11.7576 
ICE-BPNN 2.9585 14.4446 11.1923 3.5967 6.9986 7.4574 5.9677 12.3657 11.0349 
ICE-GRNN 43.3893 40.3992 18.3251 11.1729 16.7673 32.7546 39.3307 28.1278 11.1886 
ICE-ENN 15.7277 6.1089 10.3648 29.6390 22.8787 26.2376 29.3698 17.8166 19.1285 
ANFIS 56.5473 51.7972 55.9334 55.7865 51.6294 54.5255 59.0283 51.5459 49.9590 
LSTM 48.1109 41.5767 43.7026 55.7087 51.4914 52.9036 56.9152 49.2542 46.6145 
CNN 48.9351 41.8068 43.3142 56.3344 51.4124 52.3438 56.8993 47.7365 45.3357 
ELM 48.2710 41.8598 44.4566 54.9156 50.3353 52.3116 56.3115 48.4144 46.3876 
BPNN 50.1068 43.8167 45.4931 54.6910 50.1487 52.2037 55.7754 47.3885 45.9918 
GRNN 27.2087 29.3473 35.6913 47.5616 46.1051 40.8872 12.2467 8.5824 8.9760 
ENN 49.4851 43.5831 45.5588 59.681 55.9942 57.4058 55.1765 46.1910 44.5643 
CEE 35.1219 35.9979 36.4612 50.7386 50.8682 49.6846 49.0531 49.1288 46.2175 
EEMD 46.8444 48.2038 48.6125 51.5454 52.1242 54.1845 55.0851 55.0361 52.3802 
EMD 20.9860 20.9976 17.6387 34.5769 34.5880 30.0906 12.0987 15.1083 10.0810 
MOALO 9.7114 9.7189 9.7564 2.0716 2.4013 3.0105 11.5294 12.1131 8.5268 
MODA 9.7014 9.7088 9.7415 1.8440 1.8924 2.7919 10.1714 10.7422 8.3018 
MOGOA 2.5798 3.5893 5.9401 2.7982 2.4714 2.0948 7.5586 7.7358 6.2351 

Note: This indicator aims to verify the improvement of predictive precision of the CFM, the calculation formulas 

are: MAPE other CFM other(MAPE MAPE ) / MAPE 100%IR    , MAE other CFM other(MAE MAE ) / MAE 100%IR    and 

RMSE other CFM other(RMSE RMSE ) / RMSE 100%IR    . 
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Table 16 Prediction results of different parameter values. 

ICEMMDAN MOGWO Site1: 10-min Site2: 10-min Site3: 10-min 

Realization 

Number 

Iteration 

Number 

Archive

Size 

Iteration 

Number 

Population 

Number 
MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE 

50 1000 100 100 200 2.9678 0.4785 0.3871 2.3445 0.4406 0.3419 3.4458 0.5905 0.4871 
100* 1000 100 100 200 2.8645 0.4114 0.3217 2.1843 0.3991 0.3111 2.8727 0.4299 0.3598 
300 1000 100 100 200 3.1287 0.4938 0.4068 2.2759 0.4194 0.3270 2.8058 0.5124 0.4011 
100 500 100 100 200 3.0425 0.4854 0.3982 2.2270 0.4249 0.3254 2.8128 0.5050 0.3969 
100 1000 100 100 200 3.1475 0.5275 0.4170 2.3009 0.4153 0.3307 2.7843 0.4883 0.3927 
100 3000 100 100 200 3.2805 0.5445 0.4366 2.2667 0.4157 0.3287 2.9734 0.5320 0.4249 
100 1000 200 100 200 2.9896 0.4805 0.3911 2.1855 0.3993 0.3163 2.8776 0.5202 0.4105 
100 1000 300 100 200 2.9920 0.4808 0.3914 2.1862 0.3995 0.3164 2.8780 0.5206 0.4106 
100 1000 500 100 200 2.9887 0.4804 0.3910 2.1851 0.3993 0.3162 2.8778 0.5205 0.4105 
100 1000 100 50 200 2.9947 0.4812 0.3917 2.1859 0.3994 0.3163 2.8807 0.5207 0.4109 
100 1000 100 150 200 2.9973 0.4818 0.3921 2.1847 0.3992 0.3162 2.8680 0.5192 0.4091 
100 1000 100 200 200 2.9934 0.4812 0.3916 2.1862 0.3995 0.3164 2.8886 0.5217 0.4121 
100 1000 100 100 50 3.0007 0.4823 0.3925 2.1847 0.3992 0.3162 2.8854 0.5215 0.4116 
100 1000 100 100 70 2.9911 0.4807 0.3913 2.1844 0.3991 0.3161 2.8808 0.5211 0.4110 
100 1000 100 100 120 2.9945 0.4813 0.3917 2.1862 0.3995 0.3164 2.8677 0.5192 0.4091 

Note: * represents the parameter settings selected in this study. 
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Table 17 The forecasting results of CFM with different rolling input steps. 

 Rolling-input 
Site1: 10-min Site2: 10-min 

3 4 5 6 3 4 5 6 

MAPE 3.0833 2.8955 2.8645 3.0694 2.4134 2.2406 2.1843 2.3213 
RMSE 0.4967 0.4699 0.4114 0.4998 0.4405 0.4163 0.3991 0.4232 
MAE 0.4025 0.3800 0.3217 0.4062 0.3494 0.3268 0.3111 0.3320 
R2 0.7710 0.7950 0.9749 0.7681 0.7976 0.8193 0.9639 0.8133 
IA 0.9524 0.9574 0.9754 0.9518 0.9643 0.9681 0.9942 0.9672 
PE (±5%) 78.89 81.11 80.00 80.00 88.00 88.89 92.22 87.78 
PE (±10%) 98.89 97.21 98.89 97.89 95.64 94.45 94.23 96.25 
PE (±15%) 99.01 98.46 99.00 99.01 98.72 99.12 98.20 98.85 

Rolling-input 
Site4: 20-min Site5: 20-min 
3 4 5 6 3 4 5 6 

MAPE 5.0079 5.2326 4.8669 5.1209 5.2472 5.1036 4.1947 4.9909 
RMSE 0.3490 0.3561 0.3328 0.3477 0.3703 0.3751 0.2999 0.3647 
MAE 0.2476 0.2569 0.2428 0.2528 0.2789 0.2748 0.2204 0.2692 
R2 0.9155 0.9120 0.9231 0.9161 0.9278 0.9259 0.9526 0.9299 
IA 0.9635 0.9620 0.9667 0.9638 0.9621 0.9610 0.9750 0.9630 
PE (±5%) 68.89 0.6222 69.33 65.56 58.89 61.11 72.22 62.22 
PE (±10%) 82.22 0.8556 82.22 84.44 91.11 87.88 92.22 91.11 
PE (±15%) 93.33 0.9333 97.78 95.56 97.78 96.67 96.67 96.67 

Rolling-input 
Site6: 30-min Site7: 30-min 
3 4 5 6 3 4 5 6 

MAPE 5.5761 5.6650 5.8810 5.7209 5.8572 6.2507 5.0589 5.8738 
RMSE 0.4880 0.4965 0.4962 0.4944 0.4518 0.4617 0.3946 0.4516 
MAE 0.3982 0.4033 0.4121 0.4070 0.3445 0.3620 0.3120 0.3499 
R2 0.9739 0.9730 0.9730 0.9732 0.9755 0.9744 0.9813 0.9755 
IA 0.9440 0.9419 0.9421 0.9425 0.9483 0.9459 0.9606 0.9423 
PE (±5%) 52.22 50.00 54.44 54.44 51.11 44.44 57.78 55.56 
PE (±10%) 86.67 86.67 84.44 84.44 82.22 82.22 92.22 78.89 
PE (±15%) 96.67 97.78 96.67 96.67 95.56 93.33 96.67 92.22 
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Table 18 The multi-step forecasting results of CFM and denoising models. 

 

 

 

 

 

 

 

 

SET Model 
STEP2 STEP3 
     PE      PE 
MAPE RMSE MAE R2 IA ±5% ±10% ±15% MAPE RMSE MAE R2 IA ±5% ±10% ±15% 

Site1: 

10-min 

ICE-ANFIS 5.5741 0.9808 0.6722 0.8469 0.8108 58.18 85.00 95.91 7.0662 1.0365 0.8328 0.8284 0.7869 41.82 77.27 95.45 
ICE-LSTM 4.8109 0.7103 0.5638 0.9197 0.9005 59.09 88.64 98.64 6.6049 0.9362 0.7582 0.8600 0.8265 42.73 77.73 93.18 
ICE-CNN 5.4072 0.8220 0.6498 0.8925 0.8656 52.27 88.18 98.18 6.9907 0.9489 0.7874 0.8561 0.8240 41.36 74.55 90.91 
ICE-ELM 4.5395 0.6710 0.5277 0.9284 0.9112 63.64 89.55 99.09 6.7105 0.9762 0.7816 0.8477 0.8106 42.73 79.09 95.00 
CFM 4.4556 0.7306 0.5848 0.8821 0.8967 56.67 92.22 98.89 5.3861 0.8419 0.6998 0.9198 0.8629 47.78 86.67 97.78 

Site2: 

10-min 

ICE-ANFIS 4.0231 0.6975 0.5311 0.9256 0.9086 68.64 93.18 99.09 5.9385 1.0245 0.7839 0.8382 0.8019 50.45 82.27 93.18 

ICE-LSTM 4.5031 0.7722 0.5976 0.9088 0.8880 59.55 91.82 98.18 5.9602 1.0106 0.7814 0.8425 0.8075 50.45 81.82 94.55 

ICE-CNN 5.2576 0.9032 0.7025 0.8752 0.8458 55.00 86.82 98.64 7.2749 1.2357 0.9857 0.8646 0.7084 49.55 72.73 90.91 

ICE-ELM 3.7898 0.6692 0.5035 0.9315 0.9159 69.09 95.00 99.55 5.7117 0.9487 0.7467 0.8612 0.8307 51.82 85.91 96.82 

CFM 3.6019 0.4861 0.3826 0.9336 0.9564 88.89 95.45 99.11 5.1879 0.9662 0.7645 0.8446 0.8269 56.67 87.78 97.78 

Site4: 

20-min 

 

ICE-ANFIS 7.1044 0.5657 0.4441 0.9550 0.9205 46.36 74.55 88.18 10.1619 0.8281 0.6233 0.9032 0.8294 37.73 60.45 79.09 
ICE-LSTM 7.3513 0.5861 0.4581 0.9516 0.9145 46.36 76.36 89.55 10.2983 0.8190 0.6215 0.9053 0.8328 40.91 62.73 77.72 
ICE-CNN 8.3737 0.6659 0.5158 0.9376 0.8896 42.27 68.64 84.55 11.7013 0.9045 0.6820 0.8845 0.7974 37.27 60.91 72.73 
ICE-ELM 6.8610 0.5554 0.4302 0.9566 0.9233 48.64 77.73 88.64 10.0260 0.7985 0.6108 0.9100 0.8413 36.36 61.82 80.91 
CFM 6.5225 0.5131 0.4617 0.9531 0.8942 54.44 73.33 89.22 9.3751 0.7594 0.6072 0.9062 0.8591 40.00 67.78 83.33 

Site5: 

20-min 

ICE-ANFIS 6.6738 0.7163 0.5199 0.9455 0.8806 49.09 78.18 92.27 9.7967 0.9733 0.7354 0.8992 0.7794 35.00 61.36 78.18 
ICE-LSTM 6.7348 0.7048 0.5177 0.9473 0.8843 51.82 76.36 92.37 9.7545 0.9507 0.7142 0.9038 0.7891 35.45 63.64 79.55 
ICE-CNN 7.6882 0.8352 0.5981 0.9260 0.8365 47.27 72.27 85.91 10.6698 1.0898 0.8183 0.8737 0.7205 31.36 75.45 58.64 
ICE-ELM 6.6218 0.6915 0.5120 0.9493 0.8887 48.18 80.00 91.09 9.6863 0.9514 0.7133 0.9037 0.7888 38.18 62.27 80.45 
CFM 6.5292 0.5714 0.4248 0.9265 0.9095 50.00 77.78 92.78 9.0242 0.8712 0.6935 0.8937 0.7897 36.44 73.55 81.89 

Site6: 

30-min 

ICE-ANFIS 7.9222 0.8152 0.6341 0.9495 0.8530 38.64 71.82 89.09 11.0788 

1.1669 

1.1669 0.8808 0.8967 0.6981 32.73 56.82 74.09 
ICE-LSTM 7.5799 0.7742 0.6062 0.9545 0.8674 42.27 73.18 90.45 11.1169 1.1475 0.8822 0.9001 0.7077 30.45 56.82 74.09 
ICE-CNN 8.8575 1.1007 0.7957 0.9079 0.7283 37.73 66.82 83.64 11.8460 1.2170 0.9456 0.8876 0.6740 28.64 54.55 68.64 
ICE-ELM 7.6516 0.7838 0.6102 0.9533 0.8641 39.09 72.27 89.09 10.8049 1.1544 0.8622 0.8989 0.7040 

35.45 

35.45 57.27 74.55 
CFM 8.1519 0.6920 0.5413 0.9463 0.8865 43.89 72.22 86.67 10.5601 1.0711 0.8671 0.8670 0.7281 36.89 58.00 74.44 

 

Site7: 

30-min 

 

 

ICE-ANFIS 12.3948 1.1695 0.8588 0.8957 0.6809 26.82 54.55 71.82 12.3948 1.1695 0.8588 0.8957 0.6809 26.82 54.55 71.82 
ICE-LSTM 12.1247 1.0916 0.8220 0.9091 0.7221 28.64 55.00 71.36 12.1247 1.0916 0.8220 0.9091 0.7221 28.64 55.00 71.36 
ICE-CNN 12.6388 1.1586 0.8763 0.8976 0.6894 27.27 49.55 68.64 12.6388 1.1586 0.8763 0.8976 0.6894 27.27 49.55 68.64 
ICE-ELM 11.6304 1.0483 0.7875 0.9162 0.7438 31.82 56.36 72.27 11.6304 1.0484 0.7875 0.9162 0.7438 31.82 56..36 72.27 
CFM 9.5321 1.0092 0.7905 0.8692 0.7401 45.56 51.11 77.78 10.5321 1.0092 0.7965 0.8692 0.7401 38.56 55.11 72.78 
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Table 20 Comparison results. 

 

 

Authors 
Published 

year 
Algorithm Results Similarity Difference 

Niu et al. [32] 2019 

1. CEEMDAN 

2. BPNN+GRNN+ENN+ELM 

+ARIMA 

3. MOGOA 

 

The combined model obtained 

high accuracy, the MAPE 

values of five data sets are 

3.14%, 2.89%, 3.43%, 4.06% 

and 3.62% respectively. 

Preprocessing methods, 

several single models and 

optimization algorithms are 

used. 

Different denoising strategies 

and optimization methods are 

compared. 

Uncertain predictions and the 

influence of parameters on model 

performance are not discussed. 

The operation time of models is 

ignored. 

Shao et al. [29] 2021 

1. CEEMDAN 

2. BPNN+GRNN+RBF+ ELM  

3. MOGWO 

Several experiments verify 

the effectiveness of the 

proposed model with the 

smallest MAPE value of 

2.03%. 

The same optimization 

algorithm is used. 

Different denoising strategies 

and optimization methods are 

compared. 

Uncertain predictions and the 

influence of model parameters are 

not discussed. 

The operation time of models is 

ignored. 

Liu et al. [23] 2019 

1. ICEEMDAN 

2. BPNN+GRNN+ENN+ELM 

+ARIMA  

3. MMODA 

The proposed model can 

improve the prediction 

accuracy. MAPE values of 

multi-step prediction are 

3.15%, 4.41% and 5.02% 

respectively. 

The same denoising strategy 

is applied. 

Multiple single models are 

applied. 

Different denoising strategies 

and optimization methods are 

compared. 

Lack comparison with other 

literatures. 

The optimization algorithm is 

improved. 

Wind speed forecasts for different 

seasons are discussed. 

The result of parameter adjustment 

is not discussed in detail. 

SET Model 
     PE 

MAPE RMSE MAE R2 IA ±5% ±10% ±15% 

Site1:10-min 

CFM 2.8645 0.4114 0.3217 0.9749 0.9754 80.00 98.89 99.00 

Niu’s model 3.4181 0.4898 0.4322 0.7773 0.9541 32.44 58.42 75.28 

Shao’s model 4.0200 0.6628 0.5380 0.7222 0.9149 33.58 61.06 78.36 

Liu’s model 3.1835 0.4345 0.4064 0.8247 0.9639 30.97 56.37 73.01 

Site2:10-min 

CFM 2.1843 0.3991 0.3111 0.9639 0.9942 92.22 94.23 98.20 

Niu’s model 2.3214 0.4077 0.3372 0.8267 0.9696 32.29 59.41 77.06 

Shao’s model 3.0082 0.5493 0.4388 0.7853 0.9445 37.63 66.10 82.22 

Liu’s model 1.8987 0.2917 0.2703 0.9113 0.9845 90.93 93.11 98.94 

Site3:10-min 

CFM 2.8727 0.4299 0.3598 0.9751 0.9582 84.44 98.89 99.00 

Niu’s model 3.1730 0.5150 0.4480 0.8186 0.9515 38.32 51.23 79.02 

Shao’s model 3.8116 0.6726 0.5498 0.7906 0.9163 39.57 54.24 72.78 

Liu’s model 3.1508 0.4774 0.4442 0.8441 0.9584 40.91 60.58 88.60 
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Appendix 

Table A List of terminologies 

 

NWP numerical weather prediction GPR gaussian process regression 

ARIMA autoregressive integrated moving 

average 
ARMA autoregressive moving average 

AI  artificial intelligence PSO particle swarm optimization 

ANFIS adaptive neuro-fuzzy inference 

system 
EEMD ensemble empirical mode 

decomposition 

SSA singular spectrum analysis WA wavelet transform 

GM gray prediction model CFM combined forecasting model 

CEE complete ensemble empirical mode 

decomposition with adaptive noise 
ICE improved complete ensemble 

empirical mode decomposition with 

adaptive noise 

MOGWO multi objective grey wolf optimizer PP point prediction 

IP interval prediction AR autoregressive model 

ANN artificial neural networks SVM support vector machines 

LSTM long short-term memory CNN convolutional neural network 

BPNN back propagation neural network ELM extreme learning machine 

GRNN general regression neural network  ENN elman neural network 

SEM selection of excellent sub models AWD cumulative breadth error 

RMSE root mean square error MAE mean absolute error 

MAPE mean absolute percentage error R2 goodness of fit 

IA 
index of agreement of predictive 

results 
RE relative error 

FICP forecasting interval coverage 

probability 
FINAW prediction interval standardized 

mean breadth 

MOGOA multi-objective grasshopper 

optimization algorithm 
MOALO multi-objective antlion algorithm 

MODA multi-objective dragonfly algorithm EMD empirical mode decomposition 

GRU gated recurrent unit TCN temporal convolutional networks 

QRNN quasi-recurrent neural networks RNN recurrent neural network 

WNN wavelet neural network VMD variational mode decomposition 

RBF radial basis function PSR phase-space reconstruction 

MOMVO multi objective multi verse 

optimization 
RVFL random vector functional link 

network 

WOA whale optimization algorithm EPT ensemble patch transformation 

SVR support vector regression MSSA multi objective salp swarm algorithm 
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Abstract 
Accurate wind speed prediction has become increasingly important in wind power 

generation. However, the lack of efficient data preprocessing techniques and integration 

strategies has been a big obstacle to the development of wind power forecasting system. 

Therefore, a novel and advanced combined forecasting system comprising a data 

preprocessing, an integration strategy and several single models is designed in this study. 

The proposed model not only eliminates the impact of noise, but also integrates several 

single-model forecasting results through a weight optimization operator. In addition, 

the uncertain prediction of wind speed is also discussed in detail. The results show that: 

(a) The MAPE values of the proposed model are 2.8645%, 2.1843% and 2.8727% 

respectively for the point prediction. (b) The FICP values of the proposed model are 

85.1697, 89.5410 and 88.0111 respectively at the significant level α = 0.05 for the 

uncertainty forecasting. The AWD values are 0.0559, 0.0400 and 0.0361 and the 

FINAW values are 0.0478, 0.0404 and 0.0390. It is reasonable to conclude that the 

proposed system can effectively boost the precision and stability of wind speed 

forecasting and provide a new approach for the exploitation of wind energy. 

Keywords: Artificial intelligence; Data preprocessing; Combined forecasting model; 

Multi-objective optimization;
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1. Introduction 

Owing to the rapid growth of the world economy, traditional energy sources such 

as natural gas and oil are being consumed in large quantities. Therefore, the 

development of sustainable green energy resources has received increasing attention 

[1]. Wind energy is a renewable energy resource with clean and effective characteristics 

that play an irreplaceable role in wind power generation. However, the instability and 

nonlinearity of wind speed limit the development of wind power and bring many 

obstacles to the wind power grid. Accurate wind speed prediction technology can 

reduce the impact of wind speed characteristics, which not only helps power grid 

operators and decision makers to timely plan and dispatch the power system, but also 

reduces the failure risk of wind power system and improves power quality [2]. Hence, 

accurate wind speed prediction technology can effectively improve the stability of wind 

power generation system [3]. 

1.1 Previous literature 

At present, the wind speed forecasting approaches adopted in a large number of 

wind speed prediction studies include: (i) physical models, (ii) statistical models, (iii) 

Artificial intelligence models. Physical models are more suitable for long-term 

prediction, but have obvious defects for short-term prediction [4, 5]. Systematic errors 

can be easily generated in the predictions and the direction near the ground that result 

in differences in the predicted power generation when physical models are used [6, 7]. 
Dong et al. presented a hybrid model based on K-means cluster and general regression 

neural network (K-means-GRNN) of numerical weather forecasts; however, the 

practical application of the K-means-GRNN was difficult due to its high requirements 

on computation and information [8]. In contrast, statistical models have lower 

requirements for datasets [9]. Statistical models are usually linear models, such as the 

autoregressive moving average (ARMA) [10], the autoregressive integrated moving 

average model (ARIMA) [11, 12]. Movahed et al. predicted the development of cancer 

cells based on ARMA and Auto-Regressive (AR), and improved the forecasting 

accuracy [13]. However, for sequences with random and nonlinear characteristics, the 

statistical models were difficult to mine the information accurately and effectively [14]. 

 Aiming at the deficiency of the above models, many researchers have performed 

in-depth studies on artificial intelligence (AI) prediction models [15, 16], which mainly 

include support vector machines (SVM) [17, 18], deep learning [19], and artificial 

neural networks (ANN) [20, 21]. AI prediction methods have strong generalization 

abilities, and fast calculation speeds, however, these single AI models may be affected 

by the initial parameters and are prone to fall into local optima during computations 

[22]. Considering the deficiency of the above approaches, combined models have been 

widely concerned, which often contain data preprocessing techniques and optimization 

algorithms [23].  

On the one hand, because of the fluctuation and instability in wind speed, the use 

of data preprocessing techniques such as empirical mode decomposition (EMD) [24] 

and ensemble empirical mode decomposition (EEMD) [25] has been explored. In fact, 

disadvantages such as modes mix and boundary effect exist in EMD, although EEMD 

improves the shortcomings of EMD, it causes residual white noise [26]. Thus, an 

advanced strategy named improved complete ensemble empirical mode decomposition 

with adaptive noise (ICEEMDAN) is proposed in this study, which can add special 

white noise to obtain accurate modal values and improve model accuracy.  
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On the other traditional single models may not be able to balance accuracy and 

stability in prediction [27]. Wang et al. designed a hybrid model of wavelet neural 

network optimized by genetic algorithm (GA-WNN) based on variational mode 

decomposition (VMD) for wind speed forecasting, however, it remains to be explored 

that both accuracy and stability can be satisfied [28]. Based on this, this paper adopts 

the multi-objective grey wolf optimizer (MOGWO), which can combine multiple single 

models and optimize the assigned weight through to obtain stable and accurate results. 

Moreover, many studies ignore the reliability and uncertainty of wind speed prediction, 

which will cause potential risks in practical applications [29]. Thus, the uncertainty of 

wind speed prediction based on interval prediction has been discussed in this study. 

Table 1 summarizes the common model types in the literature in recent years.  

1.2 Contribution  

Through the above analysis, a novel combined predictive framework is built based 

on neural networks, deep learning approaches, and multi-objective optimization to 

improve the forecasting accuracy. The developed system consists of four modules: a 

data preprocessing module, a combination prediction module, an uncertainty prediction 

module and an assessment module. Modal decomposition is adopted in the data 

preprocessing module decomposition of the original sequence to eliminate noise and 

obtain a smooth reconstructed sequence. The combination prediction module is 

designed to combine several single prediction models and optimize the assigned weight 

to obtain stable and accurate results, and interval prediction is used for quantifying 

uncertainty and improving model reliability. Nine metrics are proposed to evaluate the 

prediction performance in the last module. The contributions and innovations are 

summarized below: 

(1) A novel and advanced wind speed combined forecasting model (CFM) that 

includes data preprocessing and combined prediction and assessment is developed 

in this work. Considering the uncertainty and fluctuation of the initial sequence, the 

prediction system given can overcome these shortcomings and achieve accurate and 

reliable prediction performance. 

(2) An advanced data preprocessing technique based on the decomposition 

and ensemble theory is intended to remove the noise in the initial sequence. An 

advanced data preprocessing technique is chosen to reduce fluctuations and uncertainty 

to obtain a smooth sequence and improve the forecasting accuracy.  

(3) A new combined prediction strategy that includes the selection of several 

sub-models to minimize the combination error and weight optimization operators 

is proposed. Four sub-models are used to predict the original sequence, and their 

prediction results are integrated by the multi-objective grey wolf optimizer (MOGWO) 

to gain more precise and stable predictive effect. 

(4) The Pareto optimality of the solutions from the combined system is 

theoretically proven. The proof ensures that the optimal weight vector is obtained in 

the combined system through the leader selection mechanism and superior to those 

generated by the individual models, thus improving the prediction performance of the 

proposed system. 

(5) An integrated and detailed assessment system was built to assess the point 

prediction (PP) and interval prediction (IP) results of CFM. In the assessment 

module, nine metrics and several sites are used in the experiment with intervals of 10-

min, 20-min and 30-min. In addition, the multi-step prediction and rolling input steps 

further are investigated to further ensure the accuracy and reliability of CFM. 

The overall structure of this paper is as follows. The approaches used in this study 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



5 

 

are introduced in Section 2, the flow of CFM described in detail in Section 3, the 

experimental processes presented in Section 4, and the discussion and conclusion are 

given in Sections 5 and 6, respectively.
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Table 1 Various studies on wind speed. 

 

Method 
Published 

year 
Contribution Disadvantages 

NWP-K means-GRNN [8] 2016 

NWP and ANNs are combined and the 

parameters of clustering are discussed in 

detail. 

high requirements on computation and 

information.  Lack of comparison with other 

ANNs models. 

ARMA-AR [13] 2021 
The parameter values of AR and ARMA 

models are discussed. 
Not suitable for non-linear data. 

VMD-phase-space reconstruction (PSR) - 

BPNN, ELM, ENN-multi objective multi 

verse optimization (MOMVO) [15] 

2021 

A two-stage preprocessing way VMD-PSR is 

to analyze noise. MOMOVO is applied to 

combine BPNN, ELM and ENN. 

The change of key parameter values needs to 

discuss. 

ICEEMDAN- ARIMA, BPNN, ENN, 

GRNN, ELM-Modified MODA [23] 
2020 

The modes mix is solved in EMD and 

EEMD. Modified MODA enhances the 

optimization of weight coefficient. 

The predictive power of selected single 

models is not fully demonstrated. 

Flexible ensemble patch transformation 

(EPT)-CEEMDAN-CNN [26] 
2022 

EPT-CEEMDAN enhances the detection of 

local patterns embedded.  Multiple deep 

learning models are compared.   

Robustness and precision are not well 

balanced. 

VMD-GA-WNN [28] 2017 
VMD and GA are used to eliminate data 

noise and optimize WNN. 

The optimization effect of single objective is 

limited. 

CEEMDAN-ELM, RBF, GRNN, BPNN-

MOGWO [29] 
2021 

MOGWO is adopted to integrate ELM, RBF, 

GRNN, BPNN. 

Parameter setting of optimization algorithm 

is not explained. 

ICEEMDAN-SVM- whale optimization 

algorithm (WOA) [30] 
2017 

WOA is used to optimize the parameters of 

SVM. 

Fewer contrast models and optimization 

effect of single objective is limited. 

VMD-BPNN, random vector functional 

link network (RVFL), ANFIS, GRNN- 

multi objective salp swarm algorithm 

(MSSA) and support vector regression 

(SVR) [31] 

2021 

Using the hybrid algorithm MSSA-SVR 

assigns coefficients to single models and the 

Pareto optimal solution of the optimization 

algorithm is analyzed.   

Model parameter values are not displayed. 

CEEMDAN-ELM, GRNN, ARIMA, 

BPNN, ENN- MOGOA[32] 
2019 

MOGOA can optimize individual model 

weights. 

Lack of discussion on parameter setting and 

comparison of other deep learning models. 
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2. Design of the combined forecasting model 

The proposed prediction model in this study is mainly composed of data 

preprocessing technology, multiple single models, multi-objective weight optimization 

operator and uncertainty prediction, which is used to improve the prediction accuracy 

and quantify the uncertainty of prediction results. The corresponding algorithm and 

theoretical introduction are presented in this part.  

2.1 Data denoising strategy 

Before data denoising, we process the original data to prevent data leakage. 

Specifically, data leakage can cause the model to look accurate, but when applied to 

real life, the model can become very inaccurate, which is mainly divided into feature 

leakage and training data leakage. For feature leakage, features generally have a strong 

correlation with target variables. In this study, prevention of training data leakage is of 

greater concern to us. Before dividing the datasets, preprocessing the whole data set 

will lead to data leakage and make the information of the test set appear in the training 

set. Therefore, after dividing the datasets, we use decomposition technology for training 

set and test set respectively to prevent data leakage. The corresponding data denoising 

strategy is presented as follows. 

The ICEEMDAN (ICE) is adopted to decompose the initial sequence, which is 

characterized by instability and fluctuation [30, 33]. ICE, which is based on 

CEEMDAN, can further reduce the noise and aliasing in IMF, which has a good 

decomposition ability. Suppose is the original sequence, and the operators ( )jD  , ( )L  , 

and ( )i
 are introduced. ( )jD  generates the j-th mode decomposed from the initial time 

series, ( )L  produces the local average of the original sequence , and ( )i
 denotes white 

gaussian noise with μ=0 and unit variance σ2. The specific processes in ICE are as 

follows: 

The local mean of the i-th realizations
0

( )
1( ) ( ( ))

i i
t D t     is first calculated 

to obtain the first residue
1
( )R t :  1

( ) ( ))( i
R t L t , where

i
 is an operation item to 

remove noise and{ } is the tool of the averaging process. The first mode can then be 

computed as 1 1
( ) ( )IM t R t  . 

The second residue
2

R can be computed as
1

( )
21
( ( ))( )

i
tR t D   , and the second 

mode 2IM is obtained: 

 ( )

2
1

2 1 2 1 1
( ( ( ))( ) ( ) ( ) ( ))

i
tIM R t R t R t R tL D                (1) 

For 3,4, ,j n ,the j-th residue is calculated as: 

   ( )

1 1
( ( ( ))( ) ( ))

i

j
jj j

tR t R tL D 
 

                       (2) 

1
( ) ( )j j j

IM R t R t


  can also be obtained. After obtaining all the modes, the 

original sequenc  can be reconstructed as ( ) ( )'
j

R t R t , where R is the residual 

sequence.  

2.2 Neural network models 

LSTM (long short-term memory) is a special type of RNNs. The key components 

of LSTM are memory cells and gates. The forget gate determines the number of the 
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unit state ( 1)C t  remaining at current moment ( )C t and is calculated as

1, , ( ) ( { , } )
f t t fb t b x hF   


   . The number of inputs ( )x t stored in the cell state ( )C t

is determined in the calculation process of the input gate
1, , ( ) ( { , } )

i t t ib t b x hI   


   . 

Finally, the output gate controls the number of unit states ( )C t to be output to the present 

output value ( )h t and is given by
1, , ( ) ( { , } )

o t t ob t h x b


       where b and are bias 

and weight, respectively. The calculation principle of GRU (gated recurrent unit) is very 

similar to LSTM. The difference is that GRU combines the forgetting gate and input 

gate in LSTM algorithm into update gate, so GRU consists of two gates, the update gate 

and the reset gate. 

The hidden layer of CNN (convolutional neural network) consists of convolution 

CL, pooling PL and full connection FL. The convolution process is represented as

,

p q

x y i ii
C v


 , which is the sum of the product of the kernel weight and the brightness 

of the corresponding element in the input image. The main goal of pooling is to reduce 

the feature space of the maps. The fully connected layer is greatly important in 

combining the extracted features to obtain the output. 

TCN (temporal convolutional networks) is suitable for sequence model 

construction under causal constraints, that is, the output 0 1
ˆ ˆ ˆ{ , , , }

t
y y y  can only be 

predicted based on the past observation 0 1{ , , , }
t

x x x .Therefore, TCN can be designed 

as a nonlinear function with the mapping :
T T

f X Y . In addition, TCN also adds the 

dilated convolution and residual block to better extract historical information. 

QRNN (quasi-recurrent neural networks) is the LSTM acceleration algorithm, 

including two components of convolution and pooling. In the convolution operation, 

the output of the input, forget and output gates can be expressed as z
Z W X tanh( ) ,

fF W X  ( ) and O
O W X  ( ) , where X is the input, z

W , fW and O
W are the 

convolution filters. There are three ways the pooling process can reduce the number of 

features, named f-pooling, fo-pooling and ifo-pooling based on the number of gates 

used. 

ANFIS (adaptive neuro-fuzzy inference system) is a neural network based on 

fuzzy reasoning. The first layer is a fuzzy layer. 1

i=1,2
( )

i
A

x   and 1

1,2
( )

i
j B

y


   are 

output functions where x and y are the inputs with the respective membership functions

iA and
iB . The second layer calculates the weights of each membership function 

according to the previous outputs. The third layer normalizes the weights as
3

i 1 2
/ ( )

ii       . The fourth layer provides the output of the rule inference

4

i i i
F . The last layer generates the sum of each output 

 5

i
/i ii i i

F F w      . 

ELM (extreme learning machine) is a kind of feedforward neural network that 

includes input, hidden and output layers. The thresholds b and input weights ω are 

randomly generated. The input and output are 1 2
( , , )

n n

i i i
x x xX    and 

1 2
( , , )

m m

i i i
t t tT   . The hidden layer output is ,

1, ,
( ) ( ) 

b T

i n i i
H x F x b


 


 ,where 

( )F   is the activation function. The final output is 
1

, ,
( ) ( ) ( )

n

ii

b

n x H x i


 
 

 , where 

the output weights are
1

( , , )
n

   . 
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BPNN (back propagation neural network) consists of input, hidden and output 

layers, and the calculation is:  1
0 1( , )

t

i I j jm m j jmm t n
y f y   



 
    , 

 0 0 0 0 01
0 1

I

t j j jj
y f y


      ( , ) , where m

y and jy are the inputs of the input 

and hidden layers, t
y is the predicted value at time t. N and I are the number of nodes 

in the input and the hidden layers. In the hidden and output layers, j and 0 are the 

threshold values, jm and 0 j
 are weights, I

f and 0f are activation functions. 

On the basis of BPNN structure, ENN (elman neural network) adds a continuation 

layer to the hidden layer as a delay operator to achieve the purpose of memory. The 

learning process is: 1 2 1( ) ( ( ) ( ( )))
c

x k f w x k w u k   , 3( ) ( ( ))y k g w x k , where y is 

the m-dimensional output vector, x is the unit vector of n-dimensional middle layer, u 

is the r-dimensional input vector, 1 2 3( , , )
i

w i  is the connection weight of each layer, 

( )g and ( )f are activation functions of output and middle layer neurons respectively. 

GRNN (general regression neural network) is a kind of radial basis neural network, 

which is composed of input, pattern, summation and output layers.
22 1 2T

i i i
p X X X X i n    exp[ ( ) ( ) / ]  , , , is the neuron transfer function of the 

pattern layer, where X is the input variable and Xi is the learning sample of the i-th 

neuron. The output of neuron j can be calculated as /
i Nj D

y S S , where NjS and D
S are 

the arithmetic sum and weighted sum of neurons at the pattern layer. 

2.3 Multi objective grey wolf optimizer 

 Mirjalili et al. first proposed the MOGWO algorithm, who were inspired by social 

leadership and hunting technique of grey wolves [29, 34]. The alpha wolf αw is defined 

as the fittest solution, and the beta wolf βw and delta wolf δw, the second and third best 

solutions, respectively. The other candidate approaches are the omega wolves ωw. αw, 

βw, and δw play a key role in capturing prey, and ωw follow αw, βw, and δw to catch prey. 

Definition 1 Encircling process. During the hunting of prey, the grey wolf location is 

updated as 1 ( )( )wolf prey DL L H
     


  
, ,

tt , where ( )preyL


t  and wolfL
    , ,

represent the 

location of prey and grey wolf, respectively, and ( ) ( )prey wolfD C L L
    

  
, ,

t t  is the 

distance between the grey wolf and its prey. C and H are coefficient vectors that are 

calculated as
2

2C   and
1

2H      , respectively, where  is the convergence 

factor, which decreases linearly from 2 to 0 with the number of iterations, and is a 

random vector
1 2

[ , ] [0,1]   . 

Definition 2 Hunting behavior. Suppose that αw, βw and δw have a better command of 

the potential location of the prey and their distance from the prey is: 
, ,

wolfpreyD C L L
    

   . The current location of the wolves is then obtained as 

, ,

wolf preyL L H D
     

   , and the location of ωw can be calculated as 

, ,
/ 3wolf

wolf
L L

   

 


 . 
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Definition 3 Exploitation. When H [ 1,1]  is random vector, the wolves can move at 

will between themselves and the prey. This narrows down the estimated location of the 

prey provided by αw, βw and δw. 

Definition 4 Searching prey. When | | 1H , the wolf is forced to separate from its prey 

while | | 1H helps to converge towards the prey. Moreover, the random vector [0, 2]C   

facilitates the discovery of new solutions. 1C indicates that the location of the wolf 

has a great influence on the prey and 1C indicates that the location of the wolf has 

little effect on the prey. 

Definition 5 Archive. The archive is a store tool that saves or retrieves non-dominated 

Pareto optimal solutions. 

Definition 6 Leader selection mechanism. This selection mechanism adopts the 

roulette wheel approach of /
i i

P c N  to choose the non-dominated pareto optimal 

solution where c is a fixed value and 1c . N denotes the sum of Pareto optimal 

solutions obtained.  

2.4 Multi objective problems (Mop) 

In multi-objective problems, it is critical to find vector solutions. The concept of 

Pareto dominance is designed to facilitate the choice of the vector solutions. The Pareto 

optimal solution is defined as follows: 

(1)
1

 is considered to dominate
2

 , i.e., 
1 2

  ，if and only if 
1

 and 
2

 meet: 
1 2 1 2

[ {1 2 } ( ) ( )] [ {1 2 } ( ) ( )]t t q qp t F F q t F F        , , , , , , , where F is a 

function and t denotes a vector of numbers. 

(2) The solution
1

 is called the Pareto optimal solution if the conditional equality 
1i i

 / ,   is satisfied, where denotes solution space. 

(3) The Pareto optimal solution set s
 includes all the Pareto optimal solutions and can 

be expressed as { | / , }
i i

s
       .  

To improve the precision and stability of the combined system, the MOGWO objective 

function is defined as: 
1

2

(1/ ) ) / 100%
min

( ) 1, ,

(
i i iQ

i

i i

F Q P A A

F std P A i Q

  

  








                  (3) 

where F is the objective function, P and A represent the forecasted and true values. 

2.5 The Pareto solution proof   
The objectives in MOPs may often conflict with one another. The solutions in such 

problems can usually be expressed as the Pareto solution ( * ). For MOPs, the Pareto 

solution (
*

) that satisfies
* *

. .
/ ( ) ( )

s t
FIT FIT   is adopted rather than the 

accurate solution. Arc is a tool for storing the non-dominated solutions (  ); however, 

the storage capacity of Arc is limited and has the upper bound of , that is,   . 

Hence, in the process of updating Arc , it is necessary to compare the new solution   
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and the present non-dominated solutions 1 2{ , , , }
p p p

 in Arc . When
p

i or
p

i ,

[1, ]i  ,  is added into Arc and
p

i is removed or ranked behind  .Once the Arc

capacity has reached the upper bound  , the most crowded segments will be 

removed with the deletion probability / ( 1) 
i i

Pd c c . Then, the roulette-wheel 

technique is employed to compare the present solution with with the probability 

/ ( 1) 
i i

Pd c c to determine the Pareto optimal solution  . The pseudocode is listed 

as Table 2. 

Table 2 Pseudo code. 

Algorithm: MOGWO 

 Input: 
 (0) (0) (0) (0)( (1), (2), , ( ))trm m m m a  –training data 

 (0) (0) (0)( ( 1), ( 2), , ( ))m a m a m a i    –testing data 

 Output: 
 (0) (0) (0)ˆ ˆ ˆ( ( 1), ( 2), , ( ))n a n a n a i     –forecasting data 

 Parameters: 

 Fi – the fitness function of i-th wolf 

 Itermax – maximum iteration times. 

 t – present iteration times. 

 d –dimensions numbers. 

 n –wolves numbers 

 
i

L – the position of i-th wolf 

1 /*Set up the parameters of MOGWO.*/ 

2 /* Random initialization of the n wolves iL population (i=1,2…n).*/ 

3 FOR EACH i=1:n DO 

4 /*Calculate the Fi using the process of ranking.*/ 

5 END FOR 

6 /*Decide the best search agent
, ,

wolfL
   

.*/ 

7 WHILE (t< Itermax) DO 

8 FOR EACH i=1:n DO 

9 /*Update , H , C and choose a wolf randomly from the archive.*/ 

10 
2

2C   ,
1

2H       

11 /* In the archive choose the elite from by roulette wheel */ 

12 IF( | | 1H ) THEN 

13 /* Update the location from the search proxy at present .*/ 

14 
, ,

| |prey wolfD C L L
    

    

15 ELSE ( | | 1H  ) THEN 

16 /*Update the location from the search proxy at present.*/ 

17 
, ,

wolf preyL L H D


  
     

 

18 END IF 

19 END FOR 

20 /* Compute all wolves’ objective values.*/ 

21 /* Search the non-dominated solutions.*/ 

22 /* Renew the file depending on the non-dominated solutions.*/ 

23 IF this file is up to its limit DO 

24 /* To contain new solutions, remove some solutions from the file and use 
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roulette wheel with Pi = Ni /c (c>1).*/ 

25 END IF 

26 IF the file capacity exceeds boundary DO 

27        /*Renew the boundary to hold the new ones.*/ 

28 
, ,

/ 3wolf
wolf

L L


    

 

 

29 END IF 

30 T=t+1 

31 END WHILE 

32 RETURN L* 

2.6 Uncertainty prediction  
Interval prediction is proposed to quantify the uncertainty. According to maximum 

likelihood estimation (MLE), Weibull, Gamma, Rayleigh and Lognormal distribution 

are adopted to fit the data. Interval prediction results of CFM is testified and compared 

with basic models, the upper and lower bound is expressed as: 

1 2 2

i th i th
i th i th

Dis Dis
Up Fr Dis n Lo Fr Dis n

 
   


     ，

 
 

/ /
/ / , where 1 2/Dis  and

2/
Dis are the critical values of optimal distribution and α is the significance level (α= 

0.05, 0.1 and 0.2 in this study). 

3. Flow of the combined forecasting system 

In this study, a strategy of combining interval prediction with point prediction is 

adopted. A smooth sequence is first obtained using the ICE data preprocessing 

technique. Then, some single neural models are applied to forecast a stable sequence 

and obtain the forecasted values
1 2 3 4
ˆ ˆ ˆ ˆ( , , , )F f f f f . In addition, the optimization 

operator is used to provide the most reasonable weights
1 2 3 4

( , , , )W     to combine 

the forecasted values in F . Finally, confidence intervals of 80%, 90%, and 95% are set 

for the experiment. The main framework is illustrated in Fig.1.  

 
Fig.1 The main structure of this paper 

3.1 Information of datasets  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



13 

 

A wind power plant in Penglai (37°48′N 120°45′E), Shandong Province, China, is 

used as the example. Seven sites are chosen to verify the performance of the proposed 

system, which include 10-min, 20-min and 30-min intervals. Besides, seven sites have 

the same sample size of 2220. The first 2000 samples are used for training, and the 

remaining 220 are used for testing. The details of the dataset are presented in Table 3 

and the features of the dataset are also visually depicted in Fig. 2. 

Table 3 Datasets. 

SET Sample  Size 
Indicators(m/s) 
Maximun Minimun Mean Std. 

Site1: 10-min 
Total samples 2220 17.2000 2.0000 8.5566 2.8012 
Train-set 2000 16.1000 2.0000 8.1810 2.5671 
Test-set 220 17.2000 5.1000 11.9707 2.5207 

Site2: 10-min 
Total samples 2220 18.1000 2.3000 9.6626 2.9661 
Train-set 2000 18.1000 2.3000 9.2664 2.7311 
Test-set 220 17.5000 6.6000 13.2641 2.5688 

Site3: 10-min 
Total samples 2220 18.4000 2.0000 9.0219 3.1068 
Train-set 2000 18.4000 2.0000 8.6368 2.8735 
Test-set 220 17.6000 5.4000 12.5236 2.9601 

Site4: 20-min 
Total samples 2220 16.7000 0.9000 6.7181 2.7697 
Train-set 2000 16.7000 0.9000 6.6773 2.7774 
Test-set 220 12.9000 2.6000 7.0886 2.6763 

Site5: 20-min 
Total samples 2220 18.2000 0.8000 7.8146 3.0395 
Train-set 2000 18.2000 0.8000 7.7815 3.0340 
Test-set 220 15.6000 2.1000 8.1159 3.0796 

Site6: 30-min 
Total samples 2220 18.2000 1.3000 8.4859 3.2925 
Train-set 2000 17.9000 1.3000 8.4406 3.2510 
Test-set 220 18.2000 2.8000 8.8977 3.6307 

Site7: 30-min 
Total samples 2220 17.5000 1.0000 7.5488 3.1403 
Train-set 2000 17.5000 1.0000 7.5082 3.0817 
Test-set 220 17.2000 2.7000 7.9182 3.6172 

 
Fig.2 Wind speed data 

3.2 Metrics 

In the point prediction, six commonly used indicators are applied to evaluate 
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model performance, namely RMSE, MAE, MAPE, R2, IA and PE, which can better 

reflect the prediction accuracy. The smaller the index values of RMSE, MAE and 

MAPE are, the higher the prediction accuracy of the models are, while R2 and IA are 

opposite. Three indicators named FINAW, AWD, and FICP are designed for interval 

forecasting. FINAW calculates the width of the interval. AWD is used to estimate the 

degree of deviation of the interval. FICP measures the extent to which ranges cover 

true values. The detailed information of metrics is presented in Table 4. 

Table 4 Metrics. 

Metric Expression Definition 

RMSE 2

1
(1 / ) ( )RMSE


 

Q

i ii
Q F A  Root mean square error 

MAE 
1

(1 / )MAE


 
Q

i ii
Q F A  Mean absolute error 

MAPE 
1

(1 / ) ( ) / 100%MAPE


  
Q

i i ii
Q F A A  Absolute percentage error mean 

R2 

2

1

2

1

( )
1

( )

2
R















Q

i ii

Q

i i

F A

F A
 Coefficient of determination 

IA 

2

1

2

1

1
( )

( )
IA





 


  





Q

i ii

Q

ii i

A F

A A A F
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AWDi denotes the cumulative 

deviation of the forecast interval and 

AWD is the mean of cumulative 

deviation 

Note: Fi, Ai represents the forecasting and actual value of i-th. In the point prediction 

evaluation index, ±5%, ±10% and ±15% error range are chosen to calculate the index PE; 

In the interval prediction evaluation index, if Ai belongs [Ui, Li], then ci=1, otherwise ci=0; 

FR means the range of predicted values. 

3.3 Model parameter setting 

The parameters for the neural network approaches are presented in Table 5 and 

those for MOGWO and ICE in Table 6. 

Table 5 Parameters of single models. 

Model Symbol Meaning Value Setting reasons 

BPNN 
Tg Training goal 0.00004 Preset 

Tfhid Activation function of hidden  tansig Preset 

ENN 
Emax The maximum epochs 1000 Trial- error method 

Tg Training goal 0.00004 Preset 

ELM 

 

Tf Activation function of hidden  sig Preset 

ANFIS 
CANf The number of the cluster  10 Preset 

Emax The maximum epochs 1500 Trial- error method  

GRNN SGRnn Spread 1 Preset 

LSTM 
Lr Training learning rate 0.005 Preset 

Emax The maximum epochs 2000 Trial- error method 
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CNN 
Lr Training learning rate 0.005 Preset 

Bmin MiniBatchsize 16 Trial- error method 

GRU 
HL Numbers of hidden layers 40 Trial- error method 

Emax The maximum epochs 2000 Preset 

TCN 
HL Numbers of hidden layers 50 Trial- error method 

Emax The maximum epochs 500 Preset 

Table 6 Parameters of ICE and MOGWO. 

Model Symbol Meaning Value Setting reasons 

ICE 
Itermax The maximum number of iterations 1000 Trial- error method 

NR Realization Number 100 Trial- error method 

MOGWO 

Itermax The maximum number of iterations 100 Trial- error method 

As Archive size 100 Trial- error method 

Ps Population size 200 Trial- error method 

α Grid inflation  0.1 Preset 

g Sum of grids per dimension 10 Preset 

β Leader selection pressure 3 Preset 

4. Experiment results    

In this section, the results of the four comparative experiments and two validation 

tests to evaluate CFM are shown. 

4.1 Selection of excellent sub models 

Seven single predictive models named ANFIS [35, 36], LSTM [37, 38], CNN [39, 

40], ELM [41-43], BPNN [44], GRNN [45, 46], and ENN [47] were chosen to forecast 

the original sequence in this study. To choose the most suitable models for improving 

the accuracy of CFM, the SEM strategy was developed [48]. The strategy is introduced 

below: 

(1) The MAPE, MAE, and RMSE of every sub-model are calculated for one hundred 

iterations. 

(2) Each index value is normalized as, for example, 

1 11

(( min( )) / (max( ) min( ))i
i

i Q i Qi Q

MAE MAE MAE MAE MAE
    

            (4) 

(3) Weights are assigned to each index value and the SEM value is calculated as 

(1/ 3) (1/ 3) (1/ 3)i i ii
SEM MAE MAPE RMSE      . 

The SEM values are listed in Table 7. A smaller SEM value indicates a higher 

model precision. Based on the results, ANFIS, LSTM, CNN, and ELM were chosen as 

the sub-models. 

Table 7 Results of SEM. 

SEM 
Model 

GRNN LSTM ELM BPNN ANFIS CNN ENN 

Site1_SEM 0.3300 0.3021 0.3797 0.2458 0.2871 0.2590 0.2589 

Site2_SEM 0.2814 0.1587 0.2240 0.3657 0.3125 0.2200 0.4129 

Site3_SEM 0.3251 0.4011 0.2134 0.2948 0.2250 0.3100 0.3201 

SEM* 0.3122 0.2873 0.2724 0.3021 0.2749 0.2630 0.3306 

Note: * mean the average of SEM values of all sites. 

4.2 Experiment Ⅰ: Comparison between CFM and basic models 

To demonstrate the performance of CFM, seven individual models were used for 

comparison in ExperimentⅠ. The results are as shown in Table 8 and Fig. 3.  

In Table 8, CFM exhibited the smallest error with MAPE, MAE and RMSE values 

of 2.8645%, 0.3217 and 0.4114 at site1. At site2, CFM exhibited the best performance 
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with the MAPE value of 2.1843% compared to the other models, which had an average 

MAPE value of 4.8747%. The superior precision of CFM was thus verified. The IA and 

R2 can better reflect the agreement between the actual and the forecast data. At site1, 

CFM showed a better performance with the values of R2and IA exceeding 97%, which 

was a 10% improvement in IA and R2 over the best model, GRNN.  

 
Fig.3 Results of CFM and basic models 

4.3 Experiment Ⅱ: Comparison between CFM and single model based on ICE 

Experiment Ⅱ was designed to contrast the accuracy of CFM and other models 

based on ICE. The results are presented in Table 9 and Fig.4. The following 

conclusions can be drawn from the results: 

It is obvious that CFM achieved the best prediction results at site1, with MAPE, 

MAE and RMSE values of 2.8645%, 0.3217, and 0.4114. For site2, the worst-performing 

model was ICE-ENN with MAPE exceeding 3.1044%. By contrast, the corresponding 

index value for CFM was 1% lower than that of ICE-ENN. For site3, CFM still 

exhibited the excellent performance with R2 exceeding 97%. The prediction error PE of 

CFM in the range of 5%, 10%, and 15% was greater than 80%, 90% and 95%, 

respectively. Obviously, CFM had more excellent prediction accuracy. 
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Fig.4 Results of CFM and denoising models 

4.4 Experiment Ш: Comparison between CFM and models with other denoising 

strategy 

In this section, three denoising strategies, namely, CEE, EMD, and EEMD, were 

chosen to verify the predictive abilities of CFM, and the detailed results are presented 

in Table 10. The following conclusions can be drawn: 

For site1, for the worst-performing EEMD-based model, the values of MAPE, 

MAE and RMSE were 4.6335%, 0.6592 and 0.6368, which far exceeded the 

corresponding values for CFM. For site2, MAPEEMD=3.3387% was obtained for the best 

classical model, which was based on EMD. In comparison, the smaller value of 

MAPECFM=2.1843% was obtained for CFM. Finally, for site3, the prediction errors of 

the comparison models in the range of 5% were almost less than 80%. It is not difficult 

to find that CFM performed better with
5%

CFM
PE exceeding 80%. 

4.5 Experiment Ⅳ: Comparison between CFM and other optimization strategies 

In this part, three optimization strategies called MOGOA, MOALO and MODA 

were designed to evaluate the predictive precision of CFM. The calculation results are 

listed in Table 11. It can be easily seen that the CFM had excellent performance. For 

example, for site1, the MAPECFM=2.8645% of CFM was 0.2%, 0.02% and 0.05% lower 

than those of MOGOA, MOALO, and MODA, respectively. In addition, only the R2 of 

CFM exceeded 95%, while its IA exceeded 97%. It can be found from the above 

evaluation index values that CFM has better performance in forecasting. 
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Table 8 The performances of CFM and basic models. 

 

SET Model 
     PE 

MAPE RMSE MAE R2 IA ±5% ±10% ±15% 

Site1: 10-min 

CFM 

 

2.8645 0.4114 0.3217 0.9749 0.9754 80.00 98.89 99.00 
ANFIS 6.8914 1.0924 0.8126 0.8113 0.7627 46.82 79.09 89.55 
LSTM 5.7710 0.8551 0.6705 0.8844 0.8553 49.55 85.00 95.00 
CNN 5.8641 0.8492 0.6731 0.8860 0.8576 50.00 82.27 95.45 
ELM 5.7888 0.8667 0.6737 0.8812 0.8512 50.00 85.45 96.36 
BPNN 6.0018 0.8832 0.6972 0.8767 0.8455 47.27 82.27 95.00 
GRNN 4.1138 0.7486 0.5544 0.9114 0.8879 72.73 85.45 99.09 
ENN 5.9280 0.8843 0.6943 0.8764 0.8449 48.64 82.73 96.36 
TCN 5.5340 0.8412 0.6571 0.8920 0.8588 50.50 86.67 96.69 
GRU 5.9284 0.8800 0.6877 0.8776 0.8867 49.55 80.91 95.45 
QRNN 5.4369 0.8391 0.6489 0.9012 0.8955 52.33 86.00 96.89 

Site2: 10-min 

CFM 

 

2.1843 0.3991 0.3111 0.9639 0.9942 92.22 94.23 98.20 
ANFIS 4.9404 0.8776 0.6535 0.8827 0.8550 62.73 88.64 96.82 
LSTM 4.9317 0.8474 0.6516 0.8907 0.8647 59.55 88.18 97.27 
CNN 5.0023 0.8375 0.6506 0.8932 0.8682 58.64 88.18 96.36 
ELM 4.8449 0.8369 0.6365 0.8934 0.8681 61.82 87.73 97.27 
BPNN 4.8209 0.8350 0.6341 0.8939 0.8690 61.36 88.18 95.91 
GRNN 4.1655 0.6751 0.5865 0.9306 0.9134 74.55 83.24 94.32 
ENN 

 

5.4175 0.9370 0.7183 0.8663 0.8345 57.27 85.91 96.36 
TCN 4.7569 0.8250 0.6477 0.8985 0.8799 60.60 89.71 97.92 
GRU 4.9899 0.8448 0.6504 0.8914 0.8990 58.64 88.18 96.82 
QRNN 4.9210 0.8409 0.6450 0.8920 0.8644 59.82 87.65 96.34 

Site3: 10-min 

CFM 

 

2.8727 0.4299 0.3598 0.9751 0.9582 84.44 98.89 99.00 
ANFIS 7.0114 1.0389 0.8457 0.8762 0.7934 38.64 75.00 93.18 
LSTM 6.6676 0.9739 0.8076 0.8913 0.8181 43.64 78.64 96.36 
CNN 6.6651 0.9511 0.7841 0.8963 0.8275 42.73 80.91 93.64 
ELM 6.5754 0.9697 0.7944 0.8922 0.8198 41.82 78.64 95.91 
BPNN 6.4957 0.9626 0.7789 0.8938 0.8227 43.18 80.00 94.55 
GRNN 3.2736 0.5712 0.4483 0.9626 0.9370 65.00 74.25 93.24 
ENN 6.4089 0.9378 0.7616 0.8992 0.8319 45.45 81.82 95.91 
TCN 6.7258 0.9841 0.8130 0.8842 0.8032 42.30 76.82 95.20 
GRU 6.5127 0.9622 0.7770 0.8939 0.8778 44.55 82.27 94.09 
QRNN 6.5433 0.9678 0.7820 0.8912 0.8461 44.32 81.00 94.15 

Note: The table lists the predicted results of CFM and basic models. The blacked part represents the evaluation index value 

of CFM. The equation of metrics are defined as: ( ) ( ) / 100%PE   
i i i

i F A A , 
1

(1 / )MAE


 
Q

i ii
Q A F ,

1
(1 / ) ( ) / 100%MAPE


  

Q

i i ii
Q A F A , 2 2

1 1
( ) ( ) 1/2

R
 

     
Q Q

i i ii i
A F F A  , 2 (1/ 2 )

1
((1 / ) ( ) ) ^RMSE


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Q

i ii
Q A F ,

2 2

1 1
( ) / ( ) 1IA

 
      

Q Q

i i i ii i
A F A A F A . In addition, GRU, TCN and QRNN are introduced in experiments Ⅰ and Ⅱ 

to make a more complete comparison. 
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Table 9 The performances of CFM and the denoising models. 

SET Model 
     PE 

MAPE RMSE MAE R2 IA ±5% ±10% ±15% 

Site1: 10-min 

CFM 

 

2.8645 0.4114 0.3217 0.9749 0.9754 80.00 98.89 99.00 
ICE-ANFIS 3.3003 0.5527 0.4017 0.9517 0.9400 77.73 96.82 99.55 
ICE- LSTM 2.8753 0.4367 0.3409 0.9698 0.9625 83.18 95.09 99.00 
ICE-CNN 3.6981 0.5433 0.4330 0.9533 0.9420 73.18 96.82 98.32 
ICE-ELM 2.8631 0.4293 0.3375 0.9709 0.9638 85.45 95.02 97.20 
ICE-BPNN 2.9085 0.4329 0.3423 0.9704 0.9632 85.00 96.09 99.00 
ICE-GRNN 2.9884 0.4068 0.3790 0.9738 0.9672 95.91 99.09 99.55 
ICE-ENN 3.5534 0.5371 0.4172 0.9544 0.9432 73.18 97.73 98.50 
ICE-TCN 2.8910 0.4340 0.3545 0.9621 0.9654 84.20 97.23 98.80 
ICE-GRU 3.6746 0.5441 0.4301 0.9532 0.9571 70.91 96.36 98.20 
ICE-QRNN 2.8741 0.4220 0.3398 0.9717 0.9638 84.89 97.89 99.00 

Site2: 10-min 

CFM 

 

2.1843 0.3991 0.3111 0.9639 0.9942 92.22 94.23 98.20 
ICE-ANFIS 2.2827 0.3748 0.2978 0.9786 0.9737 90.00 93.40 98.30 
ICE- LSTM 2.3995 0.3989 0.3153 0.9758 0.9702 88.64 90.15 92.31 
ICE-CNN 3.0983 0.5160 0.4076 0.9595 0.9501 78.18 97.09 99.00 
ICE-ELM 2.2209 0.3599 0.2901 0.9303 0.9757 92.73 95.60 97.43 
ICE-BPNN 2.2658 0.3714 0.2954 0.9590 0.9742 79.09 98.64 99.55 
ICE-GRNN 1.0858 0.2071 0.1529 0.9435 0.9919 89.55 94.55 96.60 
ICE-ENN 3.1044 0.5411 0.4099 0.9554 0.9451 79.09 96.64 98.55 
ICE-TCN 2.3876 0.3847 0.3119 0.9722 0.9690 89.74 95.83 98.00 
ICE-GRU 3.1606 0.5159 0.4108 0.9595 0.9633 80.45 97.27 98.50 
ICE-QRNN 2.2531 0.3687 0.2937 0.9723 0.9714 91.52 97.03 98.11 

Site3: 10-min 

CFM 

 

2.8727 0.4299 0.3598 0.9751 0.9582 84.44 98.89 99.00 
ICE-ANFIS 3.1424 0.4798 0.3782 0.9736 0.9561 81.36 97.73 98.50 
ICE- LSTM 3.3935 0.5259 0.4132 0.9683 0.9472 79.09 97.27 99.00 
ICE-CNN 4.6616 0.7052 0.5686 0.9430 0.9046 59.09 93.64 98.64 
ICE-ELM 3.0488 0.4652 0.3629 0.9752 0.9588 82.73 97.73 98.60 
ICE-BPNN 3.0550 0.4682 0.3647 0.9749 0.9582 85.45 96.09 97.25 
ICE-GRNN 2.9030 0.2869 0.2178 0.9709 0.9542 83.45 97.09 98.44 
ICE-ENN 4.0672 0.6429 0.4986 0.9526 0.9210 67.73 94.55 98.09 
ICE-TCN 3.4184 0.5315 0.4274 0.9630 0.9426 80.05 96.30 98.17 
ICE-GRU 4.1967 0.6376 0.5032 0.9534 0.9469 63.64 91.82 99.09 
ICE-QRNN 3.0251 0.4591 0.3563 0.9680 0.9536 82.29 97.81 99.00 
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Table 10 The forecasting results of CFM and other denoising strategy models. 

SET Model 
     PE 

MAPE RMSE MAE R2 IA ±5% ±10% ±15% 

Site1: 10-min 

CFM 

 

2.8645 0.4114 0.3217 0.9749 0.9754 80.00 98.89 99.00 
CEE 4.6156 0.5576 0.6120 0.7671 0.8889 70.00 92.22 94.30 
EEMD 4.6335 0.6368 0.6562 0.7853 0.8294 76.67 85.56 92.28 
EMD 3.7898 0.5845 0.4958 0.7826 0.9341 78.89 87.45 91.32 

Site2: 10-min 

CFM 

 

2.1843 0.3991 0.3111 0.9639 0.9942 92.22 94.23 98.20 
CEE 4.4341 0.7932 0.6434 0.9440 0.8842 72.22 94.44 99.09 
EEMD 4.5079 0.8711 0.6603 0.8088 0.8597 83.33 96.67 97.78 
EMD 3.3387 0.5709 0.4832 0.8602 0.9401 78.89 94.33 96.22 

Site3: 10-min 

CFM 

 

2.8727 0.4299 0.3598 0.9751 0.9582 84.44 98.89 99.00 
CEE 5.6386 0.9667 0.8056 0.9309 0.9276 52.22 94.44 97.42 
EEMD 4.3859 0.5918 0.4114 0.8848 0.9100 86.01 87.78 96.67 
EMD 2.8755 0.5203 0.4102 0.8148 0.9500 84.44 98.89 99.01 

 

Table 11 The forecasting results of CFM and combined models using other algorithms. 

SET Model 
     PE 

MAPE RMSE MAE R2 IA ±5% ±10% ±15% 

Site1: 10-min 

CFM 

 

2.8645 0.4114 0.3217 0.9749 0.9754 80.00 98.89 99.00 
MOALO 3.0294 0.4986 0.3570 0.9214 0.9429 82.78 97.44 98.12 
MODA 2.8897 0.4387 0.3570 0.9414 0.9629 83.78 94.55 98.82 
MOGOA 2.9192 0.4544 0.3781 0.9083 0.9603 81.56 93.22 97.56 

Site2: 10-min 

CFM 

 

2.1843 0.3991 0.3111 0.9639 0.9942 92.22 94.23 98.20 
MOALO 2.1900 0.4074 0.3187 0.9435 0.9725 92.22 93.50 98.12 
MODA 2.1948 0.4083 0.3102 0.9428 0.9725 84.32 94.31 97.66 
MOGOA 2.2048 0.3999 0.3285 0.9407 0.9717 85.56 92.31 96.45 

Site3: 10-min 

CFM 

 

2.8727 0.4299 0.3598 0.9751 0.9582 84.44 98.89 99.00 
MOALO 2.9797 0.5791 0.3655 0.9430 0.9577 87.78 97.89 99.00 
MODA 2.9075 0.4800 0.3700 0.9424 0.9575 82.43 94.57 98.75 
MOGOA 2.9708 0.4894 0.3804 0.9362 0.9558 84.44 92.34 98.88 
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4.6 Uncertainty forecasting 

An interval estimate is based on a point estimate and can increase the prediction 

reliability and certainty [31]. In this subsection, four distributions were chosen to fit the 

sequence based on maximum likelihood estimation (MLE). They are Weibull, Gamma, 

Rayleigh and Lognormal distribution, which are shown in Table 12. After analysis, the 

Weibull distribution was adopted for the three sites, and the detailed parameter settings 

are presented in Table 13. Then, three indicators named FINAW, AWD, and FICP were 

designed for interval forecasting. The detailed results are depicted in Fig.5 and Table 

14.  

The indicators were evaluated for the probabilities P1=95%, P2=90%, and P3=80%. 

These probabilities can be expressed as (1 ) 100%  . It is clear that the prediction 

accuracy at the significance level of α=0.05 was superior to the accuracies at α=0.1 and 

α=0.2. At the significance level of α=0.05, the FICP for CFM at every site exceeded 

85%. In addition, at α=0.1, the FICP for CFM was between 80% to 85%. The similar 

values of AWD and FINAW at different significance levels implies that most of the 

actual values fell within the predicted ranges and that CFM achieved excellent 

performance. 

 
Fig.5 The interval forecasting results 

5. Discussion  

In this section, the results of improvement ratio, hyperparametric analysis, and the 

exploration of input and multi-step forecasting, operation time, comparative analysis 

and practical applicability are discussed to further analyze the above experimental 

results. 

5.1 Improvement ratio 

The aim of the improvement indicator is to quantify the improvement in the 

predictive precision of CFM. IRMAPE, IRMAE and IRRMSE are designed to represent the 

improvement ratio. The details are shown in Table 15. For example, the models based 

on ICE for site1 had the values of IR
ANFIS

MAPE =9.2670%, IR
LSTM

MAPE =4.1438%, IR
CNN

MAPE

=19.0262%, IR
ELM

MAPE =4.5895%, which shows that the advantages of each model were 
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combined in CFM. For the different denoising methods, it is clear from the average 

value of 34% for IR
ave

MAPE in these models that ICE played a key role in improving the 

forecasting accuracy. The various optimization strategies achieved an average value of 

7.3309% for IR
ave

MAPE . This implies that MOGWO could improve forecasting ability. 

There is no doubt that CFM was superior to the single models and the combined strategy 

achieved excellent prediction results. 

5.2 Hyperparametric analysis 

To investigate the influence of key parameter changes on the proposed model, only 

one key parameter was changed each time while the other parameters remained the 

same in this section. We changed the values of five parameters in the ICE and MOGWO 

algorithms. For ICE, the maximum iteration parameters values were [500, 3000] and 

the number realizations were [50, 100, 300]. For MOGWO, the archive size parameters 

values were [200,300,500], the maximum iteration parameter values were [50,150, 200], 

and the population sizes were [50,70,120]. The calculation results are shown in Table 

16. With the change of parameter values, the precision of the model also changed. For 

example, at site1, the number realizations were set to 50,100 and 300. When 100 was 

selected, the proposed model achieved good MAPE values with 2.8645%, 2.1843% and 

2.8727% in three sets. In general, it is not difficult to find that the parameter values 

selected in this paper perform better. 

5.3 Influence of input step and multi-step prediction  

This section adds sites 4-7 to better discuss the performance of the proposed model. 

Specifically, sites 4-5 use wind speed data at 20-minute intervals and sites 6-7 apply 

wind speed data at 30-minute intervals. The sample size and experimental mechanism 

are consistent with the above. Considering the neatness and symmetry of the table 

content, in sections 5.3.1 and 5.3.2, site1 (10-min), site2 (10-min), site4 (20-min), site5 

(20-min), site6 (30-min) and site7 (30-min) are used to test the performance of the 

proposed model. 

5.3.1 Influence of input step  
To analyze the influence of different input steps on prediction more accurately, the 

input steps λ were adjusted to 3, 4 and 6, and a comparative test was performed to 

further explore the performance of the proposed forecasting system. From Table 17, it 

is easy to see that for the 10-min sites, when the input step λ was 3, the prediction errors 

of
1

3
MAPE

site


= 3.0833% and

2

3
MAPE

site

 = 2.4134% were larger at those of other steps. For 

the 20-min sites,
5%

3
PE

 and
5%

4
PE

 are less than 70%, which implies that better forecasting 

results were obtained by CFM compared to
5%

5
PE

 =69.33% at site4 and
5%

5
PE

 =72.22% 

at site5. The prediction accuracy for the 30-min sites was obviously inferior to those of 

the previously mentioned sites; however, the input step 5 still performed well. From the 

above analysis, it can be concluded that as the time interval increased, the prediction 

accuracy decreased continuously, but the best performance was still obtained when the 

input step was 5. 

5.3.2 Influence of multi-step prediction 

The multistep forecasting ability of the proposed system is explored in the 

subsection. The details of the two-and three-step predictions are presented in Table 18. 
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For site1, which had 10-min intervals, the smallest errors of
2

MAPE
step

CFM
=4.4556%, 

2
MAE

step

CFM
=0.5848 were achieved by CFM compared to the other models, which had the 

average errors with MAPE and MAE values of 5.0829% and 0.7960 for two-step 

predictions. In addition, the accuracy of the three-step prediction was obviously lower 

than that of the two-step prediction, but the CFM still achieved the good result with 
2

CFM
R greater than 90%. 

The accuracy decreased with longer interval times. For example, for the 20-min 

predictions by CFM, the MAPE values in two-step was 6.5225% at site4, which 

exceeded the values for the 10-min sites. For the 30-min predictions, the prediction 

error 
2

MAPE
step

CFM
increased to 9% at site6. These results indicate that the prediction 

system may be more suitable for short-term wind speed prediction.  

5.4 Operation time 

Table 19 shows the mean operation time of all models used in this paper. It is clear 

that the proposed system had the longest calculation time, at 264.8361s. For basic 

models, the running time of BPNN was 0.4111, which was the least time in all models. 

The computation time of models based on ICE denoising algorithm was also short, 

which was 57.9170s, 19.2999s, 65.4855s, 36.4029s, 20.4532s, 18.9124s and 22.8657s. 

In addition, when applying other noise reduction algorithms or optimization algorithms, 

the time spent on combined models increased significantly, which was in the 100s to 

200s range. Although the time consumed of the proposed model was longer than other 

models, it had superior predictive power. Its time was within the acceptable range and 

did not affect its practical application greatly. 

Table 19 Computing time. 

Model Computation time(s) Model Computation time(s) 

CFM 264.8361 MOALO 197.8581 

ICE-ANFIS 57.9170 MODA 207.2554 

ICE-ELM 19.2999 MOGOA 198.3225 

ICE-LSTM 65.4855 BPNN 0.4111 

ICE-CNN 36.4029 ENN 1.4821 

ICE-GRNN 20.4532 ELM 3.2169 

ICE-BPNN 18.9124 LSTM 38.3067 

ICE-ENN 22.8657 CNN 18.7405 

EMD 137.0275 ANFIS 40.2649 

EEMD 110.2881 GRNN 10.1546 

CEE 203.0657   

5.5 Comparative analysis 

Through the experiments above, the validity of the proposed model is proved. 

However, the results based only on the experimental mechanism in this paper may not 

be convincing. Therefore, in order to be fair, this section compares the proposed model 

with other similar studies. Specifically, Niu’s model [32], Shao’s model [29]and Liu’s 

model [23]are used for comparative study. Niu et al. designed the combined model 

based on data preprocessing and optimization algorithm for wind speed forecasting, 

which obtained high accuracy with the smallest MAPE value of 2.89%. However, Niu 

et al. ignored the importance of uncertain predictions and the influence of parameters 

on model performance was not considered. Shao et al. used the same MOGWO 

algorithm and proposed a combined model based on decomposition-integration, but 

also lacked the exploration of uncertainty prediction and the influence of model 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



24 

 

parameters. Liu et al. not only applied the improved optimization algorithm to point 

prediction and interval prediction of wind speed, but also considered the influence of 

different seasons on wind speed prediction. However, Liu's model lacked comparison 

with other literatures, and the results of parameter adjustment were not fully 

demonstrated. Table 20 presents the comparison results of this study with other studies. 

There is no unified comparison standard for model accuracy among different 

studies [49]. Therefore, to verify the accuracy of the proposed model, the evaluation 

index and datasets in this paper are applied in the models of Niu, Shao and Liu. 

Meanwhile, parameter settings are basically consistent with those in the original 

literature. Although the error between these models was not large, it was enough to 

show that the proposed model is superior to the models from comparative studies. For 

example, the MAPE value of the proposed model was 2.8645%, while Niu, Shao and 

Liu had values of 3.4181%, 4.0200% and 3.1835% respectively. The proposed model 

also had outstanding advantages in other indicators. Therefore, it can be reasonably 

concluded that the proposed model has excellent predictive ability. 

5.6 Practical applicability  

Efficient and timely wind speed prediction plays an important role in wind power 

generation system, which can not only meet people's demand for electricity, but also 

maximize economic benefits. Meanwhile, the proposed model in this paper can also be 

applied to other fields: 

(a) Air quality forecasting. Deep learning technology has been widely used in air 

monitoring, this proposed prediction system based on deep learning methods can be 

applied to the monitoring of air quality, for example, to timely predict air pollutant 

concentrations and to provide reasonable suggestions for travelling and improving the 

environment. 

(b) Traffic forecasting. In recent years, the prediction of traffic flow has become the 

focus of attention. This proposed system can sensitively capture the change of traffic 

flow, so as to reduce traffic congestion, relieve people's travel pressure and provide 

support for the development of intelligent transportation. 

(c) Financial market forecasting. This system can also be used in the prediction of 

future trends in stocks, funds, etc, timely providing technical support for discovery of 

potential financial risks. 

6. Conclusion and future work 

Wind energy has received increasing attention as a renewable energy source to 

address the shortages in the energy market. Nevertheless, the fluctuation and instability 

of wind speed still present difficulties for wind speed forecasting. An advanced wind 

speed prediction system was developed in this study. The ICE denoising strategy was 

first used to eliminate noise to obtain stationary sequences based on the de-composition 

and ensemble theory. Several single models were then adopted to predict the processed 

data. The optimal weights and final forecasting results were obtained using the 

MOGWO operator. The Pareto optimality of the MOGWO solutions was theoretically 

proven to ensure that the optimal weight vector can be obtained in the combined system.  

The point prediction results show that the MAPE values of the proposed model were 

2.8645%, 2.1843% and 2.8727% respectively. Besides, for uncertainty forecasting, the 

FICP values of the proposed model were 85.1697, 89.5410 and 88.0111 respectively at 

the significant level α = 0.05. The AWD values were 0.0559, 0.0400 and 0.0361 and 

the FINAW values were 0.0478, 0.0404 and 0.0390. It is clear that the proposed system 
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exhibits remarkable accuracy and stability performance. This system can hence provide 

accurate and real-time wind power information and contribute to wind power 

generation.  

There are still some areas that need to be improved in future studies, for example: 
(1) In order to further improve the prediction accuracy, the influence of temperature, 

wind direction and other variables on wind speed prediction needs to be further 

discussed. (2) More advanced deep learning algorithms can be applied to future 

research to improve the accuracy of developed system. (3) Using more efficient 

preprocessing methods deals with unstable, random wind speed data. In addition, the 

effects of different preprocessing methods need to be further explored.
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Table 12 Data distribution fitting. 

Distribution 
Site1 Site2 Site3 

R2 RMSE R2 RMSE R2 RMSE 

Weibull 0.9892 0.0299 0.9932 0.0239 0.9971 0.0156 
Gamma 0.9866 0.0334 0.9914 0.0267 0.9932 0.0238 

Rayleigh 0.8903 0.0955 0.8579 0.1087 0.9066 0.0881 

Lognormal 0.9827 0.0380 0.9872 0.0326 0.9857 0.0345 

 

Table 13 Distribution parameters for three sites. 

SET Distribution 
Parameter 

λ k 

Site1: 10-min Weibull 9.5454 3.3830 

Site2: 10-min Weibull 10.7378 3.6000 

Site3: 10-min Weibull 10.0906 3.1837 

Note: λ and k are scale and shape parameter. 

  
Table 14 Interval forecasting results. 

 
 

Model 
Expectation 

probability 

Site1: 10-min Site2: 10-min  Site3: 10-min  

FICP AWD FINAW FICP AWD FINAW FICP AWD FINAW 

CFM 
95% 85.1697 0.0559 0.0478 89.5410 0.0400 0.0404 88.0111 0.0361 0.0390 
90% 83.8456 0.0646 0.0364 84.6134 0.0519 0.0339 81.1961 0.0641 0.0327 
80% 80.3296 0.0796 0.0305 81.0431 0.0659 0.0264 78.2684 0.0965 0.0255 

Note: This table lists the interval forecasting results of CFM, which can further show the accuracy of CFM. The formula 

of FICP, FINAW and AWD are:  
1

/ ) 100%FICP


 
Q

ii
C M ,

1
( ) /FINAW


 

Q

i ii
U L FR , if

i i
A U , then 

( ) / ( )AWD   
i i i ii A U U L , if [ , ]

i i i
A L U  , then 0AWD i , if

i i
A L , then ( ) / ( )AWD   

i i i ii L A U L . Thus,

 
1

/AWD AWD


 
Q

ii
FR , FR represents the range of predicted values. 
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Table 15 The improvement percentages of CFM and all other models. 

 

 

 

 

 

 

 

 

 

Model 
Site1: 10-min Site2:10-min Site3: 10-min 

IRMAPE IRMAE IRRMSE IRMAPE IRMAE IRRMSE IRMAPE IRMAE IRRMSE 

ICE-ANFIS 9.2670 2.4780 12.9021 4.3124 6.1470 6.4870 8.5813 8.3642 8.3569 
ICE-LSTM 4.1438 14.8928 10.2339 8.9694 0.2655 0.0573 15.3468 0.8169 1.1439 
ICE-CNN 19.0262 9.5438 11.4006 29.4999 22.4435 22.6521 38.3755 27.9343 26.2731 
ICE-ELM 4.5895 16.0755 12.1302 1.6459 8.9708 10.8772 5.7750 12.9224 11.7576 
ICE-BPNN 2.9585 14.4446 11.1923 3.5967 6.9986 7.4574 5.9677 12.3657 11.0349 
ICE-GRNN 43.3893 40.3992 18.3251 11.1729 16.7673 32.7546 39.3307 28.1278 11.1886 
ICE-ENN 15.7277 6.1089 10.3648 29.6390 22.8787 26.2376 29.3698 17.8166 19.1285 
ANFIS 56.5473 51.7972 55.9334 55.7865 51.6294 54.5255 59.0283 51.5459 49.9590 
LSTM 48.1109 41.5767 43.7026 55.7087 51.4914 52.9036 56.9152 49.2542 46.6145 
CNN 48.9351 41.8068 43.3142 56.3344 51.4124 52.3438 56.8993 47.7365 45.3357 
ELM 48.2710 41.8598 44.4566 54.9156 50.3353 52.3116 56.3115 48.4144 46.3876 
BPNN 50.1068 43.8167 45.4931 54.6910 50.1487 52.2037 55.7754 47.3885 45.9918 
GRNN 27.2087 29.3473 35.6913 47.5616 46.1051 40.8872 12.2467 8.5824 8.9760 
ENN 49.4851 43.5831 45.5588 59.681 55.9942 57.4058 55.1765 46.1910 44.5643 
CEE 35.1219 35.9979 36.4612 50.7386 50.8682 49.6846 49.0531 49.1288 46.2175 
EEMD 46.8444 48.2038 48.6125 51.5454 52.1242 54.1845 55.0851 55.0361 52.3802 
EMD 20.9860 20.9976 17.6387 34.5769 34.5880 30.0906 12.0987 15.1083 10.0810 
MOALO 9.7114 9.7189 9.7564 2.0716 2.4013 3.0105 11.5294 12.1131 8.5268 
MODA 9.7014 9.7088 9.7415 1.8440 1.8924 2.7919 10.1714 10.7422 8.3018 
MOGOA 2.5798 3.5893 5.9401 2.7982 2.4714 2.0948 7.5586 7.7358 6.2351 

Note: This indicator aims to verify the improvement of predictive precision of the CFM, the calculation formulas 

are: MAPE other CFM other(MAPE MAPE ) / MAPE 100%IR    , MAE other CFM other(MAE MAE ) / MAE 100%IR    and 

RMSE other CFM other(RMSE RMSE ) / RMSE 100%IR    . 
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Table 16 Prediction results of different parameter values. 

ICEMMDAN MOGWO Site1: 10-min Site2: 10-min Site3: 10-min 

Realization 

Number 

Iteration 

Number 

Archive

Size 

Iteration 

Number 

Population 

Number 
MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE 

50 1000 100 100 200 2.9678 0.4785 0.3871 2.3445 0.4406 0.3419 3.4458 0.5905 0.4871 
100* 1000 100 100 200 2.8645 0.4114 0.3217 2.1843 0.3991 0.3111 2.8727 0.4299 0.3598 
300 1000 100 100 200 3.1287 0.4938 0.4068 2.2759 0.4194 0.3270 2.8058 0.5124 0.4011 
100 500 100 100 200 3.0425 0.4854 0.3982 2.2270 0.4249 0.3254 2.8128 0.5050 0.3969 
100 1000 100 100 200 3.1475 0.5275 0.4170 2.3009 0.4153 0.3307 2.7843 0.4883 0.3927 
100 3000 100 100 200 3.2805 0.5445 0.4366 2.2667 0.4157 0.3287 2.9734 0.5320 0.4249 
100 1000 200 100 200 2.9896 0.4805 0.3911 2.1855 0.3993 0.3163 2.8776 0.5202 0.4105 
100 1000 300 100 200 2.9920 0.4808 0.3914 2.1862 0.3995 0.3164 2.8780 0.5206 0.4106 
100 1000 500 100 200 2.9887 0.4804 0.3910 2.1851 0.3993 0.3162 2.8778 0.5205 0.4105 
100 1000 100 50 200 2.9947 0.4812 0.3917 2.1859 0.3994 0.3163 2.8807 0.5207 0.4109 
100 1000 100 150 200 2.9973 0.4818 0.3921 2.1847 0.3992 0.3162 2.8680 0.5192 0.4091 
100 1000 100 200 200 2.9934 0.4812 0.3916 2.1862 0.3995 0.3164 2.8886 0.5217 0.4121 
100 1000 100 100 50 3.0007 0.4823 0.3925 2.1847 0.3992 0.3162 2.8854 0.5215 0.4116 
100 1000 100 100 70 2.9911 0.4807 0.3913 2.1844 0.3991 0.3161 2.8808 0.5211 0.4110 
100 1000 100 100 120 2.9945 0.4813 0.3917 2.1862 0.3995 0.3164 2.8677 0.5192 0.4091 

Note: * represents the parameter settings selected in this study. 
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Table 17 The forecasting results of CFM with different rolling input steps. 

 Rolling-input 
Site1: 10-min Site2: 10-min 

3 4 5 6 3 4 5 6 

MAPE 3.0833 2.8955 2.8645 3.0694 2.4134 2.2406 2.1843 2.3213 
RMSE 0.4967 0.4699 0.4114 0.4998 0.4405 0.4163 0.3991 0.4232 
MAE 0.4025 0.3800 0.3217 0.4062 0.3494 0.3268 0.3111 0.3320 
R2 0.7710 0.7950 0.9749 0.7681 0.7976 0.8193 0.9639 0.8133 
IA 0.9524 0.9574 0.9754 0.9518 0.9643 0.9681 0.9942 0.9672 
PE (±5%) 78.89 81.11 80.00 80.00 88.00 88.89 92.22 87.78 
PE (±10%) 98.89 97.21 98.89 97.89 95.64 94.45 94.23 96.25 
PE (±15%) 99.01 98.46 99.00 99.01 98.72 99.12 98.20 98.85 

Rolling-input 
Site4: 20-min Site5: 20-min 
3 4 5 6 3 4 5 6 

MAPE 5.0079 5.2326 4.8669 5.1209 5.2472 5.1036 4.1947 4.9909 
RMSE 0.3490 0.3561 0.3328 0.3477 0.3703 0.3751 0.2999 0.3647 
MAE 0.2476 0.2569 0.2428 0.2528 0.2789 0.2748 0.2204 0.2692 
R2 0.9155 0.9120 0.9231 0.9161 0.9278 0.9259 0.9526 0.9299 
IA 0.9635 0.9620 0.9667 0.9638 0.9621 0.9610 0.9750 0.9630 
PE (±5%) 68.89 0.6222 69.33 65.56 58.89 61.11 72.22 62.22 
PE (±10%) 82.22 0.8556 82.22 84.44 91.11 87.88 92.22 91.11 
PE (±15%) 93.33 0.9333 97.78 95.56 97.78 96.67 96.67 96.67 

Rolling-input 
Site6: 30-min Site7: 30-min 
3 4 5 6 3 4 5 6 

MAPE 5.5761 5.6650 5.8810 5.7209 5.8572 6.2507 5.0589 5.8738 
RMSE 0.4880 0.4965 0.4962 0.4944 0.4518 0.4617 0.3946 0.4516 
MAE 0.3982 0.4033 0.4121 0.4070 0.3445 0.3620 0.3120 0.3499 
R2 0.9739 0.9730 0.9730 0.9732 0.9755 0.9744 0.9813 0.9755 
IA 0.9440 0.9419 0.9421 0.9425 0.9483 0.9459 0.9606 0.9423 
PE (±5%) 52.22 50.00 54.44 54.44 51.11 44.44 57.78 55.56 
PE (±10%) 86.67 86.67 84.44 84.44 82.22 82.22 92.22 78.89 
PE (±15%) 96.67 97.78 96.67 96.67 95.56 93.33 96.67 92.22 
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Table 18 The multi-step forecasting results of CFM and denoising models. 

 

 

 

 

 

 

 

 

SET Model 
STEP2 STEP3 
     PE      PE 
MAPE RMSE MAE R2 IA ±5% ±10% ±15% MAPE RMSE MAE R2 IA ±5% ±10% ±15% 

Site1: 

10-min 

ICE-ANFIS 5.5741 0.9808 0.6722 0.8469 0.8108 58.18 85.00 95.91 7.0662 1.0365 0.8328 0.8284 0.7869 41.82 77.27 95.45 
ICE-LSTM 4.8109 0.7103 0.5638 0.9197 0.9005 59.09 88.64 98.64 6.6049 0.9362 0.7582 0.8600 0.8265 42.73 77.73 93.18 
ICE-CNN 5.4072 0.8220 0.6498 0.8925 0.8656 52.27 88.18 98.18 6.9907 0.9489 0.7874 0.8561 0.8240 41.36 74.55 90.91 
ICE-ELM 4.5395 0.6710 0.5277 0.9284 0.9112 63.64 89.55 99.09 6.7105 0.9762 0.7816 0.8477 0.8106 42.73 79.09 95.00 
CFM 4.4556 0.7306 0.5848 0.8821 0.8967 56.67 92.22 98.89 5.3861 0.8419 0.6998 0.9198 0.8629 47.78 86.67 97.78 

Site2: 

10-min 

ICE-ANFIS 4.0231 0.6975 0.5311 0.9256 0.9086 68.64 93.18 99.09 5.9385 1.0245 0.7839 0.8382 0.8019 50.45 82.27 93.18 

ICE-LSTM 4.5031 0.7722 0.5976 0.9088 0.8880 59.55 91.82 98.18 5.9602 1.0106 0.7814 0.8425 0.8075 50.45 81.82 94.55 

ICE-CNN 5.2576 0.9032 0.7025 0.8752 0.8458 55.00 86.82 98.64 7.2749 1.2357 0.9857 0.8646 0.7084 49.55 72.73 90.91 

ICE-ELM 3.7898 0.6692 0.5035 0.9315 0.9159 69.09 95.00 99.55 5.7117 0.9487 0.7467 0.8612 0.8307 51.82 85.91 96.82 

CFM 3.6019 0.4861 0.3826 0.9336 0.9564 88.89 95.45 99.11 5.1879 0.9662 0.7645 0.8446 0.8269 56.67 87.78 97.78 

Site4: 

20-min 

 

ICE-ANFIS 7.1044 0.5657 0.4441 0.9550 0.9205 46.36 74.55 88.18 10.1619 0.8281 0.6233 0.9032 0.8294 37.73 60.45 79.09 
ICE-LSTM 7.3513 0.5861 0.4581 0.9516 0.9145 46.36 76.36 89.55 10.2983 0.8190 0.6215 0.9053 0.8328 40.91 62.73 77.72 
ICE-CNN 8.3737 0.6659 0.5158 0.9376 0.8896 42.27 68.64 84.55 11.7013 0.9045 0.6820 0.8845 0.7974 37.27 60.91 72.73 
ICE-ELM 6.8610 0.5554 0.4302 0.9566 0.9233 48.64 77.73 88.64 10.0260 0.7985 0.6108 0.9100 0.8413 36.36 61.82 80.91 
CFM 6.5225 0.5131 0.4617 0.9531 0.8942 54.44 73.33 89.22 9.3751 0.7594 0.6072 0.9062 0.8591 40.00 67.78 83.33 

Site5: 

20-min 

ICE-ANFIS 6.6738 0.7163 0.5199 0.9455 0.8806 49.09 78.18 92.27 9.7967 0.9733 0.7354 0.8992 0.7794 35.00 61.36 78.18 
ICE-LSTM 6.7348 0.7048 0.5177 0.9473 0.8843 51.82 76.36 92.37 9.7545 0.9507 0.7142 0.9038 0.7891 35.45 63.64 79.55 
ICE-CNN 7.6882 0.8352 0.5981 0.9260 0.8365 47.27 72.27 85.91 10.6698 1.0898 0.8183 0.8737 0.7205 31.36 75.45 58.64 
ICE-ELM 6.6218 0.6915 0.5120 0.9493 0.8887 48.18 80.00 91.09 9.6863 0.9514 0.7133 0.9037 0.7888 38.18 62.27 80.45 
CFM 6.5292 0.5714 0.4248 0.9265 0.9095 50.00 77.78 92.78 9.0242 0.8712 0.6935 0.8937 0.7897 36.44 73.55 81.89 

Site6: 

30-min 

ICE-ANFIS 7.9222 0.8152 0.6341 0.9495 0.8530 38.64 71.82 89.09 11.0788 

1.1669 

1.1669 0.8808 0.8967 0.6981 32.73 56.82 74.09 
ICE-LSTM 7.5799 0.7742 0.6062 0.9545 0.8674 42.27 73.18 90.45 11.1169 1.1475 0.8822 0.9001 0.7077 30.45 56.82 74.09 
ICE-CNN 8.8575 1.1007 0.7957 0.9079 0.7283 37.73 66.82 83.64 11.8460 1.2170 0.9456 0.8876 0.6740 28.64 54.55 68.64 
ICE-ELM 7.6516 0.7838 0.6102 0.9533 0.8641 39.09 72.27 89.09 10.8049 1.1544 0.8622 0.8989 0.7040 

35.45 

35.45 57.27 74.55 
CFM 8.1519 0.6920 0.5413 0.9463 0.8865 43.89 72.22 86.67 10.5601 1.0711 0.8671 0.8670 0.7281 36.89 58.00 74.44 

 

Site7: 

30-min 

 

 

ICE-ANFIS 12.3948 1.1695 0.8588 0.8957 0.6809 26.82 54.55 71.82 12.3948 1.1695 0.8588 0.8957 0.6809 26.82 54.55 71.82 
ICE-LSTM 12.1247 1.0916 0.8220 0.9091 0.7221 28.64 55.00 71.36 12.1247 1.0916 0.8220 0.9091 0.7221 28.64 55.00 71.36 
ICE-CNN 12.6388 1.1586 0.8763 0.8976 0.6894 27.27 49.55 68.64 12.6388 1.1586 0.8763 0.8976 0.6894 27.27 49.55 68.64 
ICE-ELM 11.6304 1.0483 0.7875 0.9162 0.7438 31.82 56.36 72.27 11.6304 1.0484 0.7875 0.9162 0.7438 31.82 56..36 72.27 
CFM 9.5321 1.0092 0.7905 0.8692 0.7401 45.56 51.11 77.78 10.5321 1.0092 0.7965 0.8692 0.7401 38.56 55.11 72.78 
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Table 20 Comparison results. 

 

 

Authors 
Published 

year 
Algorithm Results Similarity Difference 

Niu et al. [32] 2019 

1. CEEMDAN 

2. BPNN+GRNN+ENN+ELM 

+ARIMA 

3. MOGOA 

 

The combined model obtained 

high accuracy, the MAPE 

values of five data sets are 

3.14%, 2.89%, 3.43%, 4.06% 

and 3.62% respectively. 

Preprocessing methods, 

several single models and 

optimization algorithms are 

used. 

Different denoising strategies 

and optimization methods are 

compared. 

Uncertain predictions and the 

influence of parameters on model 

performance are not discussed. 

The operation time of models is 

ignored. 

Shao et al. [29] 2021 

1. CEEMDAN 

2. BPNN+GRNN+RBF+ ELM  

3. MOGWO 

Several experiments verify 

the effectiveness of the 

proposed model with the 

smallest MAPE value of 

2.03%. 

The same optimization 

algorithm is used. 

Different denoising strategies 

and optimization methods are 

compared. 

Uncertain predictions and the 

influence of model parameters are 

not discussed. 

The operation time of models is 

ignored. 

Liu et al. [23] 2019 

1. ICEEMDAN 

2. BPNN+GRNN+ENN+ELM 

+ARIMA  

3. MMODA 

The proposed model can 

improve the prediction 

accuracy. MAPE values of 

multi-step prediction are 

3.15%, 4.41% and 5.02% 

respectively. 

The same denoising strategy 

is applied. 

Multiple single models are 

applied. 

Different denoising strategies 

and optimization methods are 

compared. 

Lack comparison with other 

literatures. 

The optimization algorithm is 

improved. 

Wind speed forecasts for different 

seasons are discussed. 

The result of parameter adjustment 

is not discussed in detail. 

SET Model 
     PE 

MAPE RMSE MAE R2 IA ±5% ±10% ±15% 

Site1:10-min 

CFM 2.8645 0.4114 0.3217 0.9749 0.9754 80.00 98.89 99.00 

Niu’s model 3.4181 0.4898 0.4322 0.7773 0.9541 32.44 58.42 75.28 

Shao’s model 4.0200 0.6628 0.5380 0.7222 0.9149 33.58 61.06 78.36 

Liu’s model 3.1835 0.4345 0.4064 0.8247 0.9639 30.97 56.37 73.01 

Site2:10-min 

CFM 2.1843 0.3991 0.3111 0.9639 0.9942 92.22 94.23 98.20 

Niu’s model 2.3214 0.4077 0.3372 0.8267 0.9696 32.29 59.41 77.06 

Shao’s model 3.0082 0.5493 0.4388 0.7853 0.9445 37.63 66.10 82.22 

Liu’s model 1.8987 0.2917 0.2703 0.9113 0.9845 90.93 93.11 98.94 

Site3:10-min 

CFM 2.8727 0.4299 0.3598 0.9751 0.9582 84.44 98.89 99.00 

Niu’s model 3.1730 0.5150 0.4480 0.8186 0.9515 38.32 51.23 79.02 

Shao’s model 3.8116 0.6726 0.5498 0.7906 0.9163 39.57 54.24 72.78 

Liu’s model 3.1508 0.4774 0.4442 0.8441 0.9584 40.91 60.58 88.60 
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Appendix 

Table A List of terminologies 

 

NWP numerical weather prediction GPR gaussian process regression 

ARIMA autoregressive integrated moving 

average 
ARMA autoregressive moving average 

AI  artificial intelligence PSO particle swarm optimization 

ANFIS adaptive neuro-fuzzy inference 

system 
EEMD ensemble empirical mode 

decomposition 

SSA singular spectrum analysis WA wavelet transform 

GM gray prediction model CFM combined forecasting model 

CEE complete ensemble empirical mode 

decomposition with adaptive noise 
ICE improved complete ensemble 

empirical mode decomposition with 

adaptive noise 

MOGWO multi objective grey wolf optimizer PP point prediction 

IP interval prediction AR autoregressive model 

ANN artificial neural networks SVM support vector machines 

LSTM long short-term memory CNN convolutional neural network 

BPNN back propagation neural network ELM extreme learning machine 

GRNN general regression neural network  ENN elman neural network 

SEM selection of excellent sub models AWD cumulative breadth error 

RMSE root mean square error MAE mean absolute error 

MAPE mean absolute percentage error R2 goodness of fit 

IA 
index of agreement of predictive 

results 
RE relative error 

FICP forecasting interval coverage 

probability 
FINAW prediction interval standardized 

mean breadth 

MOGOA multi-objective grasshopper 

optimization algorithm 
MOALO multi-objective antlion algorithm 

MODA multi-objective dragonfly algorithm EMD empirical mode decomposition 

GRU gated recurrent unit TCN temporal convolutional networks 

QRNN quasi-recurrent neural networks RNN recurrent neural network 

WNN wavelet neural network VMD variational mode decomposition 

RBF radial basis function PSR phase-space reconstruction 

MOMVO multi objective multi verse 

optimization 
RVFL random vector functional link 

network 

WOA whale optimization algorithm EPT ensemble patch transformation 

SVR support vector regression MSSA multi objective salp swarm algorithm 
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