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Abstract- In this work we investigate the nonperturbative decay dynamics of a quantum 
emitter coupled to a composite right/left handed transmission line (CRLH-TL). Our theory 
captures the contributions from the different spectral features of the waveguide, providing an 
accurate prediction beyond the weak coupling regime, and illustrating the multiple possibilities 
offered by the nontrivial dispersion of metamaterial waveguides. We show that the waveguide 
is characterized by a band-gap with two asymmetric edges: (i) a mu-near-zero (MNZ) band 
edge, where spontaneous emission is inhibited and an unstable pole is smoothly transformed 
into a bound state, and (ii) an epsilon-near-zero (ENZ) band edge, where the decay rate 
diverges and unstable and real (bound state) poles coexist. In both cases, branch cut 
singularities contribute with fractional decay dynamics whose nature depend on the properties 
of the band-edges.  
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Main text - Metamaterial waveguides have been shown to be flexible design platforms for 
dispersion engineering1,2. Salient spectral features in metamaterial waveguides include 
propagating bands with a negative refractive index, the possibility of opening band-gaps with a 
prescribed bandwidth, slow-light frequency points with a vanishing group velocity, and 
anomalous dispersion in highly absorptive bands. Of particular interest are also those 
frequency points where the propagation constant of the waveguide crosses zero, in direct 
connection with the field of near-zero-index (NZI) media3–5.  Points with a near-zero refractive 
index empower unique wave effects. Examples include perfect transmission through deformed 
waveguides6; intrinsic inhibition of optical turbulence7; photonic doping8, enhanced nonlinear9, 
modulation10 and switching11 capabilities; and highly directive emission12,13 to name a few. 

Metamaterial waveguides also have wide variety of dispersion profiles. Consequently, they 
pose an interesting playground for exploring nontrivial quantum light emission. For instance, 
NZI waveguides can either enhance or suppress spontaneous emission14–16. Moreover, the fact 
that the wavelength is  effectively stretched in them enables the observation of superradiance 
in electrically large samples17–19, as well as having long-range coherent interactions for 
entanglement generation and many body physics20–24. Recent experiments have shown the 
enhancement25, tunability26, and position independence27 properties on quantum light 
emission in NZI metallic waveguides. Furthermore, the experimental demonstration of NZI 
waveguides in photonic integrated circuits opens the scope and applicability of these concepts 
even more 28,29. 

Most works addressing quantum light emission in NZI waveguides operate within the weak 
coupling regime or Markovian approximation. Thus, they neglect the dispersion of the 
waveguide near the frequency of emission. However, a complex dispersion profile is precisely 
what makes metamaterial waveguides unique. Therefore, the Markovian approximation is 
found to be too simple and may in fact hide some of the most interesting aspects provided by 
this class of waveguides. Furthermore, recent theoretical works have highlighted the 
importance and opportunities offered by taking into account the nonperturbative decay 
dynamics of quantum emitters coupled to structured reservoirs30,31, Dirac cone baths32 and 
photonic Weyl environments33.  

In this letter we study the nonperturbative decay dynamics for a quantum emitter coupled to a 
metamaterial waveguide. To this end, we consider the archetypical case of a composite 
right/left-handed  (CRLH)  transmission line (TL). This case study is of particular interest as it 
contains a number of the typical spectral features including a propagating band with a 
negative index, a band-gap with asymmetric edges, and two frequency points with a near-zero 
refractive index. The general theory that we are presenting finds applicability in NZI 
waveguides demonstrated at optical frequencies25–29. In addition, we expect that our results 
could be extrapolated to superconducting circuits34–37, one of the leading platforms for 
quantum technologies.  In fact, CRLH-TLs were first developed at microwave frequencies1,2, 
where the physical implementation of the waveguiding systems was inspired by their 
equivalent circuits. Thus, they are quite appealing for an implementation in superconducting 
circuit technologies. However, we note that our quantization scheme is based on optical 
electromagnetic fields14,38,39, which is fundamentally different to the standard description of 
superconducting circuits in terms of flux and charge operators34,37. Nevertheless, our 
formulation converges to the general model of a two-level system coupled to a bath of 
photonic modes and, hence, it is representative of many different physical systems. In fact, 



popular studies of structured superconducting circuit waveguides exhibiting a band-gap use 
formulations that converge to a Hamiltonian of the same form as we employ herein36.  

As schematically depicted in Fig. 1a, we study the coupling of a quantum emitter to a photonic 
waveguide. This configuration can be modeled with the usual Hamiltonian for a two-level 
system, {𝑒𝑒⟩, |𝑔𝑔⟩}, with dipole moment 𝐩𝐩  and transition frequency 𝜔𝜔0, coupled to a bath of 
discrete photonic modes propagating in the waveguide with frequencies 𝜔𝜔𝑘𝑘 (ħ=1):  

𝐻𝐻 = 𝜔𝜔0𝜎𝜎ϯ𝜎𝜎 +  �𝜔𝜔𝑘𝑘𝑎𝑎𝑘𝑘
ϯ𝑎𝑎𝑘𝑘

𝑘𝑘

+ ��𝑔𝑔𝑘𝑘𝜎𝜎ϯ𝑎𝑎𝑘𝑘 + ℎ. 𝑐𝑐. �
𝑘𝑘

 (1) 

 

where 𝜎𝜎 = |𝑔𝑔⟩⟨𝑒𝑒| is the emitter’s annihilation operator, 𝑎𝑎𝑘𝑘 is the annhiliation operator of the 
𝑘𝑘 − 𝑡𝑡ℎ photonic mode, and the sum ∑𝑘𝑘  runs over all photonic modes satisfying the 
waveguide dispersion. We focus on the composite  right/left-handed  (CRLH)  transmission line 
(TL)1 that can be modeled with the equivalent circuit unit-cell depicted in Fig. 1a. The 
dispersion o fthe system can be equivalently described as a one-dimensional (1D) medium 
characterized by Drude models with the effective relative parameters  𝜀𝜀𝑟𝑟(𝜔𝜔) = 1 −𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸

2 /𝜔𝜔2 
and 𝜇𝜇𝑟𝑟(𝜔𝜔) = 1 −𝜔𝜔𝑀𝑀𝐸𝐸𝐸𝐸

2 /𝜔𝜔2 that have epsilon-near-zero (ENZ) and mu-near-zero (MNZ) 
frequencies corresponding to the electric and magnetic plasma frequencies: 𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸 and 𝜔𝜔𝑀𝑀𝐸𝐸𝐸𝐸, 
respectively1. The same material model has been demonstrated to be useful in the description 
of the coupling of quantum emitters to ENZ and MNZ waveguides14.  

The dispersion relation is given by 𝑘𝑘(𝜔𝜔) =  𝜔𝜔�(1 −𝜔𝜔𝑀𝑀𝐸𝐸𝐸𝐸2 /𝜔𝜔2)(1 −𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸2 /𝜔𝜔2) / 𝑐𝑐  and its 
values are presented in Fig. 1b. They tell us that the waveguide is characterized by a low-
frequency propagating band with a negative refractive index, a high-frequency propagating 
band with a positive refractive index, and a band-gap (evanescent wave region) between the 
MNZ and ENZ frequencies. The refractive index of the waveguide approaches zero at both of 

these band edges. The coupling strength is given by14 𝑔𝑔𝑘𝑘 = −𝑖𝑖 (𝐩𝐩 ∙ 𝒆𝒆𝑘𝑘)� 𝜔𝜔𝑘𝑘
2𝜀𝜀0𝐿𝐿

𝑍𝑍(𝜔𝜔𝑘𝑘) 𝑣𝑣𝑔𝑔(𝜔𝜔𝑘𝑘)
𝑐𝑐

, 

where 𝒆𝒆𝑘𝑘 is the unit polarization vector of the modes, 
𝑍𝑍(𝜔𝜔𝑘𝑘) = �(1 −𝜔𝜔𝑀𝑀𝐸𝐸𝐸𝐸2 /𝜔𝜔2)/(1 −𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸2 /𝜔𝜔2)  is the normalized impedance of the waveguide,  
𝑣𝑣𝑔𝑔(𝜔𝜔𝑘𝑘) = 𝑑𝑑𝜔𝜔/𝑑𝑑𝑘𝑘 is the group velocity , and 𝐿𝐿 is the quantization length.  Note that 𝐿𝐿 does not 
correspond to a finite length of the waveguide. It is considered to be infinite in our model in 
the sense that 𝐿𝐿 → ∞ is implicit in the continuum limit. In this manner, the waveguide features 
two points where the refractive index approaches zero, i.e., the MNZ and ENZ frequencies, but 
at which extremely different impedance and coupling strength behavior is exhibited, i.e., zero 
and infinity. 

 



 

Fig. 1. (a) Sketch of a quantum emitter modeled as a two-level system, {𝑒𝑒⟩, |𝑔𝑔⟩}, with transition 
frequency 𝜔𝜔0 that is coupled to a metamaterial waveguide with the equivalent circuit model 
shown in the inset. (b) Dispersion diagram of the metamaterial waveguide characterized by a 
band-gap between the mu-near-zero 𝜔𝜔𝑀𝑀𝐸𝐸𝐸𝐸 and epsilon-near-zero  𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸 frequencies.               
(c) Projection of the self-energy on the real axis: 𝛴𝛴𝑒𝑒(𝜔𝜔 + 𝑖𝑖0+) = ∆𝜔𝜔(𝜔𝜔) − 𝑖𝑖𝑖𝑖(𝜔𝜔)/2. Its real 
and imaginary parts describe the frequency shift ∆𝜔𝜔(𝜔𝜔) and decay rate 𝑖𝑖(𝜔𝜔), respectively. 

 

We assume that the system is initially excited, �𝜓𝜓(𝑡𝑡 = 0)⟩ = 𝜎𝜎ϯ|{0}⟩, and that it decays into a 

general single-excitation state  �𝜓𝜓(𝑡𝑡)⟩ = �𝐶𝐶𝑒𝑒(𝑡𝑡)𝜎𝜎ϯ + 𝐶𝐶𝑘𝑘(𝑡𝑡)𝑎𝑎𝑘𝑘
ϯ �|{0}⟩. Within this framework, the 

exact time evolution of the probability amplitudes can be determined by using the resolvent 



operator method40. Equivalently, one can solve the Schrödinger equation by using the Laplace 
transform method. By making the change of variables 𝑠𝑠 = −𝑖𝑖𝑖𝑖, the inverse Laplace transform 
for the probability amplitude of the emitter being excited can be written as an integral over a 
contour on top of the real axis (see Fig. 2): 

𝐶𝐶𝑒𝑒(𝑡𝑡) = −
1

2𝜋𝜋𝑖𝑖
 � 𝑑𝑑𝑖𝑖

𝑖𝑖0++∞

𝑖𝑖0+−∞
 𝐺𝐺𝑒𝑒(𝑖𝑖)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 (2) 

with the resolvent  

𝐺𝐺𝑒𝑒(𝑖𝑖) =
1

𝑖𝑖 − 𝜔𝜔0 − 𝛴𝛴𝑒𝑒(𝑖𝑖) (3) 

and the self-energy 

𝛴𝛴𝑒𝑒(𝑖𝑖) = �
|𝑔𝑔𝑘𝑘|2

𝑖𝑖 − 𝜔𝜔𝑘𝑘𝑘𝑘

 (4) 

 

The expression for the probability amplitude 𝐶𝐶𝑒𝑒(𝑡𝑡) given by Eq. (2) is exact within the 
framework established by the Hamiltonian in Eq. (1). In this manner, the solution can 
accurately describe both the weak and strong coupling regimes, as well as the intermediate 
cases. However, the formulation will not be accurate in the ultra-strong coupling regime, 
where rotating wave approximation implicit in Eq. (1) does not hold. 

Evaluating the self-energy in the continuum limit, ∑ → 𝐿𝐿
2𝜋𝜋 ∫𝑑𝑑𝑘𝑘𝑘𝑘  , integrating over the 

frequencies with the replacement ∫𝑑𝑑𝑘𝑘 = ∫𝑑𝑑𝜔𝜔 1/𝑣𝑣𝑔𝑔(𝜔𝜔), applying the Kramers-Kronig 
relations, and removing the high-frequency divergence leads to the following compact 
expression: 

𝛴𝛴𝑒𝑒(𝑖𝑖) = −𝑖𝑖𝑖𝑖 �
𝑖𝑖2 − 𝜔𝜔𝑀𝑀𝐸𝐸𝐸𝐸2

𝑖𝑖2 − 𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸2  (5) 

 

where 𝑖𝑖 = |𝐩𝐩|2𝜔𝜔0/(4𝑐𝑐𝜀𝜀0). We used the value 𝑖𝑖 = 0.01𝜔𝜔𝑝𝑝 for the numerical examples so that 
the nonperturbative effects are evident, even though the effects are qualitatively the same for 
other values of 𝑖𝑖 as long as the rotating wave approximation we used in our Hamiltonian (1) 
remains valid. The real and imaginary parts of the projection of the self-energy on the real 
frequency axis, 𝛴𝛴𝑒𝑒(𝜔𝜔 + 𝑖𝑖0+) = ∆𝜔𝜔(𝜔𝜔) − 𝑖𝑖𝑖𝑖(𝜔𝜔)/2 , correspond to the frequency shift and 
decay rate, respectively. They are depicted in Fig. 1c. The main characteristic that 
differentiates the CRLH transmission line from other dispersive and slow-light waveguides is 
the presence of its asymmetric band-edges. Although the group velocity becomes zero at both 
band-edges, the decay rate diverges at the ENZ frequency and vanishes at the MNZ frequency 
in accordance with a previous study in the weak coupling regime14. 

The dispersion properties of the self-energy exemplify the great degree of design flexibility 
offered by metamaterials waveguides, particularly near the band-edges. On the one hand, the 
divergence of the decay rate near the ENZ frequency enables the enhancement of the emitters 
decay rate (brightness), as well as a more efficient (deterministic) coupling to the waveguide 
mode. The soft transition at the MNZ frequency enables tuning between the dissipative and 
collective interactions. Moreover, the fact that these responses take place at points where the 
propagation constant vanishes (𝑘𝑘 = 0) suggests that our configuration is an interesting 



platform for investigating long-range collective interactions, which are of interest for 
entanglement generation and many-body physics. 

By using complex analysis techniques, the integration can be closed in the lower half-plane; 
and the time evolution of the probability amplitude can be rewritten with the residue theorem 
as the sum of the contributions from the different singularities in the complex plane. As 
schematically depicted in Fig. 2, they consist of three poles and two branch cuts. Thus, the 
probability amplitude is given by their contributions as 

𝐶𝐶𝑒𝑒(𝑡𝑡) = 𝑅𝑅1𝑒𝑒−𝑖𝑖𝑖𝑖1𝑖𝑖 + 𝑅𝑅2𝑒𝑒−𝑖𝑖𝑖𝑖2𝑖𝑖 + 𝑅𝑅𝐵𝐵𝐵𝐵𝑒𝑒−𝑖𝑖𝑥𝑥𝐵𝐵𝐵𝐵𝑖𝑖 + 𝐶𝐶𝐵𝐵𝐵𝐵_𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡) + 𝐶𝐶𝐵𝐵𝐵𝐵_𝑀𝑀𝐸𝐸𝐸𝐸(𝑡𝑡) (6) 
 

Next, we analyze in detail the individual contribution from each of these singularities. 

 

Fig. 2. Sketch of the complex plane including the integration contour for the resolvent 𝐺𝐺𝑒𝑒(𝑖𝑖) 
and its singularities. The unstable poles, bound states (poles in the real axis) and branch cuts 
are indicated.  

Contribution from the poles: The poles of the resolvent are found at positions in the complex 
plane 𝑖𝑖𝛽𝛽 = 𝑥𝑥𝛽𝛽 + 𝑖𝑖𝑦𝑦𝛽𝛽  corresponding to the solutions to the implicit equation 𝑖𝑖𝛽𝛽 = 𝜔𝜔0 +
𝛴𝛴𝑒𝑒�𝑖𝑖𝛽𝛽�. Each contributes to the probability amplitude as an exponential decay term, 𝑅𝑅𝛽𝛽𝑒𝑒−𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖, 
where the initial-time (𝑡𝑡 = 0) contribution can be computed via the residue theorem, which 

for a pole of order one can be compactly written as 𝑅𝑅𝛽𝛽 =  �1 − [𝜕𝜕𝑖𝑖𝛴𝛴𝑒𝑒(𝑖𝑖)]𝑖𝑖=𝑖𝑖𝛽𝛽�
−1

. 

Figure 2 schematically depicts the position of the three different poles that are associated with 
this waveguide. Figs. 3a and 3b show the projections of the poles on the real 𝑥𝑥𝛽𝛽 and imaginary 
𝑦𝑦𝛽𝛽  axis, respectively, as functions of the transition frequency of the emitter 𝜔𝜔0. The existence 
of poles critically depends on the position of 𝜔𝜔0 with respect to the dispersion properties of 
the waveguide. Specifically, the three different poles are: (i) an unstable pole 𝑖𝑖1, i.e., a pole 
with 𝑦𝑦𝛽𝛽 < 0, that exists when the transition frequency of the emitter lies within the low-
frequency (negative index) propagating band, 𝜔𝜔0 ≤ 𝜔𝜔𝑀𝑀𝐸𝐸𝐸𝐸; (ii) an unstable pole 𝑖𝑖2 that exists 
when the transition frequency of the emitter lies within the high-frequency (positive index) 
propagating band, 𝜔𝜔0 ≥ 𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸; and (iii) a bound state 𝑖𝑖𝐵𝐵𝐵𝐵 = 𝑥𝑥𝐵𝐵𝐵𝐵, i.e., a pole exactly located on 
the real axis, 𝑦𝑦𝐵𝐵𝐵𝐵 = 0, which exists for 𝜔𝜔𝐵𝐵𝐵𝐵 ≥ 𝜔𝜔𝑀𝑀𝐸𝐸𝐸𝐸.  

As a consequence of the asymmetric edges of the band gap, the existence of the bound state is 
not guaranteed for all values of 𝜔𝜔0. Specifically, the diverging and negative values of ∆𝜔𝜔(𝜔𝜔) 
near 𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸 ensure that a real solution to 𝑥𝑥𝐵𝐵𝐵𝐵 = 𝜔𝜔0 + ∆𝜔𝜔(𝑥𝑥𝐵𝐵𝐵𝐵) exists even for very large values 
of 𝜔𝜔0, with 𝑥𝑥𝐵𝐵𝐵𝐵~𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸 (see Fig. 3a). This behavior has been observed at the band-edges of 



other photonic nanostructures41–44. However, because ∆𝜔𝜔(𝜔𝜔) approaches zero at 𝜔𝜔𝑀𝑀𝐸𝐸𝐸𝐸, there 
are no real solutions to 𝑥𝑥𝐵𝐵𝐵𝐵 = 𝜔𝜔0 + ∆𝜔𝜔(𝑥𝑥𝐵𝐵𝐵𝐵) for 𝜔𝜔0 < 𝜔𝜔𝑀𝑀𝐸𝐸𝐸𝐸. For the same reason, there is a 
soft transition where an unstable pole is smoothly transformed into a bound state as the 
emitter’s frequency decreases below 𝜔𝜔𝑀𝑀𝐸𝐸𝐸𝐸. This property might be of interest for shifting 
between dissipative and coherent interactions by tuning the frequency of the emitter. 

The projections of the poles onto the imaginary axis indicate how fast the contributions from 
the poles decay. In general, the decay rate, i.e., the imaginary part of the projection of the self-
energy on the real axis, Γ�𝑥𝑥𝛽𝛽�, provides a good approximation of the behavior of the poles 
(see Fig. 3c). However, the decay rate Γ�𝑥𝑥𝛽𝛽� is predicted to diverge at the ENZ frequency. This 
is an expected, unrealistic behavior. As shown in Fig. 3c., the nonperturbative theory predicts 
that the imaginary part of the pole saturates to a finite value in the 𝜔𝜔0 → 𝜔𝜔ENZ limit, which in 
turn imposes a limit on the speed on the decay process. In practice, a divergent decay rate will 
never be observed due to dissipation losses and fabrication tolerances. However, this result 
highlights that nonperturbative effects act as an additional limiting factor on the enhancement 
of the decay rate in dispersive waveguides.  

Fig. 4(a) depicts the magnitude of initial-time (𝑡𝑡 = 0) contributions of the poles as a function 
of the transition frequency of the emitter 𝜔𝜔0. As expected, once the emitter is located well 
within the propagating band, the response of the system is dominated by the contribution of a 
single unstable pole. However, a more complex scenario takes place near the band edges. 
When the emitter’s frequency equals the ENZ frequency, 𝜔𝜔0 = 𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸, the contribution of the 
bound state and the higher-band unstable pole are of equal significance. This situation leads to 
interference effects in the decay dynamics. On the other hand, when the emitter’s frequency 
equals the MNZ frequency, 𝜔𝜔0 = 𝜔𝜔𝑀𝑀𝐸𝐸𝐸𝐸, the contributions from the poles suddenly drop to 
zero; and the dynamics become entirely dominated by the contribution from the branch cuts. 
This behavior is justified by the fact that the derivative of the self-energy diverges at 𝑖𝑖 =
𝜔𝜔MNZ. It is clear that it is crucial to account for nonperturbative phenomena in both cases to 
properly access the exact decay dynamics near the band edges. 



 

Fig. 3. Locations of the poles, 𝑖𝑖𝛽𝛽 = 𝑥𝑥𝛽𝛽 + 𝑖𝑖𝑦𝑦𝛽𝛽, in the complex plane including two unstable poles 
𝛽𝛽 = 1,2 and a bound state 𝛽𝛽 = 𝐵𝐵𝐵𝐵, as described by their projections onto the (a) real 𝑥𝑥𝛽𝛽 and 
(b) imaginary 𝑦𝑦𝛽𝛽  axis. The evaluation of the decay rate 𝑖𝑖�𝑥𝑥𝛽𝛽� is included for the sake of 
comparison.  

 

Fig. 4. Magnitude of the initial-time (𝑡𝑡 = 0) contributions for the probability amplitude, 
including the unstable poles associated with the low-frequency 𝑅𝑅1 and high-frequency 𝑅𝑅2   
propagating bands, the bound state 𝑅𝑅𝐵𝐵𝐵𝐵, and the mu-near-zero 𝑅𝑅𝐵𝐵𝐵𝐵_𝑀𝑀𝐸𝐸𝐸𝐸 and epsilon-near-zero 
𝑅𝑅𝐵𝐵𝐵𝐵_𝐸𝐸𝐸𝐸𝐸𝐸 branch cuts. 

 

Contributions from the branch cuts: The contributions from the branch cuts,  𝐶𝐶𝐵𝐵𝐵𝐵_𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡) and 
𝐶𝐶𝐵𝐵𝐵𝐵_𝑀𝑀𝐸𝐸𝐸𝐸(𝑡𝑡), are harder to analyze as they require numerical integration along vertical paths in 



the complex plane (see Fig. 2). Intuitively, one can understand these contributions as arising 
from a collection of singularity contributions leading to a fractional decay. This intuition is 
ratified by observing the long-time limits of the integral which yield fractional decay rates: 

lim𝑖𝑖→∞ 𝐶𝐶𝐵𝐵𝐵𝐵_𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡) ∝ 𝑡𝑡−
3
2   and lim𝑖𝑖→∞ 𝐶𝐶𝐵𝐵𝐵𝐵_𝑀𝑀𝐸𝐸𝐸𝐸(𝑡𝑡) ∝ 𝑡𝑡−

1
2.  Again, we find that the asymmetric 

band-edges present very different properties. Specifically, the ENZ branch cut contributes with 

a 𝑡𝑡−
3
2 power law similar to that predicted for other slow-light waveguides30. On the other hand, 

the MNZ branch cut exhibits a slower power law decay, 𝑡𝑡−
1
2. The initial-time contributions, 

𝐶𝐶𝐵𝐵𝐵𝐵_𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡 = 0) and  𝐶𝐶𝐵𝐵𝐵𝐵_𝑀𝑀𝐸𝐸𝐸𝐸(𝑡𝑡 = 0), depicted in Fig. 4(a) illustrate that the branch-cuts only 
produce a significant contribution when the transition frequencies of the emitter are near the 
branch points given by the ENZ and MNZ frequencies.  

Examples of decay dynamic profiles: To finalize, Fig. 5 displays some representative examples 
of the time evolution of the survival probability of the excited state, |Ce(t)|2, as the emitter’s 
frequency is scanned through the dispersion profile of the waveguide. These examples serve to 
highlight the variety of temporal profiles that can take place when different singularities in the 
complex plane become dominant.  

First, when the emitter is tuned to the low-frequency propagating band, e.g., ω0 = 0.6 ωENZ, 
the decay dynamics exhibit a near exponential decay. This property is justified by the fact that 
the response is dominated by a single unstable pole. Second, when the emitter is tuned to the 
MNZ frequency: ω0 = 0.8 ωENZ = ωMNZ, the time-evolution displays the slow fractional 
decay that arises from the branch-cut contribution. Therefore, although the MNZ band-edge 
enables a smooth transition from an unstable pole to a bound state, the decay dynamics will 
exhibit a residual and slow fractional decay when the emitter is tuned very close to that band-
edge. When the emitter is tuned to the middle of the band gap, e.g., ω0 = 0.85 ωENZ, the 
temporal profile is characterized by a fast decay into a long-lived bound state. Interestingly, 
when the emitter is tuned to the ENZ frequency: ω0 = ωENZ, the decay dynamics exhibit a 
complex and slow oscillatory decay. Although a fast decay would be expected from the weak 
coupling regime because of the Purcell enhancement at the band-edge, the interference 
between the unstable pole, bounds state and branch cut contributions result in a significantly 
different profile. Finally, when the emitter is tuned well into the high-frequency propagating 
band, e.g., ω0 = 1.2 ωENZ, the decay is again dominated by a near-exponential profile 
associated with a single unstable pole.  

 



 

Fig. 5. Representative examples of the time evolution of the survival probability of the excited 
state, |𝐶𝐶𝑒𝑒(𝑡𝑡)|2, for different transitions frequencies. The case studies include the emitter being 
tuned to (i) the low-frequency propagating band at 𝜔𝜔0 = 0.6 𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸, (ii) the mu-near-zero 
frequency at 𝜔𝜔0 = 0.8𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸 = 𝜔𝜔𝑀𝑀𝐸𝐸𝐸𝐸, (iii) the middle of the band gap at 𝜔𝜔0 = 0.85 𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸,      
(iv) the epsilon-near-zero frequency at 𝜔𝜔0 =  𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸, and (v) the high-frequency propagating 
band at 𝜔𝜔0 = 1.2𝜔𝜔𝐸𝐸𝐸𝐸𝐸𝐸.  

 

In conclusion, our results illustrate the wealth in decay dynamics phenomena that can be 
observed in metamaterial waveguides that have a complex dispersion profile. We have shown 
that not all slow-light band-edges are equal. Some present a divergent behavior of the decay 
rate that is of particular interest for bright and deterministic photon sources, while others 
enable the smooth transition from an unstable pole to a bound state that is of particular 
interest for entanglement generation and many-body physics. Finally, it is crucial to properly 
account for the branch cut contributions since they lead to fractional decay rates whose 
properties also depend on the characteristics of the band-edge. A previous work has identified 
that the decay rate of emitters coupled to NZI media critically depend on the dimensionality of 
the system14, and similar considerations are likely to take place in the nonperturbartive 
regime. We elected to restrict our analysis to the 1D case because most experiments on 
quantum emitters coupled to NZI systems consist of waveguides and higher dimensional 
realizations of NZI systems required dealing with much more complex dispersion 
characteristics. In general, we expect that our nonperturbative decay dynamics theory will be 
very relevant for a number of metamaterial waveguides in the optical regime, as well as for 
microwave superconducting circuits with similar dispersion profiles.   
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