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Abstract: The physical behaviour of a magnetic material can be characterized by Jiles-Atherton (J-A) model 

where some model parameters are generally identified by optimization techniques. For identification of model 

parameters using optimization techniques, an error criterion based on the error between measured and calculated 

magnetic flux density (B) or magnetic field strength (H) is commonly considered where the relative error in the 

calculation of iron loss is ignored. Consequently, the calculated iron loss from B-H loop sometimes highly differs 

from its experimental value. In this research, the relative iron loss error is also considered as optimization criterion 

along with the general existing error criterion. Furthermore, a modified J-A model is also proposed in order to 

improve the agreement between experimental and calculated results especially at the low magnetic induction 

levels by introducing a scaling factor in the anhysteretic magnetization. The proposed error criteria for parameter 

identification and proposed modified J-A model are tested by comparing the results with experimental and 

recently published works.   

Keywords—Jiles-Atherton model; Fe-based amorphous magnetic material; Hysteresis and dynamic losses; 
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1. Introduction  

 For design and analysis of electromagnetic devices such as transformer and inductors, the proper prediction 

of iron or core loss in their magnetic cores is essential as the iron loss is one of the heat sources in the devices. 

Therefore, the core loss modelling as well as other physical behaviour of the magnetic cores need to be 

investigated before designing electromagnetic devices [1]. Two types of models are generally utilized for 

modelling of magnetic cores. In the first type of modelling, the Steinmetz equation based empirical models [2, 3] 

are used for core loss prediction where the Steinmetz parameters are calculated by curve fitting of core loss data 

of material samples. In the empirical models, the core loss is mainly concerned but the other non-linear physical 

behaviour of the magnetic core is ignored. Finite element method (FEM) is commonly used for designing and 

analysing the electromagnetic devices. The main problem of the empirical models is that they cannot be directly 

incorporated into FEM as the prediction of the pattern of magnetic field strength (H) from magnetic flux density 

(B), which is one of the steps of the FEM analysis [4], is not possible using the empirical models. Therefore, for 

incorporation of magnetic properties of a magnetic material with FEM, a single value B-H curve is used along 

with the empirical models [5]. Since the complete physical behaviour of a magnetic material cannot be expressed 

by a single value B-H curve of the material, the actual results cannot be obtained from this approach [5].  

 On the other hand, in the second type of modelling the actual physical behaviours of the magnetic cores are 

considered, and the prediction of H from B or its vice versa are possible to be calculated. Preisach [6-8] and Jiles-

Atherton (J-A) [9-12] models are generally utilized in this type of modelling. The problems of the Preisach model 

are that the model needs more computational time and memory resources compared to the J-A model [1, 13]. 

Consequently J-A model becomes popular and useful tools for characterization of magnetic materials [14]. 

Depending on the orientation of the magnetic field, two types of J-A models, such as scalar J-A model and vector 

J-A model [15], are used for characterization of a magnetic material. In this paper, the scalar J-A model, which is 

generally used for a fixed orientation, is considered to characterize a Fe-based amorphous magnetic material 

named amorphous 1k101 [16, 17] under alternating field that varies with time along a fixed orientation. 
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 The original J-A model consists of some equations where five parameters generally need to be identified which 

are pinning coefficient or loss factor k, reversibility coefficient c, domain interaction α, anhysteretic 

magnetization’s shape parameter a, and saturation magnetization Ms [9-12]. In the original J-A model [9-11], all 

model parameters are considered as constant for whole range of magnetic induction levels. Different researchers 

[1, 18] later observed that the pinning parameter or loss parameter k depends on the magnetic induction levels. 

After considering the loss factor as a function of B or H, the modelling of magnetic core shows higher agreement 

between measured and calculated waveform of B or H than that with the constant loss factor k. In the same way, 

it was also observed that at low magnetic induction levels, J-A model produces more error in calculation of core 

loss as well as higher difference between experimental and calculated waveform of B or H than those at high 

magnetic induction levels [19-21]. The main reason for high discrepancy at low magnetic induction levels is that 

model parameters are calculated based on a large B-H loop, and consequently the rate of reversible magnetizations 

at lower magnetic induction levels becomes larger than its actual values. To reduce the rate of the reversible 

magnetization a scaling factor, which can be a constant value or the function of B or H depending on the input of 

the model, is incorporated into the equation of rate of change of reversible magnetization [19-21]. Therefore, both 

calculated iron loss and calculated B or H show an improved agreement with experimental results. Recently 

authors of [5], considered both variable loss factor k and variable scaling factor R in the J-A model which gives 

higher agreement between experimental and calculated results than their constant values or one of them keeping 

constant and another variable.  

 The model parameters are initially calculated by solving some equations which are based on model equations 

at some specific conditions on a large B-H loop of a magnetic material [10, 11, 22]. The problem of the initial 

methods is that the methods provide low accuracy. Later different optimization techniques [18, 20, 23-25] such 

as genetic algorithm, stimulated annealing and particle swarm optimization are utilized to obtain the model 

parameters, which improve the accuracy of the J-A model. The optimization techniques as well as other similar 

methods [1, 12] are actually exploited in such a way that an error criterion becomes the minimum. The different 

error criteria [1, 12, 18, 23, 26, 27] such as the mean error, or mean square error or root mean square error between 

experimental and calculated B or H are generally used in the optimization techniques. However, among different 

error criteria, the root mean square is widely used to identify the model parameters. The identified model 

parameters are then used for calculation of B-H loop and the iron loss is finally calculated from the calculated B-

H loop. The detailed analysis of measured and calculated B-H loop shows that the minimum relative error in the 

iron loss calculation does not often occur simultaneously with the minimum root mean square error of calculated 

B or H. It is also observed that with a slight increase of root mean square of error between calculated and measured 

waveform of B or H, the relative error of the calculation of iron loss reduces significantly. Therefore, in the 

optimization techniques double error criteria, where one is based on the conventional root mean square of error 

and the other based on the relative iron loss error, can be a good technique for high accuracy of iron loss calculation 

along with satisfactory calculated waveform of B or H. In this study, Brute Force algorithm-based optimization 

[28] is utilized to identify the model parameters. The advantages of the Brute Force optimization method are that 

the method is easily executed, and does require derivative evaluation or any sophisticated intelligent techniques.   

 If the root mean square error of calculated B or H slightly increases, the error in the calculation of coercive 

magnetic force (Hc) increases a little bit. To improve the calculation of Hc as well as B or H, the scaling factor can 

be included in the anhysteretic magnetization instead of its general inclusion into the equation of rate of change 

of reversible magnetization. The inclusion of scaling factor in the anhysteretic magnetization simultaneously 

reduces the rate of irreversible magnetization and anhysteretic magnetization, and consequently it provides better 

agreement between experimental and simulated results than the existing inclusion way of scaling factor.  

In this paper, a Fe-based amorphous magnetic material is characterized by modified J-A model. The main 

contributions of the research include incorporation of an additional error criterion along with general error 

criterion for the identification of the J-A model parameters, and inclusion of scaling factor in the anhysteretic 

magnetization of original J-A model in order to reduce the rate of irreversible magnetization and anhysteretic 

magnetization especially at the low magnetic induction level. Dynamic models which signifies the eddy current 

and excess loss models are later incorporated with the static modified J-A model to make the model generalized. 

The proposed method of parameter identification and proposed modified J-A model are examined by comparing 

the calculated results with experimental as well as recently publish modified J-A model works. 

 

 



2. Review of J-A model 

According to the J-A model [10, 11], the magnetization is considered as a sum of irreversible (Mirr) and 

reversible (Mrev) magnetization which is expressed as follows: 
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where k and c are the model parameters, Man the anhysteretic magnetization, He the effective magnetic field 

strength and δ the directional parameter which is +1 for dH/dt > 0 and -1 for dH/dt < 0. The anhysteretic 

magnetization and the effective magnetic field strength can be expressed as follows [4]:  

coth e
an s

e

H a
M M

a H

 
  

 
                                                                                 (4) 

eH H M                                                                                                          (5) 

where Ms is the saturation magnetization, M the total magnetization, H the applied magnetic field strength, and a 

and α are the model parameters. In J-A model, the magnetization in the next time step is calculated from its present 

magnetization and its derivative with respective to the magnetic field strength (dM/dH), and magnetic flux density 

B is then calculated from M and H [4], which are expressed as follows: 
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According to the J-A model [11], dM/dH is obtained as follows: 
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 Using the above-mentioned expressions of Mirr, Mrev, Man and He, the total magnetization susceptibility 

(dM/dH) can also be obtained by (9), which is expressed as follows [22]: 
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where dMirr/dHe and dMan/dHe can be obtained from (2) and (4) respectively. From (2), the dMirr/dHe can be 

written as  
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 It was reported in [11] and [15] that domain wall displacement does not exist if (Man - Mirr)dHe < 0 and in that 

case dMirr/dHe becomes zero. Therefore, (10) can be updated as follows [12, 15, 29]: 
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where δM is 1 if (Man - Mirr)dHe > 0, and 0 if (Man - Mirr)dHe ≤ 0. From (1) and (3), the irreversible magnetization, 

Mirr can be calculated as follows:  
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 However, it is reported in [1] and [18] that the pinning parameter of the J-A model changes with the magnetic 

induction levels. Therefore, k is considered as the function of H in [1] and [18], which improves the accuracy of 

the model. It is also observed in [19–21] that at low magnetic induction levels, the high discrepancy in the iron 

loss and B calculations occur in the J-A model. To reduce this problem, a scaling factor is included in (10) so that 

it limits the rate of irreversible magnetization especially at the low induction levels. According to [21], (10) can 

been modified as follows: 
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where R is the scaling factor which can be expressed by the magnetic field strength or magnetic flux density 

depending on the input of the J-A model. Recently, the authors of [5] considered both the pining coefficient k and 

scaling factor R as functions of peak magnetic field strength for inner loops. Therefore, for inner loops especially 

at low magnetic induction levels, the relative error in the calculation of iron loss reduces.  

Identification of the model parameters are also important in the J-A model. Initially few equations 

corresponding to the model parameters are developed using model equations and a large B-H loop of a magnetic 

material [10, 11, 22]. Those equations are then solved numerically to obtain the J-A model parameters. In the last 

few decades, different optimization techniques were considered to obtain the J-A model parameters where an error 

criterion is generally set [12, 18, 23, 26, 27]. An error criterion which is based on the root mean square of the 

difference between measured and calculated magnetic flux density is commonly used in the optimization methods 

that can be expressed as follows [1]: 

 

 
2N

meai cali
s

i

B B

N



                                                                                                 (14) 

 

where εs is the root mean square of error, N the number of samples per period of the magnetic flux density, Bmeai 

the measured magnetic flux density and Bcali the calculated magnetic flux density. After calculating the model 

parameters, the iron loss of the corresponding magnetic core is calculated as follows:  
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where P is the iron loss (W/kg), T time period (s) and ρ the mass density (kg/m3) of the core. The error in the 

calculation of the iron loss is then obtained from difference between measured and calculated results which can 

be expressed as follows:  
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where εr is the relative iron loss error, Pmea is the measured iron loss and Pcal is the calculated iron loss.  



3. Proposed model 

In this research, it is investigated using experimental and calculated data that there exist some cases where 

the minimum root mean square of error (εs) between calculated and measured B, and the minimum relative error 

in the iron loss calculation do not often occur simultaneously. Therefore, the relative error of iron loss calculation 

sometimes increases to maintain the minimum εs. The existing modified J-A model reported in [5] is firstly 

exploited here where k and R are assumed as function of H. After implementing the J-A model, it is observed from 

Fig. 1(a), that the minimum εs at 1.26 T is 0.0347 where the relative error of iron loss calculation, εr is 11.701%. 

On the other hand, the minimum relative error of the iron loss calculation at the same magnetic induction is 

0.017% where the εs is 0.0625. Similarly, at 0.83 T, both types of errors do not occur simultaneously as shown in 

Fig. 1(b). It is observed from the calculated results that slight increase of εs, such as from 0.0347 to 0.0473 at 1.26 

T, significantly reduces the iron loss error such as from 11.701% to 4.512%. Therefore, in this research both εs 

and εr are considered as error criteria where both are slightly higher than their minimum values, i.e. a trade-off 

between εs and εr is set as error criteria in the optimization technique. To express εs as percentage of its maximum 

value, (14) can be updated as follows:  

 

 
Fig. 1. Comparison of B-H loops obtained from measured and J-A models under 1 Hz sinusoidal excitation at (a) Bm = 1.26 T and (b) Bm = 

0.83 T.  
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 Since εs slightly increases by the proposed parameter identification method, the errors of the calculation of 

coercive magnetic field strengths (Hc) increases as shown in Fig. 2. To mitigate these errors, the rate of irreversible 

component can be reduced especially at lower magnetic induction levels by introducing scaling factor in the 

anhysteretic magnetization as shown in (18) instead of the scaling factor with the irreversible component of 

magnetization [5] as shown in (13). Therefore, according to the proposed anhysteretic magnetization, the 

expressions of the anhysteretic magnetization and its derivative with respective to He can be written as: 
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Fig. 2. The percentage of error in the calculation of coercive magnetic field strength, εHc with the change of peak magnetic flux densities.  

 

 

where ν is the scaling factor which is the function of H or B depending on the input of J-A model. As the scaling 

factor is only necessary for inner B-H loops, the parameter identification for the large B-H loop is carried out with 

considering 1 as the value of ν. Since domain wall displacement does not exist in some specific condition, e.g. 

(Man - Mirr)dHe < 0, the rate of irreversible magnetization with respect to the He in this research is calculated by 

(11) instead of (13).  

To identify the J-A model parameters, a large B-H loop with different inner loops are firstly experimentally 

measured, as the identification process is based on the measured data. The detailed experimental process is 

discussed in [8]. Since Brute Force optimization technique is utilized in this study, according to the technique the 

J-A model parameters (k, c, a, α and Ms) are swept away over their specific ranges to produce many sets of model 

parameters. After that J-A model is implemented using each set of model parameters to calculate B from a given 

H of a large measured B-H loop. The calculated and measured B-H loops are then exploited to calculate the 

objective functions which are: (i) εr < εrc and (ii) εs < εsc, where εrc and εsc are minimum allowable εr and εs 

respectively, and εr and εs are calculated by (16) and (17) respectively.  If the values of εr and εs remain within 

their limits, their values and corresponding model parameters are stored otherwise rejected them. When the search 

is completed, the required solution is selected from the stored data depending on the optimal target. After selection 

of J-A model parameters for the large loop, the variables k and ν at other induction levels are calculated with 

considering other selected four parameters (c, a, α and Ms) as constant. In these cases, k and ν are only swept away 

over their ranges, and their optimum values are selected as the same way as for the large B-H loop. Fig. 3 shows 

the flow chart of proposed method for identification of J-A model parameters. However, instead of a single global 

optimum value, a set of optimal solutions which is called as Pareto-optimal solutions is generally obtained in this 

study. Pareto-optimal solutions for calculation of k and ν at 1.26 T is shown in Fig. 4. From the Fig. 4, it is 

observed that minimum εr and εs do not occur at the same point where each point associates with a feasible set of 

k and ν that satisfy the error criteria. Thus, a point is selected in such a way that both εr and εs remain in the 

acceptable values as shown in the Fig. 4.  

The selected constant parameters c, a, α and Ms of the J-A model are shown in Table 1. The values of k and 

ν for the considered magnetic core are shown in Figs. 5 and 6 respectively.  

In the above proposed algorithm of the J-A model parameter identification, one of the important tasks is 

calculation of B from H using J-A model as shown in Fig. 3. For implementation of J-A model, He, Man, dMan/dHe, 

Mirr and dMirr/dHe are firstly calculated by (5), (18), (19), (12), and (11) respectively. After that the calculated 

values of dMan/dHe and dMirr/dHe are exploited to calculate the value of dM/dH by (9). The value of dM/dH at any 

time step is used to calculate the magnetization for next time step by (6). Finally, the corresponding B for a given 

H is calculated by (7). The process is repeated until the calculation of B for all given time steps is finished. 



 

 
 
Fig. 3. Flow chart of proposed method for the identification of J-A model parameters. 

 

 



 

Fig. 4. Pareto-optimal solutions by optimization technique to identify model parameters at 1.26 T.  

 

 

 

Table 1 

The selected values of J-A model parameters 

J-A model parameters Selected value 

c 0.18 

a 53.51 A/m 

α 1.10 × 10-5 

Ms 1420000 A/m 

 

 

 

 

Fig. 5. The values of the loss factor k with the change of peak magnetic field strength, Hm.  

 

 

 
Fig. 6. The values of scaling factor ν with the change of peak magnetic field strength, Hm.  

 

 

4. Inverse J-A model 

For modelling of a magnetic material using finite element method, it is necessary for calculation of H from B 

which can be achieved by inverse J-A model. In the inverse J-A model, the calculation M at the next time step is 

firstly carried out using its present value, its derivative with respect to B (dM/dB) and the change of B between 

two consequent steps as the same as the direct J-A model [21]. Finally, H is calculated from M and B. Using the 



modified J-A model, the change of magnetization with respective to magnetic flux density can be defined by as 

follows [29]: 
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where Man in this research is calculated by (18) instead of conventional Man as shown in (4), and dMan/dHe is 

correspondingly calculated by (19). Similar to the proposed modified J-A model, k and ν are considered as 

variables in the proposed modified inverse J-A model. The same values of other constant parameters of the J-A 

model are used in the inverse J-A model. The values of k and ν of inverse J-A model are also calculated as the 

same as the proposed modified J-A model. Figs. 7 and 8 show the obtained values of k and ν with the change of 

peak magnetic flux density, respectively. 

 

 
Fig. 7. The values of the loss factor k with the change of peak magnetic flux density, Bm.  

 

 
Fig. 8. The values of scaling factor ν with the change of peak magnetic flux density, Bm.    

 

5. Inclusion of dynamic losses 

Both direct and inverse J-A models with certain model parameters can be used for any specific frequency 

where all types of magnetic iron losses, e.g. hysteresis loss, eddy current and excess losses, are inherently retained 

there. The same J-A parameters cannot be applied if the operating frequency is changed as the B-H loop changes 

with the frequency. To make the generalized J-A model, loss separation approach is considered in this study where 

hysteresis, eddy current and excess losses are modelled separately [4]. The magnetic field strength corresponding 

to the hysteresis loss is calculated using inverse J-A model, and the magnetic field strengths corresponding to 

other two losses are calculated from the classical eddy current and excess loss models. For hysteresis loss, 

parameter identification of the inverse J-A model can be carried out based on the B-H loops at very low frequency 

(no more than 1 Hz) as at that low operating frequency the eddy current and excess loss are negligible. The 

obtained model parameters can be then used for calculating hysteresis loss and corresponding magnetic field 

strength for any frequency. Therefore, the total magnetic field strength can be written as [4, 30]: 
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where HT is the total magnetic field strength, d thickness of the amorphous ribbon, σ conductivity, Δt the time step 

between two samples, ΔB the change of magnetic flux density within Δt, Al the cross-sectional area of the magnetic 

material sheet or ribbon, and G and V0 are constant coefficients. The (σGV0 Al)1/2 in (21) can be calculated by using 

curve fitting of core loss data which can be obtained in details in [8, 30, 31]. The total iron loss is then calculated 

by (15) where the total magnetic field strength is calculated by (21).  

 

6. Result and discussion 

For experimental verification of the proposed error criteria and proposed modified J-A model, a toroidal 

amorphous magnetic core is utilized in this research. The details of experimental procedure can be obtained in 

[8].   

It has been already discussed in Section 3 that the minimum εs and minimum εr do not often occur 

simultaneously, and consequently the relative iron loss error εr at minimum εs sometimes becomes much higher 

than its minimum value. Therefore, by using the proposed error criteria where two error criteria are exploited, the 

value of εr reduces significantly as shown in Fig. 9. On the contrary, the proposed error criteria of optimization 

methods for parameter identification slightly increases the values of εs as shown in Fig. 10. However, the proposed 

modified J-A model, where scaling factor is introduced in the anhysteretic magnetization, reduces the percentage 

of root mean square error εs as shown in Fig. 10. In addition, the proposed modified J-A model reduces the error 

in the calculation of coercive magnetic forces as shown in Fig. 2 (Section 3). From Fig. 10 it is also observed that 

the εs for the J-A models decreases significantly with the increase of the magnetic induction level. At low magnetic 

induction level such as 0.12 T, the εs for the proposed modified J-A model is about 19.59 %. On the other hand, 

at high induction level such as 1.52 T, the εs is about 1.92 %.  

 

It is observed from Fig. 1(b), the measured B-H loops becomes slightly asymmetric at low induction level. 

Consequently, its corresponding calculated B-H loops become asymmetric a little bit. The measured B-H loop 

slightly shifts along the magnetic field axis due to the effect of exchange bias during the magnetization process 

[32, 33]. In addition, due to intrinsic drawbacks of J-A model, the calculated B-H loop at low magnetic induction 

become somewhat asymmetric. 

 

 

 
Fig. 9. Percentage of core loss error, εr with change of peak magnetic flux densities for the proposed error criterion and existing error criterion. 

 



 
Fig. 10. Percentage of root mean square errors in the calculation of B at different peak magnetic flux densities under different condition of J-

A models. 

 

In this research, the inverse J-A model is also based on the proposed error criteria and proposed modified J-

A model. As H is calculated from B for the inverse J-A model, both loss factor and scaling factor depends on the 

Bm. From Fig. 11 it is observed that the calculated H using proposed modified inverse J-A model shows a strong 

agreement with the measured H, where the correlation coefficient, r is 0.9987. For consideration of more complex 

signals than conventional sinusoidal signal, the minor loops loop over a major B-H loop is considered in this 

research. Two minor loops over a major B-H loop is experimentally obtained by applying an excitation voltage 

which consists of a 1 Hz fundamental sinusoidal component with a third harmonic component [8]. Proposed 

modified inverse J-A model is then applied to calculate the B-H loop. Fig. 12 shows the comparison between the 

experimental and calculated B-H loops. From the Fig. 12, it is observed that the calculated minor loops become 

slightly bigger than the calculated ones and consequently, the error in the calculated core loss (εr=8.31%) increases 

a little bit. The reversible magnetization is mainly responsible for minor loops. Consequently, the value of 

reversibility coefficient c needs to be high for minor loop. Since the constant value of c is considered for major 

and minor loops, the mismatch between calculation of core loss increases slightly. In this case, the correlation 

coefficient between measured and calculated H is 0.9948. 

 

 

 
Fig. 11. Comparison between calculated and measured H at Bm=1.38 T and 1 Hz excitation. 

 

 

 
Fig. 12. Comparison between calculated and measured B-H loop for minor loops over a major loop. 

 



To observe the effect of hysteresis, eddy current and excess loss effects on the total core loss, the core loss is 

measured at 1.08 T at different frequencies. After that the inverse J-A model along with eddy current and excess 

models are exploited, and their results are graphically presented in Fig. 13. It is observed from Fig. 13 that 

hysteresis loss per frequency is almost constant with the increase of frequency. On the other hand, both eddy 

current and excess losses increase with the frequency although the effect of eddy current is very small compared 

to the other two losses due to the very thin amorphous ribbon. It is also seen from Fig. 13 that the calculated total 

core loss is very close to the measured ones.  

 

 
Fig. 13. Core loss separation using proposed modified inverse J-A model. 

 

 

 Fig. 14 shows the measured and calculated B-H loops with the inclusion of dynamic core loss model with the 

inverse J-A model. It is observed from Fig. 14 that calculated B-H loops under 500 Hz excitation at 1.41 T and 

0.67 T are close to their measured ones where the correlation coefficients in the calculation of H are 0.9973 and 

0.9603 respectively. The relative error in the iron loss calculation, εr for these two cases are 2.86% and 0.16%, 

whereas εs are 3.46% and 16.13% respectively. It is seen from Fig. 15 that the calculated iron loss results show a 

strong agreement with the measured results for whole range of magnetic induction where the correlation 

coefficient among their results is 0.9998.   

 

 
Fig. 14. Comparison between measured and calculated B-H loops at 1.41 T and 0.67 T under 500 Hz excitation. 

 

 



 
Fig. 15. Comparison between measured and calculated core loss at 500 Hz with different peak magnetic flux densities. 

 

7. Conclusion 

In this paper, two error criteria instead of conventional one error criterion are proposed in the optimization 

method, where one is based on the conventional root mean square of error and the other based on the relative error 

of iron loss. The proposed error criteria for parameter identification significantly reduce the error of iron loss 

calculation e.g., at 1.26 T the iron loss error reduces from 11.701% to 4.512%. A proposed modified J-A model, 

where a scaling factor is incorporated with anhysteretic magnetization, along with the projected parameter 

identification technique reduces the value of the root mean square of error between the measured and calculated 

waveform. The proposed modified model also improves the calculation of coercive magnetic force e.g., the error 

in calculation of Hc at 0.62 T reduces from 9.58% to 7.95%. The inverse J-A model based on the proposed 

modified J-A model also provides good results for both sinusoidal and non-sinusoidal excitations. With the 

inclusion of dynamic core loss model with the modified inverse J-A model, there exists strong agreement between 

calculated and measured iron losses at different frequency and magnetic induction levels, e.g. the error of iron 

loss calculation under 500 Hz sinusoidal excitation at 0.67 T and 1.28 T is 0.16% and 2.86%, respectively. 
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