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Abstract 
 

It is essential to be able to predict accurately the cogging torque for optimum design of  claw pole 
permanent magnet machines. Using ANSYS, a commercial three dimensional finite element 
package, different methods are employed to calculate the cogging torque. The calculated results  
agree with the experimental results. 
 
 

1.  INTRODUCTION 
 
Claw pole permanent magnet machines are well known 
and have been manufactured in mass production for 
many years. They are capable of producing torque 
densities up to three times greater than conventional 
machines because this topology allows the pole 
number to be increased without reducing the 
magnetomotive force (mmf) per pole and they are 
expected to gain more applications in high 
performance fields. A common drawback of claw pole 
as well as other types of permanent magnet machines is 
the cogging torque, which arises from the attraction 
between the magnets and the claw poles and can be 
defined as any unwanted torque variations with rotor 
position, due to variations in air gap geometry or 
reluctance in the magnetic circuit. It has detrimental 
effects on motor performance, such as creating speed 
perturbation, position error, vibration, and noise. 
Therefore, it is essential to calculate the cogging torque 
accurately in design of permanent magnet machines. A  
lot of work has been done on  prediction and reduction 
of cogging torque in permanent magnet motors [1-6]. 
 
The finite element method is a quite powerful tool for 
design of electrical machines and other 
electromagnetic devices. For machines of special 
structure, such as claw pole motors, it is almost 
impossible to calculate the cogging torque accurately 
by analytical method, or even by two dimensional 
finite element method. Therefore, three dimensional 
finite element method is used in this paper, which 
considers the geometry details and nonlinear magnetic 
properties of materials. Three dimensional finite 
element method provides a simple and accurate 
approach to the calculation of cogging torque from the  
magnetic field distribution of the claw pole permanent 
magnet motor. By varying the shape of claw poles and 
other parameters, it is possible to minimize the cogging 
torque. 

For calculation of force or torque in an electromagnetic 
device using finite element magnetic field analysis, 
there are basically two methods: the virtual work 
method and the Maxwell stress tensor. The virtual 
work method calculates the force or torque by taking 
the partial derivative of the total energy or co-energy 
against the virtual displacement. In general, this 
method is accurate since the energy of the whole model 
is considered. However, sometimes the determination 
of the nonlinear variation of energy or co-energy with 
the displacement can be difficult. It is also a problem 
to select a suitable step size of the displacement. If the 
displacement is too small, there will be a possibility for 
round off errors when computing the difference 
between the two energies with the approximately same 
values. Conversely, if the displacement is too large, the 
calculated torque will fall into the average value over 
the region. 
 
The Maxwell stress tensor calculates the force or  
torque by integrating the force or torque density over a 
specific surface. This method may be simpler and less 
expensive from the computational viewpoint because 
only one field distribution is needed at a given rotor 
position. The final result, however, can be influenced 
by the selection of integration surface and/or path.  
 
In this paper the cogging torque is calculated for a 
small claw pole permanent magnet motor with soft 
magnetic composite core. By rotating the stator 
mounted on an air bearing with the rotor fixed, the 
cogging torque can be experimentally measured 
without applying the stator current. The theoretical 
results agree substantially with the experimental 
results. 
 
2.  NUMERICAL FIELD CALCULATUON 
 
Fig.1 illustrates the geometrical region for field 
analysis of a claw pole permanent magnet motor. The 



outer rotor consists of a mild steel cylinder, 20 surface 
mounted NdFeB magnets and two aluminum end plates 
(not shown in the figure). The stator consists of two 
claw pole pieces of soft magnetic composite material 
and a steel shaft. A single concentrated winding is 
housed between the two claw pole pieces. The winding  
is not shown in the figure for clarity. 
 

 
 

Fig. 1 Geometry and field solution region of a claw 
pole permanent magnet motor 

 
Because of the symmetry of the motor structure, it is 
only required to analyze the magnetic field in one pole 
pitch. The magnetic scalar potential is used to solve the 
magnetic field distribution and the half periodical 
boundary condition 
 
     ( ) ( )U r z U r zm m, , , ,θ θ= − − −                               (1)       
 
is applied, such that the magnetic flux densities in the 
two half-periodical boundary surfaces are related by 
 
    B r z B r zr r, ,( , , ) ( , , )θ θθ θ= − − −                       (2) 
 
and 
 
    B r z B r zz z( , , ) ( , , )θ θ= − −                               (3) 
 
Fig.2 illustrates an example of the three dimensional 
finite element mesh with the material codes. In this 
example, the whole solution region is divided into 
9,151 ten-node second order tetrahedral elements and 
13,540 nodes. The tetrahedral element is used since it 
is very suitable for the complex structure of a claw 
pole permanent magnet motor. 

 
Fig.2 Finite element mesh with material codes, where 

(1) air, (2) coil, (3) and (4) permanent magnets, (5) soft 
magnetic composite, (6) steel, and (7) mild steel 

 
3.  THE VIRTUAL WORK METHOD 
 
For a conservative electromagnetic system, the total 
system energy change due to an angular displacement 
of the rotor can be expressed as: 

 
∆ ∆ ∆W W Welec fld mech= +                   (4) 

 
where ∆Welec is the electrical input energy supplied to 
the stator winding from the power supply, ∆Wfld the 
variation of the stored magnetic energy due to the 
variation of the electrical input energy and/or the 
mechanic work ∆Wmech given by the product of the 
torque and angular displacement ∆θ. For cogging 
torque calculation, the electrical input power is zero  
and the magnetic energy includes three parts stored in: 
i) non-magnetic regions, such as air and copper, ii) 
magnetic regions, such as the stator core of soft 
magnetic composite, the rotor yoke of mild steel and 
the steel shaft; and iii) permanent magnet regions. For 
a specific position, the torque can be written as the 
derivative of magnetic energy with respect to the 
angular displacement: 
 

       T
W

cog
fld

= −
∂
∂θ

                                        (5) 

 
where Wfld is the total energy stored in the magnetic 
field and θ the rotor position. Numerically, the cogging 
torque in a rotating machine can be expressed as: 
 

        T
W

cog
fld≈ −

∆

∆θ
                                       (6)                                    



The stored energy can be calculated by: 
 

       W wdVfld V
= ∫                                             (7) 

 

where w HdB
B

= ∫
0

 is the energy density which can be 

determined from the material properties, and V the 
volume. 
 
In practical application, co-energy is more commonly 
used: 
 

W w dVfld
V

' '= ∫                                          (8) 

 

where w BdH
H

'= ∫0 . 

 
In terms of the co-energy, the cogging torque can be 
calculated by 
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This derivative can be calculated approximately as the 
variation of magnetic co-energy against the angular 
displacement of the rotor: 
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4.  THE MAXWELL STRESS TENSOR METHOD 
 
The Maxwell stress tensor method calculates the 
torque or force directly from the magnetic field 
distribution by adding up the torque or force density 
over a surface related to the part of interest. According 
to the definition of the Maxwell stress tensor, the total 
torque of an electrical motor can be calculated by a 
surface integration along a closed surface S located in 
the airgap: 
 

F T n H)H n= = ⋅ −
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where n is the outward unit normal at a point on the 
boundary surface, H the magnetic field intensity, and T 
the Maxwell stress tensor which can be determined by 
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(12) 
 

The component of T along n is  
 

n T n H H H⋅ = ⋅ − ⋅µ
µ

0
2 0

2
( ) ( )          (13) 

 
Since the component of H along n is n H⋅ , this force 
is a pressure force. The remaining term, 
µ0 (n H)Ht⋅ , where Ht  is the component of H 
tangential to the surface, represents a shearing force 
per unit area along the surface. When the Maxwell 
integration surface is chosen in the middle of the 
airgap, this shearing force takes an important part in 
contribution to the torque. 
 
It is obvious that only the circumferential component 
of the force contributes to the torque. The 
circumferential component of the force and the torque 
acting on the surface, which encloses the movable parts 
of the motor,  are given by: 
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(14) 
and 
 

   T rfθ θ=                                                  (15) 
 
where ar, aθ and az are the unit vectors of the three 
axes of the cylindrical coordinate system, respectively, 
and  r  is the radius of the integration surface taken. 
  
5.  RESULTS AND DISCUSSION 
 
Fig. 2 compares the theoretical results of cogging 
torque calculated by the virtual work and the Maxwell 
stress tensor methods with the experimental results. 
The difference between two simulation methods can be 
explained by the lack of mesh refinement and it is 
expected to dwindle when the mesh density increases. 
The measurement error can be one of the factors 
leading to the difference between the simulated and 
measured results.  
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Fig.2 Calculated and measured cogging torque 
 
For the measurement of cogging torque, the stator is 
mounted on a rotatable air-bearing plate with very little 
mechanical friction, as shown in Fig. 3. The cogging 
torque was experimentally measured by displacing the 
stator with the rotor fixed. Since the motor has 20 
poles, the cogging torque curve repeats every 18 
mechanical degrees. 
 

 
Fig. 3 Cogging torque test setup 

 
Theoretically, the results from the Maxwell stress  
tensor method do not depend upon the integration   
surface taken. To investigate this, three cylindrical  
surfaces of different radii were chosen in the airgap.  
One surface was chosen at a radius of 39.67 mm, 
which  is closer to the stator side of the airgap. The 
second  surface was chosen at a radius of 40mm, or at 
the  center of the airgap and the third surface has a 
radius  of 40.33 mm, which is closer to the rotor. Table 
1 lists  the calculated cogging torque for the above 
three cases when the rotor shifts for 4 degrees from the 
original  equilibrium position. It is shown that the 
torque  calculated by the Maxwell tensor depends upon 
the  integration surface taken. A small change in 

chosing  the integration surface may lead to a large 
variation in  the Maxwell torque.  The most accurate 
results are  obtained when the integration surface is 
chosen in the  middle of the airgap. 
 
Table 1. Torque calculation by the Maxwell stress 
tensor method with different integration surfaces 

Surfaces taken Cogging torque (Nm) 
Closer to the stator 1.038 
At the airgap center 0.789 
Closer to the rotor 0.853 

 
6. PREDICTION  AND  REDUCTION  OF 

COGGING  TORQUE 
 
Three dimensional finite element method was used to 
optimize the motor performance with a reasonably 
small cogging torque. Fig. 4  shows the structure of 
another motor prototype, which has the same rotor but 
the shape and dimension of claw poles in the stator are 
different from the first prototype. 
 

(a) 

        (b) 
 

Fig.4 Magnetically relevant parts of (a) rotor and (b) stator 
 
In order to improve the motor performance the length 
of the main airgap has been reduced to 1 mm from 2 
mm, which would greatly increase the unwanted 



cogging torque. However, by varying the shape and 
dimension of claw poles the cogging torque is reduced 
to a reasonably small value. The  cogging torque of 
this prototype shown in Fig. 5 was predicted by the 
virtual work method. 
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Fig.5 Cogging torque versus rotor position 

 
7.  CONCLUSION 
 
Both the virtual work and the Maxwell stress methods 
based on the three dimensional finite element analysis 
have been used to calculate the cogging torque in a 
claw pole permanent magnet motor in order to assist 
the optimization of design. The calculated and 
measured results are in reasonably good agreement. 
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