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Active SLAM in 3D deformable environments

Mengya Xu1,2, Liang Zhao2, Shoudong Huang2, and Qi Hao1,3

Abstract— This paper considers active SLAM problem for
3D deformable environments where the trajectory of the robot
is planned to optimize the SLAM results. A planning strategy
combining an efficient global planner with an accurate local
planner is proposed to solve the problem. Simulation results
under different scenarios have shown that the proposed active
SLAM algorithm provides a good balance between accuracy
and efficiency as compared to the local planner and the global
planner. The MATLAB code of this first active SLAM algorithm
for 3D deformable environments is made publicly available4.

I. INTRODUCTION

SLAM in deformable environments is an important re-
search topic, due to its wide applications in many different
areas such as robotic motion tracking and minimally invasive
robotic surgery. A few groups have completed some good
work on this challenging topic. When an RGB-D sensor
is used to observe the environment, a common approach
is to deform the prior or build map directly based on the
observations [1] [2] [3]. In some cases, high accuracy is
required but the sensor vision is limited, extra techniques
are needed to provide additional information. For example,
in some surgical cases, computed tomograph (CT) is used to
provide an ideal prior model for recovering the deformation
[4] [5], while [6] uses GPU and ORB-SLAM to obtain a
pose estimation first. More challenging cases when only one
monocular camera can be used have also been investigated by
many works like [7] [8]. In [9] and [10], the camera motion
and the the 3D shape of deformable objects are recovered
using an EKF. In [11], some fundamental questions about
SLAM in deformable environment are discussed, such as
the observability and the consistency.

Planning a good trajectory for the robot/sensor is critical
and also challenging in SLAM in deformable environments.
A good trajectory of the robot can help obtain high quality
SLAM estimate. Intuitively, the robot wants to observe as
many features as possible at each time step so that more
information can be obtained through the observations. In
most of the works of SLAM in deformable environments, the
motion of the robot is controlled by human or predetermined.
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However, it is more desirable if the robot can decide its
control action online based on different situations, which is
the active SLAM problem in deformable environments to be
considered in this paper.

Active SLAM in static environments has been well studied
in the last decade. In active SLAM, one important perfor-
mance criteria is the quality of SLAM estimate. In most
cases, the Fisher information matrix or covariance matrix
in the corresponding estimation problem is used to build
the objective function for selecting the robot motion [12]
[13]. The active SLAM problem is often combined with
other tasks such as exploration. In these problems, how to
balance the performance of other tasks and the quality of the
SLAM estimate is a challenge. Different methods have been
proposed to consider different tasks. The most frequently
used method is to build a utility function to balance different
factors [14] [15]. Another typical method is to set thresholds
for certain performances [16]. So far, various research groups
have been considering different active SLAM problems using
different performance metrics, which makes a fair compari-
son of different research works difficult.

A popular framework for active SLAM is selecting the
best action from a finite set of candidate actions [17]
[18]. However, computational complexity of evaluating these
candidate actions grows exponentially with the size of the
action space. In practice, frontier-based exploration [19] [20]
is a more widely used approach, where a small subset of
locations in the map is selected. However, these approaches
can only guarantee convergence to locally optimal policies.
Considering the global information, there are works trying to
pre-compute and store the information in a special map [21]
[22] [23]. However, the pre-calculated map representation
is only efficient for static environments with few possible
changes. For deformable environments with high dynamics,
the information in the map needs to be updated continuously,
costing much more time than the traditional active SLAM
methods in static environments. Recently, [24] proposed a
hierarchical exploration framework, including a local planner
to plan detailed paths using dense data and a global plan-
ner to plan coarse paths using sparse data. This approach
considers the global information, and at the same time
significantly improves the computational efficiency. This
kind of hierarchical framework is also widely used in multi-
robot path planning [25] for exploring partially unknown
environment. However, these approaches mainly focus on the
map coverage and collision avoidance, leaving the estimation
uncertainty during the SLAM process unconsidered.

In this paper, we consider the active SLAM problem
in 3D deformable environments which has not been stud-



ied yet. The environment we consider is deformable and
highly dynamic. The robot needs to take the environment
changes into consideration so that it can successfully reach
the target region by itself and map the latest environment
accurately. There are some works focusing on SLAM in
partially dynamic environment, especially in the field of
service robot [26] and autonomous driving [27], where
features from moving objects need to be distinguished and
removed from the SLAM process. However, for SLAM in
deformable environments, there is no static part and all the
features considered in the SLAM estimate are dynamic. In
our previous work [11], some fundamental questions about
SLAM in deformable environment have been discussed,
including the active SLAM problem. Based on possible
assumptions on available information, a greedy active SLAM
algorithm is designed and tested in a simple 2D deformable
environment. In this paper, we consider 3D point feature
based SLAM in deformable environments. As an extension
of our previous work, an EKF based active SLAM framework
is designed to estimate the SLAM result accurately and
efficiently. Different from the previous work that used a
greedy planner [11], the planner proposed in this paper
is a combination of a global planner and a local planner.
Simulation results demonstrate that our proposed framework
can get more accurate results than using global planning only,
and more efficient than the local greedy planning method.

The paper is organized as follows. Section II reviews
models of SLAM in deformable environments based on
the reasonable assumptions. Section III presents the details
of the proposed active SLAM framework. Experimental
results using different simulation scenarios are provided and
compared to the global planning and local planning strategies
in Section IV. Finally, Section V concludes the paper and
presents some future work.

II. EKF SLAM IN DEFORMABLE ENVIRONMENTS

It is well known that the SLAM problem in deformable
environments is not solvable unless some assumptions on the
possible deformation and/or robot trajectory are made [11].
In this paper, the robot odometry model, observation model
and the feature dynamic models are formulated according to
the available information considering the 3D case. In this
section, we will introduce the EKF based 3D SLAM in
deformable environments. It has much less computational
cost compared with optimization based approach [11].

In the considered 3D feature based EKF SLAM problem,
the state with M features at n-th step is

χn = (R(Θn), xn,p1
n, · · · ,pM

n ), (1)

where R(Θn) ∈ SO(3), xn ∈ R3 and pi
n ∈ R3 (i =

1, · · · ,M ) are respectively the robot orientation, robot posi-
tion, and the coordinate of the i-th feature, all described in
the fixed world coordinate frame. Note the features are also
changing over time.

The robot odometry model is the same as in SLAM
in static environments. In general, for the SLAM problem
in deformable environments, some knowledge on both the

global rigid motion and the local deformation of the features
are available. Therefore, we can assume that the movement
of the features includes the global translation t and the local
deformation d, and rt ∈ SO(3) and rd ∈ SO(3) are the
corresponding rotation matrices.

Thus, the process model of the SLAM problem is

χn+1 = f(χn,un,wn) =
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where χn ∼ N (χ̂n,Pn), un = [Ωn, vn] is the control input,
and wn =

[
wΩ

n ,wv
n,w

j=1:M
n

]
∼ N (0,Qn) is the noise.

Note that the feature movement noise wj
n contains two

parts, the global translation noise wt
n,j and the local defor-

mation wd
n,j . That is, wj

n = wt
n,j +wd

n,j .
The observation model also contains two parts, the mea-

surement of the features and the measurement of the struc-
ture.

Zn = [zfn; z
c
n] = hn(χn, ϵn). (3)

Feature measurement zfn,j is the observations from the
robot sensor to the j-th features, just as in static environment.

Structure measurement zcn,j1,j2 are the observations of
the constraints between each pair of features, pj1=1:M and
pj2=1:M . In our experiment, the structure measurement be-
tween feature pj1 and pj2 is set to be the relative position
between them:

zcn,j1,j2 = f loc(n, j2)− f loc(n, j1) + ϵcn, (4)

where f loc(n, j) is the feature’s position relative to p1
n in the

local coordinate, given by

f loc(n, j) = pj
n − p1

n. (5)

The observation noise ϵn = [ϵfn, ϵ
c
n] ∼ N (0,On), where

ϵfn and ϵcn corresponds to the feature measurement noise and
the structure measurement noise respectively.

The EKF based SLAM algorithm in deformable environ-
ments is presented in Algorithm 1.

III. ACTIVE SLAM IN DEFORMABLE ENVIRONMENTS

In this section, we first introduce the traditional planning
method that minimizes a certain criterion to get the action
in each step, which we call local planner here. Secondly,
the global planner that is similar to [24] but for deformable
environments is presented. Finally, we propose a combined
planner that combines the local planning method and the
global planning method.

A. The active SLAM problem

For the active SLAM problem considered in this paper,
given a deformable object of which the global translation
model and the local deformation model are known, we
assume there are a known number of features distributed on
the surface of the object, and some prior knowledge of the



feature distribution is known. The robot starts from a fixed
location in the environment. The objective is to plan the robot
trajectory for a given time horizon, so that it can observe the
object completely, and estimate the observed features and the
robot poses accurately.

Algorithm 1 EKF SLAM in deformable environment
Input: χ̂n, Pn, un, Zn+1

Output: χ̂n+1, Pn+1

Propagation:
χ̂n+1|n ← f(χ̂n,un, 0), Pn+1|n ← FnPnFT

n + GnQnGT
n

Update:
Sn+1 ← Hn+1Pn+1|nHT

n+1 + On+1

Kn+1 ← Pn+1|nHT
n+1S−1

n+1

yn+1 ← Zn+1 − hn+1(χ̂n+1|n, 0)
χ̂n+1 ← χ̂n+1|n + Kn+1yn+1

Pn+1 ← (I − Kn+1Hn+1)Pn+1|n

B. Local planner

The local planner is the greedy method, where the infor-
mation that will be obtained in the next step is maximized
to obtain the robot control action. The information gained
in terms of the SLAM estimate can be described by the
resulting covariance matrix after the control action is taken
and the information from the new observations are used.

Concretely, given χ̂n and Pn, we would like to select the
control vector un such that a certain metric (e.g. the trace)
of the covariance matrix in the next step is optimized. That
is, the trace(Pn+1) is expected to be as small as possible:

obj = min trace(Pn+1), (6)

where Pn+1 is obtained by Algorithm 1.
Note that the feature observation Zn+1 is not available

when the planning is performed, so we assume that no
new feature will be observed and the estimation will not
be updated after the observation (zero-innovation) [28].

Zn+1 − hn+1(χ̂n+1|n) = 0,

χ̂n+1 = χ̂n+1|n.
(7)

C. Global planner

In the global planning, the objective is to generate a set
of viewpoints, so that the robot can observe each feature at
least once by visiting the viewpoints. Here, a viewpoint g is
a 3D position. The reward of each viewpoint, r, is defined as
the number of unobserved features that can be observed at
g. In our proposed method, the global planner is a coarse
but efficient planner. To simplify the calculation process,
we do not consider the orientation of the robot, so features
that within the distance of the sensor range are considered
to be able to be observed. Note that the reward of each
candidate viewpoint is updated according to the previous
selected viewpoints. As the same feature can be observed
from multiple viewpoints, once it is observed by the selected
viewpoint, it needs to be removed from others’ field-of-view,
and thus the reward needs to be updated accordingly.

Algorithm 2 presents the process of viewpoint set genera-
tion, which is similar to the sampling process shown in [24].

The algorithm first generates a set of viewpoint candidates
Gcand distributed uniformly in the 3D space around the
object. Secondly, the rewards of all viewpoint candidates
in Gcand are computed based on the initial robot pose and
the initially estimated feature positions. The reward of each
candidate viewpoint is the number of features that can be
observed in the viewpoint, minus the number of the features
that have been observed by the robot in the initial pose.

Algorithm 2 Viewpoint set generation algorithm
Input: traversable space S
Output: viewpoint set Gfinal

1: Generate a set of viewpoint candidates Gcand in S
2: For each candidate gi, calculate the number of the

unobserved features that can be observed at gi, and set
it to be its reward ri

3: cbest =∞
4: for i = 1 : K do
5: G = ∅
6: G′cand = Gcand
7: R =

∑length(G′
cand)

i=1 ri
8: while R ̸= 0 do
9: Probabilistically pick viewpoint g′ from G′cand

10: Remove g′ from G′cand
11: G ← G ∪ g′

12: Update ri for all viewpoints in G′cand
13: R =

∑length(G′
cand)

i=1 ri
14: end while
15: Compute cost c using equation (8)
16: if c < cbest then
17: Gfinal = G, cbest = c
18: end if
19: end for
20: return Gfinal

Next, a process is iterated K times to determine the final
viewpoint set Gfinal that contains the viewpoints to be visited
in order. Here, K is the number of sample sets to be com-
pared, which can be determined according to the experiment
requirement. In each iteration, a subset of viewpoints G is
generated from Gcand according to their rewards. Concretely,
the viewpoints are selected with probabilities proportional to
their rewards and put in G. After a viewpoint is selected, the
rewards of the remaining viewpoints are reduced accordingly.
Each iteration process finishes when the total reward of the
remaining candidate viewpoints is zero.

After the sampling process, we obtain K sets of view-
points. The one with the minimum cost function will be
selected to be the final viewpoint set Gfinal. The cost
function is defined as

c =

I∑
i=1

di,i+1, (8)

where di,i+1 is the Euclidean distance between two adjacent
viewpoints gi and gi+1 in G.

After the viewpoint set is determined, the viewpoint gi

is set to be the current goal point gcur one by one from



(a) Mesh model of the poly-
gon environment

(b) Feature model of the
polygon environment

(c) Mesh model of the heart
environment

(d) Feature model of the
heart environment

Fig. 1: Environment models.

i = 1 : Ng in the order of the set, where Ng is the number of
viewpoints in the set. In each step, the robot selects the action
that minimizes the distance D between the robot position
xn+1|n and the position of the current goal point gcur:

obj = minD(xn+1|n,gcur), (9)

Once all the viewpoints are visited, the next viewpoint will
be the first viewpoint of the set. That is, if i = Ng , i+1 = 1.

D. Combined planner

The combined planner is a combination of the local
planner and the global planner, aiming to balance the per-
formance in accuracy, coverage and processing time. We use
the global planner to generate the viewpoint set to ensure
that all features can be observed as soon as possible. At the
same time, the local planner which aims to minimize the
uncertainty will be used to improve the accuracy.

In particular, the robot action un is selected from a set of
candidate actions U = {ui

n|i = 1, 2, ..., Nu} in each step,
where Nu is the number of the candidate actions. The robot
pose after taking each candidate action is predicted, and the
distance D between the predicted robot pose and the current
goal point is calculated. The action set is sorted according
to the distances from small to large, and then the first nu

candidate actions are selected to be the new action set. This
process ensures that all actions in the new action set are
likely to guide the robot to approach the goal point. The final
action will be selected from the new action set using the local
planner, which minimizes the trace of the covariance matrix,
as shown in eq. (6). Here, nu is the number of the actions in
the new action set, where smaller value of nu means larger
probability of the robot to approach the goal point. If nu = 1,
it becomes the global planner. On the contrary, if nu = Nu,
it is the same as the local planner.

IV. SIMULATION RESULTS

A. Models and simulation settings

The process model and feature movement models for the
active SLAM are described in Section II. As stated above,
the movement of the features includes the global translation
t and the local deformation d. Here, we consider the linear
case only, that is, rt = I3 and rd = I3.

For the feature measurement model, the j-th feature ob-
served at the n-th step is given by

zfn,j = R(Θn)(xn − pj
n) + ϵfn. (10)

Two environments with different target deformable objects
are used to validate the algorithms in simulation, where the
target object is what we want to estimate. One is a polygon

environment that contains a created simple object model, as
shown in Fig. 1(a) and 1(b). The other is a heart environment
that contains a heart model segmented from a CT scan,
downloaded from OpenHELP [29], as shown in Fig. 1(c)
and 1(d). Our objective is to observe the target object and
obtain accurate SLAM estimate.

For the polygon model, we set 14 point features to
form a prismatic impenetrable object, as shown in Fig.
1(b). Globally, the object moves back and forth along
the x-axis regularly by small degrees, that is, all features
move forward 0.1 cm and then come back in the next
step. Locally, the deformation is a regular expansion and
shrinkage. In our simulation, we set the first feature to
be the anchor point. All the other features move away
from the anchor point 0.2 cm in each time step for 3
steps, and then move back 3 steps in the same distance.
The total step of the robot motion is set to be 100. The
initial robot pose is [0, 0, 0, 0, 0, 0], and the sensor range is
3 cm. The covariance matrix of control noise [wΩ

n ,w
v
n] is

diag[(0.02rad)2, (0.02rad)2, (0.02rad)2, (0.03cm)2,
(0.03cm)2, (0.03cm)2]. The covariance matrix of feature
movement noise wj

n = wt
n,j + wd

n,j is diag[(0.03cm)2 +
(0.05cm)2, (0.03cm)2+(0.05cm)2, (0.03cm)2+(0.05cm)2].
And the covariance matrix of observation noise ϵjn
also contains two parts. For the feature measure-
ment noise ϵfn, the corresponding covariance matrix is
diag[(0.02cm)2, (0.02cm)2, (0.02cm)2]. For the structure
measurement noise ϵcn, the corresponding covariance ma-
trix is diag[(0.5cm)2, (0.5cm)2, (0.5cm)2]. Note that the
deformable objects are impenetrable, so in the planning
algorithms, we restrict the robot to keep a safe distance of
0.3 cm from the object surface.

For the heart model, it was segmented from a CT scan of
a healthy, young male undergoing shock room diagnostics.
There are thousands of vertex that form the mesh model,
as shown in Fig. 1(c). In the experiment, we randomly pick
fifty of them to be the features that are used in the decision
making process and the SLAM estimation process, as the
green stars show in Fig. 1(d). The models and parameters
used in the heart model are the same as those in the polygon
model, except that the sensor range is set to be 10 cm, and
the safe distance between the robot and the object surface is
3 cm. The total step of the robot is set to be 200.

B. Simulation results

The coverage is compared by counting the total number
of the observed feature times1 in the whole time horizon,

1If 3 features are observed 2 time each, then the feature times is 6.



and the time steps that all features have been observed at
least once. The accuracy is measured by calculating the
maximum/average error between the estimated values and
the ground truth, including the robot pose error and the
feature position error. We record the processing time of the
decision making part to compare the computational cost of
determining the next control. For each algorithm, we perform
the simulation 5 times. The corresponding figures shown in
this section are the representative ones.

1) Polygon environment: We first present the SLAM
results in the polygon environment. The ground truth of
the robot trajectory and the features and the results based
on different methods (including the estimated poses and the
estimated features, and the covariance ellipse of the features)
are shown in Fig. 2.

TABLE I: Coverage for the polygon environment
No. Pre Local Global Combined
1 354 681 289 583

Observed 2 393 687 257 515
feature 3 359 750 266 505
times 1 4 338 655 324 586

5 292 702 253 518
1 35 – 3 19 24
2 24 – 26 24

Steps 2 3 24 – 22 29
4 25 – 22 24
5 24 – 19 22

1 The total number of feature times that observed in the whole time horizon.
2 The time steps that all features have been observed at least once.
3 ‘–’ means the robot does not observe all the features within the time

horizon.

Coverage. In this part, we show the coverage performance
of the different methods. The performance of the coverage
task is evaluated by counting the total number of the observed
feature times in the whole time horizon and the time steps
needed to observe all the features at least once, as Table
I shows. Four methods are performed, including using a
predetermined path, the global planner, the local planner and
using the proposed combined planner.

When the predetermined path is used, although all features
can be observed at least once eventually, it takes at most 35
steps. What’s more, as the path is predetermined without
considering the movement of the object, it has the risk
of collision. Although this can be solved by setting the
path radius larger, the premise is that there are enough free
space around the object, which is impractical in many cases.
However, this can be easily solved by using active SLAM
algorithms by restricting the motion of the robot.

The number of observed features by using the local
planner is the largest. However, it cannot observe all features

within the time horizon. This is because the local planner
only consider the information gain to improve the accuracy,
causing the robot continuously re-visiting the previously
observed features to reduce the estimation error, as shown
in Fig. 2(b).

The global planner costs the least steps (i.e. 19 steps)
to observe all features at least once in this experiment.
However, the total number of the observed feature times
in the whole process is the least. The reason is that when
we select the viewpoints, we consider the largest number of
features that can be observed at that viewpoint, and in the
planning process, we only consider to minimize the distance
between the robot and the goal point. It is possible that the
total number of the observed feature times is small, because
the robot may not observe all features that are expected to
be observed at the selected viewpoints, especially when the
environment is deforming. For the same reason, it is possible
that the steps needed for observing all features are large.

For the proposed combined planner, its performance is
as expected. More features can be observed during the
whole process compared with the global planner and using
a predetermined path. The number of steps used to observe
all features is much smaller when compared with the prede-
termined path and the local planner.

Accuracy. In this part, we compare the accuracy perfor-
mance of the obtained active SLAM results using different
methods. The results of the pose error based on different
methods in a single run are shown in Fig. 4(a).

The robot pose error at the n-th step is calculated by:

ex =
√
eTθ eθ + eTx ex, (11)

where eθ = Θn − Θ̂n is the error between the orientation
ground truth and the estimated orientation, and ex = xn−x̂n

is the error between the position ground truth and the
estimated position. The combined planner and the local
planner perform almost the same in terms of the pose error.
The global planning algorithm and using the predetermined
path obtain relatively larger errors. The average robot pose
error and maximum robot pose error of all runs are shown
in Table II. It suggests that the combined planner can obtain
much smaller errors than the global planner or using a
predetermined path. Compared with the local planner, the
combined planner is roughly the same.

Besides the robot pose error, Table II also shows the max-
imum and average feature estimation errors in the last step.
The error of the j-th feature can be obtained by calculating

(a) Predetermined (b) Local (c) Global (d) Combined
Fig. 2: Result of using different active SLAM methods in the polygon environment.



(a) Predetermined (b) Local (c) Global (d) Combined
Fig. 3: Results of using different active SLAM methods in the heart environment.

TABLE II: Estimation error for the polygon environment
Active SLAM

Pre Local Global Combined
Max error robot (cm) 0.7433 0.240 0.2750 0.2258
Ave error robot (cm) 0.1878 0.0810 0.1219 0.0925

Max error feature (cm) 0.3316 0.3477 0.3434 0.2622
Ave error feature (cm) 0.1799 0.1199 0.1421 0.1109

the Euclidean distance between the feature position ground
truth and the estimated feature position.

ep =
√
(pj − p̂j)T(pj − p̂j), (12)

Obviously, the combined planner has advantages over the
local planner. Compared with the global planner or using a
predetermined path, the combined one can get much smaller
maximum error and average error.

(a) Pose error

(b) Decision making time
Fig. 4: Comparison of using different active SLAM

methods in the polygon environment.

Processing time. For efficiency, we compare the process-
ing time in the decision making part, that is, the time used
to calculate the next action of the robot. Fig. 4(b) shows the
results of a single run. We can see that using a predetermined
path costs the least time, since there is no decision to make.
The combined method costs about 2.5 times longer than the
global planning method. The local planner costs much longer
time than the others. What’s more, the decision making time
cost by the local planner is related to the number of the
features, because we need to predict the visibility of all
features to calculate the covariance matrix.

2) Heart environment: Further tests were run for the heart
environment. The same four strategies are compared, and the
results are shown in Fig. 3.

Coverage. The coverage performance in terms of the
observed feature times and the steps to observe all features
are shown in Table III. We can see great advantage of using

TABLE III: Coverage for the heart environment
No. Pre Local Global Combined
1 1358 2042 864 1619

Observed 2 1181 2098 1233 1597
feature 3 1579 2134 1089 1515
times 4 1216 2019 1097 1594

5 844 2108 922 1664
1 66 31 72 25
2 71 62 63 35

Steps 3 70 51 48 35
4 65 75 47 35
5 65 74 30 30

the combined planner over using a predetermined path and
the global method. The combined planner uses much fewer
steps to observe all features, and during the whole time
horizon, the observed feature times is much more than those
two. Although the local planner has more observed feature
times in the whole time horizon, it costs more steps to
observe all features at least once.

TABLE IV: Estimation error for the heart environment
Pre Local Global Combined

Max error robot (cm) 11.0275 0.4094 0.6529 0.5740
Ave error robot (cm) 0.6714 0.0998 0.1582 0.1203

Max error feature (cm) 0.4554 0.3384 0.2892 0.1975
Ave error feature (cm) 0.1670 0.1025 0.1186 0.1047

Accuracy. The robot pose errors based on different meth-
ods in a single run are shown in Fig. 5(a). It is obvious that
the combined method gets relatively smaller errors than using
a predetermined path and the global method. The detailed
values about the maximum and average errors of 5 runs
are shown in Table IV. It also suggests that the combined
planner can get much accurate results compared with those
two methods. The errors obtained by the local planner and
the combined planner are close, and much smaller than those
obtained by the other two methods.

Processing time. The performance in processing time is
as expected. The result of a single run is shown in Fig. 5(b).
The combined planner cost about 2 times longer than the
global planner.

V. CONCLUSION AND FUTURE WORK

This paper proposes an active SLAM algorithm for 3D
deformable environments. Because of the combination of the
efficient global planner and the accurate local planner, the
proposed algorithm shows better performance in accuracy as
compared with the global planner. It is also demonstrated
that the proposed algorithm has satisfactory performance in
accuracy and much lower computational cost as compared
with the local planner.

This research is the first step in developing an efficient
active SLAM algorithm in deformable environments. In the



(a) Pose error

(b) Decision making time
Fig. 5: Comparison of using different active SLAM

methods in the heart environment.

future, we will validate our approach in more practical
environments with more complex feature movements and
robot motion constraints. Some other planning strategies
will be investigated and evaluated. We will also consider to
conduct real-time active SLAM implementation in the future.
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