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Abstract

We consider a class of finite time horizon nonlinear stochastic optimal control problem, where the control
acts additively on the dynamics and the control cost is quadratic. This framework is flexible and has found
applications in many domains. Although the optimal control admits a path integral representation for this
class of control problems, efficient computation of the associated path integrals remains a challenging Monte
Carlo task. The focus of this article is to propose a new Monte Carlo approach that significantly improves
upon existing methodology. Our proposed methodology first tackles the issue of exponential growth in variance
with the time horizon by casting optimal control estimation as a smoothing problem for a state space model
associated with the control problem, and applying smoothing algorithms based on particle Markov chain Monte
Carlo. To further reduce computational cost, we then develop a multilevel Monte Carlo method which allows
us to obtain an estimator of the optimal control with O(ε2) mean squared error with a computational cost of
O(ε−2 log(ε)2). In contrast, a computational cost of O(ε−3) is required for existing methodology to achieve the
same mean squared error. Our approach is illustrated on two numerical examples, which validate our theory.
Key words: Optimal Control; Multilevel Monte Carlo; Markov chain Monte Carlo, Sequential Monte Carlo.

1 Introduction
We consider a class of finite time horizon nonlinear stochastic optimal control problem, where the control acts
additively on the dynamics and the control cost is quadratic [14, 15]. This framework is flexible and has applications
in domains such as robotics [23], epidemiology [26, 28], reinforcement learning [23], and nonlinear particle smoothing
[17, 22]. For this class of control problems, the nonlinear Hamilton-Jacobi-Bellman equation can be reduced to a
linear equation by applying a suitable logarithmic transformation. Although this allows the optimal control to
admit a closed form expression via the Feynman-Kac formula, efficient computation of the associated path integrals
remains a challenging Monte Carlo task. Simple approaches based on simulating the uncontrolled dynamics and
performing normalized importance sampling [4] often suffer from exponential growth in variance with the time
horizon. Hence to accurately estimate the optimal control, one might require an exponentially commensurate
number of Monte Carlo simulations. As optimal importance sampling, i.e. zero variance estimation of the optimal
control, is achieved when one simulates from the optimally controlled dynamics [25, Theorem 2], this prompts an
iterative procedure [24, 25, 21] to estimate optimal control. Although these iterative importance control methods
can often give substantial variance reduction, they typically require parameterizing the form of the control. The
focus of this article is to propose a new Monte Carlo approach to the above path integral control problem. Our
proposed methodology first tackles the issue of exponential growth in variance with the time horizon by casting
optimal control estimation as a smoothing problem for a state space model associated with the control problem,
and applying state-of-the-art smoothing algorithms based on particle Markov chain Monte Carlo (MCMC) [1].

To further reduce computational cost, we then consider the multilevel Monte Carlo (MLMC) method [8, 9, 10]
which is particularly well-suited to the problem at hand as path integrals are expectations w.r.t. a continuum
model, defined by the probability law of the uncontrolled stochastic differential equation (SDE). For numerical
implementation to be tractable, one must typically resort to discretizing the continuum model (for instance using
Euler discretizations of SDEs) and considering expectations w.r.t. the discretized model. As the time discretization
becomes more precise, the approximation becomes more accurate, but simultaneously, the associated cost of compu-
tation increases. The MLMC method considers a seemingly trivial telescoping sum representation of the expectation
w.r.t. the most precise discretization, where the summands are differences of expectations of increasingly coarsely
discretized approximations. The key idea is to approximate the differences by sampling dependent couplings of the
two probability measures in the difference, independently for each difference. In some contexts, if the couplings are
appropriately constructed (see e.g. [8]) then relative to Monte Carlo estimation for the most precise expectation,
the computational cost can be significantly reduced. In the case of optimal control estimation, one cannot adopt the
MLMC method in [8] directly, as exact sampling from smoothing distributions and their couplings is intractable. To
circumvent this difficulty, we adapt the ideas in [13] (see also [7]) to our context to develop a MLMC method that
is based on MCMC sampling methods. We then establish that, for some given ε > 0, for our proposed estimator of
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the optimal control to have O(ε2) mean squared error (MSE), the computational cost required is O(ε−2 log(ε)2). In
contrast, a computational cost of O(ε−3) is required for existing methodology to achieve the same MSE. In the case
where one assumes a parametric form of the control, we note that previous work in [21] have considered applying
the standard MLMC method in [8] to reduce the computational cost within an iterative importance control scheme
to update the control parameters.

This article is structured as follows. In Section 2, we begin by detailing the stochastic optimal control problem
of interest and its path integral formulation. We then describe our proposed methodology to compute the optimal
control in Section 3, and state some theoretical results on its complexity in Section 4. In Section 5, we validate our
theory on two examples, including a nonlinear stochastic compartmental model for an epidemic with cost-controlled
vaccination. The appendix features the assumptions and proofs for our complexity theorem in Section 4.

2 Nonlinear stochastic optimal control
We consider a nonlinear controlled process {Xt, 0 ≤ t ≤ T} in Rn, defined as the solution of the following SDE

dXt = f(Xt)dt+ e(Xt)u(t,Xt)dt+ g(Xt)dWt (1)

with initial condition X0 = x0 ∈ Rn. The above is to be understood in the Ito sense [2] and {Wt, 0 ≤ t ≤ T} is a
standard Brownian motion in Rd. We assume that f : Rn → Rn, e : Rn → Rn×m and g : Rn → Rn×d are twice
differentiable and there exists a constant c1 > 0 such that

|f(x)− f(y)|+ |g(x)− g(y)|+ |e(x)− e(y)| ≤ c1|x− y|,

for all (x, y) ∈ Rn × Rn. Without any loss of generality, we suppose that e and g (which may be non-square) have
full rank. Note that the latter implies existence and uniqueness of left-inverses, i.e. functions e−1 : Rn → Rm×n and
g−1 : Rn → Rd×n such that (e−1e)(x) = Im and (g−1g)(x) = Id for all x ∈ Rn. Lastly, we assume that g(x)g(x)>

is uniformly positive definite over x ∈ Rn. For a fixed time interval [t0, t1] ⊆ [0, T ], the set of admissible controls
U[t0,t1] we shall consider are Borel measurable functions u : [t0, t1]× Rn → Rm satisfying

Et0,xu

[∫ t1

t0

|u(t,Xt)|q dt
]
<∞

for all x ∈ Rn and q ≥ 1, where Et,xu denotes conditional expectations w.r.t. the law of (1) on the event Xt = x ∈ Rn.
These conditions are sufficient for the existence of a unique, continuous, (strong) solution to (1); see for e.g. [2, 27].

For each (t, x) ∈ [0, T ] × Rn and u ∈ U[t,T ], we associate the process defined by (1) with the following cost
functional

w(t, x, u) = Et,xu

[
φ(XT ) +

∫ T

t

{
`(Xs) + u(s,Xs)

>Ru(s,Xs)
}
ds

]
, (2)

where φ, ` : Rn → [0,∞) are continuous terminal and running cost functions, respectively, and R ∈ Rm×m is a
positive-definite symmetric. We then define the value function as

v(t, x) = inf
u∈U[t,T ]

w(t, x, u). (3)

If there exists a unique minimizer of (3) across the entire time horizon t ∈ [0, T ], we will refer to it as the optimal
control and denote it by u∗ : [0, T ]× Rn → Rm.

For any suitably smooth function ϕ : [0, T ] × Rn → R, we will denote its partial derivative w.r.t. the time
by ∂tϕ : [0, T ] × Rn → R, its gradient w.r.t. the spatial variable by ∇ϕ : [0, T ] × Rn → Rn and its Hessian by
∇2ϕ : [0, T ]×Rn → Rn×n. For any A ∈ Rn×n, we write its trace as tr(A). Under appropriate conditions, the value
function (3) can be associated with the following Hamilton-Jacobi-Bellman (HJB) equation

−∂tv(t, x) = inf
u∈U[0,T ]

{
`(x) + u(t, x)>Ru(t, x) + u(t, x)>e(x)>∇v(t, x) + f(x)>∇v(t, x) +

1

2
tr
[
g(x)g(x)>∇2v(t, x)

]}
(4)

defined for (t, x) ∈ [0, T ] × Rn, with a boundary condition v(T, ·) = φ(·) at the terminal time T . This association
is made precise in the following.
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Assumption 2.1. Suppose that the value function v : [0, T ] × Rn → [0,∞) defined in (3) is once continuously
differentiable in the time variable, twice continuously differentiable the spatial variable, and is a (classical) solution
to the HJB equation (4).

Sufficient conditions for this assumption to hold, in addition to the modeling hypotheses introduced thus far, can
be found for e.g. in [6]. These conditions typically take the form of further regularity or boundedness assumptions
on the system (1) and cost functions in (2) and/or their derivatives and are rather standard1.

Under Assumption 2.1, the value-to-go satisfies the HJB equation

−∂tv(t, x) = `(x) + u∗(t, x)>Ru∗(t, x) + u∗(t, x)>e(x)>∇v(t, x) + f(x)>∇v(t, x) +
1

2
tr
[
g(x)g(x)>∇2v(t, x)

]
(5)

for (t, x) ∈ [0, T ]×Rn, with a boundary condition v(T, ·) = φ(·). From (4), we find that the corresponding optimal
control is given by

u∗(t, x) = −R−1e(x)>∇v(t, x) (6)

for (t, x) ∈ [0, T ]× Rn. Substituting the form of the optimal control back into the HJB equation (5) gives

−∂tv(t, x) = `(x)− 1

2
∇v(t, x)>e(x)R−1e(x)>∇v(t, x) + f(x)>∇v(t, x) +

1

2
tr
[
g(x)g(x)>∇2v(t, x)

]
which is a nonlinear partial differential equation defined on [0, T ] × Rn. However, the latter can be simplified by
considering a logarithmic transformation of the value function

ψ(t, x) = exp

[
−v(t, x)

γ

]
(7)

for (t, x) ∈ [0, T ]× Rn and some γ > 0 satisfying the following assumption.

Assumption 2.2. Suppose that there exists γ ∈ R such that γe(x)R−1e(x)> = g(x)g(x)> for all x ∈ Rd.
This assumption2 is standard in the path integral formulation of optimal control [14], but it also appears more

generally in the stochastic optimal control literature [6]. Assumption 2.2 allows us to write

−∂tψ(t, x) = − 1

γ
`(x)ψ(t, x) + f(x)>∇ψ(t, x) +

1

2
tr
[
g(x)g(x)>∇2ψ(t, x)

]
which is a linear partial differential equation on [0, 1] × Rn, with boundary condition ψ(T, ·) = exp[−φ(·)/γ]. By
the Feynman-Kac formula, the solution is given by

ψ(t, x) = Et,x
[

exp

{
− 1

γ
φ(ZT )− 1

γ

∫ T

t

`(Zs) ds

}]
,

where Et,x denotes conditional expectations w.r.t. the law of the uncontrolled process {Zt} defined by

dZs = f(Zs)ds+ g(Zs)dWs (8)

with initial condition Zt = x ∈ Rn. The following result uses the relationships in (6) and (7) to deduce an expression
of the optimal control.

Proposition 2.1. Suppose Assumptions 2.1 and 2.2, and the modeling hypotheses hold. We have for (t, x) ∈
[0, T ]× Rn

u∗(t, x) =−R−1e(x)>∇v(t, x) = γR−1e(x)>∇ logψ(t, x)

= lim
r→0

1

r

Et,x
[
exp

{
− 1
γ

(
φ(ZT ) +

∫ T
t
`(Zs) ds

)} ∫ r
0
e−1(Zs)g(Zs) dWs

]
Et,x

[
exp

{
− 1
γ

(
φ(ZT ) +

∫ T
t
`(Zs) ds

)}] (9)

where expectations are path integrals defined by the uncontrolled SDE (8) with initial condition Zt = x.

Proof. This result appears in [25] with e = g and it is straightforward to generalize.

The controller form in Proposition 2.1 (and variations of such) is often referred to as the path integral formulation
of optimal control [14].

1It is noteworthy that while a classical solution to the HJB equation arising in deterministic optimal control is not typical, it is
well-known [18, 6, 19, 27] that the stochastic optimal control problem is quite generally ‘more regular’.

2The interpretation of this relationship is that along directions where the noise variance is small, the control is deemed more expensive
while, conversely, in those directions in which the noise has larger variance the control is cheap [14]. Indeed, this may be desirable in
practice since it forces control energy to be spent mostly in those directions in which the noise level may be problematic [23].
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3 Computation of optimal control
To simplify notation, throughout this section, we will set the terminal time as T = 1 and consider estimating the
optimal control at time t = 0.

3.1 Standard approach
From Proposition 2.1, the objective is to compute for r > 0 small

u∗(0, x0) =
1

r

E0,x0

[
exp

{
− 1
γ

(
φ(Z1) +

∫ 1

0
`(Zs) ds

)} ∫ r
0
e−1(Zs)g(Zs) dWs

]
E0,x0

[
exp

{
− 1
γ

(
φ(Z1) +

∫ 1

0
`(Zs) ds

)}] . (10)

We note that (10) neglects the additional bias incurred by truncating r > 0 and refer the reader to [4] for a discussion
on the impact of this parameter. To numerically approximate (10), the standard approach to path integral control
would rely on a sufficiently precise time discretization of the model. For a sufficiently large l ∈ N, we consider the
Euler-Maruyama discretization of (8) with step size h = 2−l

Zkh = Z(k−1)h + f(Z(k−1)h)h+ g(Z(k−1)h)Wk, k ∈ {1, . . . , 2l}, (11)

with initial condition Z0 = x0, whereWk ∼ Nd(0, hId) denote independent Brownian increments that are distributed
according to a Gaussian distribution mean zero and covariance hId. By taking r = 2−(M−1) for 1 < M ≤ l, this
prompts the following time discretization of (10)

ul(0, x0) =
1

r

E0,x0

l

[
exp

{
− 1
γ

(
φ(Z1) + h

∑2l−1
k=0 `(Zkh)

)}∑2l−M+1−1
k=0 e−1(Zkh)g(Zkh)Wk+1

]
E0,x0

l

[
exp

{
− 1
γ

(
φ(Z1) + h

∑2l−1
k=0 `(Zkh)

)}] , (12)

where E0,x0

l denotes conditional expectations w.r.t. the law of (11) with initial condition Z0 = x0.
To approximate the expectations in (12), we can simulate N trajectories Zih:1 = (Zih, . . . , Z

i
1), i ∈ {1, . . . , N}

and consider the standard Monte Carlo approximation

ul,N (0, x0) =
1

r

N−1
∑N
i=1 exp

{
− 1
γ

(
φ(Zi1) + h

∑2l−1
k=0 `(Z

i
kh)
)}∑2l−M+1−1

k=0 e−1(Zikh)g(Zikh)W i
k+1

N−1
∑N
i=1 exp

{
− 1
γ

(
φ(Zi1) + h

∑2l−1
k=0 `(Z

i
kh)
)} . (13)

Noting that we can write ul,N (0, x0) = r−1
∑N
i=1 ω

i
lϕl(Z

i
0:r) with normalized weights

ωil =
exp

{
− 1
γ

(
φ(Zi1) + h

∑2l−1
k=1 `(Z

i
kh)
)}

∑N
j=1 exp

{
− 1
γ

(
φ(Zj1) + h

∑2l−1
k=1 `(Z

j
kh)
)}

and test function

ϕl(z0:r) =

2l−M+1−1∑
k=0

e−1(zkh)g(zkh)g−1(zkh)
{
z(k+1)h − zkh − f(zkh)h

}
,

it follows that (13) can be seen as the normalized importance sampling estimator of ul(0, x0) = r−1Eπl [ϕl(Z0:r)],
where Eπl denotes expectation w.r.t. the distribution

πl(dzh:1) = Gl(zh:1)pl(dzh:1)

/
Cl (14)

defined on Rn2l , equipped with the Borel σ-algebra B(Rn2l). The notation pl(dzh:1) denotes the law of (11) with
initial condition x0,

Gl(zh:1) =

2l∏
k=1

Glk(zkh), Glk(zkh) =

exp
{
−hγ `(zkh)

}
for k ∈ {1, . . . , 2l − 1},

exp
{
− 1
γφ(z1)

}
for k = 2l,

(15)
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Algorithm 1 Sequential Monte Carlo for model (14)
Input: number of particles Np ∈ N.

1. At time 0 and particle i ∈ {1, . . . , Np}:

(a) set Zi0 = x0;

(b) set ancestor index Ai0 = i.

2. For time step k ∈ {1, . . . , 2l − 1} and particle i ∈ {1, . . . , Np}:

(a) sample Brownian increment W i
k ∼ Nd(0, hId);

(b) set Zikh = Z
Ai

k−1

(k−1)h + f(Z
Ai

k−1

(k−1)h)h+ g(Z
Ai

k−1

(k−1)h)W i
k;

(c) sample ancestor index Aik ∼ R
(
Glk(Z1

kh), . . . , Glk(Z
Np

kh )
)
.

3. For time step 2l:

(a) sample Brownian increment W i
2l ∼ Nd(0, hId) for particle i ∈ {1, . . . , Np};

(b) set Zi1 = Z
Ai

2l−1

(2l−1)h + f(Z
Ai

2l−1

(2l−1)h)h+ g(Z
Ai

2l−1

(2l−1)h)W i
2l ;

(c) sample an ancestor index B2l ∼ R
(
Gl2l(Z

1
1 ), . . . , Gl2l(Z

Np

1 )
)
.

4. Trace ancestry by setting Bk = A
Bk+1

k for k ∈ {1, . . . , 2l − 1}.

Output: trajectory Zh:1 = (ZB1

h , . . . , Z
B

2l

1 ) and normalizing constant estimator Cl,Np =
∏2l

k=1N
−1
p

∑Np

i=1G
l
k(Zikh).

and Cl <∞ is the normalizing constant of (14).
Although the estimator (13) is straightforward to implement and amenable to parallel computation, its variance

will often grow exponentially with the time horizon T (taken as 1 in our notation), and particularly so when l ∈ N
is not sufficiently large [11]. The following section presents an alternative Monte Carlo approach that circumvents
this difficulty.

3.2 Smoothing approach
Our proposed methodology is based on the observation that (14) can be seen as the smoothing distribution of a
state space model with (11) as the latent Markov process and (15) as the observation densities. This connection
between optimal control and smoothing has been previously noted in [5, 16]. This perspective explains why the
variance of (13) is often large, and allows us to proposed better optimal control estimators by exploiting state-of
the-art smoothing algorithms based on sequential Monte Carlo (SMC) methods.

A basic SMC method known as the bootstrap particle filter is detailed in Algorithm 1, where R(ω1, . . . , ωN )
refers to a resampling operation based on a vector of nonnegative unnormalized weights ωi, i ∈ {1, . . . , N}. For
example, this is the categorical distribution on {1, . . . , N} with probabilities ωi/

∑N
j=1 ωj , i ∈ {1, . . . , N}, when

multinomial resampling is employed; other lower variance and adaptive resampling schemes can also be considered.
The algorithm requires specifying the number of particles Np ∈ N as input, which determines the accuracy and cost
of the approximation, and outputs an approximate sample from (14) and an unbiased estimator of its normalizing
constant.

We now consider a particular smoothing algorithm known as the particle independent Metropolis-Hastings
(PIMH) method, which uses Algorithm 1 as a building block to design a MCMC method to sample from (14);
see [1] for additional details and other alternatives. An algorithmic description of PIMH is given in Algorithm 2.
From the Markov chain Zih:1, i ∈ {1, . . . , Nl} generated by PIMH, one obtains a consistent estimator of the optimal
control for the time discretized model (12)

ul,Nl(0, x0) = r−1N−1l

Nl∑
i=1

ϕl(Z
i
0:r) (16)
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Algorithm 2 Particle independent Metropolis-Hastings for model (14)
Input: number of particles Np ∈ N and iterations Nl ∈ N.

1. Initialization:

(a) run Algorithm 1 to obtain trajectory Z0
h:1 and normalizing constant estimator Cl,Np

0 .

2. For iteration i ∈ {1, . . . , Nl}:

(a) run Algorithm 1 to obtain trajectory Z∗h:1 and normalizing constant estimator Cl,Np
∗ ;

(b) with probability min
{

1, C
l,Np
∗ /C

l,Np

i−1

}
set Zih:1 = Z∗h:1 and Cl,Np

i = C
l,Np
∗ ;

(c) otherwise set Zih:1 = Zi−1h:1 and Cl,Np

i = C
l,Np

i−1 .

Output: trajectories Zih:1, i ∈ {1, . . . , Nl}.

as the number of iterations Nl → ∞, for any number of particles Np ∈ N. The latter also impacts the quality of
the approximation: since the normalizing constant estimator given by Algorithm 1 is consistent as Np → ∞, the
acceptance probability in Step 2(b) would be close to one if Np is large.

3.3 Multilevel approach
To further improve the computational efficiency of (16), we now leverage upon the MLMC method [8, 9, 10] by
considering a hierarchy of time discretizations with time steps hl = 2−l, l ∈ {M, . . . , L} for M < L. The multilevel
approach is based on the following telescopic sum

EπL [ϕL(Z0:r)] = EπM [ϕM (Z0:r)] +

L∑
l=M+1

{
Eπl [ϕl(Z0:r)]− Eπl−1 [ϕl−1(Z0:r)]

}
, (17)

where πl refers to the distribution defined in (14) with time step h = hl, l ∈ {M, . . . , L}. The first term in the sum
EπM [ϕM (Z0:r)] can be approximated using the methodology described in Section 3.2, i.e. we employ Algorithm 2
with NM ∈ N iterations to obtain a Markov chain ZihM :1, i ∈ {1, . . . , NM}, and return the estimator

uM,NM (0, x0) = r−1N−1M

NM∑
i=1

ϕM (Zi0:r). (18)

In standard MLMC [8], the summands

Eπl [ϕl(Z0:r)]− Eπl−1 [ϕl−1(Z0:r)] (19)

are then estimated independently, for l ∈ {M + 1, . . . , L}, by sampling from appropriately constructed couplings of
πl and πl−1 that induce sufficient correlation to reduce the computational cost of just approximating EπL [ϕL(Z0:r)]
in isolation. However, in our context, exact sampling from these smoothing distributions and their couplings is not
feasible. In the following, we will adapt the ideas in [13] to our setup to approximate (19).

We now construct a smoothing distribution

πl,l−1(dzhl:1(l), dzhl−1:1(l − 1)) = Ǧl,l−1(zhl:1(l), zhl−1:1(l − 1)) pl,l−1(dzhl:1(l), dzhl−1:1(l − 1))

/
Cl,l−1 (20)

defined on the product space Rn2l ×Rn2l−1

, equipped with the product σ-algebra B(Rn2l)×B(Rn2l−1

), that would
allow us to couple our approximation of the smoothing distributions at time discretization levels l and l − 1. This
corresponds to a new state space model: pl,l−1 denotes the law of a latent process (Zhl:1(l), Zhl−1:1(l − 1)) that
evolves according to

Zkhl
(l) = Z(k−1)hl

(l) + f(Z(k−1)hl
(l))hl + g(Z(k−1)hl

(l))Wk(l), k ∈ {1, . . . , 2l}, (21)

Zkhl−1
(l − 1) = Z(k−1)hl−1

(l − 1) + f(Z(k−1)hl−1
(l − 1))hl−1 + g(Z(k−1)hl−1

(l − 1))Wk(l − 1), k ∈ {1, . . . , 2l−1},

6



with initial condition Z0(l) = Z0(l − 1) = x0,

Ǧl,l−1(zhl:1(l), zhl−1:1(l − 1)) =
∏
k∈K1

l

Ǧlk(zkhl
(l))

∏
k∈K2

l

Ǧlk(zkhl
(l), zkhl−1/2(l − 1))

where the observation densities (Ǧl1, . . . , Ǧ
l
2l) given by

Ǧlk(zkhl
(l)) = Glk(zkhl

(l)) + 1, k ∈ K1
l = {1, 3, . . . , 2l − 1}, (22)

Ǧlk(zkhl
(l), zkhl−1/2(l − 1)) = max

{
Glk(zkhl

(l)), Gl−1k/2(zkhl−1/2(l − 1))
}
, k ∈ K2

l = {2, 4, . . . , 2l},

and Cl,l−1 < ∞ is the normalization constant. In (21), the Brownian increments (W1(l), . . . ,W2l(l)) and (W1(l −
1), . . . ,W2l−1(l − 1)) at levels l and l − 1, respectively, are coupled by independently sampling Wk(l) ∼ Nd(0, hlId)
for k ∈ {1, . . . , 2l} and setting Wk(l − 1) = W2(k−1)+1(l) + W2k(l) ∼ Nd(0, hl−1Id) for k ∈ {1, . . . , 2l−1}. To
approximate (19), we will rely on the identity

Eπl [ϕl(Z0:r)]− Eπl−1 [ϕl−1(Z0:r)] = (23)

Eπl,l−1

[
ϕl(Z0:r(l))Ȟ

l,1(Zhl:1(l), Zhl−1:1(l − 1))
]

Eπl,l−1

[
Ȟ l,1(Zhl:1(l), Zhl−1:1(l − 1))

] −
Eπl,l−1

[
ϕl−1(Z0:r(l − 1))Ȟ l,2(Zhl:1(l), Zhl−1:1(l − 1))

]
Eπl,l−1

[
Ȟ l,2(Zhl:1(l), Zhl−1:1(l − 1))

]
where Eπl,l−1 denotes expectation w.r.t. πl,l−1 and

Ȟ l,1(zhl:1(l), zhl−1:1(l − 1)) =
Gl(zhl:1(l))

Ǧl,l−1(zhl:1(l), zhl−1:1(l − 1))
, (24)

Ȟ l,2(zhl:1(l), zhl−1:1(l − 1)) =
Gl−1(zhl−1:1(l − 1))

Ǧl,l−1(zhl:1(l), zhl−1:1(l − 1))
. (25)

The choice of observation densities in (22) is such that the Radon-Nikodym derivatives (24) are upper-bounded by
a finite constant that does not depend on the level l. This ensures that the change of measure approach in (23)
would not introduce too much variance relative to exact sampling from a dependent coupling of πl and πl−1.

Since (20) is just another smoothing distribution on an extended state space, we can also employ the methodology
of Section 3.2 to construct a MCMC method to sample from it. The resulting algorithm based on the PIMH method
is detailed in Algorithm 4. Like before, this uses a SMC method on model (20), described in Algorithm 3, as a
building block. Given the Markov chain Zihl:1

(l), Zihl−1:1
(l − 1), i ∈ {1, . . . , Np} generated by Algorithm 4, we

approximate (23) using the estimator

r

{
ul,Nl(0, x0)− ul−1,Nl(0, x0)

}
=

N−1l
∑Nl

i=1 ϕl(Z
i
0:r(l))Ȟ

l,1(Zihl:1
(l), Zihl−1:1

(l − 1))

N−1l
∑Nl

i=1 Ȟ
l,1(Zihl:1

(l), Zihl−1:1
(l − 1))

−
N−1l

∑Nl

i=1 ϕl−1(Zi0:r(l − 1))Ȟ l,2(Zihl:1
(l), Zihl−1:1

(l − 1))

N−1l
∑Nl

i=1 Ȟ
l,2(Zihl:1

(l), Zihl−1:1
(l − 1))

.

Using the above approach independently for levels l ∈ {M + 1, . . . , L} and (18) for level l = M gives the following
multilevel estimator of the optimal control (10)

uM :L,NM:L(0, x0) = uM,NM (0, x0) +

L∑
l=M+1

{
ul,Nl(0, x0)− ul−1,Nl(0, x0)

}
. (26)

It follows under mild assumptions that (26) is a consistent estimator. In the next section, we will establish, under
appropriate assumptions, that the multilevel estimator has a reduced computational cost compared to the single
level estimator (16).
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Algorithm 3 Sequential Monte Carlo for model (20) at level l ∈ {M + 1, . . . , L}
Input: number of particles Np ∈ N.

1. At time 0 and particle i ∈ {1, . . . , Np}:

(a) set Zi0(l) = x0 and Zi0(l − 1) = x0;

(b) set ancestor index Ai0 = i.

2. For time step k ∈ {1, . . . , 2l − 1} and particle i ∈ {1, . . . , Np}:

(a) sample Brownian increment W i
k(l) ∼ Nd(0, hlId) for level l;

(b) set Zikhl
(l) = Z

Ai
k−1

(k−1)hl
(l) + f(Z

Ai
k−1

(k−1)hl
(l))hl + g(Z

Ai
k−1

(k−1)hl
(l))W i

k(l);

(c) if k ∈ {2, 4, . . . , 2l − 2}:
i. set n = k/2;
ii. set Brownian increment W i

n(l − 1) = W i
2(n−1)+1(l) +W i

2n(l) for level l − 1;

iii. set Zinhl−1
(l − 1) = Z

Ai
2(n−1)

(n−1)hl−1
(l − 1) + f(Z

Ai
2(n−1)

(n−1)hl−1
(l − 1))hl−1 + g(Z

Ai
2(n−1)

(n−1)hl−1
(l − 1))W i

n(l − 1);

iv. sample ancestor index Aik ∼ R
(
Ǧlk(Z1

khl
(l), Z1

nhl−1
(l − 1)), . . . , Ǧlk(Z

Np

khl
(l), Z

Np

nhl−1
(l − 1))

)
.

3. For time step 2l:

(a) sample Brownian increment W i
2l(l) ∼ Nd(0, hId) for level l and particle i ∈ {1, . . . , Np};

(b) set Zi1(l) = Z
Ai

2l−1

(2l−1)hl
(l) + f(Z

Ai

2l−1

(2l−1)hl
(l))hl + g(Z

Ai

2l−1

(2l−1)hl
(l))W i

2l(l);

(c) set Brownian increment W i
2l−1(l − 1) = W i

2l−1(l) +W i
2l(l) for level l − 1 and particle i ∈ {1, . . . , Np};

(d) set Zi1(l − 1) = Z
Ai

2l−2

(2l−1−1)hl−1
(l − 1) + f(Z

Ai

2l−2

(2l−1−1)hl−1
(l − 1))hl−1 + g(Z

Ai

2l−2

(2l−1−1)hl−1
(l − 1))W i

2l−1(l − 1);

(e) sample an ancestor index B2l ∼ R
(
Ǧl2l(Z

1
1 (l), Z1

1 (l − 1)), . . . , Ǧl2l(Z
Np

1 (l), Z
Np

1 (l − 1))
)
.

4. Trace ancestry by setting B2k = A
B2(k+1)

2k for k ∈ {1, . . . , 2l−1 − 1} and B2k−1 = B2k for k ∈ {1, . . . , 2l−1}.

Output: trajectories Zhl:1(l) = (ZB1

hl
, . . . , Z

B
2l

1 ) and Zhl−1:1(l − 1) = (ZB2

hl−1
, . . . , Z

B
2l

1 ), and normalizing constant

estimator Cl,l−1,Np =
∏
k∈K1

l
N−1p

∑Np

i=1 Ǧ
l
k(Zikhl

(l))
∏
k∈K2

l
N−1p

∑Np

i=1 Ǧ
l
k(Zikhl

(l), Zikhl−1/2
(l − 1)).

Algorithm 4 Particle independent Metropolis-Hastings for model (20)
Input: number of particles Np ∈ N and iterations Nl ∈ N.

1. Initialization:

(a) run Algorithm 3 to obtain trajectories Z0
hl:1

(l) and Z0
hl−1:1

(l − 1), and normalizing constant estimator

C
l,l−1,Np

0 .

2. For iteration i ∈ {1, . . . , Nl}:

(a) run Algorithm 3 to obtain trajectories Z∗hl:1
(l) and Z∗hl−1:1

(l − 1), and normalizing constant estimator

C
l,l−1,Np
∗ ;

(b) with probability min
{

1, C
l,l−1,Np
∗ /C

l,l−1,Np

i−1

}
set Zihl:1

(l) = Z∗hl:1
(l), Zihl−1:1

(l − 1) = Z∗hl−1:1
(l − 1) and

C
l,l−1,Np

i = C
l,l−1,Np
∗ ;

(c) otherwise set Zihl:1
(l) = Zi−1hl:1

(l), Zihl−1:1
(l − 1) = Zi−1hl−1:1

(l − 1) and Cl,l−1,Np

i = C
l,l−1,Np

i−1 .

Output: trajectories Zihl:1
(l), Zihl−1:1

(l − 1), i ∈ {1, . . . , Nl}.
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4 Theoretical results
In our context, to sample πl,l−1 for l ∈ {M + 1, . . . , L} (resp. πM ) we will generate a Markov chain on a potentially
enlarged space Wl ⊇ Rn(2l+2l−1) with the σ-algebra Wl (resp. (WM ,WM )). The purpose of this construction is to
facilitate the application of advanced Markov chain samplers such as in [1]. We denote the associated Markov kernel
as Kl :Wl ×Wl → [0, 1], l ∈ {M, . . . , L}.

We will consider studying (component-wise)

E
[({

uM :L,NM:L(0, x0)− uL(0, x0)
}

+ uL(0, x0)− u∗(0, x0)
)2]

(27)

where E denotes an expectation w.r.t. the Markov chains that have been simulated to estimate uL(0, x0). Our
objective is to verify that the MSE (27) can be made, for ε > 0 given, of O(ε2), with a cost that is smaller than
using a single MCMC algorithm to approximate uL(0, x0).

The assumptions for the following result are in Appendix A.1 and the proof is in Appendix A.2.

Theorem 4.1. Assume (A1-2). Then there exists a C < +∞ such that for any L > M > 1, NM :L ≥ 1:

E
[({

uM :L,NM:L(0, x0)− uL(0, x0)
}

+ uL(0, x0)− u∗(0, x0)
)2]
≤ C

( L∑
l=M

hl
Nl

+

L∑
l=M+1

L∑
q=M+1

IA(l, q)
h
1/2
l h

1/2
q

NlNq
+ hL

)
(28)

where A = {(l, q) ∈ {M + 1, . . . , L}2 : l 6= q}, I is the indicator function.

To understand the significance of this result, suppose that one iteration of each Markov chain costs O(h−1l ).
The latter is the cost of sampling Euler approximations (note Remark A.1 in the appendix implies that the O(h−1l )
cost per iteration is possible). Let ε > 0 be given and set L = O(| log(ε)|), so that the square bias is O(ε2) (see (36)
in the appendix, but this is the hL term on the R.H.S. of (28)). Now choosing Nl = O(ε−2hlL) as in [8] yields

L∑
l=M

hl
Nl

= O(ε2)

L∑
l=M+1

L∑
q=M+1

IA(l, q)
h
1/2
l h

1/2
q

NlNq
= O(ε2).

So, we have achieved a MSE of at most O(ε2). The cost to achieve this MSE is

L∑
l=M

h−ll Nl = O(ε−2 log(ε)2).

If one simply used a Markov chain simulation for πL or using the original approach in [4] the cost to achieve this
same MSE would be O(ε−3); a significant increase.

5 Numerical results

5.1 Linear quadratic Gaussian control
We consider a linear quadratic Gaussian (LQG) control problem where the underlying continuous-time linear con-
trolled process is given by

dXt = AXtdt+Bu(t,Xt)dt+ dWt (29)

with t ∈ [0, T ], Xt ∈ R, u(t,Xt) ∈ R and Wt ∈ R denoting a standard Brownian motion in R. The estimation of
the optimal control that minimizes the following quadratic cost function is considered

w(t, x, u) = Et,xu

[
FX2

T +

∫ T

t

{QX2
s +Ru(s,Xs)

2} ds

]
. (30)

In our experiments, we set A = −1, B = 1, F = 1, Q = 1, R = 0.1, M = 4 and initialize the process at
X0 = −0.1. The estimation of the optimal control at time t = 0 using the different methods considered is compared:
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Figure 1: MSE v.s. cost for LQG model with time horizon T = 1.
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Figure 2: MSE v.s. cost for LQG model with time horizon T = 10.

the standard Monte Carlo (MC) approach described in Section 3.1 (see also [3, 15]), single level PIMH introduced
Section 3.2, and multilevel Monte Carlo (MLMC) approach based on PIMH as detailed in Section 3.3. For the
MLMC method, we set the number of MCMC samples according to the multilevel analysis, i.e. Nl = O(ε−2hlL)
and L = O(|log(ε)|), with the number of particles in SMC to be fixed at Np = 500.

For the single level PIMH method, the number of MCMC samples is N = O(ε−2). The single level PIMH
algorithm and the multilevel PIMH algorithm are compared for a time horizon of length T = 1, with the MSE v.s.
cost plot presented in Figure 1. For the same level of MSE, the cost reduction in the multilevel approach is clear.
All three approaches are then compared for a longer time horizon of length T = 10. The number of samples is set
so that the computational cost of the standard MC approach and that of the PIMH method are the same. From
Figure 2, we see a marked reduction in computational cost when employing single level PIMH as compared to the
standard MC approach, and a further reduction in cost with the multilevel PIMH approach.

5.2 Nonlinear compartmental model
5.2.1 Model specification

We consider the optimal control of a stochastic compartmental model for an epidemic with cost-controlled vacci-
nation. The state variables are Xt = (St, It, Vt, Rt) ∈ R4 corresponding to susceptible (S), infected (I), vaccinated
(V), and removed (R) individuals in a population with the constraint

St + It + Vt +Rt = 1 (31)
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for all t ≥ 0. The controlled model considered herein respects this constraint for all t > 0, whenever it is enforced
to hold at time 0; see [26]. We consider a modification of [26] suitable for our purposes,

dSt = (β − β St − κ It St + θ Vt − St u(t,Xt)) dt− σ St dWt

dIt = (κSt It + ε κ Vt It − λ It − β It + %St u(t,Xt)) dt+ σ (St − ε St − σ% %St) dWt

dVt = (−ε κ It Vt − β Vt − θ Vt + (1− %)St u(t,Xt)) dt+ σ (ε St + σ% %St) dWt

dRt = (λ It − β Rt) dt

(32)

where Wt ∈ R denotes a standard Brownian motion in R. In this model, the birth and death rate are given by
β ∈ (0, 1), and the infection rate is controlled by κ > 0, known as the contact rate. The parameter λ ≥ 0 controls
the curing rate, θ ≥ 0 controls the loss of vaccine effectiveness, and ε ∈ (0, 1) controls the efficacy of the vaccination
protocol, i.e. letting ε = 0 would imply the vaccine is perfectly effective, while ε = 1 implies the vaccination has
no effect. The parameter 0 < % ≈ 0 is necessary for our model to be well-defined and taken small enough so that it
has no effect qualitatively.

The control input u ∈ R specifies the fraction of the susceptible class being vaccinated at any moment. Note
that although we would like u ∈ [0, 1], values outside this constraint cause no mathematical difficulty and do not
pose a problem for satisfaction of the constraint (31), i.e. d(St + It + Vt +Rt) = 0. Given some fixed terminal time
T > 0, the cost function we aim to minimize is given by

w(t, x, u) = Et,xu

[
I2T +

∫ T

t

{q Is + r u(s,Xs)
2} ds

]
, (33)

for t ∈ [0, T ], where q, r > 0 are weighting parameters. Note that the running cost is linear in the state.
The basic reproduction rate is R0 = κ/(β + λ) and, with θ = % = 0, it is shown in [28] that for R0 < 1 the

stochastic system (32) is almost surely exponentially stable with any constant u to the equilibrium

(S∗, I∗, V ∗, R∗) =

(
β

β + u
, 0, 1− β

β + u
, 0

)
.

Hence, we take parameters such that R0 > 1 going forward. In particular, we take β = 0.016, κ = 0.55, λ = 0.45 and
ε = 0.4. We also take θ = 0.1, % = 0.01 and σ = 0.4. The initial condition is (S0, I0, V0, R0) = (0.75, 0.15, 0.05, 0.05).
To check our assumptions stated in Section 2, we note that

γ r−1


−St
%St

(1− %)St
0

( −St, % St, (1− %)St, 0
)

= σ2


−St

(1− ε− σ% %)St
(ε+ σ% %)St

0

( −St, (1− ε− σ% %)St, (ε+ σ% %)St, 0
)

for some γ ∈ R. Indeed, we require ε+ (σ% + 1)% = 1 in order to find γ uniquely. Given our prior parameters this
implies σ% = 59 and then γ = 0.16r. We only need the left inverse of (−St, %St, (1 − %)St)

>. Note in the control
computation we can act as if the system is three-dimensional and ignore the dynamics of Rt. The left inverse in
this case is −St

%St
(1− %)St

−1 =

( −St, % St, (1− %)St
) −St

%St
(1− %)St

−1 ( −St, % St, (1− %)St
)

which in general exists since the inverse on the right hand side in general exists.

5.2.2 Numerical results

In our experiments, we set q = 1, r = 0.05, T = 3 and M = 3. In the following, we will compare the single level
PIMH algorithm to the multilevel PIMH algorithm for the task of optimal control estimation. As the standard MC
approach did not perform well in the simple LQG model, it is not considered for this application. A trajectory of the
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Figure 3: A trajectory of the controlled process and the corresponding approximation of the optimal control
generated by the single level PIMH algorithm (left) and the multilevel PIMH algorithm (right).
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Figure 4: Sample average (left) and sample variance (right) of value function over time interval [0, T ].

controlled process generated by the two algorithms are shown in Figure 3. It is clear from Figure 3 that the infected
and the susceptible compartments are decreasing over time, while the vaccinated and the removed compartments
are increasing over time.

In Figure 4, we compare the two algorithms at a fixed computational cost by reporting the sample average (left
panel) and sample variance (right panel) of the value function, computed using 20 independent repetitions of each
algorithm. We observe that the multilevel approach achieves lower values on average in terms of the objective (33)
with much smaller variance.

Lastly, for the task of estimating the optimal control at time t = 0, we present a MSE v.s. cost plot in
Figure 5. For the MLMC method, we set the number of MCMC samples according to the multilevel analysis
i.e. Nl = O(ε−2hlL) and L = O(|log(ε)|), with the number of particles in SMC to be fixed at Np = 200. For the
singe level PIMH method, the number of MCMC samples is taken as N = O(ε−2). The true value is computed
by running the latter algorithm at one plus the most precise level (i.e. L + 1) and the MSE is computed using
20 independent repetitions of each algorithm. The results illustrate that the multilevel approach offers significant
reduction in computational cost.
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A Technical results
Throughout our proofs C is a finite constant that does not depend upon l and whose value may change on each
appearance.
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A.1 Assumptions
In the context of Theorem 4.1, to shorten our proofs, we will suppose that the Markov chain(s) are started in
stationarity. This latter assumption can be removed with some work, but is unnecessary in order to convey the
point of our approach. Note also that we are assuming that r is fixed throughout and there is an additional bias
which is not addressed. In order to derive our theoretical results, in addition to the assumptions that have already
been made, we will make the following assumptions. Below P(Wl) denotes the collection of probability measures
on Wl.

(A1) φ, `, e, f , g are all bounded and measurable. In addition φ, ` are Lipschitz. Set α = e−1g, then we assume
each element of α is bounded and Lipschitz.

(A2) Kl is reversible. There exists a κ ∈ (0, 1) such that for each l ∈ {M, . . . , L} there exists a ν ∈ P(Wl) such
that for any η : Wl → R bounded, measurable and Lipschitz, x ∈Wl∫

Wl

η(x′)Kl(x, dx
′) ≥ κ

∫
Wl

η(x′)ν(dx′).

Remark A.1. In (A2) we have assumed a mixing rate that will be independent of l. At first glance, it may seem
that this is not possible in practice. However, using Lemma A.1 below, one can easily establish that (for example)
the PIMH algorithm in [1] has such a property.

A.2 Proof of Theorem 4.1
The proof is constructed by using several results, which are first quoted and proved later on in the appendix.

Theorem A.1. Assume (A1-2). Then there exists a C <∞ such that for any l ∈ {M + 1, . . . , L}, Nl ≥ 1:

E[(ul,Nl(0, x0)− ul−1,Nl(0, x0)− {ul(0, x0)− ul−1(0, x0)})2] ≤ Chl
Nl

.

Proof. This essentially the same as [13, Theorem 3.1] except that one needs Proposition A.2 and Lemma A.1 in
Appendix A.3.

The proof of the following result is in Appendix A.4.

Proposition A.1. Assume (A1-2). Then there exists a C <∞ such that for any l ∈ {M + 1, . . . , L}, Nl ≥ 1:

|E[ul,Nl(0, x0)− ul−1,Nl(0, x0)− {ul(0, x0)− ul−1(0, x0)}]| ≤
Ch

1/2
l

Nl
.

Remark A.2. We note that, via [13, Proposition A.1.], a simple decomposition:

a

b
− c

d
=
a− c
b

+
c[d− b]
bd

(34)
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for any (a, b, c, d) ∈ R, b 6= 0, d 6= 0 and Lemma A.1 one can show that

E[(uM,NM (0, x0)− uM (0, x0))2] ≤ C

NM
(35)

for C <∞ independent of NM , l. In addtion, in the proof of Proposition A.2 we have established that

|uL(0, x0)− u∗(0, x0)| ≤ Ch1/2L (36)

where C <∞ does not depend on l. (36) can be obtained using the bound for (39) (l = L), (34) and Lemma A.1.

Proof of Theorem 4.1. Using the C2−inequality,

E
[({

uM :L,NM:L(0, x0)− uL(0, x0)
}

+ uL(0, x0)− u∗(0, x0)
)2]
≤

2
(
E
[(
uM :L,NM:L(0, x0)− uL(0, x0)

)2]
+ |uL(0, x0)− u∗(0, x0)|2

)
. (37)

First, apply the C2−inequality to the variance term (the bias is the L.H.S. of (36) and hence the variance is the
left term on the R.H.S. of (37)), splitting uM,NM (0, x0) − uM (0, x0) and the other terms. Second, apply Theorem
A.1, Proposition A.1 and (35) to the variance terms and (36) to the bias term. This allows one to complete the
proof.

A.3 Proofs for Theorem A.1
Below for i1 ∈ {1, . . . ,m} we write the ith1 −element of m−vector ϕl(zhl:Mlhl

) as ϕl(zhl:Mlhl
)i1 . For (i1, i2) ∈

{1, . . . ,m} × {1, . . . , d}, we write the ith1 , ith2 element of α(z) as α(z)i1i2 . For ease of notation set

T (i1, l, q) :=

Eπl,l−1

[(
ϕl(Zhl:Mlhl

(l))i1Ȟ
l,1(Zhl:1(l), Zhl−1:1(l−1))−ϕl−1(Zhl−1:Ml−1hl−1

(l−1))i1Ȟ
l,2(Zhl:1(l), Zhl−1:1(l−1))

)q]3−q
.

Proposition A.2. Assume (A1). Then for any i1 ∈ {1, . . . ,m}, q ∈ {1, 2}, there exist a C < +∞ such that for
any l ∈ {M + 1, . . . , L}

T (i1, l, q) ≤ Chl.

Proof. We give the proof for q = 2, the proof for the case q = 1 follows by Jensen’s inequality.
Let Z l,l−1 denote the normalizing constant of πl,l−1. By Lemma A.1 it easily follows that

Z l,l−1 ≥ C.

Thus it follows that

T (i1, l, 2) ≤ C
∫
Rd(2l+2l−1)

(
ϕl(zhl:Mlhl

(l))i1

h−1
l∏
k=0

Glk(zkhl
(l))− (38)

ϕl−1(zhl−1:Ml−1hl−1
(l − 1))i1

h−1
l−1∏
k=0

Gl−1k (zkhl−1
(l − 1))

)2
pl,l−1(d(zhl:1(l), zhl−1:1(l − 1))).

Define

T1(i1, l) := ED
[(
ϕl(zhl:Mlhl

(l))i1

h−1
l∏
k=0

Glk(zkhl
(l))− (

d∑
i2=1

∫ r

0

α(Zs)i1i2dWs(i2)) exp{− 1

γ
(φ(Z1) +

∫ 1

0

`(Zs)ds)}
)2]

where we are denoting expectations w.r.t. the law of the diffusion (8) as ED and Ws(i2) is the ith2 −element of the
Brownian motion in (8). Then it is clear that the integral on the R.H.S. of (38) is upper-bounded by

2(T1(i1, l) + T1(i1, l − 1)).

Hence we focus upon T1(i1, l) to conclude our result.
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We have

T1(il, l) ≤ 2ED
[(
ϕl(zhl:Mlhl

(l))i1

h−1
l∏
k=0

Glk(zkhl
(l))−

d∑
i2=1

∫ r

0

α(Zs)i1i2dWs(i2) exp{− 1

γ
(φ(Z1)+hl

h−1
l −1∑
k=1

`(Zkhl
))}
)2]

+

(39)

2ED
[(( d∑

i2=1

∫ r

0

α(Zs)i1i2dWs(i2)
)

exp{− 1

γ
(φ(Z1) + hl

h−1
l −1∑
k=1

`(Zkhl
))} − exp{− 1

γ
(φ(Z1) +

∫ 1

0

`(Zs)ds)}
)2]

.

We deal with the two expectations on the R.H.S. of (39) individually. For the first term on the R.H.S. we have that

ED
[(
ϕl(zhl:Mlhl

(l))i1

h−1
l∏
k=0

Glk(zkhl
(l))−

d∑
i2=1

∫ r

0

α(Zs)i1i2dWs(i2) exp{− 1

γ
(φ(Z1) + hl

h−1
l −1∑
k=1

`(Zkhl
))}
)2]
≤

2ED
[((

ϕl(zhl:Mlhl
(l))i1 −

d∑
i2=1

∫ r

0

α(Zs)i1i2dWs(i2)
)( h−1

l∏
k=0

Glk(zkhl
(l))
))2]

+

2ED
[( d∑

i2=1

∫ r

0

α(Zs)i1i2dWs(i2)
)2( h−1

l∏
k=0

Glk(zkhl
(l))− exp{− 1

γ
(φ(Z1) + hl

h−1
l −1∑
k=1

`(Zkhl
))}
)2]

.

Application of Lemmata A.2-A.3 yields the upper-bound of Chl. For the second term on the R.H.S. of (39), one
can use Lemma A.4. Hence the proof is completed.

Lemma A.1. Assume (A1). Then there exists a 0 < C < C < +∞ such that for any l ∈ {M, . . . , L}, zhl:1 ∈ Rd2l

C ≤
h−1
l∏
k=0

Glk(zkhl
) ≤ C

and for any l ∈ {M + 1, . . . , L}, (zhl:1(l), zhl−1:1(l)) ∈ Rd(2l+2l−1)

C ≤
{ ∏
k∈K1

l

Ǧlk(zkhl
(l), zak(l)(l − 1))

}{ ∏
k∈K2

l

Ǧlk(zkhl
(l))
}
≤ C.

Proof. Throughout 0 < C < C < +∞ are finite constants that do not depend upon l and whose value may change
on each appearance. We note that for any k ∈ {0, . . . , h−1l − 1}, any l ∈ {M, . . . , L} and any z ∈ Rd

exp{−hl
γ

sup
z
|`(z)|} ≤ Glk(z) ≤ exp{−hl

γ
inf
z
`(z)}.

Clearly for any z ∈ Rd C ≤ Gl
h−1
l

(z) ≤ C, hence it follows that for any l ∈ {M, . . . , L}, zhl:1 ∈ Rd2l

C ≤
h−1
l∏
k=0

Glk(zkhl
) ≤ C.

The second result is established using the relationship between Ǧlk and Glk.

Recall we are denoting expectations w.r.t. the law of the diffusion (8) as ED and Ws(i2) is the ith2 −element of
the Brownian motion in (8).

Lemma A.2. Assume (A1). Then for any i1 ∈ {1, . . . ,m} there exist a C < +∞ such that for any l ∈ {M, . . . , L}

ED
[((

ϕl(zhl:Mlhl
(l))i1 −

d∑
i2=1

∫ r

0

α(Zs)i1i2dWs(i2)
)( h−1

l∏
k=0

Glk(zkhl
(l))
))2]

≤ Chl.
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Proof. By Lemma A.1 we need only deal with

ED
[(
ϕl(zhl:Mlhl

(l))i1 −
d∑

i2=1

∫ r

0

α(Zs)i1i2dWs(i2)
)2]

.

This latter term, via the C2−inequality is upper-bounded by

2ED
[(
ϕl(zhl:Mlhl

(l))i1 −
d∑

i2=1

Ml∑
k=1

α(Z(k−1)hl
)i1i2W

l
k(i2)

)2]
+

2ED
[( d∑

i2=1

Ml∑
k=1

α(Z(k−1)hl
)i1i2W

l
k(i2)−

d∑
i2=1

∫ r

0

α(Zs)i1i2dWs(i2)
)2]

.

We treat these two terms independently, calling them T1 and T2 respectively.
Term: T1. By repeated use of the C2−inequality, T1 is upper-bounded by

C

d∑
i2=1

E
[( Ml∑

k=1

(α(Z(k−1)hl
(l))i1i2 − α(Z(k−1)hl

)i1i2)W l
k(i2)

)2]
=

C

d∑
i2=1

Ml∑
k=1

E
[(

(α(Z(k−1)hl
(l))i1i2 − α(Z(k−1)hl

)i1i2)W l
k(i2)

)2]
≤

C

d∑
i2=1

Ml∑
k=1

E
[∣∣∣Z(k−1)hl

(l)− Z(k−1)hl

∣∣∣2W l
k(i2)2

]
where we have used the Lipschitz property of α to go-to the last line. Splitting the expectation of the summand
using Cauchy Schwarz we have

T1 ≤ C
d∑

i2=1

Ml∑
k=1

E
[∣∣∣Z(k−1)hl

(l)− Z(k−1)hl

∣∣∣4]1/2E[W l
k(i2)4]1/2.

Then using standard results from Euler-discretization of diffusions (see e.g. [20]) and Gaussian distributions:

E
[∣∣∣Z(k−1)hl

(l)− Z(k−1)hl

∣∣∣4]1/2 = O(hl) and E[W l
k(i2)4]1/2 = O(hl)

hence

T1 ≤ C
d∑

i2=1

Mlh
2
l ≤ Chl.

Term: T2. By repeated use of the C2−inequality, T2 is upper-bounded by

C

d∑
i2=1

ED
[( Ml∑

k=1

∫ khl

(k−1)hl

{α(Z(k−1)hl
)i1i2 − α(Zs)i1i2}dWs(i2)

)2]
=

C

d∑
i2=1

Ml∑
k=1

ED
[( ∫ khl

(k−1)hl

{α(Z(k−1)hl
)i1i2 − α(Zs)i1i2}dWs(i2)

)2]
.

Using the Ito isometry formula, clearly

T2 ≤ C
d∑

i2=1

Ml∑
k=1

∫ khl

(k−1)hl

ED
[(
α(Z(k−1)hl

)i1i2 − α(Zs)i1i2

)2]
ds

Then using the Lipschitz property of α and then standard results for diffusion processes

T2 ≤ Chl.

The proof is hence completed by the above arguments.
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Lemma A.3. Assume (A1). Then for any i1 ∈ {1, . . . ,m} there exist a C < +∞ such that for any l ∈ {M, . . . , L}

ED
[( d∑

i2=1

∫ r

0

α(Zs)i1i2dWs(i2)
)2( h−1

l∏
k=0

Glk(zkhl
(l))− exp{− 1

γ
(φ(Z1) + hl

h−1
l −1∑
k=1

`(Zkhl
))}
)2]
≤ Chl.

Proof. We begin by splitting the expectation via Cauchy Schwarz to yield the upper-bound

ED
[( d∑

i2=1

∫ r

0

α(Zs)i1i2dWs(i2)
)4]1/2

ED
[( h−1

l∏
k=0

Glk(zkhl
(l))− exp{− 1

γ
(φ(Z1) + hl

h−1
l −1∑
k=1

`(Zkhl
))}
)2]1/2

. (40)

By (a classic variation of) the Burkholder-Gundy-Davis inequality, it follows that

ED
[( d∑

i2=1

∫ r

0

α(Zs)i1i2dWs(i2)
)4]1/2

≤ C

hence we consider the right-hand expectation in (40). Using the Lipschitz property of e−x for bounded x, it follows
that

ED
[( h−1

l∏
k=0

Glk(zkhl
(l))− exp{− 1

γ
(φ(Z1) + hl

h−1
l −1∑
k=1

`(Zkhl
))}
)2]1/2

≤

CED
[(
φ(Z1(l))− φ(Z1) + hl

h−1
l −1∑
k=1

(`(Zkhl
(l))− `(Zkhl

))
)4]1/2

.

Using the Lipschitz property of φ and ` it clearly follows that

ED
[(
φ(Z1(l))− φ(Z1) + hl

h−1
l −1∑
k=1

(`(Zkhl
(l))− `(Zkhl

))
)4]1/2

≤ ED
[

max
k∈{1,...,h−1

l }
|Zkhl

(l)− Zkhl
|4
]1/2

.

Hence using standard results for Euler approximations of diffusion processes

ED
[( h−1

l∏
k=0

Glk(zkhl
(l))− exp{− 1

γ
(φ(Z1) + hl

h−1
l −1∑
k=1

`(Zkhl
))}
)2]1/2

≤ Chl

and one can conclude the proof by the above arguments.

Lemma A.4. Assume (A1). Then for any i1 ∈ {1, . . . ,m} there exist a C < +∞ such that for any l ∈ {M, . . . , L}

ED
[(( d∑

i2=1

∫ r

0

α(Zs)i1i2dWs(i2)
)

exp{− 1

γ
(φ(Z1) + hl

h−1
l −1∑
k=1

`(Zkhl
))}

− exp{− 1

γ
(φ(Z1) +

∫ 1

0

`(Zs)ds)}
)2]
≤ Chl.

Proof. As in the proof of Lemma A.3 split the expectation via Cauchy Schwarz to yield the upper-bound

ED
[( d∑

i2=1

∫ r

0

α(Zs)i1i2dWs(i2)
)4]1/2

ED
[(

exp{− 1

γ
(φ(Z1)+hl

h−1
l −1∑
k=1

`(Zkhl
))}−exp{− 1

γ
(φ(Z1)+

∫ 1

0

`(Zs)ds)}
)4]1/2

.

Again (as in the proof of Lemma A.3) by the Burkholder-Gundy-Davis inequality the first expectation is O(1) so
we concentrate upon the second expectation (call it T1). Using the Lipschitz property of e−x for bounded x, it
follows that

T1 ≤ CED
[(
hl

h−1
l −1∑
k=1

`(Zkhl
))−

∫ 1

0

`(Zs)ds
)4]1/2

= CED
[( h−1

l −1∑
k=1

∫ khl

(k−1)hl

{`(Zkhl
))− `(Zs)}ds+

∫ 1

(1−hl)

`(Zs)ds
)4]1/2

.
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Then via the Minkowski inequality

T1 ≤ C
[ h−1

l −1∑
k=1

ED
[( ∫ khl

(k−1)hl

{`(Zkhl
))− `(Zs)}ds

)4]1/4
+ Chl

]2
where we have used the fact that ` is bounded. Then applying Jensen with standard results in diffusions, yields
T1 ≤ Chl.

A.4 Proof of Proposition A.1
Proof of Proposition A.1. We make the defintions:

aN :=
1

Nl

Nl∑
i=1

ϕl(z
i
hl:Mlhl

(l))Ȟ l,1(zihl:1
(l), zihl−1:1

(l − 1))

bN :=
1

Nl

Nl∑
i=1

Ȟ l,1(zihl:1
(l), zihl−1:1

(l − 1))

cN :=
1

Nl

Nl∑
i=1

ϕl−1(zihl−1:Ml−1hl−1
(l − 1))Ȟ l,2(zihl:1

(l), zihl−1:1
(l − 1))

dN :=
1

Nl

Nl∑
i=1

Ȟ l,2(zihl:1
(l), zihl−1:1

(l − 1))

a := Eπl,l−1 [ϕl(Zhl:Mlhl
(l))Ȟ l,1(Zhl:1(l), Zhl−1:1(l − 1))]

b := Eπl,l−1 [Ȟ l,1(Zhl:1(l), Zhl−1:1(l − 1))]

c := Eπl,l−1 [ϕl−1(Zhl−1:Ml−1hl−1
(l − 1))Ȟ l,2(Zhl:1(l), Zhl−1:1(l − 1))]

d := Eπl,l−1 [Ȟ l,2(Zhl:1(l), Zhl−1:1(l − 1))].

Then component-wise (from here, our calculations should be considered component-by-component):

r
(
ul,Nl(0, x0)− ul−1,Nl(0, x0)− {ul(0, x0)− ul−1(0, x0)}

)
=
aN

bN
− cN

dN
−
(a
b
− c

d

)
.

By [12, Lemma D.5]
aN

bN
− cN

dN
−
(a
b
− c

d

)
=

1

bN
(aN − cN − (a− c))− cN

bNdN
(bN − dN − (b− d)) +

1

bNb
(b− bN )(a− c)+

c

dNbd
(dN − d)(b− d)− 1

bNdN
(cN − c)(b− d) +

c

bNdNb
(bN − b)(b− d).

The first two terms on the R.H.S. and the last four terms on the R.H.S. can be treated using similar calculations,
so we only consider

T1 :=
1

bN
(aN − cN − (a− c)) and T2 :=

1

bNb
(b− bN )(a− c).

Term: T1. We have

T1 =
( 1

bN
− 1

b

)(
aN − cN − (a− c)

)
+

1

b
(aN − cN − (a− c)).

On taking expectations w.r.t. the law of the simulated Markov chain, we have

E[T1] = E
[( 1

bN
− 1

b

)(
aN − cN − (a− c)

)]
as the chain is started in stationarity. Applying the Cauchy-Schwarz inequality:

|E[T1]| ≤ E
[( 1

bN
− 1

b

)2]1/2
E[(aN − cN − (a− c))2]1/2.
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By using a similar result to [13, Proposition A.1] and by Proposition A.2

E[(aN − cN − (a− c))2]1/2 ≤
Ch

1/2
l

N
1/2
l

.

By standard results for uniformly ergodic Markov chains (e.g. the result in [13, Proposition A.1]), along with Lemma
A.1

E
[( 1

bN
− 1

b

)2]1/2
≤ C

N
1/2
l

and hence

|E[T1]| ≤
Ch

1/2
l

Nl
.

Term: T2. We have
T2 =

( 1

bNb
− 1

b2

)
(b− bN )(a− c) +

1

b2
(b− bN )(a− c)

and taking expectations as for T1

E[T2] = E
[( 1

bNb
− 1

b2

)
(b− bN )(a− c)

]
.

Hence, by Cauchy-Schwarz

|E[T2]| ≤ |a− c|E
[( 1

bNb
− 1

b2

)2]1/2
E[(b− bN )2]1/2.

By Proposition A.2 |a − c| ≤ Ch
1/2
l and again, standard results for uniformly ergodic Markov chains, along with

Lemma A.1
E
[( 1

bNb
− 1

b2

)2]1/2
E[(b− bN )2]1/2 ≤ C

Nl

and hence

|E[T2]| ≤
Ch

1/2
l

Nl
.
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