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Abstract. This paper presents a novel algorithm named Direct Simul-
taneous Registration (DSR) that registers a collection of 3D images in a
simultaneous fashion without specifying any reference image, feature
extraction and matching, or information loss or reuse. The algorithm
optimizes the global poses of local image frames by maximizing the simi-
larity between a predefined panoramic image and local images. Although
we formulate the problem as a Direct Bundle Adjustment (DBA) that
jointly optimizes the poses of local frames and the intensities of the
panoramic image, by investigating the independence of pose estimation
from the panoramic image in the solving process, DSR is proposed to
solve the poses only and proved to be able to obtain the same optimal
poses as DBA. The proposed method is particularly suitable for the sce-
narios where distinct features are not available, such as Transesophageal
Echocardiography (TEE) images. DSR is evaluated by comparing it with
four widely used methods via simulated and in-vivo 3D TEE images.
It is shown that the proposed method outperforms these four methods
in terms of accuracy and requires much fewer computational resources
than the state-of-the-art accumulated pairwise estimates (APE). Codes
of DSR are available at https://github.com/ZH-Mao/DSR.

1 Introduction

Image registration is a fundamental task for many medical image analysis prob-
lems where valuable information conveyed by two or more images needs to be
combined and examined [14,20]. In recent decades, mainstream medical imaging
techniques, such as CT, MRI, and Ultrasound (US), have evolved from 2D to
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3D, which proposes new challenges to medical image registration, such as feature
extraction and high computational complexity [15]. Compared to feature-based
methods [13], direct (intensity-based) methods [14,16] have occupied a dominant
position in the field of medical image registration [7,18] because of their avoid-
ance of feature extraction and high accuracy, especially when handling images
that lack distinct features, such as 3D Transesophageal Echocardiography (3D
TEE) images. Direct methods estimate the frame poses by maximizing the simi-
larity between the images. Widely used similarity metrics include sum-of-squared
differences (SSD), correlation ratio (CR), and mutual information (MI) [14].

Registration of a collection of images is much more complex than pairwise
registration [20]. One solution to this problem is to deduce the global poses from
the results of pairwise registration [2,11,16,21]. This strategy, although intuitive,
is usually biased to the selected reference image and inevitably brings in accu-
mulating errors. In comparison, a better strategy is to optimize the poses of all
local frames simultaneously to avoid biases. In [9], a framework called congealing
is proposed, which uses underlying entropic information of images for alignment.
A large number of images are necessary for congealing because the estimation
is done with the information at one location at a time [20]. And as [3] pointed
out, employing entropy for congealing is problematic due to its poor optimiza-
tion characteristics. Recently in [20], an accumulated pairwise estimates (APE)
method is proposed for simultaneous registration. The method considers over-
lapping areas of images in the objective function multiple times, thus may have
the information reuse issue and bring in extra complexity in the optimization.

In this paper, we propose a novel direct simultaneous registration (DSR)
method which optimizes global poses of a collection of 3D images directly based on
image intensity. The novelties of the paper include: 1) simultaneous registration
is formulated as a direct bundle adjustment (DBA) problem, which redefines clas-
sical bundle adjustment (BA) [17] by jointly optimizing the poses of local frames
and the intensities of the predefined panorama; 2) DBA uses intensity informa-
tion directly instead of the extracted and matched feature points of the local 2D
images in classical BA. Therefore, our method can deal with images lacking dis-
tinct features such as 3D TEE images; 3) importantly, we prove in DBA, the pose
estimation is independent of the intensities of the panorama during the optimiza-
tion process; 4) based on 3), we derive DSR that only solves the poses without
solving the intensities of the panorama but obtaining the same poses as DBA. Sim-
ulated and in-vivo 3D TEE images are used to evaluate the proposed DSR method
compared with pairwise [2], Lie normalization [21], sequential [11], and APE [20]
methods. Running in a simultaneous fashion, DSR is an unbiased method that
can employ all intensity information of images without information reuse, which
is an elegant way to obtain the optimal poses of local frames with high accuracy.

2 Methodology

2.1 Direct Bundle Adjustment

Suppose there are m frames of 3D images taken from different viewpoints
denoted as I = {I1, ..., Ii, ..., Im}. Correspondingly, the rigid transformation for
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each frame is parameterized in Lie algebra space [6] with the pose parameters
xξ = [ξ�

1 , ..., ξ�
i , ..., ξ�

m]� ∈ R
6m. Simultaneous registration is the process of

estimating the optimal pose parameters of all local frames x̂ξ simultaneously in
order to align all the images in one global coordinate frame.

Assume M is defined as a 3D panoramic image in the global frame. M con-
sists of n voxels {p1, ...,pj , ...,pn} where pj ∈ R

3, which fuses all the local frame
images. The intensity of voxel pj in M is obtained from fusing different points’
intensities in local images. Denote the intensity of pj in M and pj ’s correspond-
ing point pij in local frame Ii as M(pj) and Ii(pij), respectively. The intensity
difference between M(pj) and Ii(pij) is

eij(ξi,M(pj)) = M(pj) − Ii(ω(ξi,pj)) = M(pj) − Ii(pij), (1)

where pij = ω(ξi,pj) = T (ξi)pj transforms pj to pij , and T (·) ∈ SE(3) maps
the pose parameters ξi to a 3D Euclidean transformation. When calculating the
intensity difference eij in (1), the intensity of pij in Ii is obtained using trilinear
interpolation to reduce the error of the intensity difference computation.

Inspired by the conventional BA framework that considers both the 3D
point positions and camera poses in the optimization [1,17], we propose the
DBA framework that jointly optimizes the poses of local frames and the inten-
sities of the panoramic image (instead of 3D point positions in BA). The over-
all state parameters considered in DBA are x = [x�

ξ ,x�
M ]�, where xM =

[M(p1), ...,M(pj), ...,M(pn)]� are the intensities of voxels in M . Then, we seek
to obtain the optimal solution x̂ = [x̂�

ξ , x̂�
M ]� that minimizes the sum-of-squared

intensity differences between the panoramic image and the local images, i.e.

x̂ = argmin
xξ,xM

n∑

j=1

m∑

i=1

σ(pij)(eij(ξi,M(pj)))2, (2)

where σ(pij) = 1 if the transformed point pij is within Image Ii, i.e. pj is
observed in Ii, otherwise σ(pij) = 0. Such a formulation of DBA circumvents the
process of feature extraction and matching in most BA problems. Additionally,
since we take the intensities of the panoramic image into account, DBA can also
obtain the optimal panoramic image besides the global poses of local frames.

Gauss-Newton (GN) method is commonly used to solve nonlinear least-
squares (NLLS) problems like (2). The method obtains the solution by start-
ing with parameters initialization and then updating the parameters using the
step changes calculated from GN equation in each iteration until the algorithm
converges. If we write the overall observed intensity differences as a concatena-
tion vector e(x) = [..., eij , ...]�, the objective function of (2) can be rewritten
as f(x) = e(x)�e(x). And step changes Δx in each iteration can be calculated
from the GN equation:

J(x)�J(x)Δx = −J(x)�e(x), (3)

where J(x) is the Jacobian matrix of e(x) w.r.t. x.
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Let Jij(x) denote one row of J(x), which is the gradient of one intensity
difference eij w.r.t. x = [x�

ξ ,x�
M ]�. It is shown in (1) that eij is only dependent

on ξi and M(pj), thus only two blocks in Jij(x) are nonzero, i.e.

∂eij(ξi,M(pj))
∂ξi

= − ∂Ii

∂ω(ξi,pj)
∂ω(ξi,pj)

∂ξi
, and

∂eij(ξi,M(pj))
∂(M(pj))

= 1,

which indicates Jij(x) is very sparse.
Although the optimal poses and panoramic image can be obtained simulta-

neously, DBA seems more difficult to solve than traditional multi-image regis-
tration problems since a much higher order state vector is involved. However,
we can further prove that the pose optimization is actually independent of the
panoramic image in the GN iterations (see Sect. 2.2), which means we do not
need to solve the intensities of the panoramic image but can obtain exactly the
same optimal poses as solving the complete DBA. This is also an important
property that conventional BA frameworks do not have.

2.2 Simultaneous Registration Without Intensity Optimization

Theorem : When solving (2) with GN iterations, the optimization of poses is
independent of the intensities of the panoramic image.

Proof: If we write Jacobian matrix of e(x) w.r.t. xξ and xM separately as
J(x) = [Jξ, JM ], then (3) can be rewritten as the following format:

[
Hξξ HξM

HMξ HMM

] [
Δxξ

ΔxM

]
=

[
bξ

bM

]
, (4)

where Hξξ = J�
ξ Jξ,HξM = H�

Mξ = J�
ξ JM ,HMM = J�

MJM , bξ = −J�
ξ e(x), and

bM = −J�
Me(x). Then, through Schur complement [23], the step changes of poses

and intensities of voxels can be computed sequentially as:
(
Hξξ − HξMH−1

MMH�
ξM

)
Δxξ = (bξ − HξMH−1

MMbM ), (5)

HMMΔxM = bM − H�
ξMΔxξ. (6)

Suppose intensity differences e(x) are decomposed into two components
e(x) = A − B, where A = [...,M(pj), ...]� and B = [..., Ii(pij), ...]� represent
observed intensities of the panoramic image and their corresponding intensities
in local frames, respectively. The right side of (5) becomes:

bξ − HξMH−1
MMbM = −J�

ξ (A − B) + J�
ξ JM (J�

MJM )−1J�
M (A − B)

= −J�
ξ (A − JM (J�

MJM )−1J�
MA) − J�

ξ (JM (J�
MJM )−1J�

MB − B). (7)

It is shown from Jij(x) that there is one and only one nonzero element 1 in
each row of JM . The nonzero element means the voxel pj is observed in the
local frame i and corresponds to the intensity difference eij = M(pj) − Ii(pij).
Therefore, according to the observed status of the panoramic image in the local
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frames which is indicated by the structure of JM , it can be easily deduced that
A = JMxM . Substituting A to the first term on the right side of (7), we have:

−J�
ξ (JMxM − JM (J�

MJM )−1J�
MJMxM ) = 0. (8)

Then, (5) becomes:
(
Hξξ − HξMH−1

MMH�
ξM

)
Δxξ = −J�

ξ (JMH−1
MMJ�

MB − B), (9)

which indicates that the step change Δxξ is independent of intensities xM in
every GN iteration. Therefore, obtaining the optimal poses is independent of the
intensities of panoramic image M during the optimization process. Q.E.D.

Although HMM in (9) has a huge dimension due to the large number of
intensities in M , HMM is sparse and diagonal because of the sparse structure
of JM . The value of a diagonal element represents the number of times that the
corresponding voxel of M has been observed in the local frames in the current
iteration. So, the inverse of diagonal matrix HMM can be easily computed by
finding the inverse of each diagonal element, which makes solving (9) efficient.

Such an independent property of DBA is very attractive since it allows us to
optimize the poses only using (9), which is equivalent to solving the complete
DBA problem using (4). A 3D image typically contains millions of voxels but we
only need six parameters to represent its pose. Therefore, the independence of
optimizing poses to intensities can greatly help us reduce the dimension of the
solution space. For distinction with DBA, we call this method DSR.

In addition, after x̂ξ is obtained, the NLLS problem in (2) becomes a lin-
ear least-squares problem. Therefore, if required, we can calculate the optimal
panoramic image easily in only one step from the following closed-form formula:

x̂M = −H−1
MMJ�

MB. (10)

The implementation process of DSR is summarized in Algorithm 1 in the sup-
plementary materials.

3 Experiments and Results

Registration of US images is usually more challenging than other modalities
like CT and MRI due to the relatively low signal-to-noise ratio. Additionally,
registration of a collection of 3D TEE images is especially valuable to overcome
the drawback of small field of view (FoV) of 3D TEE probes. Thus, in this
section, 3D TEE images are used as examples to evaluate the proposed DSR
algorithm compared with the pairwise [2], Lie normalization [21], sequential [11],
and APE [20] methods. Both simulated and in-vivo experiments are performed.

3.1 Simulated Experiments

Five sequences of 3D images (in grayscale ranging from 0 to 255) are simulated by
transforming a 3D TEE volume to a real 3D CT scan of the heart with different
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Fig. 1. Accuracy of DSR method compared to pairwise [2], Lie normalization [21],
sequential [11], and APE [20] methods using 5 sequences of simulated 3D TEE images.

poses and cropping the corresponding image area. The FoV of the simulated TEE
images is the same as the 3D TEE image to get similar imagery information
as real TEE volumes. Each sequence contains 11 frames of 3D images. The
magnitude of these transformations varies between +/– 12 degrees for rotations
and +/– 15 pixels for translations, which are typical ranges of poses in our
obtained in-vivo 3D TEE images. Multiplicative speckle noise [10] in the original
US signal can be transformed into a kind of additive noise close to Gaussian
distribution in the obtained US images after logarithmic compression [10,24].
Thus, Gaussian noise with a standard deviation of 25 is generated randomly
and added to the intensities of these five sequences of images.

The accuracy of the proposed DSR method is evaluated by comparing it
with pairwise, Lie normalization, sequential, and APE methods via simulated
datasets. For fair comparisons, pairwise, sequential, and APE methods use the
SSD as the similarity metric, GN method as optimization solver, and the initial
pose parameters in each method are the same. Lie normalization optimizes poses
obtained from pairwise methods and does not directly involve images [21]. Thus,
we use the results from the pairwise registration as the input to Lie normaliza-
tion. The mean absolute errors (MAE) of translation and Euler angles obtained
from the proposed DSR and other four methods are compared in Fig. 1.

It is shown from Fig. 1 that MAE of the results obtained from DSR, sequen-
tial, and APE methods are much smaller than the pairwise and Lie normalization
methods in most of the cases, which indicates the better accuracy of these three
methods. Additionally, among DSR, sequential, and APE methods, the accuracy
of DSR is within 0.5 pixels for translations in most of the cases and is within
1 × 10−3 rad for rotations in more than half cases. Although the accuracy of
APE is the closest to DSR among four competing methods, it still has larger
errors than DSR. The errors of APE are greater than 0.5 pixels for translations
and greater than 1 × 10−3 rad for rotations in more than half of experiments.
And the results show that the accuracy of both translations and rotations from
the sequential method is lower than DSR and APE. Furthermore, it is seen from
Fig. 1 that the distribution of errors from DSR is more concentrated than the
others, which indicates it also has better robustness than the other four methods.

The above comparisons indicate that the proposed method has the highest
accuracy, followed by APE. Both these two simultaneous registration methods
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are more accurate than the other three which are deduced from pairwise regis-
tration. In addition, compared with the proposed DSR method, one apparent
drawback of APE is its much higher computational complexity. Since both DSR
and APE use the sum-of-squared intensity differences as the objective function,
the computational complexities for both methods are closely related to the num-
ber of intensity differences. Suppose there are m images, each image has h pixels,
and every two images have around α% overlapping area, the computational com-
plexity of APE is around O(m(m − 1)/2 × α% × h) [19] since APE considers all
the combinations of images, while that of DSR is only O(m×h). In the simulated
experiments for each sequence, it is found that APE calculates around four times
as many intensity differences as DSR and needs around 4–5 times longer time
than DSR for each iteration. Theoretically, the more images involved, the higher
the computational complexity of APE is, and the more time it takes than DSR.

3.2 In-Vivo Experiments

In the in-vivo experiments, forty-six 3D TEE images from six patients (Patient
#1 to #6) are collected using an iE33 ultrasound system (Philips Medical Sys-
tems) equipped with an X7-2 real-time 3D transducer. ECG-gating technique [5]
is used to assist capture ECG-gated 3D TEE images so that registration of these
images can be considered as rigid. The number of images in each dataset varies
from 6 to 11. Each 3D TEE image contains around six million voxels. Since
the proposed DSR, sequential, and APE methods outperformed the other two
methods in terms of accuracy, in this section, the proposed method is compared
with the sequential and APE methods only. Pose parameters of three methods
are initialized using the results from the pairwise method. It is found that such
an initialization method is enough for DSR to converge to the correct results.

Analyzing the accuracy of a registration algorithm based on in-vivo datasets
is complex because the ground-truth poses are usually not available. If images
are aligned using the estimated poses, visually we can confirm that the stitching
areas of the aligned images should be smooth and without misalignment if the
poses are accurate. Therefore, to evaluate the accuracy of the proposed DSR
method, pairwise images are aligned using the poses obtained by the sequential,
APE, and DSR methods, respectively.

Similar to the results in our simulated experiments, aligned images obtained
from DSR have the best quality, followed by APE and then the sequential
method. In all the aligned images, there is no misalignment found from the
proposed DSR in the experiments, while some apparent misalignment is found
from the results of APE and sequential methods. Several examples are displayed
in Fig. 2. Additionally, although APE can obtain results that are closer to those
from the proposed method than the sequential method, it requires a much longer
time for each iteration. In the experiments, APE usually needs around 2–5 times
longer time than the proposed method for each iteration.

To further evaluate the accuracy of the proposed method, in-vivo 3D TEE
images in each dataset are fused using (10) and the estimated poses from DSR.
We manually select areas which contain sharp boundaries like the left atrium
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Fig. 2. Comparisons of the aligned images using poses from sequential, APE, and DSR.

Fig. 3. Fused 3D TEE images using registration results from DSR for six in-vivo
datasets. LA walls which have sharp structures in the images are indicated by white
arrows in selected areas. Colored frames are the boundaries of two registered volumes.
(Color figure online)

(LA) wall in the fused images for evaluation since generally, misalignment caused
by poses with low accuracy can be easily found in these areas. The selected
regions are shown in Fig. 3 with three orthogonal slices and two of the registered
images in the fused images are highlighted in color boundaries. By observing
the LA walls which are indicated by white arrows in Fig. 3, it is shown that
the stitching areas have smooth transition and no misalignment is found in the
images, which suggests good quality of alignments have been obtained by DSR.

The motivation for our current study is to enlarge the FoV of 3D TEE to
assist transcatheter left atrial appendage (LAA) occlusion [4]. First, the enlarged
FoV of 3D TEE allows the LAA to be observed completely (see Patient # 1
in Fig. 3) to facilitate device size selection for LAA occlusion [12]. Secondly,
a complete structure of the left atrium in the enlarged 3D TEE image allows
measuring the relative position and orientation of LAA w.r.t. atrial septum (AS)
to facilitate the planning for LAA occlusion [4]. By counting the number of
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voxels, it is found that the FoV of the fused image is enlarged to 2.18, 2.10, 2.02,
2.01, 1.80, and 2.06 times as compared with the original single TEE volume of
Patient # 1 to # 6, respectively.

4 Conclusion

Starting from the framework of direct bundle adjustment, a novel direct simulta-
neous registration algorithm for 3D images is proposed in the paper. The method
can optimize the poses of a collection of local images simultaneously without any
information loss or reuse. Results from the simulated and in-vivo experiments
demonstrate that the proposed method outperforms the other four competing
methods in terms of accuracy and is more efficient than the state-of-the-art APE
method. From the results of simulated experiments, it is evident that our method
improved the accuracy of registration by more than 50% compared to the other
four methods for most cases. In-vivo experiments also show accurate structures
and extended field of view of the fused images, indicating a good quality of
registration and a significant potential clinical value of the proposed method.

The proposed method can be very useful in practice when real-time per-
formance is not required, e.g. using the enlarged FoV of 3D TEE for surgical
planning of LAA occlusion. Our current focus is more on accuracy than efficiency,
thus we implemented DSR in MATLAB on CPU. Since the linear system (4) has
a special sparse structure that is similar to other bundle adjustment problems, it
is very promising for us to use techniques in [22] to achieve parallel implementa-
tion of DSR on GPU. Additionally, optimization techniques used in g2o [8] and
parallax BA [25] could also help us achieve the fast implementation. Our future
work will focus on the efficient implementation of DSR.
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