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Anchor selection for SLAM based on graph
topology and sub-modular optimization

Yongbo Chen, Liang Zhao, Yanhao Zhang, Shoudong Huang, and Gamini Dissanayake

Abstract—This paper considers simultaneous localization and
mapping (SLAM) problem for robots in situations where ac-
curate estimates for some of the robot poses, termed anchors,
are available. These may be acquired through external means,
for example, by either stopping the robot at some previously
known locations or pausing for a sufficient period of time to
measure the robot poses with an external measurement system.
The main contribution is an efficient algorithm for selecting a
fixed number of anchors from a set of potential poses, that
minimizes estimated error in the SLAM solution. Based on a
graph-topological connection between the D-optimality design
metric and the tree-connectivity of the pose-graph, the anchor
selection problem can be formulated approximately as a sub-
matrix selection problem for reduced weighted Laplacian matrix,
leading to a cardinality-constrained sub-modular maximization
problem. Two greedy methods are presented to solve this sub-
modular optimization problem with a performance guarantee.
These methods are complemented by Cholesky decomposition,
approximate minimum degree permutation, order re-use, and
rank-1 update that exploit the sparseness of the weighted
Laplacian matrix. We demonstrate the efficiency and effectiveness
of the proposed techniques on public-domain datasets, Gazebo
simulations, and real-world experiments.

Index Terms—SLAM, Anchor selection, Reduced weighted
Laplacian matrix, Sub-modular optimization, Rank-1 update

I. INTRODUCTION

MANY state estimation problems, such as simultaneous
localization and mapping (SLAM) [1], point cloud

registration [2], and structure from motion (SFM) [3], can
be formulated as two/three dimensional (2D/3D) pose-graph
optimization, in which the variables to be estimated are poses
sampled along the robot trajectory, and each edge imposes a
noisy relative measurement on a pair of poses [4]. In traditional
SLAM frameworks, robot poses and surrounding maps are
typically estimated with respect to the robot starting position,
which is regarded as the origin of the world coordinate frame.
In other words, only the first pose contains global ground truth
information. As the robot travels away from the origin, the
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estimation error accumulates at a rate that depends on sensor
accuracy, frequency of loop closure, trajectory length, and so
on. However, if the ground truths of some poses, which we
refer as anchors1, are available, the accuracy of the estimated
parameters will be significantly improved, because the intuitive
benefits of the anchors are similar to introducing the ‘zero-
uncertainty’ loop closures between the anchors and the origin.
Practically, this can be achieved in a number of external means.
In indoor environments, it may be possible to stop the robot
at previously known places to obtain an accurate global robot
pose. Outdoors, it may be possible to pause for a sufficient
period of time to obtain an accurate Global Positioning System
(GPS) fix2. Hence, adding anchors is a practical and efficient
way to strengthen current SLAM frameworks.

The idea of introducing multiple anchors is necessary espe-
cially in certain tasks that require high-quality mapping and lo-
calization. The electronic total station (ETS) is a conventional
surveying instrument used for mapping. For the same environ-
ment, even with the state-of-the-art SLAM methods and the
most accurate on-board sensors, it is still extremely difficult to
achieve the typical accuracy of the ETS (±(1.5mm+2ppm) in
position and between 0.5′ and 1′ in orientation in ranges longer
than 1.5km [6])3. Using predefined landmarks or mechanical
location structure set by external manual measurements like
ETS, intuitively, at least the accuracy of the poses, which
observe these landmarks, will be greatly improved.

In fact, some researchers have already applied similar ideas
to improve the accuracy of mapping and localization in some
competitions and industrial projects. For example, the well-
known DARPA Subterranean Challenge [7] is a competition
requiring multiple robots, including both drones and ground
vehicles, where the aim is to accomplish a variety of mapping,
navigation, and search missions in man-made tunnels, natural
caves, and underground structures. Because the environment
is mostly featureless with many self-similar structures and the
task spans several kilometers, this competition is challenging
and may cause a large drift using the traditional SLAM
methods. To solve this, the team from California Institute of
Technology uses several calibrated base stations in the tunnel
corners to fuse to the SLAM method thus achieving reliable
and highly-accurate multiple robots navigation [8]. Another

1Here an anchor means a pose with known global location and orientation.
Different from the origins in multiple sub-maps [5], the anchored poses
considered in this paper have their global information, which brings more
information to the whole SLAM system.

2In this paper, the anchors are defined as the known poses (positions and
orientations). It is also possible to extend our framework to the cases when
only some positions or orientations of the poses are known.

3The symbol ′ means the unit of the degree, minute.
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example is the Alibaba autonomous car, also called “Road
Reforming”, which uses many intelligent perception base
stations to help the localization and planning tasks for low-
cost on-board sensors [9]. In short, the anchors and the similar
technologies have shown some outstanding performances in
improving the robustness and accuracy of the SLAM method.

Clearly, the number and the geometric placement of the
anchors have an impact on the estimation accuracy of the
SLAM framework. The external measurements of the anchors
often require substantial manual operations (e.g. applying ETS
systems), high-costs (e.g. building base stations), or affecting
the original tasks (e.g. stopping at some place for a long time
to achieve GPS fix). Therefore, it is desirable to reduce the
number of anchors as much as possible while maintaining the
estimation accuracy. Naturally, this leads to the following two
important questions regarding anchor selection problem. (1)
Given a set of poses that can potentially serve as anchors,
how to select the best sub-set of anchors with a given number
that results in the most accurate SLAM solution? (2) How
many anchors are sufficient (and where to put them) in order
to achieve a certain level of accuracy? This paper focuses on
the first question in the context where the SLAM problem is
formulated as a 2D/3D pose graph optimization. The second
question will be considered in the future.

The Theory of Optimal Experimental Design (TOED), in-
cluding A-, D-, E-, and T-optimality, on the Fisher information
matrix (FIM) is widely used to assess the level of the uncer-
tainty of the estimated parameters in SLAM [10], [11]. Even
though the monotonicity of the optimal design metrics depends
on the representation of uncertainty and the representation
of the orientation of the robot pose, the D-optimality metric,
which has been shown to be the most popular metric, preserves
monotonicity in most commonly-used representations [12].
Thus, the anchor selection problem in this paper is formulated
as that of maximizing the D-optimality metric of the FIM.

Recent works [13], [14] show that the D-/T-optimality met-
rics of 2D/3D pose-graph SLAM have a close relationship with
the graph topology (tree-connectivity and weighted node de-
gree) of the measurement network. In [14], regarding the pose
graph as the network, the sub-modular optimization method
has been applied to select the relative pose measurements
(edges) to get more accurate SLAM results. These operations
are similar to the relative information marginalization without
adding additional global information. In our paper, instead
of selecting the edges, the optimal or sub-optimal anchors
are selected to add the global information (from the selected
anchors) to improve the SLAM accuracy. Some connections
and differences between the edge selection and the anchor
selection will be discussed in Section IV-C.

Because of the widely applications of pose graph, the anchor
selection method can be used in the high-accurate 2D/3D
mapping and the collaborative SLAM (CSLAM) tasks to
improve the accuracy of the estimation result. For the landmark

setting in the 2D/3D mapping task4, it is achieved by two
different approaches: twice-trajectory approach and redundant
landmarks approach. The twice-trajectory approach tries to
execute the same path twice. The first iteration is used to build
the initial anchor-free pose graph, select the optimal anchors,
and set the landmarks. Based on the selected anchors, the
second iteration is executed by following the same trajectory
again with the aid of the calibrated landmarks. The redundant
landmarks approach is to place many unknown marks along
the trajectory, implement the SLAM method along the path
only once, generate the pose graph, select the anchors, and
pick out the corresponding marks to be calibrated. After the
calibrating of the selected marks, the mark information (mark
position/pose information) can be used in the SLAM algorithm
to compute a more accurate SLAM result without executing
the trajectory twice. For the CSLAM task, viewing all pose
graphs as a whole, the initial poses of the different robots can
be regarded as the anchors and selected based on the anchor
selection method. More details are given in Section VI.

A. Contributions

This paper presents a novel sub-modular based method for
the problem of selecting a fixed number of anchored poses
in pose graph SLAM to maximize the D-optimality design
criterion. The main contributions of this paper are listed below.
• Graph topology: The approximation from the D-

optimality metric based anchor selection problem to the
sub-matrix selection of the weighted Laplacian matrix,
which greatly reduces its computational complexity and
makes it computationally solvable.

• Sub-modular: The proof of the non-negative non-
normalized non-monotone sub-modular property of the
sub-matrix selection problem.

• Solution: The efficient greedy-based methods, using lazy
evaluation, Cholesky decomposition, approximate min-
imum degree permutation (AMDP), order re-use, and
rank-1 update techniques, which achieve better running-
time ability compared with the standard greedy method.

• Performance bound: The performance bound, which
compares the obtained solution with the optimal solution,
offers a certifiable tool to know the quality of the solution.

• Application: The applications of the anchor selection
framework in the 2D/3D mapping task and the CSLAM
trajectory assignment task.

B. Outline

The rest of the paper is organized as follows: In Section II,
we review the related works on the pose-graph SLAM with
one and multiple anchors, the TOED, and the sub-modularity.
The pose-graph SLAM with multiple anchors and its related
FIM are formulated in Section III. Based on an approximation
of the D-optimality metric, the anchor selection problem is

4The landmark presented in this paper means a pre-measured and ob-
servable marked feature with the known global location. In the redundant
landmarks approach, before calibration, the positions/poses of the initial
introduced marks are unknown, and then they will be known after using our
proposed method and the additional calibration.
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transformed into a sub-matrix selection problem, which is
proved to be a non-normalized non-negative non-monotone
sub-modular optimization problem over a cardinality-fixed
constraint, in Section IV. In Section V, the normal and random
greedy methods are applied to obtain a near-optimal solu-
tion with a performance guarantee. By exploiting the matrix
sparseness, a high-efficiency lazy-greedy-based method, using
Cholesky decomposition, AMDP, order re-use, and rank-1 up-
date technologies, is presented to quickly select the anchored
poses. Furthermore, some additional application scenarios,
including the landmark setting in 2D/3D mapping and the
CSLAM trajectory assignment with known initial positions,
are presented in Section VI. Simulation and experimental
results are presented to illustrate the proposed technique in
Section VII and Section VIII respectively. Conclusions and
future work are presented in Section IX.

C. Notations

Throughout this paper, unless otherwise stated, bold lower-
case, and bold uppercase letters are reserved for vectors and
matrices, respectively. Sets are shown by uppercase letters.
S1 � S2 means matrix S1 − S2 is positive semidefinite.
The Kronecker product is denoted by ⊗. det(?) and tr(?)
represent the determinant and the trace of the matrix ?,
respectively. SO(n) (special orthogonal group) is defined as:
SO(n) , {R ∈ Rn×n : R>R = In×n, det(R) = 1}. The
squared vector norm is ‖ ? ‖22 = ?> · ? for a vector ?. | ? |
means the cardinality of the set ?. ? × • means the direct
product group of the groups ? and •.

II. RELATED WORK

The classical pose-graph SLAM with one anchor (the first
robot pose) is a difficult non-convex optimization problem,
of which the (globally optimal) solution is the maximum-
likelihood (ML) estimate for the unknown poses [15]. The
traditional approach to solve pose-graph SLAM is to use
highly-efficient iterative nonlinear optimization methods such
as Gauss-Newton (GN) [16], Levenberg-Marquardt (LM) [17],
Powell’s dogleg [18], or the gradient descent [19] to obtain lo-
cally optimal solutions. These methods are available as mature,
highly-optimized toolboxes, such as g2o [20], GTSAM [21],
SLAM++ [22], and ceres [23]. However, it is possible to obtain
a wrong estimate using these iterative techniques, because of
the local minimum caused by the non-convexity of the problem
and a poor initial guess. A set of works shows that the duality
gap of the general pose-graph SLAM problems in practical
applications is close to zero [24], which implies that we can
obtain the globally optimal solutions for many pose-graph
SLAM problems via convex relaxations. Some further works
also explore the separable structure of the SLAM between the
linear part (translation) and the non-linear core (orientation),
which distinguishes the pose-graph SLAM problem from
a generic nonlinear least-squares problem. For the iterative
techniques, in [25], the authors propose a scalable and efficient
Newton-based method using the variable projection algorithm
to take advantage of the separability. For the convex-based
techniques, the authors in [26] decouple the rotation and

translation parts and build rotation-only ML estimation using
semidefinite relaxation and Riemannian optimization methods.

The anchor selection problem is based on the pose-graph
SLAM with multiple anchors. Both iterative and convex-based
techniques for the classical pose-graph SLAM with one anchor
can be extended to the multiple anchors case. One approach
is to consider the state vector corresponding to the anchored
poses as constant values and remove the corresponding rows
and columns of the Jacobian and Hessian matrices. This is easy
to be implemented in the iterative optimization techniques but
difficult to be applied in the convex-based algorithms, because
the anchored poses make the relaxation process more compli-
cated. The other approach for solving the pose-graph SLAM
with multiple anchors is to add very accurate measurements
between the origin and the anchored poses, corresponding
to edges with very large weights, to the pose graph. This
approximate approach is suitable for both iterative methods
and convex-based methods. It is easy to implement and does
not require modifying the mature toolboxes. So, in this paper,
we use the approximate approach to deal with the pose-graph
SLAM with multiple anchors.

The metrics in TOED provide us a tool to evaluate the
uncertainty of the SLAM results with one or more anchors.
These metrics are originally used in active SLAM [11] and
belief space planning [27]. The uncertainty representations on
SE(3) based on the Gaussian noise have been considered
in [28]. In references [14], [29], based on the block-isotropic
Gaussian noise, the popular D-optimality metric shows its in-
trinsic connection with the graph structure of the measurement
network, especially tree-connectivity. The similar but more
complicated 3D conclusions on both the D-optimality metric
and the T-optimality metric are presented in [13] based on
the assumption of isotropic Langevin noise for rotation and
block-isotropic Gaussian noise for translation. By the tight
lower bound of the D-optimality metric [13], the measure-
ments of the pose-graph network can be selected efficiently to
improve the accuracy of the result in active SLAM [30] and
CSLAM [31]. Similarly, in this paper, using the same noise
assumption as in [13], the TOED metric and their tight lower
bounds are used to evaluate the SLAM estimate uncertainty
in our anchor selection framework.

In this paper, the anchor selection problem is solved by the
sub-modular optimization method, whose objective function
belongs to the sub-modular (set) functions. The sub-modular
function is a set function of which the value has the property
that, with the growth of the size of the input set, the difference
in the incremental value of the function that a single element
makes when added to an input set decreases. The sub-modular
functions are first used for matroid optimization, transporta-
tion problems, and Boolean polynomials in [32]. The greedy
solutions of the monotone increasing sub-modular functions
commonly show the near-optimal performance with worst-
case guarantees [33]. In fact, sub-/super-modular set functions
are naturally discrete analogues of convex/concave continuous
functions and inherit their desirable properties [34].

Sub-modularity has played an essential role in network-
related combinatorial optimization problems, including net-
work synchronization with nonlinear dynamics [35], network
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leader selection [36], and sensor scheduling [37]. The most
related works of this paper belong to the sensor and mea-
surement selection in robotics. In [38], using sub-modular
optimization, the authors aim to select a subset of sensors
(satisfying certain budget constraints) from a given set so
as to minimize the trace of the steady state a priori or a
posteriori error covariance produced by a Kalman filter for
estimating the states of linear dynamical systems. In [39], the
authors apply sub-modular optimization to choose a subset
from a finite set of possible placements to optimize some
real-valued controllability and observability metrics of the
network. In [40], based on super-modularity and monotonicity
of conditional entropy, the authors solve an NP-hard problem
of sensor scheduling for the stochastic process estimation. As
a combinatorial problem, our anchor selection problem is also
solved by the sub-modular optimization techniques.

III. POSE-GRAPH SLAM WITH MULTIPLE ANCHORS

In this section, we present the problem formulation of the
pose-graph SLAM with multiple anchors.

A. Graph Preliminaries of pose-graph SLAM

The pose-graph SLAM problem with no anchor can be
represented as a weighted weakly-connected directed graph
G = (V, E , ω), where V = {1, 2, · · · , np}, E ⊆ V × V and
|E| = m [25]. Each node Pi = (xi,Ri) denotes a robot pose,
and each edge ek = (i, j) ∈ E represents the k-th relative
measurement between two robot poses Pi and Pj . We assign
a positive weight w : E → R > 0 to each edge. The set of
poses, which gets measurements based on pose Pi, is denoted
as V +

i (out), satisfying (i, j) ∈ E ⇔ j ∈ V +
i .

The incidence matrix of G is denoted by A ∈
{−1, 0, 1}np×m. Its i-th and j-th elements in the k-th col-
umn satisfy aik = −1 and ajk = 1, if the k-th edge is
ek = (i, j) ∈ E . The rest elements of the incidence matrix A
are 0. The weighted Laplacian matrix Lω , AΣA>, where Σ
is the diagonal matrix whose diagonal elements are the weight
values of the graph edges. The weights represent the inverse
values of the variances of the measurement errors and show
the uncertainty and reliability of these measurements.

The multiple anchored poses are defined as Na ⊆ V .
V\Na means the set of all the unknown poses. The in-
cidence matrix A after anchoring to the anchored poses
Na, |Na| = N , called as reduced incidence matrix
A(V\Na) ∈ {−1, 0, 1}(np−N)×m, is obtained simply by
removing the rows corresponding to the anchored poses
in A. Its corresponding reduced weighted Laplacian matrix
is Lω(V\Na) , A(V\Na)Σ∗(V\Na)A>(V\Na), where
Σ∗(V\Na) is the submatrix of the diagonal matrix Σ gen-
erated by deleting the rows and columns corresponding to the
edges connecting two anchors.

B. Synchronization on Rn × SO(n) with multiple anchors

2D/3D pose-graph SLAM, belonging to synchronization
problem on Rn×SO(n), is the problem of estimating the val-
ues of a set of np unknown poses P1, · · · , Pnp

∈ Rn×SO(n)

given m noisy relative rotations Hij ∈ SO(n) and relative
translations pij ∈ Rn. For the pose-graph edge (i, j) ∈ E , we
assume that the noisy relative measurements follow [26]:

pij = R>i (xj − xi) + yij , yij ∼ N (0,Σij)

Hij = ZijRjR
>
i , Zij ∼ Lang(In×n, κij),

(1)

where yij ∼ N (0,Σij), Σij = δ2ijIn×n means the ran-
dom vector yij following the isotropic Gaussian distribution,
Lang(In×n, κij) means the isotropic Langevin distribution
with mean In×n and concentration κij ≥ 0, and its probability
density function (PDF) fij : SO(n)→ R+ [41] is:

fij(Zij) =
1

cn(κij)
exp (κij trace(Zij)) ,

c2(κij) =I0(2κij),

c3(κij) = exp(κij) (I0(2κij)− I1(2κij)) ,

Iv(2κij) =
1

2π

∫ π

−π
exp (2κij cos(θ)) cos(vθ)dθ,

(2)

where cn(κij), n = 2, 3 is a normalization constant such that
fij has unit mass. Iv(2κij), v = {0, 1, 2, · · · } ∈ Z means the
modified Bessel functions [42].

Given a set of noisy measurements pij and Hij , the pose-
graph SLAM problem with no anchor is to obtain the ML esti-
mand for the poses P = {P1, · · · , Pnp

} ∈ {Rn × SO(n)}np :

max
P

∑
ek∈E

(κijtr(HijRiR
>
j )− ‖pij −R>i (xj − xi)‖22

2δ2ij
). (3)

For the SLAM with multiple anchors, the ground truths of
the anchored poses are known, so the problem is to estimate
poses P ′ = {Pi′1 , Pi′2 , · · · }, {i

′
1, i
′
2, · · ·} = V\Na.5

max
P ′

∑
ek∈E

(κijtr(HijRiR
>
j )− ‖pij −R>i (xj − xi)‖22

2δ2ij
). (4)

C. Fisher information matrix

As a tool to evaluate the uncertainty of the SLAM result, the
FIMs I = InD, n = 2, 3 of the 2D/3D pose-graph SLAM
result based on the log-likelihood function (3) are shown by
the following two propositions6 [13].

Proposition 1. [13] For the 2D case of the pose-graph SLAM
problem (3), given the specific 2D basis in [13], the FIM is:

I2D =

[
LR2

w 42D
w
>

42D
w L

SO(2)
w + diag{ψ1, · · · , ψnp

}

]
, (5)

where LR2

w is the sub-FIM corresponding to the Euclidean
space R2, satisfying LR2

w = LwR ⊗ I2×2. LwR is the weighted
Laplacian matrix, of which weight value wR

ij for (i, j)-th
edge is δ−2ij ; L

SO(2)
w + diag{ψ1, · · · , ψnp} is the sub-FIM

corresponding to the SO(2) Lie group, satisfying L
SO(2)
w =

5In the case when both two poses of an edge are anchored, the edge needs
to be deleted from E , which results in a sub-set of E to be used in the objective
function.

6Commonly, it is noted that the edge weights wR
ij , wSO(3)

ij , and wSO(2)
ij

are all much larger than 1, which will be used in Appendix B in supplementary
material [43].
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LwSO(2)
⊗ Id×d, where d = n(n−1)

2 = 1. LwSO(2)
is the

weighted Laplacian matrix, of which weight value w
SO(2)
ij

for (i, j)-th edge is 2κij
I1(2κij)
I0(2κij)

. ψi =
∑
j∈V +

i
δ−2ij ‖xi −

xj‖22, i = 1, 2, · · · , np. E =

[
0 −1
1 0

]
. The (i, i1)-th block

of the SO(2) by R2 coupling sub-matrix 42D
w corresponding

to the (np + i, i1)-th block of the FIM is:

(42D
w )i,i1 =


∑
j∈V +

i
δ−2ij (xi − xj)

>E i = i1

δ−2ii1 (xi1 − xi)
>E (i, i1) ∈ E

01×2 else.

(6)

Proposition 2. [13] For the 3D case of the pose-graph SLAM
problem (3), given the specific 3D basis in [13], the FIM is:

I3D =

[
LR3

w 43D
w
>

43D
w L

SO(3)
w + diag{Ψ1, · · · ,Ψnp

}

]
, (7)

where LR3

w is the sub-FIM corresponding to the Euclidean
space R3, satisfying LR3

w = LwR ⊗ I3×3. LwR is the same
as that in Proposition 1; LSO(3)

w + diag{Ψ1, · · · ,Ψnp} is the
sub-FIM corresponding to the SO(3) Lie group, satisfying
L
SO(3)
w = LwSO(3)

⊗Id×d, where d = n(n−1)
2 = 3. LwSO(3)

is
the weighted Laplacian matrix, of which weight value wSO(3)

ij

for (i, j)-th edge is 1
3

κ2
ij(2I0(2κij)−I1(2κij)−2I2(2κij)+I3(2κij))

2I0(2κij)−2I1(2κij)
.

Ψi satisfies:

Ψi =

 ψ11
i ψ12

i ψ13
i

ψ12
i ψ22

i ψ21
i

ψ13
i ψ21

i ψ33
i

 , i = 1, 2, · · · , np

ψkli =
∑
j∈V +

i

δ−2ij (xi − xj)
>RiI

k,l
3×3R

>
i (xi − xj);

(8)

where Ik,l3×3 = EkEl, k, l = 1, 2, 3, Ek and El are the
orthogonal bases of Lie group SO(3). Let ςkij = (δ−2ij (xi −
xj)
>RiEkR

>
i )>, k = 1, 2, 3, we have the (i, i1)-th block of

the SO(3) by R3 coupling sub-matrix 43D
w corresponding to

the (np + i, i1)-th block of the FIM:

(43D
w )i,i1 =
[ ∑

j∈V +
i
ς1ij

∑
j∈V +

i
ς2ij

∑
j∈V +

i
ς3ij

]>
i = i1[

−ς1ii1 −ς2ii1 −ς3ii1
]>

(i, i1) ∈ E
03×3 else.

(9)

For the conventional SLAM problem, the first pose P1 is
anchored. The corresponding columns and rows of the FIM are
deleted, which leads to a positive reduced matrix I(V\{1}).

For the SLAM with multiple anchors, because the infor-
mation for the known anchors with ground truths are infinite
(without any uncertainty), the rows and columns of the FIM
corresponding to the anchored poses are deleted, defined as
I(V\Na). It should be noted that, the final estimated poses
P ′ will be different from the corresponding sub-part of the
SLAM solutions P with only the first pose as the anchor.
Meanwhile, with the same number of the anchors, the different

anchors also result in the different solutions. Hence, with the
value changing of the obtained poses, the elements of the parts
of the reduced FIM I(V\Na), including 4nD

w , n = 2, 3, ψi
and Ψi, are also changed, because they are dependent on the
estimated poses {Pi′1 , Pi′2 , · · · }. It means that I(V\Na) is
no longer a sub-matrix of the original matrix I . For the case
with given set Na of the anchors, in order to get its correct
corresponding FIM I(V\Na), the anchored SLAM problem
is first solved using the iterative methods or the convex-based
methods, and then Proposition 1 and Proposition 2 are applied
by removing the rows and columns of the anchored poses.

IV. ANCHOR SELECTION OPTIMIZATION PROBLEM

In this part, we will formulate the anchor selection problem,
prove its sub-modularity, and discuss its relations with edge
selection and node-edge selection problems.

A. Optimization problem formulation

The purpose to select the anchored poses is to minimize the
uncertainty of the SLAM result. Based on the D-optimality
metric, given the fixed anchor number |Na| = N , the anchor
selection problem is formulated as:

maximize
Na

fcost(Na) , log(det(I(V\Na)))

subject to |Na| = N.
(10)

As discussed in the last paragraph in Section III, different
anchors Na will result in different SLAM solutions and dif-
ferent reduced FIMs I(V\Na). Thus, to compute the accurate
objective functions in (10) for a given candidate choice Na,
we need to first obtain the estimated result by solving the
whole pose-graph optimization process, then use the result
to compute its corresponding reduced FIM, and finally get
the objective function value fcost(Na). In solving general
combinatorial optimization problems, the evaluation of the
objective functions needs to be performed many times and
is one of the most computational-costly steps. Hence, it is
computational unacceptable for directly solving the anchor
selection based on the formulation (10).

Therefore, if we can find a way to avoid the complexity
involved in computing the pose-graph SLAM solution, the
computation of the objective function value of the anchor
selection problem can be much faster and become compu-
tationally solvable. The following proposition shows that the
D-optimality metric is close to the tree-connectivity of the
pose-graph, which indicates that the graph structure of the
SLAM measurement network plays a key role in evaluating the
uncertainty of the SLAM result. Meanwhile, we note that the
tree-connectivity of the pose-graph is independent of the com-
puting of the SLAM solution, so we aim to replace the original
D-optimality objective function with the tree-connectivity in
order to avoid solving the pose-graph optimization problem
when evaluating the objective function.

Proposition 3. [13] Considering 2D/3D pose-graph SLAM
in (3), δ , max

i=2,3,··· ,np

∑
j∈V +

i
δ−2ij ‖xj − xi‖2 (2D) or

δ , max
i=2,3,··· ,np

1
2

∑
j∈V +

i
δ−2ij ‖xj − xi‖2 (3D) and λ1 =
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λmin(L
SO(n)
w ), define ε = log(det(I)) − log(det(LRn

w )) −
log(det(L

SO(n)
w )). Then we have,

0 ≤ ε ≤ d(np − 1) log(1 + δ/λ1), (11)

Based on Proposition 3, when δ/λ1 → 0+, log(det(I))

will get close to log(det(LRn

w )) + log(det(L
SO(n)
w )). From

[13], [14], in many real-world pose graph SLAM problems, the
translation part δ is relatively small. So, we can approximate
the anchor selection problem (10) by the following problem:

maximize
Na

fobj(Na) , log(det(L(V\Na)))

subject to |Na| = N,
(12)

where L = diag{LwR⊗In×n,LwSO(n)
⊗Id×d}, thus fobj(Na)

= n log(det(LwR(V\Na))) + d log(det(LwSO(n)
(V\Na))).

It is important to notice that the new problem (12) is
independent of the final SLAM solution. So we can compute
the objective function of the anchor selection problem without
performing the SLAM optimization process.

B. Cardinality-fixed sub-modular optimization

In this part, our goal is to prove the sub-modularity of the
approximate formulation (12). Before this, let’s consider:

Definition 1. [14] Let TG be the set of all spanning
trees of G. The weighted number tw(G) of G, called tree-
connectivity [14], is defined as:

tw(G) ,
∑
T ∈TG

V(T ), V(T ) =
∏

e∈E(T )

w(e), (13)

where w(e) means the weighted value of the edge e,
V(T ) : T → R+ is the value of a spanning tree T ∈ TG ,
E(T ) represents the set of all edges in T .

A theorem about the tree-connectivity is as follows:

Theorem 1. (Weighted Matrix-Tree Theorem [14]). For G =
(V, E , w) with w : E → R+, we have tw(G) = det(LGw),
where LGw is the reduced weighted Laplacian matrix of G
removing one row and one corresponding column.

For the selection of the only one anchored pose, we have
the following theorem:

Theorem 2. If only one pose is anchored, the objective
function in (12) is independent of the choice of the anchored
pose.

Proof: Assuming the i-th pose or the j-th pose is an-
chored, the objective function in (12) is decided by the reduced
weighted Laplacian matrices LwR(V\{i}), LwSO(n)

(V\{i}),
LwR(V\{j}), and LwSO(n)

(V\{j}). Based on Theorem 1,
the determinant of the reduced weighted Laplacian ma-
trix with one anchor is equal to the weighted number of
spanning trees of its corresponding weighted graph (tree-
connectivity) [45]. Because the weighted pose graph is the
same, the weighted number of its spanning trees is constant.
So we have: det(LwR(V\{i})) = det(LwR(V\{j})) and
det(LwSO(n)

(V\{i})) = det(LwSO(n)
(V\{j})). The proof is

completed.

Without loss of generality, for the multiple anchor selection
problem, we can first anchor the first pose P1 (similar to
the classical SLAM problems), and then choose the rest
anchors. Then, we have the following theorem using some
preliminaries about the sub-modularity shown in Appendix A
in supplementary material [43].

Theorem 3. When more than one anchor is chosen, the
optimization problem (12) is a non-negative non-normalized
non-monotone sub-modular optimization with a cardinality-
fixed constraint.

Proof: See Appendix B in supplementary material [43].

Remark 1. Benefiting from the approximation using graph
topology from the optimization problem (10) to the prob-
lem (12), Theorem 3 is related to the sub-modular property
of the entropy maximization problem for selecting the most
informative subset from a set of correlated random variables
in [45]. However, in [45], the random variables correspond to
a linear Gaussian estimation problem, such as linear sensor
network and compass-SLAM [14], and is essentially different
from the common highly-nonlinear SLAM problem. Besides the
differences of the focused problem setting, the anchor selection
problem uses the anchored poses as the variables and needs
to operate multiple rows and columns, instead of one row
and one column. Theorem 3 is also related to the related
work [46] using a determinant function, instead of using the
log-determinant function, for the sub-matrix selection of the
real symmetric positive semidefinite matrix, which shows the
multiplicative sub-modular, instead of classical sub-modular,
and it is applied in the problem related to the complete graph
without connecting with the estimation problems. Besides,
compared with these two references [45], [46], our anchor
selection is not a monotone increasing optimization.

C. Discussion on the connections and differences between an-
chor (nodes) selection, edge selection, and node-edge selection

The approach in this paper is inspired by the novel edge
selection reference [14] and its related application [31]. The
k edge selection problem (k-ESP) aims to select the optimal
edges to be added/deleted for a given pose graph with fixed
nodes to maximize the information gain or minimize the
information lost. They also use the tree-connectivity to replace
the D-optimality design metric of the FIM as the objective
function. However, there are some important differences be-
tween the anchor selection and the edge selection problems.

The key difference is in the information aspect. The edge
selection is similar to the information marginalization, which
means only the local relative information from measurements
is added/removed. However, in the anchor selection, the
global information of the anchored poses is added. As shown
in Fig. 1, we consider a base pose graph and one factor
1

2δ2ij
‖pij − R>i (xj − xi)‖2 in the objective function. For

simplification, only the weighted Laplacian matrix correspond-
ing to the translation part LwR ⊗ In×n, which is a sub-
matrix of L in (12), is considered. Figures in the first row
show the generating process from the incident matrix and the
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diagonal matrix with weights to LwR⊗In×n corresponding to
the considered factor. For the anchor selection method, even
though pose Pj is regarded as the constant value and removed
from the state vector, the measurement between Pi and Pj
remains, and the uncertainty of pose Pi is still limited by this
measurement (i, j).

Fig. 1: The differences of changing the reduced weighted Laplacian matrices
(translation only) calculated by incidence matrix and weights diagonal matrix:
(a) Base pose graph; (b) Anchor selection: the anchored pose Pj is deleted;
(c) Edge selection: both pose Pj and the edge (i, j) are deleted, which also
resulting in a different Pi block in the weighted Laplacian matrix.

Commonly, in edge selection [14], we do not add or
delete the nodes. In [47], the edge selection is formulated
as a data exchange problem in the loop closure detection
of CSLAM. Considering its corresponding problem in our
formulation, it means to select all the edges connected to
those poses by adding some additional measurements to these
edges but without anchoring the poses themselves. Similar
to the common edge selection problem, the main difference
between our anchor selection and the data exchange problem
is also from the information aspect. The added measurements
will make the connections between these poses and their
connected poses stronger, which greatly strengthens the local
structure of the pose graph. In other words, the uncertainty
levels of these poses connected by these additional edges trend
to converge and these poses can be considered as a local
unit from the information point of view. However, because
no global information is added, their uncertainty level may
be still large if the other poses in the whole pose graph are
weakly connected with this new local unit. The impact of
this local unit on the global pose graph is limited (Fig. 2).
In some special situations, if edge selection results in the
deletion of one pose Pj , which corresponds to deleting all
the edges connected to this pose, then this situation is still
different from anchoring pose Pj . This is because some useful
information from the measurements (i, j) are marginalized,
and the uncertainty of pose Pi increases. In this case, Pj is

not estimated which is different from the case of anchoring
Pj where the ground truth of Pj is known. This operation in
edge selection may cause the sparser pose graph structure, as
shown in Fig. 3.

Fig. 2: The first and second figures are the original pose graph and the
anchored pose graph with one anchor. The last figure is the corresponding edge
selection case shown in data exchange [47]. For the last figure, because the
measurements connected to the purple pose become very strong, the accuracy
of the local poses will improve. The three poses can be considered as a local
unit. Their accuracy will be decided by the other poses connect to this local
unit. Especially when the local structure is weakly connected with other poses,
no matter how accurate the added measurements (black measurements with
large weights) are, the pose estimate accuracy is still poor and limited.

Fig. 3: The first figure is the original pose graph. The second figure is the
anchored pose graph with an anchor in purple. Because the uncertainty of
the purple anchor is reduced to zero, the connected measurements limit the
related poses and the uncertainty of these poses also reduces. The last figure
is to delete a pose using edge selection, which means to delete all the edges
connected to a pose. Because the purple pose does not need to be estimated,
the related measurements are also ignored in the pose graph. With the sparser
pose-graph structure, the accuracy of the rest poses reduces.

Meanwhile, because of using different variables in the
optimization, the details of the problem formulation are
also different. Commonly, in most applications, like sensor
scheduling [14], [48], the candidate set for the edge selection
is limited to make sure that no poses are deleted/added, which
means the dimension of the state vector corresponding to the
poses keeps as constant and only the values of the FIM corre-
sponding to the poses connected the selected edge are changed.
However, for the anchor selection problem, the dimension of
the FIM will certainly reduce. The edge selection problem
discussed in [14] is proved to be a normalized, monotone
increasing sub-modular maximization problem, which shows
different properties compared with ours. More details of the
edge selection problem are shown in [13], [14].

Some other works such as [30] focus on the node-edge
selection problem related to active SLAM. In active SLAM,
the additional trajectory, which introduces the new poses and
measurements to the base pose graph, is selected optimally
to reduce the uncertainty of the SLAM solution. Similar to
the edge selection problem and different from the anchor
selection problem, it does not introduce any global ground
truth information. Moreover, because of introducing more
poses, the dimension of the FIM will become larger, which is
different from the ones corresponding to edge selection (reduce
or keep dimension) and anchor selection (reduce dimension).
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V. GREEDY METHODS

As a non-negative non-normalized non-monotone sub-
modular maximization problem with a cardinality-fixed con-
straint, the anchor selection problem (12) is in general NP-
hard7. To find its optimal solution is computational-costly for
a large-scale problem. The greedy-based optimization methods
can be used to solve it with some performance guarantee. In
this section, we will present several greedy-based methods and
discuss the near optimal performance of the obtained solutions.

A. Natural greedy algorithm

A natural greedy algorithm for this problem starts with an
empty set, and then an element is added to maximize the
marginal gain at the k-th iteration. A formal statement of the
1-step greedy algorithm is given in Algorithm 1 [32].

Algorithm 1 1-step greedy algorithm
Require: The new weighted Laplacian matrix L; the fixed anchored

poses number N
Ensure: The sub-optimal anchored poses set Na

1: Na ← ∅;
2: while |Na| ≤ N do . Cardinality-fixed constraint
3: s∗np−k = max

snp−k∈V\Na

fobj(Na ∪ {snp−k});

4: Na ← Na ∪ {s∗np−k};
5: k ← k + 1;
6: return Na . Selected set with good performance

At the k-th iteration, based on the log-determinant values
of LwR and LwSO(n)

, the computational complexity of com-
puting the objective function value fobj(Na ∪ {snp−k}) is
O((np − k+ 1)3). At each iteration, every possible candidate
anchor will be evaluated by the log-determinant function, so
the computational complexity of the greedy method will be
O((np −N + 1)4 + · · ·+ (np)

4), which can be simplified as:

O((np −N + 1)4 + · · ·+ (np)
4)

=O
(
(14 + · · ·+ (np)

4)− (14 + · · ·+ (np −N)4)
)

=O(fo(np)− fo(np −N)),

(14)

where fo(?) = ?(?+1)(6?3+9?2+?−1)
2 , so we can get

O(fo(np)− fo(np −N)) ≈ O(6N5 − 30N4np + 60N3n2p −
60N2n3p + 30Nn4p). When np >> N , the computational
complexity will be about O

(
30Nn4p

)
.

B. Random greedy and continuous-double-greedy algorithms

Because fobj(Na) is a non-monotone sub-modular opti-
mization function, instead of monotone increasing function,
the natural greedy algorithm does not have a performance
guarantee. For this problem, the combination of the random
greedy method and the continuous-double-greedy method has
a performance guarantee [58].

7This claim of the computational complexity can be proved by following the
reduction approach shown in [45]. We can specifically set the weights of the
rotation part to be equal to the ones of the translation part. In this way, we can
simplify the problem into the case with only one graph. Then, this formulation
follows the sub-variable selection of the linear Guassian estimation problem.
The log function will not affect this claim. This linear problem can be further
bounded by the well-known NP-hard problems: Clique problem and Stable
set problem. So in general our anchor selection problem is also NP-hard.

1) Random greedy algorithm: The random greedy algo-
rithm is very similar to the natural greedy algorithm [49].
The main difference is to randomly select among the top N
highest-scoring elements, instead of selecting the best one. The
specific random greedy algorithm is shown in Algorithm 28.

Algorithm 2 Random greedy algorithm
Require: The weighted Laplacian matrix L; the fixed anchored

poses number N
Ensure: The sub-optimal anchored poses set Na

1: Na ← ∅;
2: while |Na| ≤ N do . Cardinality-fixed constraint
3: Select a subset M∗k from V \ Na satisfying M∗k =

max
Mk

∑
snp−k∈Mk,|Mk|=N fobj(Na ∪ {snp−k});

4: s∗np−k ← Uniform(M∗k) . Randomly select one element
from M∗k following uniform distribution

5: Na ← Na ∪ {s∗np−k};
6: k ← k + 1;
7: return Na . Selected set with good performance

The computational complexity of the random greedy algo-
rithm is similar to the natural greedy algorithm. In fact, this
simple algorithm might be considered as a natural substitute
for the classical greedy algorithm. For the cardinality-fixed
monotone increasing sub-modular optimization problem, it
retains the same tight guarantee with the natural/lazy one. For
the non-monotone sub-modular optimization problem, it gives
a (1− N

enp
)/e−ε approximation, where ε is an arbitrarily small

positive constant [49], however, the classical greedy algorithm
does not have any performance guarantee.

2) Continuous-double-greedy method: An alternative
method is the continuous-double-greedy method [50]. It
relies on an intuitive continuous extension of the sub-modular
objective function, called the multi-linear extension. The
multi-linear extension is a continuous expected function and
its optimized solution is obtained using the gradient-based
update considering the cardinality-fixed constraints. For more
details, please refer to [49].

3) Discussion on the selection of random greedy algo-
rithm and continuous-double-greedy method: Based on [49],
for a non-monotone sub-modular optimization problem, the
combination using the best solution of the random greedy
algorithm (first sub-equation in (15)) and continuous-double-
greedy method (second sub-equation in (15)) can reach an
approximation factor ξ of:

max

1− N
enp

e
− ε,

(
1 +

np

2
√

(np −N)N

)−1
− o(1)

.
(15)

The approximation factor is defined as E{fobj(greed)}
fobj(OPT ) ≥ ξ,

where fobj(OPT ) is the optimal objective function value and
E{fobj(greed)} means the expectation of the objective func-
tion value of the solution using the random greedy method.
For the general anchor selection problem, the number of the
anchored poses N is relatively small compared with the total
number of poses np (usually larger than 103). Based on the

approximation factor (15), when N/np → 0+,
1− N

enp

e −ε will

8In the last iteration of the random greed method, so as to get the better
result, we pick out the best candidate anchor instead of the random one.
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be bigger than
(

1 +
np

2
√

(np−N)N

)−1
−o(1), which means the

random-greedy algorithm has a better guarantee in the low N
situation. So in this paper, we only use the random greedy
algorithm instead of the combination of two algorithms. So
as to verify this choice, a simulation with np = 103 poses to
show the approximation guarantees changing with the number
of anchored poses is illustrated in Fig. 4.

Fig. 4: Approximation guarantees of random greedy algorithm and continuous-
double-greedy method.

In Fig. 4, the yellow, pink, and blue lines are the approxi-
mation factors for the continuous-double-greedy method, the
random greedy method, and the combination of both two meth-
ods using the approximation equation (15) respectively. Hence,
we can see that when N ≤ 83, the random greedy algorithm

achieves better approximation guarantee (ξ =
1− N

enp

e − ε), it
verifies our choice to use the random greedy algorithm only.

C. Improved greedy-based algorithm

In this subsection, multiple techniques are used to reduce
the computational complexity of the greedy-based algorithm.

1) Sparse Cholesky decomposition: It is well known that
the computational complex of calculating the log-determinant
function of a nm × nm dense matrix is O(n3m). With the
growth of nm, its computational time becomes unacceptable
for the general hardware system. Based on sparse Cholesky
decomposition, for the positive definite matrix, we have:

log(det(LwR)) = log(det(C1C
>
1 ))

= 2 log(det(C1)) = 2
∑
i

log(C1)i,i,
(16)

where C1 is the lower triangular Cholesky factor of LwR ,
(C1)i,i is the i-th diagonal element of C1. Commonly, us-
ing (16), the computational complexity of calculating the log-
determinant function of a nm×nm sparse matrix will be much
smaller than O(n3m) for the dense one. This formulation is also
suitable for the other weighted Laplacian matrix LwSO(n)

.
2) Lazy evaluation: We also use lazy evaluations to speed

up the algorithm [52]. Instead of computing the objective
function for each candidate element snp−k ∈ V \ Na, the
lazy-greedy algorithm only needs to evaluate a part of them. It
keeps the upper bounds of the objective functions correspond-
ing to the candidate elements and sorts them in decreasing
order. In each iteration, the lazy-greedy algorithm only needs
to evaluate the element on top of the list and updates its
upper bound. Because of the sub-modularity, for the objective
function (12), ∆k = fobj(Na ∪ {snp−k}) − fobj(Na) is the

upper bound of the following functions ∆k+1 = fobj((Na ∪
{s∗np−k}) ∪ {snp−k−1}) − fobj(Na ∪ {s∗np−k}), ∆k+2, · · · .
Many elements on the later part of the list do not need to be
evaluated, because their upper bounds are too small.

3) Order re-use: In the Cholesky decomposition process,
in order to speed up the decomposition, the AMDP is used to
permute the rows and columns of the symmetric sparse matrix
LwR(V). Because the structures of LwR(V) and LwSO(n)

(V)
are similar, the order vector p obtained by LwR(V) can
also be used in the Cholesky decomposition process of the
matrix LwSO(n)

(V). We also find that, in every evaluation
for the candidate anchors, only several rows and columns
of the Laplacian matrix LwR(V) are different. Hence, the
AMDP only needs to be computed once for the initial matrix
LwR(V\{i}), and then the obtained order vector p can be re-
used in all Laplacian matrices. So as to keep the dimension
of the Laplacian matrix and use the same order vector p, the
following simple technique is used.

In the k-th iteration, we evaluate the objective function
corresponding to the case that the i-th pose is anchored.
Assuming the Laplacian matrix LwR(V\Na) before anchoring
the i-th pose satisfies:

LwR(V\Na) =


L1,1 l1 L1,2

l>1 l l>2 }i−th
L2,1 l2︸︷︷︸

i−th

L2,2

 , (17)

we have the new Laplacian matrix LwR(V\(Na ∪ {i})) after
anchoring the i-th pose:

LwR(V\(Na ∪ {i})) =

[
L1,1 L1,2

L2,1 L2,2

]
. (18)

Then, we compute the function log(det(LwR(V\(Na∪{i}))))
after deleting the i-th row and column. However, by this way,
because of the decrease of the matrix dimension, the order
vector p is also changed, which makes the re-use operation
complex. So the following matrix LwR(V\(Na∪{i}))∗ is used
to replace LwR(V\(Na ∪ {i})):

LwR(V\(Na ∪ {i}))∗ ,


L1,1 0 L1,2

0 1 0 }i−th
L2,1 0︸︷︷︸

i−th

L2,2

 ,
log(det(LwR(V\(Na ∪ {i}))∗))

= log(det(LwR(V\(Na ∪ {i})))) + log(det(1)).
(19)

Using (19) to replace (18), the dimensions of all Laplacian
matrices in the greedy method keep constant, so the order
vector p can be used for multiple times without additional
operations. The computational time of the AMDP will be
reduced. Meanwhile, benefiting from the order re-use, the
rank-1 update can be used in the following sub-section.

4) Rank-1 update: Based on two reduced Laplacian matri-
ces (17) and (19), let

LwR(V\Na) =

 C11 0 0
c21 c22 0
C31 c32 C33

 C>11 c>21 C>31
0 c22 c>32
0 0 C>33


(20)
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be the Cholesky factorization of the matrix LwR(V\Na) and
let

LwR(V\(Na ∪ {i}))∗

=

 C̄11 0 0
c̄21 c̄22 0
C̄31 c̄32 C̄33

 C̄>11 c̄>21 C̄>31
0 c̄22 c̄>32
0 0 C̄>33

 (21)

be the Cholesky factorization of the matrix LwR(V\(Na ∪
{i}))∗, we have: C̄11 = C11, C̄31 = C31, c̄21 = 0, c̄22 = 1,
c̄32 = 0,

C31C
>
31 + c32c

>
32 + C33C

>
33 = C̄31C̄

>
31 + C̄33C̄

>
33

⇒ C̄33C̄
>
33 = c32c

>
32 + C33C

>
33.

(22)

Because c32 is a non-zero vector and C33C
>
33 is a full-

rank positive matrix, we can find that the equation (22) to
obtain C̄33C̄

>
33 belongs to rank-1 update of a sparse Cholesky

factorization. So the objective function can be written as:

log(det(LwR(V\(Na ∪ {i}))∗))

= log(det(C11C
>
11︸ ︷︷ ︸

Re-use

)) + log(det(

Rank 1 update︷ ︸︸ ︷
c32c

>
32︸ ︷︷ ︸

Re-use

+C33C
>
33︸ ︷︷ ︸

Re-use

)).
(23)

In every iteration, we need to traverse all possible can-
didate anchor {i} ∈ V\Na for the objective function
log(det(LwR(V\(Na ∪ {i}))∗)). Using (23), in the same
iteration, the sparse Cholesky decomposition can be performed
only once and use it in every evaluation, which greatly reduces
the computational cost. Because of the order re-use and the re-
use of the Cholesky decomposition result, based on “CSparse”
package, the whole rank-1 update can be finished very quickly.

Based on these technologies, the improved method is sum-
marized by the pseudo-code in Algorithms 3 and 4.

D. Computational complexity analysis

Due to the technologies presented in Section V-C, the com-
putational complexity of the improved method is reduced. At
the k-th iteration, because of the sparseness, the computational
complexity of the rank-1 update of the Cholesky factorization
of the np − k + 1 dimension matrix c32c

>
32 + C33C

>
33 is

generally lower than O((np − k + 1)2). Without considering
the lazy evaluation, in each iteration, the dimensions of the
matrix c32c

>
32 + C33C

>
33 change from np − k + 1 to 1.

For one iteration, the whole computational complexity is
O((np−k+1)2+ · · ·+12). Assuming that the equivalent effi-
ciency of the lazy evaluation can be simplified as: ω ∈ (0, 1),
the computational complexity of the whole method will be:

N∑
k=2

ωO((np − k + 1)2 + · · ·+ 12) ≈ O(
ωN

3
n3p). (24)

Our new method is much faster than the original 1-step greedy
algorithm O(ωN3 n3p) << O

(
30Nn4p

)
. This conclusion will be

validated by the numerical simulation in Section VII-B.

Algorithm 3 Improved lazy greedy algorithm using sparse
Cholesky decompositon, order re-use, and rank-1 update
Require: Two weighted Laplacian matrices LwR and LwSO(n)

; the
fixed anchored poses number N

Ensure: The sub-optimal anchored poses set Na

1: //Based on Theorem 2
2: Na ← {1};
3: //Choose a fill-reducing permutation heuristic p
4: p← COLAMD(LwR(V\Na)); . e.g., Column approximate

minimum degree
5: //Sparse Cholesky factor based on p
6: C1 ← SparseCholesky (LwR(V\Na)(p,p)) ;

7: C2 ← SparseCholesky
(
LwSO(n)

(V\Na)(p,p)
)

;

8: fobj(Na)← 2 · n ·
∑

i log(C1)i,i + 2 · d ·
∑

i log(C2)i,i;
9: fvalue ← fobj(Na); . Apply to compute upper bound for lazy

evaluation
10: //1-step improved greedy algorithm
11: while |Na| ≤ N do . Cardinality-fixed constraint
12: C1 ← SparseCholesky (LwR(V\Na)∗(p,p)) ;

13: C2 ← SparseCholesky
(
LwSO(n)

(V\Na)∗(p,p)
)

;

14: for j = |Na|+ 1 : 1 : np do
15: //Lazy evaluation
16: if ∆m > findex then break;
17: else
18: m = Order(j); . Lazy evaluation for largest several

solutions fobj(Na ∪ {sm});
19: fobj(Na ∪ {sm}), sm ∈ V \ Na ←

Rank1 reuse(C1,C2); . Algorithm 4
20: ∆m ← fvalue − fobj(Na ∪ {sm}); . Upper bounds
21: if ∆m < findex then findex ← ∆m;

S ← S ∪ {sm};
end

22: s∗k ← max
sm∈S

fobj(Na ∪ {sm});
23: Order ← sort(∆m, all m); . Sort in ascending order
24: fvalue ← fobj(Na ∪ {s∗k});
25: Na ← Na ∪ {s∗k};
26: k ← k + 1;
27: return Na. . Selected set with good performance

Algorithm 4 Objective function using order re-use and rank-1
update technology (Rank1 reuse)

Require: Cholesky factorization of the matrices LwR(V\Na)∗ and
LwSO(n)

(V\Na)∗ : C1 and C2; the order of potential anchor
{sk}

Ensure: The objective function fobj(Na ∪ {sk})
1: C11 ← C1(1 : sk − 1, 1 : sk − 1), c32 ← C1(sk, sk + 1 :

end),C33 ← C1(sk + 1 : end, sk + 1 : end);
2: C∗11 ← C2(1 : sk − 1, 1 : sk − 1), c∗32 ← C2(sk, sk + 1 :

end),C∗33 ← C2(sk + 1 : end, sk + 1 : end);
3: v ← cs etree(C33,

′ col′); . Return the elimination tree of
C>33C33.

4: fobj(Na ∪ {sk}) ← 2n
∑

j log(C11)jj + 2d
∑

j log(C∗11)jj +

2n
∑

j log(c32c
>
32 + C33C

>
33)jj + 2d

∑
j log(c∗32c

∗
32
> +

C∗33C
∗
33
>)jj ; . Rank-1 update.

5: return fobj(Na ∪ {sk}).

E. Discussion of near optimal performance

In this subsection, we discuss the near optimal performances
of the greedy-based methods. Because of the sub-modularity
and Cauchy Interlacing Theorem [51], the obtained solution
of this optimization problem is limited by some bounds.

Theorem 4. The objective function fobj (Na) has upper/lower
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bounds:

FLB ≤ fobj (Na) ≤ FUB

FLB = n

np−N∑
i=1

log λi(LwR) + d

np−N∑
i=1

log λi(LwSO(n)
)

FUB = n

np∑
i=N+1

log λi(LwR) + d

np∑
i=N+1

log λi(LwSO(n)
),

(25)
where λ1(LwR), · · · , λnp

(LwR) and λ1(LwSO(n)
), · · · ,

λnp
(LwSO(n)

) are the eigenvalues of LwR and LwSO(n)

respectively sorted by the increasing order.

Proof: See Appendix C in supplementary material [43].

Corollary 1. The objective function fobj (Na) has bounds:

nd(np−N)∑
i=1

log λi(L) ≤ fobj (Na) ≤
ndnp∑

i=ndN+1

log λi(L),

(26)
where nd = n + d, np ≥ 1, the eigenvalues of L are sorted
by the increasing order and named as λ1(L), · · · , λndnp

(L).

Proof: It can be directly obtained by Theorem 4.
Based on the bounds (25), using the random greedy algo-

rithm, we can get the tighter bounds for the optimal solution:

Theorem 5. Let Uopt, Ugreedy, and U∗greedy be the optimal
value of (12), the objective function value obtained by the
lazy greedy algorithm, and the mathematical expectation of
the objective function value achieved by the random greedy
algorithm, respectively. The following inequality holds:

ULB ≤ Uopt ≤ UUB , where
ULB = max {Ugreedy,FLB}

UUB = min


(

1− N
enp

e
− ε

)−1
U∗greedy,FUB

 .

(27)

Proof: The value Ugreedy obtained from the lazy
greedy algorithm is naturally the lower bound of the opti-
mal solution Uopt. Meanwhile, because of the approxima-
tion factor of the random greedy algorithm, we have that(

1− N
enp

e − ε
)−1
U∗greedy is the upper bound of the optimal

solution Uopt. Combining Theorem 4, we can finally get (27).
The proof is completed.

Based on Theorem 5, we have the bounds to ensure the
near-optimal performance of the solution. All these bounds in
Theorem 4, Theorem 5, and Corollary 1 are the extensions
of the results in [45] where only an upper bound is proven.
Because of the randomness, the natural greedy algorithm
commonly has a better performance than the random greedy
algorithm. So in practice, the natural greedy algorithm is
used to get a good result and meanwhile the random greedy
algorithm is used to get the bounds if it is required.

VI. TWO IMPORTANT APPLICATIONS

We present the landmark setting in 2D/3D mapping task and

the trajectory assignment for CSLAM based on the proposed
method, since they are two important applications in robotics.

A. Landmarks setting in 2D/3D mapping

In some highly-accurate mapping tasks, the pose-graph
optimization is widely used as an important tool to improve
the accuracy and the loop-closure detecting ability. However,
in the large-scale feature-less SLAM problem, like DARPA
Subterranean Challenge [7], it is very difficult to obtain a
very accurate global pose estimation in pose-graph SLAM
using only one anchor by fixing the initial pose. For example,
the state-of-the-art technologies, including RTAB-map [53]
and Cartographer [54], can only reach 10∼50cm accuracy in
100∼300m trajectory using MIT Stata Center data set.

The landmark setting with ground truth is a simple and
efficient way to improve the accuracy of the pose-graph
SLAM. A landmark will offer accurate global information to
the nearby poses in the whole pose-graph, which is similar to
anchoring these poses. Fig. 5 presents an illustration on the
reduced weighted Laplacian matrices of the base pose graph,
the anchored pose-graph, and the pose-feature graph with
anchored landmarks. The rows and columns of the Laplacian
matrix corresponding to the anchored poses are deleted, which
is equal to the infinite information saving in the diagonal
block, as shown in the red diagonal sub-matrix. In (c), the
added landmark commonly brings some new information to
the connected pose and its corresponding diagonal elements
will add a new yellow diagonal sub-matrix. When the weight
of the measurement between landmark and the pose tends to
infinity, the information increment of anchoring the landmark
will approach the one of anchoring the pose.

Fig. 5: The information involving in the pose Pi corresponding to different
graphs: (a) Base pose graph and its corresponding weighted Laplacian matrix;
(b) Pose graph with the anchored pose Pi and its weighted Laplacian matrix
deleting the corresponding rows and columns; (c) Pose-feature graph with the
anchored feature Plandmark and its weighted Laplacian matrix deleting the
rows and columns corresponding to Plandmark .

However, the landmark setting usually needs many external
calibration operations with some precise instruments, such as
ETS, and high human resource cost, so a good landmark
setting should use fewer landmarks and yet obtain high quality
map. In the following, we will explain how to apply our anchor
selection method to perform the landmark setting using twice-
trajectory approach and redundant landmarks approach.

Firstly, we propose the twice-trajectory approach to apply
our anchor selection method to the landmark setting. As
shown in Fig. 6, following a designed path, the robot first
collects the data based on the on-board sensors, including
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laser data, camera data, and so on, without using anchors.
Based on this collected data, we can output its corresponding
pose graph and select the optimal anchors using the anchor
selection framework. Then, the landmarks are set based on the
selected anchors. The robot moves back to the origin, follows
the path, and collects the related data with these calibrated
landmarks again. Because of the similar environment and path,
the measurements, especially the pose-graph structure, of two
data collection processes will be similar9. Based on the static
landmarks set by the selected anchors, the occupancy grid
map is built with better accuracy using the SLAM tool-pack,
like Cartographer10. The anchor selection process becomes
the preparation to choose the positions of the landmarks and
further improves the accuracy of the pose-graph result.

Fig. 6: Landmark setting operations using the twice-trajectory approach.

The specific operations of the other way, called as redundant
landmarks approach, are shown as follows. First, before the
SLAM task, many redundant marks with unknown global
location are placed along the trajectory. An ideal setting way
is to ensure that each pose in the obtained pose graph can
measure only one set mark. In practice, the marks can be
placed as uniform as possible without considering whether
each pose can detect the marks. Second, the SLAM task is
performed by following the designed path. During this process,
all detected marks are tracked, mapped, and involved in the
SLAM method. Then, based on the obtained pose-graph11,
our proposed anchor selection method is used to pick out
the optimal anchors. Following, the marks detected by these
selected poses need to be calibrated and the calibrated results
will be regarded as the additional measurements and be intro-
duced into the original SLAM measurement network. Finally,
with the help of these additional calibrated measurements,
the SLAM problem is solved again to get a better solution.

9Because of the sensor noise and the slight environment change, even
though the robot follows the same path twice, practically, we know that it
is impossible to obtain the exactly same pose graphs in two trajectories. The
corresponding differences between two pose graphs will cause the potential
deterioration of the proposed method’s performance. However, because the
main structures of two different pose graphs are highly similar, the affect of the
performance deterioration is limited. Meanwhile, the twice-trajectory method
will introduce the additional cost in the robot motion and the additional
calibration operations. Compared with the operations to improve the used
SLAM method, these costs are commonly acceptable especially for the
industrial users, who do not want to deeply revise the SLAM methods.

10It is noted that our anchor selection framework can be used not only for
Cartographer, but also applied in different SLAM methods using pose-graph
optimization, including ORB-SLAM2 [1], RTAB-Map [53], and so on.

11Most well-known mature laser/visual SLAM methods, like cartographer
and ORB-SLAM2, use the pose-graph optimization. They also have ability to
track some un-calibrated marks, like the ‘landmark’ interface in Cartographer.

Compared with the twice-trajectory approach, this approach
only needs to follow the designed path once without repeating.
The disadvantage is that many more marks need to be placed
because of the large number of the robot poses12.

B. Trajectory assignment in CSLAM

CSLAM [31] is a framework to use several robots to finish
the SLAM task cooperatively in an unknown space, which
means that every robot first obtains a sub-map using the
classical SLAM framework based on its initial pose and finally
a global map is obtained by fusing all the sub-maps. A natural
question is, how to assign the trajectories for different robots
such that they can obtain a better SLAM result?

In some CSLAM tasks, the initial poses of the robots
are known in a common global frame, which means the
initial robot poses can be regarded as multiple anchors of the
pose-graph SLAM problem. In this situation, the trajectory
assignment problem for the robots becomes a similar problem
to find the best anchored poses. The anchor selection for
CSLAM can be performed using the following steps. Firstly,
only one robot13 is used to follow the complete designed path
including all places which need to be visited by all robots.
After the pose graph is built, the optimal anchored poses can be
selected using the anchor selection method, given the number
of the robots as the number of the anchors. Then, the static
initial poses of the robots are calibrated using some additional
measurements. The path is divided into multiple parts by the
anchored poses and each one between every two adjacent
anchors is assigned to the corresponding robot14. Finally, the
robots move from their own origins to follow the assigned
paths and complete the CSLAM tasks.

VII. SIMULATION RESULTS

In this section, we will evaluate the performance of the
proposed method using some well-known datasets with real
and synthetic scenarios. All simulations are performed using
python (Section VII-F3) and MATLAB (other sub-sections) on
a Dell E5570 laptop with an Intel Core i5-6300U 2.40 GHz
processor and 8 GB of RAM running Ubuntu 16.04.6 LTS
(Section VII-F3) and Windows 7 (other sub-sections).

A. Different number of anchored poses

To show the relationship between the accuracy of the pose-
graph SLAM result and the number of the anchored poses,
based on Intel dataset (1728 poses) [26], we increase the
number of the anchored poses, choose them by the improved
greedy method, and finally get the estimated results using the

12Because of its disadvantage, the implement of the redundant landmarks
approach is relatively difficult, in our latter simulation and experiment, if we
do not specifically mention the way to realize the landmark setting, the default
way is the twice-trajectory approach.

13Because of the resource and scenario constraints, in some tasks, multiple
robots need to be used to perform the CSLAM task. We can perform CSLAM
task using multiple robots with unknown initial poses to replace the task using
only one robot with only one initial pose.

14In order to avoid some paths of some robots are much shorter than the
others, the potential pose set for anchors can be constrained such that the
lengths of different paths are all similar.
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(a) Ground truth (b) N=1 (c) N=5

(d) N=10 (e) N=20 (f) N=50
Fig. 7: Estimated results using the Intel dataset (red line) based on the best selected anchors (black
circles) obtained by the greedy-based method.

Fig. 8: Five robots perform coorperative SLAM
using CSAIL dataset.

anchored poses, as shown in Fig. 7. The SLAM solution used
as ground truth is first obtained using SE-sync [26], which
is a state-of-the-art algorithm, with outstanding computational
efficiency (comparable speed to other highly optimized li-
braries, like GTSAM [21] and g2o [20]) and certifiable global
optimality. Then, random noises for the translation and rotation
measurements obeying the isotropic Gaussian distribution and
the isotropic Langevin distribution are generated using the
normrnd MATLAB function and the Acceptance-Rejection
Method respectively [55]. The precisions of the translation
measurements δij are between 9.5094× 101 to 3.3203× 102

with a mean value 1.5309 × 102 and concentrations of the
rotation measurements κij are between 1.1551 × 102 to
2.7815 × 102 with a mean value 1.4224 × 102. These noises
are added to the relative measurements of the edge data using
the measurement model (1). As mentioned in Section II, the
approximation method, by adding very accurate measurements
between the origin and the anchored poses, is applied in the
SE-sync method to solve the new anchored pose graph SLAM
without revising the toolbox. For the estimated result, we
compute the absolute trajectory error (ATE), which means
the mean value of root squared error of the position of the
estimated poses with respect to that of ground truth.

Fig. 7a is the ground truth of the Intel dataset. It can be
seen from Fig. 7b that the SLAM result is poor when only
one anchor is applied. The estimated results tend to be more
accurate if the number of the anchored poses N increases
from 5 to 50, which are shown from Fig. 7c to Fig. 7f. Their
ATEs are 2.3727 m (Fig. 7b, 1 anchor), 2.9514 × 10−1 m
(Fig. 7c, 5 anchors), 1.7361× 10−1 m (Fig. 7d, 10 anchors),
7.5231 × 10−2 m (Fig. 7e, 20 anchors), 2.7199 × 10−2 m
(Fig. 7f, 50 anchors) respectively. These results show that
our method greatly improves the result accuracy by selecting
more anchors. This simulation also illustrates that multiple
anchors are necessary for the large-scale SLAM task with
high-level noisy data, since it is sometimes difficult to achieve
the accuracy requirement using one anchor, especially when

limited sensors can be accessed. Instead of revising the used
SLAM technology or presenting the new SLAM framework,
our framework serves as an additional tool for the used SLAM
method to set the anchors and improve the final results.

B. Comparison with the normal greedy method

So as to verify the efficiency of the tools in Section V-C, we
compare our proposed method with the normal greedy method.
Because our method will not change the result obtained
by the normal greedy method, in this part, we only show
the advantage in terms of the computational efficiency to
verify the analyses of the computational complexity shown
in (24). In Table I, we compare them by using several well-
known real and synthetic datasets, including 2D: CSAIL, intel,
manhattan, KITTI, city10000, and ais2klinik; 3D: tinyGrid3D,
smallGrid3D, torus3D, cubicle, grid3D, and rim [26].

In Table I, the ‘greedy method’ represents Algorithm 1 only
using the sparse Cholesky decomposition as shown in Section
V-C1. The ‘improved method’ means that all speed-up tools
shown in Section V-C are applied. Based on Theorem 2, if
only one anchor is introduced, its choice will not affect the
accuracy of the final SLAM results. Hence, we use the first
pose as the first anchor and, for the first anchor, the result only
shows the computational time to compute the log-determinant
function of its FIM. Under the circumstances with the same
final results, our method is much faster than the normal greedy
method. Even for some large datasets containing more than
104 poses, e.g. city10000, ais2klinik, and rim datasets, the
proposed method can solve them within several minutes. So
as to further show the efficiency of different tools in Section
V-C, using Intel and CSAIL datasets, we apply these tools one
by one, and then show the computational time changing with
their applications in Fig. 9.

In Fig. 9, the results show that all additional operations,
presented in Section V-C, can greatly reduce the computational
time. In fact, the sparse Cholesky decomposition has the
largest effect (more than two orders of magnitude, like 13.39
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TABLE I: Comparison of computational time using different SLAM datasets

Mean computational time in 10 runs[s]

Dataset # Poses N=1 N=5 N=10 N=20 N=50

Greedy

method

(2D)

CSAIL 1045 0.0584 3.6349 7.8533 16.1398 40.4455

Intel 1728 0.0602 15.4858 34.5448 72.0651 183.0900

manhattan 3500 0.0585 86.7457 187.9391 401.7045 1110.5978

KITTI 4541 0.0571 57.2313 139.8398 294.8835 727.6991

city10000 10000 0.0606 1298.3256 2927.0964 6117.0702 15535.6554

ais2klinik 15115 0.0773 991.3454 2132.4369 4578.9760 11764.0283

Greedy

method

(3D)

tinyGrid3D 9 0.0892 0.0209 -* - -

smallGrid3D 125 0.0840 0.2126 0.4268 0.7817 1.4366

torus3D 5000 0.0606 595.9520 1347.1887 2710.1122 6289.2731

cubicle 5750 0.0811 537.1241 1196.3851 2211.4586 6077.1242

grid3D 8000 0.0571 5618.1917 10152.7144 >20000 >20000

rim 10195 0.0870 2582.7873 5372.1122 11421.1211 >20000

Improved

method

(2D)

CSAIL 1045 0.0144 0.7732 0.9865 1.2732 1.7657

Intel 1728 0.0175 3.0832 4.0620 4.9781 5.8554

manhattan 3500 0.0322 7.5656 13.1060 16.8376 21.3019

KITTI 4541 0.0215 10.1819 14.0718 18.5387 28.9056

city10000 10000 0.0948 63.2231 64.1240 142.4568 180.8735

ais2klinik 15115 0.0508 100.2318 122.2698 169.7197 238.3487

Improved

method

(3D)

tinyGrid3D 9 0.0930 0.0475 - - -

smallGrid3D 125 0.0705 0.1965 0.2387 0.2762 0.3965

torus3D 5000 0.0716 70.6634 73.1187 83.2794 94.5362

cubicle 5750 0.0590 76.8378 78.3145 84.4654 102.0602

grid3D 8000 0.0871 1216.2893 1804.8911 1953.7712 2107.2340

rim 10195 0.2131 290.2561 295.7529 308.2754 321.0302
* ‘-’ means the computation is infeasible, because the pose number is smaller than the anchor number.

Fig. 9: Computational time reduced
with the applications of speed-up tech-
nologies

Fig. 10: Comparison with two methods
using CSAIL dataset

Fig. 11: Comparison with two methods
using FR079 dataset.

seconds to 0.02 seconds for Intel dataset) to reduce the
computational time, benefiting from the high sparsity of the
reduced weighted Laplacian matrices.

C. Comparison with two other methods

For further comparison in terms of the estimated accuracy,
our method, named ‘Greedy’, is compared with two methods,
including maximal node degree method and random selection,
using CSAIL [26], Fr-clinic, and FR079 datasets [56]. The
maximal node degree method, named ‘Max’, means to choose
the nodes which have the maximal weighted node degrees. Be-
cause these nodes are strongly connected to the whole network,
they may perform the leading roles in the improvement of the
result accuracy. The random method, named ‘Random’, is a
cheap but mediocre and unstable approach. For the random
method, we run Ne = 100 times and select the best result
to compare with others. The comparisons of the estimated
coordinate errors (same as ATE) are presented in Fig. 10 to
Fig. 12 with the ground truth shown in the top-right corner.

We can see that our greedy-based method has the best
performance and its performance is stable for different datasets
and anchor numbers. Because of the randomness, the accuracy
of the results from the random method is not very stable
and shows a fair performance. For the maximal node degree
method, we find a very interesting phenomenon that, in some

stages, the estimated accuracy remains constant with the
number growth of the anchors. This is because, in many pose
graphs, the poses with large node degrees commonly locate
in the similar positions and these anchors can only affect a
small range of poses, which cannot make the accuracy of
other poses improve. Based on the data in Fig. 10, Fig. 11,
and Fig. 12, we define RE = meanN=2,··· ,20Others/Ours and
RE1 = maxN=2,··· ,20 Others/Ours by the ATE, where Others
and Ours are the ATEs of the poses using different number
of anchors corresponding to different methods, respectively.
Their results are shown in Table II.

TABLE II: Comparison with the ATEs of two other methods
Superiority Average (RE) Maximal (RE1)

Dataset Random Max Random Max
CSAIL 144.96%* 370.78% 276.87% 687.47%

Fr-clinic 186.16% 260.93% 292.53% 569.81%
FR079 198.06% 604.59% 312.00% 1040.98%

* When the value is bigger than 100%, it means that our method
is better.

In Table II, we can see that our method has more than 40%
and 176.87% advantage compared with other methods w.r.t
the mean and maximal accuracy of the estimated results. Our
method can provide a good and stable anchor selection result.

D. Approximation performance verification
In this paper, we approximate the original problem (10) to

the new sub-matrix selection problem. To verify the perfor-
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Fig. 12: Comparison with two methods using Fr-
clinic dataset.

Fig. 13: Approximation performance and compar-
ison with two methods using FR079 dataset.

Fig. 14: Approximation performance and compar-
ison with two methods using CSAIL dataset.

mance of the approximation (12) and compare the uncertainty
level of the obtained results using different methods, we apply
our Greedy, Random, and Max methods to CSAIL and FR079
datasets and present their objective functions.

The approximation and comparison results are shown in
Fig. 13 and Fig. 14. It is shown that the obtained objective
functions fcost(Na), used in (12), are very close to the
objective functions of (10) fobj(Na). The result not only
shows the high approximate performance of the new objective
function, which justifies the application of problem (12) to
approximate problem (10), but also validates that our method
achieves smaller estimate uncertainty (larger D-optimality
metric) compared with the other methods.

E. Performance bounds

In this part, we verify the tightness of our presented per-
formance bounds. We use multiple methods to select anchors
and then output the objective functions of the CSAIL dataset,
shown in Fig. 15. Based on Theorem 5, we can get the lower
and upper bounds of the random greedy method and show that
the lazy greedy method locates in the bounds, which means
that the optimal solution locates within a smaller area. This
area is shown as the shaded area, called “Optimal area”.

Fig. 15: Bounds from Theorem 5 using CSAIL dataset.

F. Simulation for potential applications

In this subsection, we present the applications of anchor
selection in the CSLAM trajectory assignment problem and
the landmarks setting of the mapping problems.

1) CSLAM trajectory assignment problem: Based on the
anchor selection method, we use 5 robots to share the trajec-
tory of the real CSAIL dataset (1045 poses). Assuming that
the initial poses of the five robots are known, the trajectory
assignment result is shown in Fig. 8. The final mean coordinate
error RE2 =

∑np

i=1 ‖x
opt
i − xGi ‖/np reduces from 2.1658m

(only one robot) to 0.2905m (5 robots with known initial
poses), where xopti and xGi are the optimal solution obtained
by the GN method using 5 robots and the ground truth of the
dataset respectively. The results show that our method can be
used in the CSLAM trajectory assignment problem with the
known initial poses to improve the result accuracy.

So as to further validate this application, we present a
CSLAM simulation using five quad-rotor unmanned aerial
vehicles (UAVs). At first, only one UAV is used to get the
initial pose graph. As shown in Fig. 16, in a 7m×7m×1m envi-
ronment with several regular obstacles (cubics, cylinders, and
spheres), a UAV moves from the first pentagram (0.0, 2.0, 0.2)
with a velocity 0.1m/s, passes several pre-defined way-points
(blue pentagrams), and meanwhile performs the pose-graph
SLAM task. In each simulation, the positions of the features
are randomly generated. In the moving process of the UAV, the
features will be detected when they locate in the sensor range
of the UAV (1.5m) and the relative pose measurements are ob-
tained based on the common features detected from two poses.
So as to make the measurements follow the noise assumption
shown in (1), using the singular value decomposition, the
noise-free relative rotation and translation measurements are
obtained from the 3D features observations, and then, the ran-
dom noises are sampled by N (0,Σij) and Lang(In×n, κij).
The parameters κij = 103Nv and δij = 50Nv for visual
odometry are set to be proportional to the feature number
Nv , which are visible both from Pi and Pj [1]. The noise
parameters δ−2ij and κij for the control input are 1.6 × 105

and 800 in every step (The simulation time step ∆t is set as
1s.). In Fig. 16, the yellow star trajectory is the pose-graph
SLAM result using only one UAV with no additional anchors.

Then, based on the generated pose-graph, using multiple
anchor selection methods, the starting points of the UAVs are
picked out and the trajectories between the adjacent starting
points are assigned to the corresponding UAVs. Following,
using the external global measurement tools to obtain the
initial poses of the UAVs, the collaborative pose-graph SLAM
tasks for five UAVs are solved. By randomly generating the
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different features, we run this simulation 20 times using all
methods. One of the results are shown in Fig. 16. The red,
black, and blue point trajectories are the estimated results
using the random method, the greedy-based method, and the
maximal node degree method, respectively. Using the pro-
posed greedy-based method, the trajectory assignment results
with five trajectories (blue: 1-st UAV; green: 2-nd UAV; red:
3-rd UAV; Orange: 4-th UAV, and magenta: 5-th UAV) and the
generated pose-graph with relative measurements (blue lines)
and poses (colorful points) are shown in the top-left of Fig. 16.

The statistical results of the estimated coordinate errors
using three methods are presented by the box chart in Fig. 17.
The RE compared with the random method and the ‘Max’
method are 128.49% and 302.92%. The RE1 compared with
the random method and the ‘Max’ method are respectively
327.23% and 660.54%. In 20 times, our method shows a
consistently better performance over the other methods, which
verifies the practicality of our framework in the CSLAM task.

2) Landmarks setting problem in feature-based SLAM: For
a feature-based SLAM simulation, we aim to obtain high-
quality estimates of 100 randomly-generated features in a
120m×120m environment by adding 4 landmarks with known
locations (since the first pose is also known, this corresponds
to 5 anchors), shown in Fig. 19. The sensor range is 15m.
Firstly, without adding landmarks (only 1 anchor), we follow
the designed path and collect the measurement data. Using
the optimization-based feature-based SLAM, the estimated
result is relatively poor especially in the boxed areas, which
makes the mean error of the mapped features very large
(about 0.217m). Based on the pose-graph generated by the
relative pose measurements, using our presented method, the
optimal anchored poses are selected and the corresponding
4 landmarks are set near the selected anchors, as shown in
Fig. 19. We perform the feature-based SLAM by following
the path again. The ATE of the final estimated results with
the aid of the fixed landmarks is reduced to 0.0097m.

Compared with the unstable random method, the advantage
of our method will become more obvious, if the distribution
of the poses and the measurements is relatively uneven. In
order to show this phenomenon, we change the size of the
sampling area to generate the uniformly distributed features.
We can apply a variable ξ to control the size of the feature
area to be 120ξm×120ξm. After changing the variable ξ < 1,
we can randomly generate the features in the changed area,
and then, we select the anchors by using two methods (the
random method and the presented method) and obtain the
features using SLAM with landmarks. Finally, the ratios of
their estimated results changing with the variable ξ are shown
in Fig. 18. Because of the randomness of the features, we test
20 different feature datasets and get the average result.

Our method achieves better performance when ξ is smaller
based on Fig. 18. Using 5 anchors, we also show the estimated
result with red covariance ellipse using different methods when
ξ is small (ξ = 0.6) in Fig. 20. The advantage of our method
is obvious as shown from the estimated ellipses of the poses.

3) Landmarks setting problem using Cartographer and
Fetch simulator: An occupancy grid mapping task using the
Fetch simulator and Google Cartographer is implemented to

further verify the practicality of our framework (Fig. 6) in
a well-known Garage map (Fig. 21). The data are collected
from the environment by following a designed path (lower half
part) and an initial map is generated using Cartographer, which
is shown in Fig. 22. Based on the generated pose-graph, the
optimal anchored poses are selected and then the simulated
landmarks are set in front of the robot poses (1m away, in
front of the robot) (Fig. 23). After we get these landmarks, our
following work is to involve these special measurements in the
mapping process. There is an interface in Cartographer to track
some landmarks without knowing their global locations. In
order to anchor them, at the first pose x0, we publish simulated
measurements between all selected landmarks and robot poses
with large weights, which means the global locations of these
landmarks are almost known. Then, after publishing these
landmarks, the landmark measurements will be only obtained
when the robot locates near to these landmarks. Finally, we
can generate a new map using Cartographer with landmarks.
The mean errors of relative distance of some corner points A,
B, and C, which are pointed out in Fig. 24, in the new map
reduce from 0.32m, 0.42m, and 0.78m to 0.21m, 0.31m, and
0.39m, respectively. We also generate a larger map based on
this environment. The comparison between the results without
using the landmarks, using our method with 5 landmarks,
and using the random method with 5 landmarks are shown
in Fig. 25 and Table III. These results show that our method
helps to find the efficient landmarks and generate an accurate
occupancy grid map.

Fig. 24: New map based on five landmarks.

TABLE III: Length comparison of some line segments in obtained maps

Line Ground truth Our method Random No landmarks

A 42.10 m 41.90 m 41.88 m 41.06 m

B 28.86 m 28.54 m 28.64 m 28.36 m

C 34.91 m 34.80 m 35.05 m 35.07 m

D 19.73 m 19.49 m 19.55 m 19.47 m

E 24.28 m 23.99 m 23.77 m 23.68 m

F 19.16 m 19.33 m 18.70 m 16.70 m

G 26.98 m 26.89 m 25.66 m 23.66 m

H 24.59 m 24.46 m 23.58 m 21.58 m

VIII. EXPERIMENTAL RESULTS

In this section, some experimental results are presented
to validate the practicality of our theoretical developments
and evaluate the performance of the method in a real lab
environment (UTS Tech Lab). The experiments are performed
using C++ on a MSI GL62VR laptop running Ubuntu 16.04.6
LTS as well as on the real Fetch robot. The laser reflectors,
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Fig. 16: Estimated result for collaborative pose-graph
SLAM.

Fig. 17: Box chart of the estimated coordinate
errors using different methods.

Fig. 18: Ratio of mean ATE of SLAM results
changes with ξ (whether it is an relatively uni-
form pose-graph) using random method and the
presented method. The ratio is defined as Random

Ours .
So when values are larger than 1, it means our
method can obtain better result (smaller error).

Fig. 19: Operations to obtain good SLAM result using the presented method.

Fig. 20: Comparison of feature-based SLAM result
using random method and the presented method,
when ξ = 0.7. (The features are only sampled in
the small square.).

Fig. 21: Fetch simulator in the Willow Garage
map.

Fig. 22: Cartographer result without using anchors
(some poor parts in red boxes).

Fig. 23: Pose graph corresponding to Cartogapra-
pher result (black points and blue edges), ground
truth (red points), and selected points for landmarks
(green points and magenta circles).
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(a) Result without using landmarks. (b) Result with 5 landmarks (our method). (c) 5 selected landmarks using our method.
Fig. 25: Comparison results for the large maps.

which can increase the intensity of the laser scan, are regarded
as the identified landmarks for Fetch robot.

We first control the Fetch robot to collect data and im-
plement a mapping process using Cartographer without using
the reflectors as landmarks. In a relatively large environment,
the SLAM result is not accurate using Cartographer only in
Fig. 26a. Using the greedy-based anchor selection method, 3
key poses are selected with the largest increment of the tree-
connectivity, which is shown in Fig. 26b, and then, set the
landmarks with the laser reflectors by the theodolite. Based on
the similar trajectory and landmarks, we can achieve a better
Cartographer result (Fig. 27). Using the same collected data,
we also output the result without landmarks. The distances of
four line segments shown in Fig. 27 are measured by a tape
measure and compared with the results of pure Cartographer.
Table IV shows that the results of our method are closer to
the actual measurements. Photographs of the data collection
process using the Fetch robot are shown in Fig. 28.

(a) Obtained map for UTS Tech lab without landmarks.

(b) Pose graph (red points and blue edges) and selected points (green
points and magenta circles) for landmarks using Fetch robot.

Fig. 26: Cartographer result without using landmarks and obtained landmarks

With the help of the landmarks, the map error reduces a lot,

Fig. 27: Obtained occupacy grid map based on 3 landmarks.

TABLE IV: Length comparison and error percentage of some line segments
in obtained occupacy grid maps

Line Ground Truth Using Landmarks No Landmarks

A 26.345m 25.92m (1.61%) 24.48m (7.08%)

B 33.885m 34.11m (0.66%) 34.38m (1.46%)

C 40.623m 40.45m (0.43%) 40.41m (0.52%)

D 48.823m 48.09m (1.50%) 47.59m (2.53%)

(a) Theodolite. (b) Data collection. (c) Fetch robot.
Fig. 28: Experiments using Fetch robot.

which shows the efficiency of the proposed method in the real
mapping task in the lab environment.

IX. CONCLUSION AND FUTURE WORK

This paper presents a sub-modular optimization framework
to solve the anchor selection problem in the 2D/3D pose-graph
SLAM problem with multiple anchors. Based on the graph
topology, the anchor selection problem using the original D-
optimality metric is approximated as the sub-matrix selection
problem for the weighted Laplacian matrix. Then, this new
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sub-matrix selection problem is proved to be a non-negative
non-normalized non-monotone sub-modular optimization with
the cardinality-fixed constraint. In order to solve it, the natural
greedy method and the random greedy method are presented.
The performance bounds of the optimal solution are presented
and discussed. We also propose multiple tools to improve
the running-time ability of the presented method. Several
applications using our method are put forward. Finally, the
simulation and experimental results illustrate that our method
is able to select more efficient anchors and build more accurate
maps compared with some other methods.

The results presented in this paper are only the first step
towards the use of graph-based anchor selection in areas such
as landmark setting, CSLAM, and so on. We are trying to use
the sub-modular optimization based anchor selection method
and its related graph topology in non-rigid structure from
motion [57], deformable visual SLAM, planning, and decision
making pipelines. In the landmark setting application, a more
intuitive idea is to extend our framework into feature-based
SLAM, which will be a good potential research direction in
the future. Further studies on finding the optimal number and
the best distribution of the anchors to reach the given level of
accuracy, will be another interesting research direction.
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