
1

A Right Invariant Extended Kalman Filter for Object based SLAM
Yang Song1, Zhuqing Zhang2, Jun Wu2, Yue Wang2, Liang Zhao1, Shoudong Huang1

Abstract—With the recent advance of deep learning based
object recognition and estimation, it is possible to consider object
level SLAM where the pose of each object is estimated in the
SLAM process. In this paper, based on a novel Lie group
structure, a right invariant extended Kalman filter (RI-EKF) for
object based SLAM is proposed. The observability analysis shows
that the proposed algorithm automatically maintains the correct
unobservable subspace, while standard EKF (Std-EKF) based
SLAM algorithm does not. This results in a better consistency
for the proposed algorithm comparing to Std-EKF. Finally,
simulations and real world experiments validate not only the
consistency and accuracy of the proposed algorithm, but also the
practicability of the proposed RI-EKF for object based SLAM
problem. The MATLAB code of the algorithm is made publicly
available.

Index Terms—SLAM, Localization, Mapping

I. INTRODUCTION

DURING the past decade, visual sensors are very popular
due to the properties of low cost and rich information,

and various kinds of frameworks are designed for visual
SLAM [1]-[3]. However, most of these works only utilize low-
level features such as points [1], lines [4] or planes [5] and
neglect the high-level features such as objects which contain
strong geometric constraints [6]. High-level features have
many advantages over low-level features, including broader
perspective loop closures, longer feature tracking and consid-
ering the intrinsic constraints among low-level features [6][7].

Many existing object level SLAM systems have shown the
benefits of using object level features. For examples, Salas-
Moreno et al. in [8] propose a paradigm for 3D object SLAM
system, and present its advantages in a vast compression
of map storage, large scale loop closure, and relocalisation.
Gálvez-López et al. [9] show that their object SLAM system
can yield more accurate maps than RGB-D SLAM. Yang
et al. in [10] combine 2-D and 3-D object detection with
SLAM pose estimation together, for both static and dynamic
environments. Their proposed system achieves better pose
estimation on many datasets comparing to the point feature
based SLAM system. The back-end techniques used in almost
all the existing object level SLAM systems are optimization
based methods, such as pose graph optimization [8][9] and
bundle adjustment [10]. This is mainly because optimization

This work was supported in part by the National Nature Science Foundation
of China under Grant 61903332, 62173293, and UTS-CSC International
Research Scholarship.

1Yang Song, Liang Zhao and Shoudong Huang are with
Robotics Institute, University of Technology Sydney, Australia.
Email:Yang.Song-4@student.uts.edu.au

2Zhuqing Zhang, Jun Wu, and Yue Wang are with the State key Laboratory
of Industrial Control and Technology, Zhejiang University, P.R. China.

The MATLAB code is available at
https://github.com/YangSONG-SLAM/RIEKF objectSLAM

Digital Object Identifier (DOI): 10.1109/LRA.2021.3139370.

based methods not only achieve the best accuracy, but also
use many ready-made tools (for example, G2o [11] and
Ceres [12]). However, optimization based methods require
much more computations than filter based methods when
the trajectory of robot is very long. Thus they are not very
suitable for deployment on lightweight platforms. Therefore,
developing filter based methods are important. Nevertheless,
to the best of our knowledge, works focused on the filter based
SLAM frameworks that consider the object features are still
blank. One of the reasons is that the conventional filter based
SLAM (like standard EKF) usually suffers from the problem of
inconsistency. And a consistent filter based estimator requires
elaborate modelling and algorithmic design.

An inconsistent filter based SLAM system will underesti-
mate the uncertainty of the estimated state, which gradually
leads to poor results and even makes the algorithm diverge.
The discovery of inconsistency of point feature based EKF
SLAM can date back to 2001 [13]. In the last decades,
many works focus on analyzing the cause of inconsistency
and proposing improvement algorithms to alleviate the in-
consistency of the system [13]-[17]. According to [16], the
explanation of such phenomena is that EKF linearizes the
system model at the latest estimated values so that Jacobians of
the process and observation functions are not evaluated at the
same state value. Furthermore, Huang et al. in [17] analyze the
observability of the system and argues that the ever-changing
linearization points break the unobservable subspace of the
system, therefore spurious information along the unobservable
direction is introduced to the system, which makes the estimate
inconsistent. To solve this problem, first Jacobian estimate
(FEJ) [18] and observability constraint (OC) [19] methods are
proposed.

On the contrary, instead of adding artificial constraint into
the estimator, algorithms designed by Lie group theory are
found to have the potential to naturally handle invariance in-
cluding observability constraints in point feature based SLAM
algorithms [20]-[22]. Exploiting the properties of invariant
tangent vector field, Lie group theory generates the invariant-
EKF methodology [23]-[25], which is firstly applied to EKF-
SLAM in [25]. Recently, EKF designed on Lie groups has
become popular in filter based SLAM [22][26]-[28], as many
such algorithms perform well in terms of consistency and
convergence. Based on a specific Lie group representation,
a right invariant EKF (RI-EKF) algorithm is proposed for
2D point feature based SLAM to alleviate the inconsistency
and make the state estimates obtained more accurate [21].
Furthermore, the convergence and consistency for RI-EKF
point feature based SLAM in 3D environment are analyzed
in [20], showing the advantages of the invariant algorithm for
the point based SLAM problem.

However, all filter based SLAM methods mentioned above

2

only consider the point features, and how to handle the object
features (poses) consistently is still an untouched problem. In
this paper, we propose a consistent EKF algorithm for object
based SLAM. To be specific, the contributions of this paper
are shown as follows:

• An invariant EKF is designed on a new Lie group for
SLAM with object features.

• The observability analysis shows that our proposed algo-
rithm naturally maintains the correct unobservable sub-
space.

• The effectiveness of our proposed algorithm is validated
via simulations and real-data experiments.

Notations: In this paper, bold lower-case and upper-case
letters are reserved for vectors and matrices/elements in the Lie
group, respectively. The notation SO(3) represents 3D special
rotation group, consisting of all rotation transformations in
R3. so(3) is the Lie algebra of SO(3), containing all 3 × 3
skew symmetric matrices. (·)∧ represents the skew symmetric
operator that transforms a 3-dimensional vector into a skew
symmetric matrix. expG represents the exponential map on a
Lie group G. logG is the inverse of exponential map on a Lie
group G. N(0,P) represents a zero mean Gaussian distribution
with covariance P.

II. OBJECT BASED SLAM PROBLEM

An object feature considered in this work is represented as a
3D pose of the object in the environment. A robot moves in an
unknown 3D environment and observes some object features.
The object based SLAM focuses on estimating the current
robot pose and the poses of all the object features using the
process model and observation model.

1) State Space: An object feature is defined as

(Rf ,pf), (1)

where Rf ∈ SO(3) and pf ∈ R3 are the rotation and position
of feature, respectively.

The set consists of all states combining with the robot pose
and K observed features is denoted as GK , where

GK =
{
(Rr,Rf1 , · · · ,RfK ,pr,pf1 , · · · ,pfK)

|Rr,Rfj ∈ SO(3), pr,pfj ∈ R3},
(2)

Rr,Rfj ∈ SO(3) represent the rotations of robot and the j-th
feature respectively, and pr,pfj ∈ R3 represent the positions
of robot and the j-th feature respectively, all described in the
global coordinate system1.

2) Process Model and Observation Model: Since R3 ∼=
so(3), for simplification, we can define the exponential map
of SO(3) as follows: For ξ ∈ R3,

expSO(3) : R3 → SO(3)

ξ →
∑∞

k=0
(ξ∧)k

k! .
(3)

1Sometimes we use the notation G instead of GK for brevity. Also, in the
remaining of this paper, without losing generality, we assume that there is
only one object feature, i.e. K = 1, to simplify the equations.

The following first-order integration scheme of discrete
noisy process model is widely used [18][21]:

Xn+1 = f(Xn,Un,wn)

= (Rr
n exp

SO(3)(wR
n)R

u
n,Rf

n,pr
n + Rr

n(pu + wp
n),pf

n),
(4)

where Xi = (Rr
i ,Rf

i ,pr
i ,pf

i) is the state at time step
i, i = n, n + 1, Un = (Ru

n,pu
n) is the odometry, wn =

((wR
n)

⊤, (wp
n)

⊤)⊤(∈ R6) ∼ N(0,Σn) is the odometry noise.
After the object detection and matching from the SLAM

front-end, the observation can be regarded as relative poses of
object features in the current robot frame. Then the observation
model for the object feature, (Rf ,pf), in the (n+1)-th robot
frame, (Rr

n+1,pr
n+1), can be described as

Z = h(Xn+1, vn+1) = (Rz,pz), (5)

where

Rz = expSO(3)(vR
n+1)(R

r
n+1)

⊤Rf
n+1,

pz = (Rr
n+1)

⊤(pf
n+1 − pr

n+1) + vpn+1,

and vn+1 = ((vRn+1)
⊤, (vpn+1)

⊤)⊤(∈ R6) ∼ N(0,Ωn+1) is
the observation noise.

III. RI-EKF FOR OBJECT BASED SLAM

A. RI-EKF framework for object based SLAM

1) A novel Lie group structure on state space: For all
(Ri,Rf

i ,pr
i ,pf

i) ∈ G, i = 1, 2, an operator ⊕ is defined by

(Rr
1,Rf

1 ,pr
1,pf

1)⊕ (Rr
2,Rf

2 ,pr
2,pf

2) =

(Rr
1Rr

2,Rf
1Rf

2 ,Rr
1pr

2 + pr
1,Rr

1pf
2 + pf

1).
(6)

Then we can check that equiped with ⊕ defined in (6), the state
space G becomes a Lie group and is isomotric to SEK+1(3)×
(SO(3))K , where K (set as 1 for simplicity) is the number
of observed features. The Lie group SEK+1(3), defined in
[20][21], plays a significant role in RI-EKF for point feature
based SLAM. The notation ⊖, the minus of ⊕, is defined
by Xa ⊖ Xb = Xa ⊕ X−1

b and Xb ⊕ X−1
b = X−1

b ⊕ Xb =
(I, I, 0, 0). Denote g as the Lie algebra of G. And we have
g ∼= seK+1(3) × (so(3))K ∼= R6+6K . Therefore, the form of
an element ξ in Lie algebra g can be constructed as

ξ⊤ = ((ξR
r

)⊤, (ξR
f

)⊤, (ξp
r

)⊤, (ξp
f

)⊤), (7)

where ξR
r

, ξR
f

, ξp
r

, ξp
f ∈ R3. The exponential map expG on

this Lie group can be defined by

expG(ξ) =(expSO(3)(ξR
r

), expSO(3)(ξR
f

)

Jl(ξ
Rr

)ξp
r

, Jl(ξ
Rr

)ξf),
(8)

where

Jl(ξ
Rr

) =

∞∑
k=0

((ξR
r

)∧)k

(k + 1)!
. (9)

Then an error state ξ for an estimated state X̂ satisfies

X = expG(ξ)⊕ X̂, (10)

where X represents the true state.

3

2) Propagation: Based on the Lie group structure intro-
duced above, the process model (4) becomes

Xn+1 = Xn ⊕ (expSO(3)(wR
n)R

u
n, I3,pu

n + wp
n, 03×1). (11)

The predicted state, Xn+1|n, by propagation is computed by

Xn+1|n = (Rr
n|nRu

n,Rf
n|n,Rr

n|npu
n + pr

n|n,pf
n|n). (12)

where Xn|n = (Rr
n|n,Rf

n|n,pr
n|n,pf

n|n) is the updated state at
time n. And the estimated error ξn+1|n by propagation is

ξn+1|n =̇ log(Xn+1 ⊖ Xn+1|n)
≈ Fnξn|n + Gnwn,

(13)

where ξn|n ∼ N(0,Pn) is the estimation error for Xn|n,
wn = ((wR

n)
⊤, (wp

n)
⊤)⊤ is the odometry noise, the coefficient

matrices Fn and Gn in RI-EKF are

Fn = I6+6K ,

Gn =


Rr

n|n 03×3

03×3 03×3

(pr
n|n + Rr

n|npu
n)

∧Rr
n|n Rr

n|n

(pf
n|n)

∧Rr
n|n 03×3

 .
(14)

Then, the covariance matrix of the state Xn+1|n by propagation
is

Pn+1|n = FnPnF⊤
n + GnΣnG⊤

n . (15)

3) Update: Suppose Z is an observation in (5). By intro-
ducing a new minus operator ⊟ for the observation, innovation
y is defined as

y =

[
yR
yp

]
= Z ⊟ [(R̂

r
)⊤R̂

f
, (R̂

r
)⊤(p̂f − p̂r)]

.
=

[
logSO(3)(expSO(3)((vR)∧)(Rr)⊤Rf (R̂

f
)⊤R̂

r
)

(Rr)⊤(pf − pr) + vp − [(R̂
r
)⊤(p̂f − p̂r)]

]
,

(16)
where yR, yp ∈ R3. The linearization of yR is obtained by

I3 + (yR)∧ ≈ expSO(3)((yR)∧)
= expSO(3)((vR)∧)(Rr)⊤Rf (R̂

f
)⊤R̂

r

≈ I3 − ((R̂
r
)⊤ξR

r

)∧

+((R̂
r
)⊤ξR

f

)∧ + (vR)∧.

(17)

Then, by omitting the second-order small quantities, we have

yR = −(R̂
r
)⊤ξR

r

+ (R̂
r
)⊤ξR

f

+ vR. (18)

The linearization of yp can be derived directly from point
feature RI-EKF SLAM in [20][21]. For the innovation at time
step n+ 1, we have

yn+1 = Hn+1ξn+1|n + vn+1, (19)

where

Hn+1 =

[
HR,Rr

n+1 HR,Rf

n+1 03×3 03×3

03×3 03×3 Hp,pr

n+1 Hp,pf

n+1

]
, (20)

HR,Rr

n+1 = Hp,pr

n+1 = −(Rr
n+1|n)

⊤,

HR,Rf

n+1 = Hp,pf

n+1 = (Rr
n+1|n)

⊤,

and vn+1 ∼ N(0,Ωn+1) is the observation noise. Then the
state is updated by

Xn+1|n+1 = expG(ξn+1|n+1)⊕ Xn+1|n, (21)

where ξn+1|n+1 = Kn+1yn+1 is the update state error vector,
and

Kn+1 = Pn+1|nH⊤
n+1(Hn+1Pn+1|nH⊤

n+1 +Ωn+1)
−1.

Its covariance is updated as

Pn+1 = (I−Kn+1Hn+1)Pn+1|n. (22)

The whole process of RI-EKF SLAM with object features
can be summarized in Algorithm 1.

Algorithm 1 RI-EKF for Object based SLAM
Fn, Gn, Hn+1 are given in (14) and (20).
Input: Xn|n, Pn, Un, Zn+1

Output: Xn+1|n+1, Pn+1

Propagation:
Xn+1|n ← f(Xn|n,Un, 0)
Pn+1|n ← FnPnF⊤

n + GnΣnG⊤
n

Update:
Kn+1 ← Pn+1|nH⊤

n+1(Hn+1Pn+1|nH⊤
n+1 +Ωn+1)

−1

yn+1 ← Zn+1 ⊟ hn+1(Xn+1|n, 0)
Xn+1|n+1 ← expG(Kn+1yn+1)⊕ Xn+1|n
Pn+1 ← (I−Kn+1Hn+1)Pn+1|n

Algorithm 2 New Feature Initialization
Input:

The state and its covariance before augmentation:
X̂ =

[
R̂

r
R̂

f
p̂r p̂f

]
P =

[
PR,R PR,p

Pp,R Pp,p

]
The observation of new feature: Z = (Rz,pz) ∈ SO(3)× R3

The covariance of observation noise: Ω =

[
ΩR,R ΩR,p

Ωp,R Ωp,p

]
Output: The augmented state and its covariance:

X̂aug =
[

R̂
r

R̂
f

R̂
r
Rz p̂r p̂f p̂r + R̂

r
pz

]
,

Paug =


PR,R PR,RM⊤

1 PR,p PR,pM⊤
2

M1PR,R PR,R
f M1PR,p PR,p

f

Pp,R Pp,RM⊤
1 Pp,p Pp,pM⊤

2

M2Pp,R (PR,p
f)⊤ M2Pp,p Pp,p

f

 .

B. New Feature Initialization
Besides propagation and updating, another indispensable

procedure is object feature initialization. For brevity, the
mathematical derivation is ignored here (details are in the
full version [32]). The whole process to augment the state
is summarized in Algorithm 2, where

M1 = [I3 03,3K],
M2 = [I3 03,3K],

PR,R
f = M1PR,RM⊤

1 + R̂
r
ΩR,R(R̂

r
)⊤,

PR,p
f = M1PR,pM⊤

2 + R̂
r
ΩR,p(R̂

r
)⊤,

Pp,p
f = M2Pp,pM⊤

2 + R̂
r
Ωp,p(R̂

r
)⊤.

(23)

4

IV. OBSERVABILITY ANALYSIS

Based on the previous researches about inconsistency [15]-
[21], the inconsistency of EKF-SLAM is mainly caused by the
violation of the observability constraints. A consistent EKF-
SLAM estimator should satisfy the following observability
constraints: the unobservable subspace for the system model
of the estimator is the same as that of the real system (the ideal
case where the Jacobians are evaluated at the true state). In
this section, we prove that our RI-EKF for object based SLAM
can automatically maintain the observability constraints. On
the contrary, standard EKF for object based SLAM (briefly
introduced in Sec. IV-B) is unable to maintain the observabil-
ity constraints. These explain the better performance of our
algorithm in terms of consistency in the following experiments.

Definition 1: The unobservable subspace N̂ based on the
state estimates is the null space of the corresponding observ-
ability matrix Ô, where

Ô =


Ĥ0

Ĥ1F̂0,0

...
Ĥn+1F̂n,0

 , (24)

Ĥi is the Jacobian matrix for the i-th step observation model
evaluated at the state estimate X̂i, and F̂i,0 = F̂iF̂i−1 · · · F̃0,
F̂j is the Jacobian matrix for the j-th step propagation model
of the estimator evaluated at the state X̂j , j = 0, · · · , i. If the
models are linearized at the ground truth, the unobservable
subspace based on the true states is denoted by N̆ , and the
corresponding observability matrix is denoted by Ŏ.

A. Observability Analysis for RI-EKF

Theorem 1: For RI-EKF, the unobservable subspace N̂RI

is the same as N̆RI , where

N̂RI = N̆RI = span
col.


I3 03×3

I3 03×3

03×3 I3
03×3 I3

 , (25)

and dim(N̂RI) = dim(N̆RI) = 6.
Proof 1: See Appendix in the full version of this paper [32].
Therefore, Theorem 1 shows that RI-EKF automatically

maintains the correct unobservable subspace, which will sig-
nificantly improve the consistency.

B. Standard EKF for Object based SLAM

The standard EKF (Std-EKF) for object based SLAM is
SO(3)-EKF, whose state space is isomorphic to (SO(3))K+1×
(R3)K+1. Suppose there is only one feature in the state vector,
an error state η ∈ (so(3))K+1 × (R3)K+1 (K = 1 for
simplicity) in standard EKF is obtained by

η = (ηRr

,ηRf

,ηpr

,ηpf

)

= (logSO(3)(Rr(R̂
r
)⊤), logSO(3)(Rf (R̂

f
)⊤),

pr − p̂r,pf − p̂f),

(26)

where (Rr,pr) and (R̂
r
, p̂r) are the true and the estimated

robot poses, (Rf ,pf) and (R̂
f
, p̂f) are the true and the esti-

mated object features, respectively. Based on this linearization
method, the Jacobians of considered system are

FStd
n =


I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

−(Rr
n|npu)∧ 03×3 I3 03×3

03×3 03×3 03×3 I3

 ,

GStd
n =


Rr

n|n 03×3

03×3 03×3

03×3 Rr
n|n

03×3 03×3

,
HStd

n+1 =

[
HR,Rr

n+1 HR,Rf

n+1 03×3 03×3

Hp,Rr

n+1 03×3 Hp,pr

n+1 Hp,pf

n+1

]
,

(27)

where

HR,Rr

n+1 = Hp,pr

n+1 = −(Rr
n+1|n)

⊤,

HR,Rf

n+1 = Hp,pf

n+1 = (Rr
n+1|n)

⊤,

Hp,Rr

n+1 = (Rr
n+1|n)

⊤(pf
n+1|n − pr

n+1|n)
∧,

Fn and Gn are the Jacobians of process model for the state
error ηn|n and the odometry noise wn, respectively. And HStd

n+1

evaluated at Xn+1|n is the Jacobian of innovation y defined in
(16).

C. Observability Analysis for Standard EKF

Theorem 2: For Std-EKF, the unobservable subspace N̂ Std,
is a proper subspace of N̆ Std, where

N̂ Std = span
col.

[03×3, 03×3, I3, I3]⊤, (28)

and

N̆ Std = span
col.


03×3 I3
03×3 I3

I3 (pr
0)

∧

I3 (pf)∧

 , (29)

pr
0 and pf are respectively the true positions of robot starting

point and object feature. And the dimension of N̂ Std is 3,
while the dimension of N̆ Std is 6.

Proof 2: See Appendix in the full version of this paper [32].
According to Theorem 2, due to this improper linearization

for object based SLAM, standard EKF does not maintain the
correct observability constraints. Consequently, standard EKF
mistakenly takes spurious information into estimation, leading
to overconfident estimate (inconsistency) [19].

V. SIMULATIONS

In this section, we compare our proposed RI-EKF with stan-
dard EKF (Std-EKF) and Ideal-EKF (a variant of the Std-EKF
where Jacobians are evaluated at the ground truth). It should
be noted that Ideal-EKF is impossible to be applied in the
real scenario, since the ground truth is not available. It is just
used to explain the influence of observability constraints on
inconsistency. We use Normalized Estimation Error Squared

5

Fig. 1. Simulation environment: 6 object features (the poses are shown as
red-green-blue arrows) in a 3D environment, robot moves on the circle (the
yellow arrow shows the initial heading of the robot).

TABLE I
SIMULATION RESULTS OF RI-EKF, STD-EKF AND IDEAL-EKF

Std-EKF RI-EKF Ideal-EKF
RMSE

Robot Rotation (rad) .0239 .0230 .0199
Robot Position (m) .0039 .0038 .0035

Feature Rotation (rad) .0072 .0066 .0046
Feature Position (m) .0007 .0007 .0006

NEES
Robot Rotation 1.215 0.973 0.903
Robot Position 1.155 1.090 0.959

Robot Pose 1.216 1.016 0.973
Feature Rotation 1.531 0.953 0.735
Feature Position 1.135 1.113 1.058

Feature Pose 1.306 1.007 0.909

(NEES) indicator to evaluate the consistency of an estimation
method

NEES =
1

m× d

m∑
i=1

e⊤i P−1
i ei, (30)

where m is the number of samples, and ei is a d dimensional
error sample vector, which is estimated to be a zero mean
Gaussian with a d × d covariance matrix Pi. NEES should
approximately equal to 1 for large m, if the estimator is
consistent. In addition, root mean squared error (RMSE) is
used to evaluate the accuracy of each estimator.

To compute NEES, it is worth noting that for our proposed
RI-EKF, the estimated covariance is corresponding to the
nonlinear error defined in (7) instead of the standard error
in the vector space. However, for a fair comparison, we still
use the standard error to compute the RMSE of RI-EKF.

A. Settings

The simulation environment and the robot trajectory are
shown in Fig. 1. There are 6 object features in the environment
and their poses are represented by the red-green-blue arrows.
The robot moves along a circle 2 times (trajectory length: 2m)
with a constant linear velocity 5 × 10−4 m per frame and a
constant angular velocity π/1000 rad per frame. The robot
is able to measure the relative poses of all 6 object features
in the environment. The covariance matrices of odometry
noise and observation noise in (4) and (5) are set to be
Σn = diag(0.012, 0.012, 0.012, 0.022, 0.022, 0.022) and Ωn =
diag(0.042, 0.042, 0.042, 0.00220.00220.0022). The settings in

this simulation are similar to the real data experiments shown
in the next section.

B. Results and Analysis

We conducted 50 Monte-Carlo simulations, i.e. m = 50.
The NEES and RMSE results are shown in Fig. 2 and Table
I. Fig. 2 shows the RMSE and NEES results for robot pose
and feature pose every 50 steps. Table I lists the average
RMSE and NEES for rotation and position error (in rad and
m respectively) in the last time step. The results show that
in this experiment, RI-EKF and Ideal-EKF perform better
than Std-EKF in terms of both accuracy and consistency.
Based on the comparison of Std-EKF and Ideal-EKF, we
can see that the inconsistency of Std-EKF mainly comes
from the inaccuracy of linearization points. And according
to the analysis in Section IV, these linearization points in
Std-EKF break the observability constraints, leading Std-EKF
to obtain spurious information from unobservable subspace.
As a result, its estimation will be more inaccurate and its
estimated covariance is smaller than the actual uncertainty,
and become more and more inconsistent over time. In contrast,
RI-EKF remains consistent (NEES ≈ 1) in a longer duration,
behaving like Ideal-EKF. The analysis for RI-EKF in Section
IV indicates that RI-EKF naturally maintains the observability
constraints, as in Ideal-EKF, while the Jacobians are evaluated
at the latest estimate. These make the results of RI-EKF more
reliable than those of Std-EKF.

VI. REAL DATA EXPERIMENTS

In this section, we test our algorithm on a real dataset YCB-
Video [29] and compare it with Std-EKF, DVO [2], ORB-
SLAM3 [3] and pose graph optimization (PGO) to show its
effectiveness. All of these algorithms are fed by the RGB-D
images from YCB-Video. Four sequences (0019, 0036, 0041,
and 0049), which have relatively long trajectory, are selected to
be used in the experiments (Fig. 3). Different from simulation,
the data collected from real world may have many outliers. The
matches of point clouds in Sequence 0019 are very accurate,
but in other sequences, some object observations are very
inaccurate, as shown in the last three images in the lower
row of Fig. 3.

In order to make the algorithms robust, we need to detect
and remove outliers. In addition, there is no information about
odometry in these data sequences. To apply our algorithms,
we make a simple constant velocity assumption for these
data sequences which are obtained at the low camera motion
speeds.

A. Dataset and Object Detection

YCB-Video dataset contains 21 objects with various textures
from YCB objects. There are 92 RGB-D videos used for
training and testing object detection, in which 80 videos
are used for training and 2949 keyframes from the rest 12
videos are used for testing. Besides, 80000 synthetic images
are released for training. There are many scenes of stacking
objects with partial occlusion, as shown in Fig. 3.

6

0 500 1000 1500 2000 2500 3000 3500

Time Steps

0.015

0.02

0.025

0.03

ra
d

RMSE for Robot Rotation

Std-EKF

RI-EKF

Ideal-EKF

0 500 1000 1500 2000 2500 3000 3500 4000

Time Steps

2

2.5

3

3.5

4

4.5

5

5.5

m

10
-3 RMSE for Robot Position

Std-EKF

RI-EKF

Ideal-EKF

0 500 1000 1500 2000 2500 3000 3500 4000

Time Steps

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

NEES for RobotPose

Std-EKF

RI-EKF

Ideal-EKF

0 500 1000 1500 2000 2500 3000 3500 4000

Time Steps

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

ra
d

RMSE for Feature Rotation

Std-EKF

RI-EKF

Ideal-EKF

0 500 1000 1500 2000 2500 3000 3500 4000

Time Steps

3.5

4

4.5

5

5.5

6

6.5

7

m

10
-3 RMSE for Feature Position

Std-EKF

RI-EKF

Ideal-EKF

0 500 1000 1500 2000 2500 3000 3500 4000

Time Steps

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

NEES for FeaturePose

Std-EKF

RI-EKF

Ideal-EKF

Fig. 2. Accuracy (RMSE) and consistency (NEES) of Std-EKF, RI-EKF, and Ideal-EKF in simulations.

B. Observation of Object Features

To get the observation of the object features, in the front-
end, we utilize the algorithm called REDE from [30], which
is an end-to-end object pose estimator using RGB-D data as
inputs. In YCB dataset, the results of the pose estimator can
realize 98.9% recall under the metric of average ADD [31].
The outputs of REDE are directly fed into (5) as observations.

C. Constant Velocity Assumption

Since the data are collected from a low speed camera, we
assume that the camera is moving at constant velocity. Here
we just take a very simple method to obtain the odometry.
We assume the angular velocity is zero with noise. And the
expected linear velocity is the average of the linear velocities
calculated using the previous 6 estimations. The variances are
computed based on these 6 step estimations.

D. Outlier Removal

Suppose there is an object feature observed in the n + 1
step, and Z ∈ SO(3)×R3 is its observation. Before updating
the state vector, we will first compute y = Z ⊟ h(Xn+1|n, 0)
in (16). According to EKF framework,

y ≈ Hn+1ξn+1|n + vn+1 (31)

where Hn+1 is the Jacobian of observation function evaluated
at Xn+1|n, and vn+1 ∼ N(0,Ωn+1) is the noise. If the
estimation is accurate, then y should form a zero mean
Gaussian distribution with covariance

Py = Hn+1Pn+1|n(Hn+1)
⊤ +Ωn+1. (32)

Therefore, if all the elements of y, i.e. y(k), k = 1, · · · , 6,
are in their 3σ bounds, i.e.

|y(k)| < 3
√

Py(k, k), k = 1, · · · 6,

then we will use y to update the state. Otherwise, the obser-
vation will be considered as an outlier. This outlier removal is
similar to that using Mahalanobis distance. The EKF methods
with this outlier removal are called Robust EKF methods in
the following.

TABLE II
AVERAGE RMSE* RESULTS FROM FOUR RGB-D SEQUENCES OF

YCB-VIDEO DATASET [29].

0019 0036 0041 0049
DVO .015/.029 .021/.055 .023/.038 .010/.046

ORB-SLAM3 .005/.025 .009/.051 .012/.026 .010/.044
Std-EKF .007/.009 .012/.017 .008/.010 .201/.252

Robust Std-EKF .007/.009 .015/.021 .008/.010 .011/.023
RI-EKF .004/.006 .004/.007 .006/.007 .156/.205

Robust RI-EKF .004/.006 .004/.006 .006/.007 .007/.022
PGO .003/.004 .003/.005 .005/.006 .007/.022

*RMSE of Robot Position (m)/RMSE of Robot Rotation (rad)

E. Results and Analysis

The standard deviations of the measurement noises of
sequence 0019, 0036, and 0041 are around 0.001 m/0.04 rad
for position and rotation. The noise level of sequence 0049
is around 0.04 m/0.6 rad for position and rotation, which is
much larger than the other three sequences. In the estimators,
we tend to set the measurement uncertainties slightly lower
than the actual noise levels, in order to remove the outliers.
In these experiments, we set the standard deviations of the
measurement noises in Std-EKF and RI-EKF to be around
0.001 m/0.03 rad for the four data sequences.

We compare our algorithm with DVO [2], ORB-SLAM3 [3]
and Std-EKF using the four data sequences. In addition, PGO
is a common back-end approach in the existing object SLAM
systems [8][10]. We also test PGO using the same information
as in Robust RI-EKF. The average RMSE for robot rotation
and position are shown in Table II. In general, PGO performs
the best on these four data sequences as listed in Table II
as expected. The Robust RI-EKF performs the closest to this
optimization based method in terms of accuracy for the tested
sequences. However, assuming all the objects are observed at
all the steps, the computational complexity of EKF methods
is O(T ·N3) for the whole trajectory, while the computational
complexity of pose graph optimization (using Schur comple-
ment) is O(T 3+T 2 ·N), where T is the number of time steps
and N is the number of objects [33]. Therefore when N << T
(for examples, the presenting experiments), EKF methods are
more efficient than this optimization method. Although both
DVO and ORB-SLAM3 utilize all the features in the whole

7

Fig. 3. Sample images from the four sequences in YCB-Video Dataset [29] used in the experiments. For each column, the lower row shows an image with
feature observations while the upper row shows the final estimate from our proposed method.

trajectory, they only exploit low-level features (point features).
In contrast, the object features have broader perspective loop
closures, longer feature track, and more intrinsic constraints
information between low-level features. Additionally, constant
velocity model also provides extra information. Hence, DVO
and ORB-SLAM3 are not fairly comparable. These could
explain why the filter based Robust RI-EKF outperforms these
two optimization based methods.

The comparison of Robust RI-EKF, Robust Std-EKF, RI-
EKF, and Std-EKF on Sequence 0049 shows that robust
methods are far better on such inaccurate data sequences.
We also note that some RMSE of Robust Std-EKF are larger
than that of Std-EKF, especially on Sequence 0036. This is
mainly caused by the inconsistency of Std-EKF which results
in mistaken deletion for correct data in Robust Std-EKF.

Fig. 4 shows the errors of robot pose estimates and the 3σ
bounds of each component for Robust RI-EKF and Robust
Std-EKF on Sequence 0036, respectively. Robust RI-EKF
perfoms well in terms of consistency, while Robust Std-EKF
underestimates the uncertainty of the state in the latter half of
the sequence. This inconsistency of robust Std-EKF can finally
result in larger errors. In contrast, the estimates by Robust
RI-EKF are more reliable, making our outlier removal more
effective.

Fig. 5 shows the RMSE of an object (Pitcher Base in
Sequence 0041) in every 100 steps. The RMSE of each object
in Sequence 0041 can be found in the full version of this paper
[32]. They illustrate that Robust RI-EKF also generates more
accurate estimates on the object poses than Robust Std-EKF.

In general, from the real data experiments, we can see
Robust RI-EKF can generate good estimation results. In Fig.
3, the upper row images show the estimated objects from Ro-
bust RI-EKF, which significantly improve the corresponding
observations shown in the lower row images for Sequences
0036, 0041 and 0049.

VII. CONCLUSION

In this work, we propose a right invariant EKF (RI-EKF)
algorithm for object based SLAM, where object features are
represented by 3D poses and are estimated together with the

latest robot pose. From theoretical analysis, we prove that our
RI-EKF generated by the proposed Lie group automatically
maintains the correct observability properties. This is different
from standard EKF with object features that does not have the
correct observability property. Results from simulations and
real data experiments confirm the good performance of the
proposed RI-EKF algorithm.

As general EKF, RI-EKF framework also assumes the
models are under Gaussian white noises and only considers
the first order errors. Hence the proposed method could have
some limitations in non-Gaussian noise or large noise level
problems.

In this paper, we focus on the SLAM back-end and assume
the objects observed are within a given database such that
they can be detected and matched relatively easily from the
SLAM front-end. In the future, we will investigate the more
challenging object based SLAM problem where the objects in
the environment are more general and may not belong to a
known database.

REFERENCES

[1] C. Forster, M. Pizzoli and D. Scaramuzza, “SVO: Fast semi-direct
monocular visual odometry,” 2014 IEEE International Conference on
Robotics and Automation (ICRA), 2014, pp. 15-22.

[2] C. Kerl, J. Sturm and D. Cremers, “Dense visual SLAM for RGB-
D cameras,” 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2013, pp. 2100-2106.

[3] C. Campos, R. Elvira, J. J. G. Rodrı́guez, et al., “ORB-SLAM3:
An Accurate Open-Source Library for Visual, Visual-Inertial and
Multi-Map SLAM,” IEEE Transactions on Robotics, 2021. doi:
10.1109/TRO.2021.3075644.

[4] R. Gomez-Ojeda, J. Briales and J. Gonzalez-Jimenez, “PL-SVO: Semi-
direct Monocular Visual Odometry by combining points and line seg-
ments,” 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2016, pp. 4211-4216.

[5] A. J. B. Trevor, J. G. Rogers and H. I. Christensen, “Planar surface
SLAM with 3D and 2D sensors,” 2012 IEEE International Conference
on Robotics and Automation, 2012, pp. 3041-3048.

[6] J. Civera, D. Galvez-Lopez, L. Riazuelo, et al., “Towards semantic
SLAM using a monocular camera,” IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, 2011.

[7] M. Sualeh, G. W. Kim, “Simultaneous localization and mapping in
the epoch of semantics: a survey,” in International Journal of Control,
Automation and Systems, vol. 17, no. 3, pp. 729-742, 2019.

8

Fig. 4. Robot pose estimate errors and the corresponding 3σ bounds for Sequence 0036: the upper six figures are for Robust RI-EKF, the lower six figures
are for Robust Std-EKF.

Fig. 5. RMSE of an object (Pitcher Base) in Sequence 0041 for Robust RI-
EKF and Robust Std-EKF.

[8] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, et al., “SLAM++:
Simultaneous localisation and mapping at the level of objects,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2013, pp. 1352–1359

[9] D. Gálvez-López, M. Salas, J. D. Tardós, and J. M. M. Montiel, “Real-
time monocular object SLAM,” Robotics and Autonomous Systems,
2016, 75: 435-449.

[10] S. Yang and S. Scherer, “CubeSLAM: Monocular 3-D Object SLAM,”
in IEEE Transactions on Robotics, vol. 35, no. 4, pp. 925-938, Aug.
2019.

[11] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige and W. Burgard,
“G2o: A general framework for graph optimization,” 2011 IEEE Inter-
national Conference on Robotics and Automation, 2011, pp. 3607-3613,
doi: 10.1109/ICRA.2011.5979949.

[12] S. Agarwal, K. Mierle, and Others, “Ceres solver,” http://ceres-
solver.org.

[13] S. J. Julier, J. K. Uhlmann, “A counter example to the theory of simul-
taneous localization and map building,” in Robotics and Automation,
2001. Proceedings 2001 ICRA. IEEE International Conference on, vol.
4, 2001, pp. 4238–4243.

[14] J. A. Castellanos, J. Neira, and J. D. Tard´os, “Limits to the consistency
of ekf-based slam,” in 5th IFAC Symp, Intell. Autonom. Veh. IAV’04,
2004.

[15] T. Bailey, J. Nieto, J. Guivant, et al., “Consistency of the EKF-SLAM
Algorithm,” 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2006, pp. 3562-3568.

[16] S. Huang and G. Dissanayake, “Convergence and consistency analy-
sis for extended Kalman filter based SLAM,” IEEE Transactions on
Robotics, 23(5), 1036-1049. 2007.

[17] G. P. Huang, A. I. Mourikis and S. I. Roumeliotis, “Analysis and im-
provement of the consistency of extended Kalman filter based SLAM,”
2008 IEEE International Conference on Robotics and Automation, 2008,
pp. 473-479.

[18] G. P. Huang, A.I. Mourikis, and S.I. Roumeliotis. “A first-estimates
Jacobian EKF for improving SLAM consistency,” In 11th International
Symposium on Experimental Robotics (ISER’08), Athens, Greece, July
2008.

[19] G. P. Huang, A. I. Mourikis, S. I. Roumeliotis, “Observability-based
rules for designing consistent EKF SLAM estimators,” The International
Journal of Robotics Research, 2010, 29(5): 502-528.

[20] T. Zhang, K. Wu, J. Song, et al., “Convergence and consistency analysis
for a 3-D invariant-EKF SLAM,” IEEE Robot. Autom. Lett., vol. 2, no.
2, pp. 733–740, Apr. 2017.

[21] A. Barrau, S. Bonnabel, “An EKF-SLAM algorithm with
consistency properties,” Technical report, 2016. URL:
https://arxiv.org/abs/1510.06263v3.

[22] A. Barrau, S. Bonnabel, “The Invariant Extended Kalman Filter as a
Stable Observer,” In: IEEE Transactions on Automatic Control 62.4
(2017), pp. 1797–1812.

[23] N. Aghannan, P. Rouchon, “On invariant asymptotic observers,” Deci-
sion and Control, 2002, Proceedings of the 41st IEEE Conference on.
IEEE, 2003.

[24] C. Forster, L. Carlone, F. Dellaert, et al., “On-Manifold Preintegration for
Real-Time Visual-Inertial Odometry,” IEEE Transactions on Robotics,
2015, 33(1):1-21.

[25] S. Bonnabel, “Symmetries in observer design: Review of some recent
results and applications to ekf-based slam,” In Robot Motion and
Control, 2011:3-15.

[26] R. Mahony and T. Hamel, “A geometric nonlinear observer for simul-
taneous localisation and mapping,” 2017 IEEE 56th Annual Conference
on Decision and Control (CDC), 2017, pp. 2408-2415.

[27] M. Brossard, A. Barrau and S. Bonnabel, ”Exploiting Symmetries to
Design EKFs With Consistency Properties for Navigation and SLAM,”
in IEEE Sensors Journal, 2019, vol. 19, no. 4, pp. 1572-1579.

[28] A. Barrau and S. Bonnabel, “Stochastic observers on Lie groups: a
tutorial,” 2018 IEEE Conference on Decision and Control (CDC), 2018,
pp. 1264-1269.

[29] Y. Xiang, T. Schmidt, V. Narayanan, et al., “Posecnn: A convolutional
neural network for 6d object pose estimation in cluttered scenes,” in
Robotics: Science and Systems, 2018.

[30] W. Hua, Z. Zhou, J. Wu, et al., “REDE: End-to-End Object 6D Pose
Robust Estimation Using Differentiable Outliers Elimination,” in IEEE
Robotics and Automation Letters.

[31] S. Hinterstoisser, V. Lepetit, S. Ilic, et al., “Model based training,
detection and pose estimation of texture-less 3d objects in heavily
cluttered scenes,” in Asian conference on computer vision. Springer,
2012, pp. 548–562.

[32] Y. Song, Z. Zhang, J. Wu, et al., “A Right Invariant Extended Kalman
Filter for Object based SLAM,” (Full version with Appendix,) 2021.
URL: https://arxiv.org/abs/2109.05297.

[33] H. Strasdat, J.M.M. Montiel, A. J. Davison, “Visual SLAM: Why filter?,”
Image and Vision Computing, 2012, 30(2):65-77.

