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Abstract
We discuss a pairing mechanism in interacting two-dimensional multipartite lattices that
intrinsically leads to a second order topological superconducting state with a spatially modulated
gap. When the chemical potential is close to Dirac points, oppositely moving electrons on the
Fermi surface undergo an interference phenomenon in which the Berry phase converts a repulsive
electron–electron interaction into an effective attraction. The topology of the superconducting
phase manifests as gapped edge modes in the quasiparticle spectrum and Majorana Kramers pairs
at the corners. We present symmetry arguments which constrain the possible form of the
electron–electron interactions in these systems and classify the possible superconducting phases
which result. Exact diagonalization of the Bogoliubov-de Gennes Hamiltonian confirms the
existence of gapped edge states and Majorana corner states, which strongly depend on the spatial
structure of the gap. Possible applications to vanadium-based superconducting kagome metals
AV3Sb5 (A= K, Rb, Cs) are discussed.

1. Introduction

Since the discovery of high-temperature supercon-
ductors, investigations of superconducting instabil-
ities driven purely by the repulsive Coulomb
interaction have led to the discovery of numer-
ous unconventional superconducting phases [1–8].
Among these, topological superconductors—hosting
robust, zero-energy edge modes—have taken a key
role in the pursuit of platforms for quantum com-
puting [9–11]. Recently, a new classification of topo-
logical superconductors has emerged which relies
on crystalline symmetries in addition to non-spatial
ones [12–24]. These ‘higher-order’ topological super-
conductors host non-trivial boundary states with
multiple dimensionalities: in two dimensions, the
second-order topological superconducting phase
hosts a gapped spectrum of propagating modes along
the edge as well as zero-energy modes localized at the
corners of the system in addition to a gapped bulk
quasiparticle spectrum.

In the search for candidatematerials hosting these
phases, it is crucial to investigate the possiblemechan-
isms that might give rise to them in physical systems,
based on a microscopic analysis of the electron–
electron interactions. In this work we describe an
approach to interactions in two-dimensional mater-
ials with Dirac points that naturally leads to a second
order topological p+ iτp superconducting phase,
arising past a critical doping for arbitrarily weak val-
ues of the repulsive Coulomb interaction. Our ana-
lysis is performed in the weak coupling regime, in
which Stoner instabilities and correlated insulating
states are absent, but the effects we describe domin-
ate in materials where the atomic orbitals are strongly
localized, which distinguishes our theory from those
previously used to study graphene.

The Coulomb repulsion is converted into an
attraction via destructive interference for certain scat-
tering channels near the Dirac points which origin-
ate from the Berry phase, causing the formation of
Cooper pairs to lower the correlation energy. Thus,
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our theory relies on Dirac Fermi surfaces, a scen-
ario distinct from tuning the Fermi level to a nest-
ing density or van Hove singularity, commonly stud-
ied as an explanation for superconductivity [25–31].
In contrast to previously studied mechanisms for
higher order topological superconductivity, we also
do not require proximitization to an existing super-
conductor [32–41], negative-U Hubbard interactions
[42], or bosonic fluctuations [43].

This pairing mechanism was previously stud-
ied in the context of an artificial honeycomb lattice
[44]; here we classify the resulting superconduct-
ing states and demonstrate their topological proper-
ties. Our results follow from general symmetry con-
siderations, but we will present specific results for
kagome and honeycomb lattices. In section 2 we dis-
cuss Hubbard-like models of these systems, present-
ing the most general set of interactions consistent
with the lattice symmetries and enumerating the pos-
sible superconducting states which result. In section 3
we discuss how the superconducting instabilities are
affected by screening effects. In section 4 we perform
exact diagonalization of the Bogoliubov-de Gennes
Hamiltonian describing the superconducting states,
confirming the existence of edge and corner modes
for samples whose edge respects the point group sym-
metry of the lattice. We conclude with a discussion
of candidate materials, and suggest the mechanism
can explain recently observed superconductivity in
vanadium-based kagome metals AV3Sb5 (A = K, Rb,
Cs), where superconductivity appears to be uncon-
ventional but correlations are weak [45–51].

2. Superconducting instabilities in Dirac
materials

We investigate the pairing instabilities of a two-
dimensional lattice with hexagonal symmetry hosting
Dirac points at theK points, which we describe via an
extended Hubbard model [52–54]

H=
∑
r,r ′

T(r− r ′)c†r cr ′

+
1

2

∑
r1,r2,r3,r4

U(r1,r2,r3,r4)(c
†
r3cr1)(c

†
r4cr2) (1)

where c†r = (c†r,↑, c
†
r,↓) are two component spinors and

the spin inner product is implied in the single particle
and interacting terms in the Hamiltonian (1).

We choose lattice vectors a1 = (a,0), a2 =

( a2 ,
√
3a
2 ), and specialize to lattices possessing C6υ

symmetry, which consists of twofold and threefold
rotations in the plane and mirror reflections about
the x and y axes. We only consider models without
spin-orbit interaction, thus we may choose a basis of
Wannier orbitals so that T(r− r ′) andU(r1,r2,r3,r4)
are real. The Hamiltonian is invariant under SU(2)
spin rotations and possesses a time reversal symmetry

satisfying T 2 = 1, which is identical to complex con-
jugation in the coordinate representation. For the
remainder of this paper we denote the time reversal
operation which leaves spin unaffected by T .

The resulting band structure featuresDirac points
at the K and K′ points, which we distinguish by a val-
ley index τ =±. The eigenstates of the single particle
Hamiltonian may be classified by their eigenvalues
e

2πi
3 α under threefold rotations, where α=±. We

shall refer to the α degree of freedom as pseudospin.
At the Dirac points there are four degenerate energy
eigenstates |τ,α⟩ which transform into one another
under time reversal, twofold rotations and mirror
symmetry. We shall introduce the Pauli operators
τµ,αµ acting on the valley and pseudospin degrees of
freedom. The degeneracy of the α eigenstates at each
valley is protected by either Mx or RπT . We obtain
the following representation of crystal symmetries:

UR 2π
3

= e
2πi
3 αz , UMx = αx,

URπ
= cosϕIτx + sinϕIτy, T = τxαxK (2)

where ϕI is a phase which generally depends on the
lattice and the chosen center of inversion.

Doping slightly above the valleys±K=±( 4π3a ,0),
the Fermi surface consists of two circular pock-
ets surrounding the K points with Fermi momenta
kF ≪ |K|, with the single particle energy eigenstates
formed from linear combinations of the pseudospin
basis states (i.e. eigenstates of threefold rotations).
By obtaining the band structure of (1) and project-
ing the interactions onto states near the Dirac points,
we obtain a quantum field theory describing interac-
tion processes close to the Fermi level which accounts
for the τ , α and spin (s) degrees of freedom and
may be formulated using an eight-component local
field operatorψ†

ταs(r). Themost generalHamiltonian
density consistent with the symmetries (2) is of the
form

H= ψ†(−iυτzα ·∇)ψ+
1

2

∑
a,b

Vab

(
ψ†Jaψ

)(
ψ†Jbψ

)
(3)

where we have expanded the interaction in the
adjoint basis consisting of products Ja = τµαν ,
and Vab are constants which may be obtained by
projecting the extended Hubbard interactions (1)
onto the pseudospin and valley eigenstates. As we
show in the appendix, only operators which are
even under time reversal symmetry are permit-
ted in the interactions, which are {J1, J2, . . . , J10}=
{τ0α0, τzαz, τ0αx, τ0αy, τx, τy, τxαx, τxαy, τyαx, τyαy}.
The Hamiltonian must transform as a scalar under
the spatial symmetries (2) which implies that V is
a diagonal matrix. There are only five independent
coupling constants g1,g2,g3,g4,g5, which we relate to
the interaction matrix Vab by

2
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Table 1. The relations between coupling constants (3) and the extended Hubbard model parameters (1) for the Kagome and honeycomb
lattice with couplings involving nearest neighbors. We denote Uσ1σ2σ3σ4 = U(r1, r2, r3, r4) where r1, r2, r3, r4 are sites in sublattices
σ1,σ2,σ3,σ4 separated at most by a nearest neighbor bond.

Kagome Honeycomb

g1/Ω
1
6
(2UAAAA + 8UABAB + 8UAABA + 4UACBC +UAABB)

1
2
(UAAAA + 3 UABAB)

g2/Ω
1
2
UAABB

1
2
(UAAAA − 3 UABAB)

g3/Ω
1
3
(UAAAA − 2UABAB + 4UAABA − 4UACBC + 2UAABB) 3 UABBA

g4/Ω
1
3
(UAAAA − 2UABAB + 3UAABA − 3UACBC + 2UAABB) 3 UABBA

g5/Ω
1
3
(UAAAA +UABAB + 4UAABA + 8UACBC + 8UAABB) UAAAA

V11 = g1, V22 = g2, V33 = V44 =
g3
2
,

V55 = V66 =
g4
2
, V77 = V88 = V99 = V10,10 =

g5
4
.

(4)

In addition to a density–density interaction g1,
the interactions involve valley-conserving (J2 = τzαz)
and valley-mixing (J5 = τx, J6 = τy) mass operators.
The remaining six operators are conserved SU(2) val-
ley currents which can be expressed as products of
the valley operators iτx, iτy, τz and the electric current
jµ = ( jx, jy) = (τzαx, τzαy).

The relation between the coupling constants g i
appearing in the field theory (3) and the extended
Hubbard model parameters U(r1,r2,r3,r4) for the
kagome and honeycomb lattices are given in table 1.
We denote the three sublattices of the kagome lat-
tice {A,B,C}, and the two sublattices of the hon-
eycomb lattice by {A,B}. We list only interactions
involving nearest neighbors, and denote the interac-
tions in which the lattice coordinates r1,r2,r3,r4 exist
on the σ1,σ2,σ3,σ4 sublattices by Uσ1σ2σ3σ4 . In the
kagome lattice, each site has two nearest neighbors in
each of the other sublattices, and in the honeycomb
lattice, each site has three nearest neighbors in the
other sublattice.

The eigenstates of the Dirac Hamiltonian in
the upper band are given by f†k,τ,s = (ψ†

ττ s(k)+

τeiτθkψ†
τ−τ s(k))/

√
2. Evaluating the Born amplitudes

from (3) we find that the scattering vertexΓτ1τ2τ3τ4(θ)
in the Cooper channel is given by

Γττττ (θ) =
g1 + g2

2
e−iτθ cosθ+

g1 − g2 − g3
2

e−iτθ,

Γ+−+−(θ) = Γ−+−+(θ) =
g1 − g2

2
cosθ

+
g1 + g2 + g3

2
,

Γ+−−+(θ) = Γ−++−(θ) =−g4
2
cosθ+

g4 + g5
2

,

(5)

where θ is the scattering angle. BCS theory pre-
dicts that superconducting pairing occurs when
the scattering amplitude between Cooper pairs is
negative, i.e. for attractive scattering. For pairing

of electrons within the same valley τ this corres-
ponds to Γℓ

ττττ < 0, while pairing of electrons in
opposite valleys requires the symmetrized amplitudes
Γℓ
+−+− +Γℓ

+−−+ < 0 or Γℓ
+−+− −Γℓ

−++− < 0.
The critical temperature is given

Tc ∼ EFe
−1/(ν0λ) (6)

where λ= Γℓ
ττττ for intravalley pairing or λ=

Γℓ
+−+− ±Γℓ

+−−+ for intervalley pairing, and ν0 =
kF/(2πν) is the density of states per spin per valley
at the Fermi level.

In order to investigate the physical features of the
condensate we introduce the mean field Hamiltonian

HBdG =
∑
k

εkf
†
k fk +

1

2
f†k
(
∆kisyiτy

)
f†−k + h.c. (7)

where f†k is the creation operator for a Dirac fermion
in the upper band and ∆(k) is the superconduct-
ing gap matrix (spin and valley indices are implied).
Accounting for spin, valley and angular momentum
structure, there are eight possible superconducting
phases, which we list in table 2 along with the cor-
responding scattering amplitude.

The topological properties of the gaps are asso-
ciated with their Altland–Zirnbauer class [55–57],
which classifies mean field Hamiltonians based on
time reversal, charge conjugation and chiral sym-
metries. For the spin singlet pairing phases, ∆∝ s0,
accounting for SU(2) spin rotation symmetry we find
that the charge conjugation symmetry satisfies C2 =
−1. In the case of spin triplet pairing, the spontan-
eous violation of SU(2) spin rotation symmetry fixes
a direction d= (dx,d y,d z), with the gap ∆∝ dµsµ.
As we show in the appendix, magnetization of the
condensate is energetically disfavored, which implies
that d can be chosen to be purely real. The mean-field
Hamiltonian is invariant under spin rotation about
the d-direction. Accounting for this U(1) symmetry6,

6 Wenote that the pairing term only possesses U(1) spin symmetry,
however the normal state dispersion retains its original SU(2) spin
symmetry. It was noted in [58] that such a state generically falls in
class D.

3
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Table 2. Superconducting phases for 2D Dirac fermions in lattices with C6υ symmetry. First column: gap structure, second column: order
parameter, third column: coupling constant which determines Tc via equation (6), in terms of coupling constants in the Hamiltonian
equation (3), fourth column: Altland–Zirnbauer class.

Gap structure ∆ λ AZ class

Intervalley, spin singlet, s-wave τ z
1
2
(g1 + g2 + g3 + g4 + g5) CI

Intervalley, spin singlet, p-wave e±iθk
1
4
(g1 − g2 + g4) C

Intervalley, spin triplet, s-wave dµsµ
1
2
(g1 + g2 + g3 − g4 − g5) BDI

Intervalley, spin triplet, p-wave e±iθkτz(d
µsµ)

1
4
(g1 − g2 − g4) D

Intravalley, spin singlet, s-wave eiτzϕ(iτy)
1
4
(g1 + g2) CI

Intravalley, spin singlet, d-wave eiτz(ϕ−2θk)(iτy)
1
4
(g1 + g2) CI

Intravalley, spin singlet, mixed s/d-wave e±iθkeiτz(ϕ+θk)(iτy)
1
4
(g1 + g2) C

Intravalley, spin triplet, p-wave eiτz(ϕ−θk)(dµsµ)(iτy)
1
2
(g1 − g2 − g3) BDI

we may decompose the mean field Hamiltonian in
two spin blocks, with each separately possessing a
charge conjugation symmetry satisfying C2 =+1.We
therefore conclude that the phases with spin sing-
let pairing are either in class CI or C, while those
with spin triplet pairing are either in class BDI or
D depending on whether the time-reversal symmetry
of the normal state Hamiltonian survives in the con-
densed phase. Consulting the periodic table of topo-
logical invariants [57], we find that first order topo-
logical superconductivity is possible for the phases
in which time reversal symmetry is spontaneously
broken, i.e. those in class C or D, and possess a Chern
number which counts the number of chiral modes
propagating along the boundary and whose parity is
equal to the parity of Majorana modes localized at
a vortex. However, both the intravalley p-wave spin
triplet, and intervalley s-wave spin triplet states are in
class BDI. For the intravalley spin triplet phase, the
gap is p+ ip in one valley and p− ip in the other, pre-
serving time reversal symmetry, and we refer to this
as the p+ iτp phase. In these cases lowest order topo-
logy is absent while second order topology is possible
[14, 16, 20]. These phases are indicated by the exist-
ence of Majorana corner states of definite spin pro-
tected by crystalline symmetries. In addition to the
spinless time reversal symmetry operator satisfying
T 2 =+1, our system possesses a spinful time reversal
symmetry T ′ = T eiπSy satisfying (T ′)2 =−1 which
interchanges opposite spin blocks; thus corner modes
occur in Kramers pairs. In section 4 we present exact
diagonalization results which demonstrate that the
intravalley p+ iτp spin triplet phase indeed possesses
a second order topology.

We now apply our previous results to ana-
lyze the possibility of superconducting instabilities
in the kagome and honeycomb lattices. The lead-
ing Hubbard interactions do not involve tunneling
between sites, thus we only account for interactions
U(r1,r2,r3,r4) in (1) with r1 = r3,r2 = r4. Denoting

the parameter λ in (6) by λ1 for intervalley s-wave
spin triplet pairing, λ2 for intervalley p-wave spin
triplet pairing and λ3 for intravalley p-wave spin
triplet pairing, we find for the kagome lattice

λ1 = λ2 =
λ3
2

=
UABABΩ

2
(8)

where Ω is the area of the unit cell and

λ1 = 0, λ2 =
λ3
2

=
3 UABABΩ

4
(9)

for the honeycomb lattice.
In the limit UABAB → 0 the scattering amplitudes

for all three spin triplet instabilities vanish for both
lattices, implying that the system approaches a crit-
ical point for the onset of triplet superconductivity,
including for the topologically nontrivial phases. The
vanishing of the scattering amplitude in the p+ ip
and p+ iτp channels is a consequence of the Dirac
nature of the scattering states, and can be understood
as follows: the components of the wavefunction in
the pseudospin and valley basis have momentum-
dependent phase factors which are a manifestation of
the Berry phase surrounding the Dirac points. Des-
pite our model only containing local interactions,
upon projecting the Dirac wavefunction onto the
interactions in (3) we find that the Berry phase gives
rise to p+ ip scattering amplitudes which are essential
to obtain a nontrivial topology. The pseudospin and
valley dependence of the operators Ja allows some g i
to contribute to the partial wave amplitudes λ with
negative signs, as can be seen in table 2. This causes
destructive interference between the contributions to
the scattering amplitudewith distinct pseudospin and
valley structure—i.e. the g i. In the scattering channels
which give rise to the topological phases, the contri-
butions from different g i sum to zero, leading to a
total cancellation of the on-site Coulomb repulsion.

An additional negative contribution to the scat-
tering amplitude which can overcome the weak

4
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nearest neighbor repulsion would result in supercon-
ductivity. One interesting scenario would be a weak
electron-phonon interaction, which in our case could
drive the instability to an unconventional spin triplet
state, rather than the spin singlet state which normally
results. In the next section, however, we will show that
even in the absence of additional attractive interac-
tions, a negative contribution to the nearest neighbor
repulsion arises as a result of overscreening. All three
triplet amplitudes become negative if the bare nearest
neighbor repulsion is sufficiently weak, and the dens-
ity is sufficiently high.

3. Screening effects

We now consider how g i are modified by screening
processes. We show these effects here analytically in
the random phase approximation (RPA), equivalent
to taking the limit of large N where N = 4 is the
degeneracy of the Dirac points [59–62]. This ana-
lysis was performed for the special case of an artificial
semiconductor honeycomb lattice in [44]; we extend
this analysis to encompass genericDiracmaterials sat-
isfying C6υ and time-reversal symmetry, which may
be described by the Hamiltonian (3). The RPA res-
ults in replacing the interaction constants Vab in (3)
with screened frequency and momentum dependent
couplings, which are determined by the RPA equation

Ṽab(ω,q) = Vab +
∑
cd

VacΠ
cd(ω,q)Ṽdb(ω,q), (10)

where Πcd(ω,q) is a generalized polarization oper-
ator. These represent the susceptibility of the system
to a perturbation δH=

∑
aϕa(r, t)J

a, and are calcu-
lated in the appendix.

Accounting for the frequency and momentum
dependence of the screened scattering vertex, solution
of the Eliashberg equations gives the critical temper-
ature

Tc = Λe−1/(ν0 λ̃) (11)

where λ̃ is the RPA renormalised λ of table 2 obtained
from interactions between electrons on the Fermi sur-
face and Λ is a frequency cutoff determined by scat-
tering processes away from the Fermi surface; expli-
cit calculation (discussed in the appendix) showsΛ≈
EF.

Scattering on the Fermi surface corresponds to
the range of momentum and frequency transfer q<
2kF, ω= 0. In this range the polarization operators
are constant, and λ̃ is simply given by the previ-
ous expressions λ (table 2) evaluated with screened
couplings g̃i at ω = 0,q= 0. We have studied the
screening of the interactions g1 and g2 in a previ-
ous paper [44], and found that g1 is reduced while
g2 is enhanced as the chemical potential is increased.
We can explain the qualitative effects of static and

homogeneous screening on the interactions on gen-
eral physical grounds. The coupling g1 is screened by
the long wavelength density–density response, which
as usual weakens g1 with increasing chemical poten-
tial. The intra and intervalley mass couplings g2 and
g4 are screened via the polarization operator associ-
ated with the response of the system to an external
perturbation∝ αzτz, τx, τy which gap the Dirac spec-
trum. This perturbation lowers the energy of negative
energy states and increases the energy of the posit-
ive energy states. The response of the occupied neg-
ative energy states below the Dirac point is divergent
and may be fully subtracted by regularization—the
result of which is that g2 and g4 should be replaced
by reduced interaction constants which are different
from those provided in table 1; thus within the Dirac
model the only physically significant effect of screen-
ing is the increase in energy of the occupied positive
energy states which grows stronger with increasing
chemical potential. The interactions g3,g5 are val-
ley current interactions and the polarization operat-
ors responsible for their screening also contain a UV
divergent part which may be subtracted by replacing
the bare interaction constants with reduced values,
and after this subtraction are unscreened due to a
Ward identity. Explicitly, we find in RPA

g̃1 =
g1

1+Nν0 g1
,

g̃i =
gi

1−Nν0 gi
,

g̃j = gj (12)

where i= 2,4 and j= 3,5. This results in replacing
the nearest-neighbor coupling with a screened value,
UABAB → ŨABAB in the relations in table 1, equations
(8) and (9). The screened nearest neighbor interac-
tion is given by

ŨABAB =
g̃1 − g̃3
2Ω

=
1

2Ω

[
g1

1+Nν0 g1
− g3

]
(13)

for the kagome lattice and

ŨABAB =
g̃1 − g̃2
3Ω

=
1

3Ω

[
g1

1+Nν0 g1
− g2

1−Nν0 g2

]
(14)

for the honeycomb lattice. For sufficiently large ν0, we
find that ŨABAB < 0, resulting in superconductivity,
and the dominant instability occurs in the intravalley,
p-wave, spin triplet channel. This occurs for µ > µ∗

with the critical value

µ∗ = 2πυ2
[
g−1
3 − g−1

1

N

]
(15)

for the kagome lattice and

µ∗ = 2πυ2
[
g−1
2 − g−1

1

2N

]
(16)

5



2D Mater. 9 (2022) 015031 T Li et al

for the honeycomb lattice.
The Dirac theory is only applicable up to a cutoff

beyond which the electronic dispersion becomes
nonlinear. Our analysis predicts a superconducting
instability when the critical doping µ∗ lies within
the regime where Dirac theory is justified. In the
limit g3 → 0 or g2 → 0 respectively for the kagome
and honeycomb lattices, the critical doping becomes
infinite. We therefore require significant pseudospin
dependent couplings, which are suppressed when the
atomic orbitals are delocalized.

So far, we have neglected the long ranged part of
the Coulomb interaction, which provides weak coup-
lings between sites with large separation. This may be
accounted for by replacing g̃1 with its screened value
at q→ 0, g̃1 → 1/Nν0, and simply results in a shift of
the critical doping to higher values.

4. Topological edge and corner modes

Our RPA results show that the dominant super-
conducting instability for both the honeycomb
and Kagome lattice is the intravalley p–wave
spin triplet phase, with gap structure ∆k =
|∆|eiτz(ϕ−θk)(dµsµ)(iτy). This gap possesses a num-
ber of unconventional features that distinguish it
from the superconducting phases more commonly
studied in either high-Tc superconductors or Dirac
materials. The gap exists at both K points and has a
p+ iτp wave angular structure, which points to the
presence of a π–Berry phase in two-particle scatter-
ing from which superconducting pairing originates.
However, the winding of the gap is opposite in the
two valleys, with the superconducting order para-
meter at the two K points being related to each other
by complex conjugation. As a result, the usual topo-
logical features associated with chiral p-wave super-
conductors are strongly modified. We may view the
phase as consisting of four copies of a topological
p+ ip superconductor [10], one per spin and valley
species, with the gaps at opposite valleys possessing
topological invariants of opposite sign. This results
in a topologically trivial superconductor according to
the Altland–Zirnbauer classification. However, in the
presence of crystalline symmetries, a second order
topology emerges which is characterized by anomal-
ous corner modes.

In the intravalley paired state, Cooper pairs carry
a finite quasimomentum, and as a result the gap
is spatially modulated, forming a pair density wave
which is commensurate with the lattice with a peri-
odicity of three unit cells [63–70]. The condensate
possesses a U(1) order parameter ϕ associated with
the spatial position of the pair density wave and does
not couple to the electromagnetic field; the system
also exhibits Goldstonemodes associated with fluctu-
ations of ϕ, which are physically the sliding modes of
the pair density wave. The spatial modulation of the
gap spontaneously breaks the crystalline symmetries

of the normal state except at special values ϕ= nπ
2 ,

n ∈ Z; at these values the gapmay be classified accord-
ing to a second order topological invariant which pre-
dicts the number ofMajorana cornermodes of a finite
sample of the superconductor which preserves the
crystalline symmetries.

We study the topology of the p+ iτp intraval-
ley spin triplet phase via the bulk boundary corres-
pondence for higher order topological superconduct-
ors, and identify the anomalous boundary physics
in hexagonal superconducting flakes. By choosing a
spin quantization axis which is aligned so that d ∥ ŷ,
we find that pairing occurs between electrons with
both spins aligned either along the z or−z axis. Thus
the pairing term may be decomposed into a sum of
two spin sectors. We derive the topological features
of the superconducting state by analyzing the spin-
less Hamiltonian corresponding to pairing within a
single spin sector. In order to make numerical diag-
onalization easier we employ a simplified form of the
gap function in which we only include nearest neigh-
bor pairing and hopping terms. In the appendix, we
derive the real space form of the gap from the p+ iτp
momentum space structure. The spinless mean field
lattice Hamiltonian which results is

HBdG =
∑
⟨r,r ′⟩

−tc†r cr ′ +
1

2

[
∆(r,r ′)c†r c

†
r ′ +H.c.

]
,

(17)

where∆(r ′,r) =−∆(r,r ′), and

∆(r,r ′) = ∆ ′ cos(K · (r+ r ′)+ϕ) ,


r ∈ B, r ′ ∈ C

r ∈ B, r ′ ∈ A

r ∈ A, r ′ ∈ C

(18)

for the kagome lattice, and

∆(r,r ′) = ∆ ′ sin(K · (r+ r ′)+ϕ), r ∈ B,r ′ ∈ A
(19)

for the honeycomb lattice, and we distinguish the
parameter∆ ′ from the bulk gap∆.

We present exact diagonalization results for the
kagome and honeycomb lattices in figures 1 and 2
respectively. We have calculated the spectrum for all
values of ϕ, however the topological classification
must be performed at the values ϕ= 0, π2 for which
the gap obeys a twofold rotation symmetry. We have
performed calculations for a variety of edge geomet-
ries, and in each case we preserve the twofold rota-
tional symmetry of the bulk. In a number of cases we
observe a gapless edge spectrum for all values of ϕ.
This occurs for the geometries shown in the last two
rows of figure 1 and the last row of figure 2. These sur-
faces states are remnants of the chiral Majorana edge
modes expected from the Read-Green model [10]
which are the most easily identifiable manifestions of
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Figure 1. Results of the exact diagonalization of the Bogoliubov-de Gennes Hamiltonian within a single spin sector for hexagonal
flakes of a kagome lattice of three different geometries. The leftmost figures show the spatially modulated pairing between nearest
neighbors for ϕ= π/2. The color of the bonds between neighboring sites r, r ′ shows the value of the gap function∆(r, r ′)
according to the color scale. The inset of the bottom left figure depicts a zoom into the bulk of the lattice with the unit cell
boundary indicated by the thin lines. The central figures show the wavefunction densities of the three lowest quasiparticle modes.
The rightmost figures show the quasiparticle spectrum as a function of the pair density wave parameter ϕ. The three lowest
quasiparticle modes are indicated in red. For the exact diagonalization we use the parameters µ= 0.4t, ∆ ′ = 0.4t.

the chiral p-wave nature of the gap. For other edge
terminations, however, the edge spectrum is gapped,
indicating that the gapless edge modes are not topo-
logically protected, which is consistent with the fact
that, since our gap lies in class BDI, it cannot pos-
sess a first order topological invariant. For the other
edge terminations, we find that at ϕ= π

2 , the edge
states are gapped, and six zero energy modes appear
within each spin sector which are localized at each
of the corners of the flake, forming the three lowest
modes within the quasiparticle spectrum of a single
spin sector highlighted in red in figures 1, 2(c), (f)
and (i). This occurs for both the honeycomb and
kagome lattices. At ϕ= 0, we either find no Major-
ana zero modes when the edge spectrum is gapped

or a gapless edge spectrum. This allows us to con-
clude that both the honeycomb and kagome lattices
are in a second order topological phase for ϕ= π

2
and trivial for ϕ= 0. We note that, since our results
are for a spinless model obtained after performing a
spin decomposition of the mean-field Hamiltonian,
the Majorana zero modes appear as Kramers pairs.
Since pairing occurs between electrons with parallel
spin, the Majorana modes individually possess defin-
ite spin, and are protected against hybridization by a
spinful time reversal symmetry T ′ = eiπSyT .

Since the boundarymodes in a higher order topo-
logical phase require crystalline symmetries, they are
not protected against local perturbations. The robust-
ness of the bulk-boundary correspondence in the

7
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Figure 2. Results of the exact diagonalization of the Bogoliubov-de Gennes Hamiltonian within a single spin sector for hexagonal
flakes of a honeycomb lattice of three different geometries. The leftmost figures show the spatially modulated pairing between
nearest neighbors for ϕ= π/2. The color of the bonds between neighboring sites r, r ′ shows the value of the gap function
∆(r, r ′) according to the color scale. The inset of the bottom left figure depicts a zoom into the bulk of the lattice with the unit
cell boundary indicated by the thin lines. The central figures show the wavefunction densities of the three lowest quasiparticle
modes. The rightmost figures show the quasiparticle spectrum as a function of the pair density wave parameter ϕ. The three
lowest quasiparticle modes are indicated in red. For the exact diagonalization we use the parameters µ= 0.4t, ∆ ′ = 0.2t.

presence of crystalline symmetry breaking therefore
provides an important, general question for systems
exhibiting higher order topology. In our examples, for
general values of the pair density wave order para-
meter ϕ, all the point group symmetries of the nor-
mal state are spontaneously broken by the pairing
term except for mirror reflection about the x axis,
which is preserved due to the fact that the phase K ·
(r+ r ′)+ϕ of the pair density wave does not depend
on the y coordinate. However, at discrete values ϕ=
πn
2 , the superconductor recovers a twofold rotational
symmetry. The parameter ϕ allows continuous tun-
ing of the system between a second order topolo-
gical phase at ϕ= π(n+ 1

2 ) and a trivial phase at ϕ=
nπ. We observe, despite the breaking of crystalline

symmetries, that the anomalous corner modes per-
sist and remain exponentially close to zero energy in
a finite region of values around |ϕ−π(n+ 1

2 )|< ϕ∗

up to a critical value ϕ∗ at which the edge gap closes.
The corner modes are protected by both the bulk and
edge gap, and thus persist even when the point group
symmetry is weakly broken [13, 14].

The anomalous corner modes coexist with a
gapped edge spectrum. This originates from the p+
iτp nature of the gap, which provides a 1D bound-
ary superconductor for each copy of the Moore-Read
model existing in each spin and valley species. The
manifestation of the bulk second order topology is
shadowed by the behavior of the boundary supercon-
ductor: for certain edge terminations, the edgemodes

8
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remain anomalous due to symmetries along the edge
which forbid their hybridization. In particular, for the
bottom geometries of figures 1 and 2, the system pos-
sesses a mirror symmetry at ϕ= πn

2 that prohibits
the counterpropagating chiral Majorana modes from
gapping out. In this case, the edge states are anomal-
ous and associated with a bulk crystalline symmetry
protected topological phase protected bymirror sym-
metry. For other edge terminations, mixing of the
chiral modes between opposite valleys along the same
edge occurs, and the edge spectrum is gapped. Inter-
estingly, the emergence of anomalous corner modes
in this situation is not general but depends on the
value of ϕ.

We may make an interesting comparison to the
p+ ip intervalley spin triplet phase, which is sublead-
ing in our analysis in the regime where the onsite
couplings dominate over the nearest neighbor coup-
lings, but may arise as the dominant instability for
models withmore complicated lattice interactions. In
this case, pairing occurs between the electron pock-
ets surrounding opposite valleys, and the order para-
meter spontaneously chooses a winding number cor-
responding to either p+ ip or p− ip pairing. Time
reversal symmetry is broken, which puts the super-
conductor in class D, rather than BDI as in the
intravalley case. This phase possesses a Chern number
which leads to a gapless, anomalous edge spectrum. In
a separate study, we show that this phase may become
dominant when spin orbit coupling is present, and
analyze the topology of this phase in detail [71].

5. Discussion

Our results show that the first order topological
p+ ip and second order topological p+ iτp super-
conducting states emerge naturally in the presence of
Dirac points near the chemical potential. While in
a previous study we explored the pseudospin pair-
ing mechanism giving rise to a p+ iτp instability in
a semiconductor-based artificial honeycomb lattice
within the RPA [44], in this work we have extended
our analysis of the pairing mechanism to generic lat-
tices satisfying C6υ symmetry and shown that this
instability is not specific to any lattice structure but
rather emerges due to the universal properties of the
Dirac fermion excitations in these materials. We have
illustrated that both the Berry phase and screening
effects underlying the pairing mechanism are active
in kagome lattices, and presented exact diagonaliza-
tion results which demonstrate the striking similarity
between the boundary physics in kagome and hon-
eycomb lattices, which result from the fact that they
possess identical topological properties.

In addition to the p+ iτp phase, the intervalley
p+ ip and s-wave phase are possible, but are sublead-
ing in our analysis. The intervalley p+ ip is a first
order topological supercondutor with protected edge

modes; themechanismwe describe here therefore can
also result in first order topological superconductiv-
ity. Unlike the p-wave states, the s-wave state is protec-
ted against the effects of weak disorder by a general-
ized Anderson’s theorem, so this state might posses a
higher Tc than the topological phases in a sufficiently
disordered system. In a separate study, we also sug-
gest that these two phases may arise due to spin–orbit
coupling and study their properties in detail [71].

We call attention to a number of relevant features
of this mechanism: (i) the mechanism can be applied
for weak repulsive interactions, so strong correlations
are not necessary, (ii) superconductivity appears bey-
ond a critical doping beyond the Dirac points, at
which the screening effects become strong enough to
give rise to a net attraction, (iii) the electronic origin
of the pairing means the cutoff which determines Tc

is the Fermi energy rather than the Debye frequency,
(iv) superconductivity ismore pronounced in systems
with localized orbitals.

Superconductivity has recently been discovered
in quasi-2D vanadium-based kagome metals AV3Sb5
(A= K, Rb, Cs) [45, 48]. The agreement between
DFT calculations of the bandstructure and ARPES
suggests that these materials are weakly correlated,
an interpretation also supported by the results of
DFT/DMFT calculations [45, 72, 73]. The Fermi sur-
face contains pockets surrounding the Dirac points,
a pocket surrounding the Γ point, and nearly-
hexagonal Fermi contours [74]. Superconductivity
exists alongside density wave order which sets in at
a higher temperature and appears to compete with
superconductivity [75–81]. STM and Josephson STS
measurements suggest a spatially modulated super-
conducting gap [50] and zero bias peaks inside mag-
netic field-induced vortex cores are suggestive of
Majorana bound states [51]. These materials also
show signs of a phase transition between two distinct
superconducting states as a function of doping [82].

Given that phonons appear unable to account for
the measured Tc [50, 73] and yet the materials appear
to be weakly correlated, we propose that our mech-
anism might provide a partial explanation for super-
conductivity in kagomemetals, in contrast to existing
theoretical proposals which attribute superconduct-
ivity to the effects of nesting or competing density
wave order [83–85]. In this interpretation, supercon-
ductivity originates from the Dirac-like Fermi sur-
faces and is not directly related to the observed charge
density wave (CDW) order [75], which is potentially
due to the nested portions of the band structure
near the Fermi level. Due to the presence of mul-
tiple Fermi surfaces as well as Fermi surface recon-
struction due to CDW order, our theory does not
fully incorporate all the possible interactions. Given
the apparent phase transition between two supercon-
ducting phases as doping is varied, we suggest that
our theory may describe one of the observed phases,
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with different effects responsible for the other. Our
theory can also not explain the observed periodicity
of the pair density wave, however it is possible that
this discrepancy is related to the reconstruction of
the Fermi surface by the CDW, which would modify
the spatial period predicted by our theory. Future
experiments could look for evidence of the edge or
cornermodes present in the p+ ip and p+ iτp phases
[23, 24], probe the spin structure of the gap through
NMR or further investigate the real space structure
of the superconducting gap as a function of doping/
pressure.

Additional kagome systems have recently been
discovered to host superconductivity, and might also
be possible candidates for the pseudospin mechan-
ism, including bilayer kagome systems [86], ferro-
magnetic kagome metals [87], and lanthanum-based
materials [88]. Superconductivity has also been seen
in Dirac surface states of doped topological insulat-
ors [89–93], which might also be explained by this
theory. Inmaterials such as transitionmetal dichalco-
genides like MoS2 and MoTe2, and few-layer stanene
[94], the presence of spin orbit interactions gaps the
Dirac points and/or introduces a valley-Zeeman field,
but the Dirac physics persists nonetheless. In a separ-
ate study, we have examined the effects of spin–orbit
coupling on the possible superconducting states, and
find that the pseudospin mechanism results in topo-
logical superconductivity in these systems as well
[71]. Our mechanism may also play a role in the
observed superconducting phases in Moiré systems
such as twisted bilayer/trilayer graphene [95–98].
These systems exhibit honeycomb/kagome superlat-
tices hosting Dirac points, however, while our theory
is expected to be applicable, the interaction structure
is significantly more complicated than for the mono-
layer honeycomb or kagomematerials we have invest-
igated. As a general guiding principle, promising can-
didate materials for the pseudospin mechanism are
those with strongly localized orbitals—which lead to
larger values of the couplings g i and lower values of
the critical doping µ∗—and larger Dirac-like Fermi
surfaces—which enhance the screening effects.
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Appendix

Symmetry relations for the effective field
theory

We may explicitly derive the interaction parameters
Vab in equation (3) of the main text by projecting the
extended Hubbard interactions onto the valley and
pseudospin eigenstates uτα(r). We find∑

VabJ
a
τ1τ3;α1α3

Jbτ2τ4;α2α4

=
∑
ri

U(r1,r2,r3,r4)u
∗
τ1α1

(r1)uτ3α3(r3)

× u∗τ2α2
(r2)uτ4α4(r4). (A1)

The Hubbard interactions may be expressed in terms
of the Wannier orbitals ϕr(x) (with x being a 3D
coordinate vector) via

U(r1,r2,r3,r4) =

ˆ
V(x− x ′)ϕr1(x)ϕr3(x)ϕr2(x

′)

×ϕr4(x
′)d3xd3x ′, (A2)

where V(x− x ′) is the Coulomb interaction, and
we have chosen the Wannier orbitals to be purely
real. The interactions thus satisfy U(r1,r2,r3,r4) =
U(r3,r2,r1,r4).

We may use the representation of time reversal
symmetry (equation (2) in the main text) T =ΩK
with Ω= τxαx to derive a relation

u∗τα(r) =
∑
τ ′,α ′

uτ ′α ′(r)Ωτ ′τ ;α ′α. (A3)

Applying this to the factors uτ1α1(r1) and uτ3α3(r3) in
(A1) we find∑

VabJ
a
τ1τ3;α1α3

Jbτ2τ4;α2α4

=Ωτ ′
1 τ1;α

′
1α1

Ω∗
τ ′
3 τ3;α

′
3α3

×
∑

VabJ
a
τ ′
3 τ

′
1 ;α

′
3α

′
1
Jbτ2τ4;α2α4

. (A4)

We may express this in the form∑
ab

VabJ
a ⊗ Jb =

∑
ab

Vab(Ω
†JaΩ)T ⊗ Jb. (A5)
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Since the adjoint basis elements Ja are Hermitian
and transform with definite sign under time reversal,
(Ω†JaΩ)T = (Ω†JaΩ)∗ = T −1JaT =±Ja, we find
that Vab = 0 for any operator Ja which is odd under
time reversal.

We may derive further symmetry constraints
using the relations

uτα(Λ
−1r) = uτ ′α ′(r)UΛ

τ ′τ ;α ′α (A6)

where Λ is a symmetry operation acting on coordin-
ates and UΛ is its unitary representation. Applying
a simultaneous transformation ri → Λri in (A1) we
find

∑
ab

VabJ
a ⊗ Jb =

∑
ab

Vab((U
Λ)†JaUΛ)⊗ ((UΛ)†JbUΛ).

(A7)

Since there always exists a symmetry operation
under which Ja and Jb transform with opposite
signs unless a= b, we find that Vab is a diagonal
matrix.

Landau–Ginzburg analysis of the
superconducting gap symmetry

The generic mean field Hamiltonian to account
for all pairing possibilities, in the upper band,
is

HBdG =
∑
k,s,τ

εkf
†
ksτ fksτ

+
1
2

∑
k,s,τ,s ′,τ ′

f†ksτ (∆kisyiτy)sτ,s ′τ ′ f
†
−ks ′τ ′ + h.c.

− 1
2

∑
k,p

∆†
kΓ

−1(k,p)∆p. (A8)

The gap takes any of the forms presented in table 2,
which contains the valley, spatial and spin struc-
ture. The spin structure employs standard notation of
dµ-vectors;

dx =
1

2
(|↑↑⟩− |↓↓⟩) , dy =

1

2i
(|↑↑⟩+ |↓↓⟩) ,

d z =
1

2
(|↑↓⟩+ |↓↑⟩) , d0 =

1

2
(|↑↓⟩− |↓↑⟩) . (A9)

The analysis presented in the main text states that
the gap functions can be chosen as simply one of the
possible degenerate sets; for the gap structure dis-
cussed in section 4 it is important that we can choose
the d-vector along one axis∆∝ dysy, and that a non-
unitary choice of ∆k is energetically penalized. We

explicitly show that this is the case below. We com-
pute the free energy to quartic order from (A8), and
find

F =
1

2

∑
k,p

∆†
kΓ

−1(k,p)∆p +
1

4
Tr

[
∆k∆

†
k

ω2 + ϵ2k

]

+
1

8
Tr

[
∆k∆

†
k∆k∆

†
k

(ω2 + ϵ2k)
2

]
(A10)

where Γ are the Cooper channel Born amp-
litudes, explicitly given in (5), and the trace
includes summation over momentum and
frequency.

Each gap structure entering table 2 has a crit-
ical temperature set by the coupling λ, where λ=
Γℓ
ττττ for intravalley pairing, while λ= Γℓ

+−+− ±
Γℓ
+−−+ for intervalley pairing. We restrict our atten-

tion to work within each degenerate set of gaps
separately. In most cases, the valley structure is
trivially traced out—the free energy reduces to
separate cases based on the overall spin degener-
acy d · s and degenerate chiral phase factors e±iθk .
Using this logic, there are only five distinct cases to
consider

(i) d0 s0 τz

(ii) d0
±s0 e

±iθkτ0

(iii) d · s, d · s eiτz(ϕ−θk) (iτy)

(iv) d± · s e±iθk τz

(v) d0 s0
(
1,e±iθk ,e−2iτzθkeiτzθk

)
eiτzϕ(iτy)

≡ (υ0,υ−2τ ,uτ±1). (A11)

Case (iii) enumerates the two physically distinct val-
ley structures that share the same spin structure and
chirality, but themselves are not degenerate, i.e. have
different Tc. The differing valley structures of these
gaps does not affect the contribution to F that is
quartic in ∆; the valley structure enters through Γ
and affects the value of Tc but not the stability ana-
lysis. The brackets in (v) accounts for the four phys-
ically distinct gap structures which are degenerate,
i.e. have the same value of λ and hence have same
critical temperature, cf table 2. We combine these
three gap functions into a vector (υ0,υ−2τ ,uτ±1),
which will use below in the free energy
analysis.

Evaluating the free energy to quartic order in the
gaps,
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F1[d
0 s0] = a1(T−Tc1)|d0|2 + b|d0|4,

F2[d
0
±s0 e

±iθk ] = a2(T−Tc2)(|d0+|2 + |d0−|2)+ b
(
|d0+|4 + 4|d0+|2|d0−|2 + |d0−|4

)
,

F3[d · s] = a3(T−Tc3)(d
∗ · d)+ b

{
(d∗ · d)2 + |d∗ × d|2

}
,

F4[d± · s e±iθk ] = a4(T−Tc4)(d
∗
+ · d+ + d∗− · d−)+ b

{
(d∗+ · d+)2 +(d∗− · d−)2 + 4(d∗+ · d+)(d∗− · d−)

+ |d∗+ × d+|2 + |d∗− × d−|2

+ 4(d∗+ × d+)(d− × d∗−)
}

F5[(υ0,υ−2τ ,uτ±1)] = a5(T−Tc5)
(
|υ0|2 + |υ−2τ |2 + |uτ+1|2 + |uτ−1|2

)
+ b
{
|υ0|4 + |υ−2τ |4 + |uτ+1|4 + |uτ−1|4 + 4|υ0|2

(
|υ−2τ |2 + |uτ+1|2 + |uτ−1|2

)
+ 4|υ−2τ |2

(
|uτ+1|2 + |uτ−1|2

)
+ 4|uτ+1|2|uτ−1|2

}

with coefficients ai > 0,b> 0, i= 1,2,3. We sum-
marize the main conclusions:

• Case (i) is a s-wave singlet paired state. The free
energy straightforwardly establishes stability of this
phase.

• Case (ii) corresponds to an intervalley p+ ip state,
in which electrons from opposite valleys pair with a
definite chirality. From F2[d0

±s0e
±iθk ], we find that

coexistence of opposite chiralities is energetically
penalized so that the system spontaneously chooses
one chirality, e.g. d0

+s0 e+iθk , therefore breaking
time reversal. This state exhibit first order topology
with gapless edge states.

• Case (iii) concerns two triplet paired states for
which the free energy has the same form; from
F3[d · s] we find that non-unitary paring is penal-
ised, i.e. d is purely real (or purely imaginary); the
d vector spontaneously chooses a direction, break-
ing spin SU(2) symmetry, but the condensate has
vanishing magnetization. The two superconduct-
ing states included in this case are: intravalley p+
iτp, in which electrons undergo p+ ip pairing in
one valley and p− ip pairing in the other, and inter-
valley s-wave, in which electrons from opposite
valleys undergo triplet s-wave pairing. Both states
respect time-reversal symmetry.

• Case (iv) examines spin-triplet p-wave interval-
ley pairing. From F4[d± · s e±iθk ], similar to case
(ii), the resulting state spontaneously breaks time
reversal symmetry, resulting in a first order topo-
logical p+ ip state e.g. d+e+iθk . As in case (iii), we
again find the d-vector is purely real (or imagin-
ary), and hence this state breaks time reversal sym-
metry but does not support a magnetization.

• Case (v) looks at a degenerate manifold of s-wave,
d+ iτd, and a mixed state with s-wave in one val-
ley and a d+ id pairing in the opposite valley, the
latter of which breaks time reversal. The intravalley
d-wave state is a d+ iτd superconductor—a time

reversal invariant combination of d+ id pairing in
one valley, and d− id pairing in the other—and
exhibits second order topology with gapless corner
states.

Screened interactions

In this appendix we discuss the screened electron–
electron interactions. We begin by presenting gen-
eral expressions for the polarization operators, and
making some general comments about regulating UV
divergences in effective quantum field theories. We
then explicitly calculate the intra and inter valley
current-current susceptibilities. We present the for-
mulae for the screened couplings, and plot the fre-
quency dependence of the resulting scattering amp-
litudes for Cooper pairs. We conclude by discussing
alternative regularizations for computing the suscept-
ibilities.

Preliminaries
The RPA equations for the screened interactions are

Ṽµν(ω,q) = Vµν(q)+Vµα(q)Π
αγ(ω,q)Ṽγν(ω,q)

(A12)

where Παγ is the polarization operator,

Πµν(ω,q) =−iTr

ˆ
JµG(E+ω,k+ q)JνG(E,k)

× dEd2k

(2π)3
,

G(E,k) =
1

E+µ− υτzk ·α+ i0 sgn(E)
(A13)

where the vertices Jµ = {J1, . . . , J10}= {τ0 α0, τzαz,
τ0αx, τ0αy, τxα0, τyα0, τxαx, τxαy, τyαx, τyαy}, as per
section 4 of the main text. We choose units in which
υ= 1, and upon performing the frequency integral by
residues, manipulations presented in [44] result in

12



2D Mater. 9 (2022) 015031 T Li et al

Πµν(ω,q)

= Tr

ˆ
d2k

(2π)2

∑
s=±

× Jµ(sω̃+ k− τz(k− sq) ·α)Jν(−k+ τzk ·α)

2k((sω̃+ k)2 − (k− sq)2)

+
Jµ(sω̃+ k+ τz(−k+ sq) ·α)Jν(k− τzk ·α)

2k((sω̃+ k)2 − (k− sq)2)

×Θ(µ− k). (A14)

The first term—the interband polarization oper-
ator, denotedΠ+—contributes whenµ= 0, while the
second term—the intraband polarization operator,
denoted Π−—only contributes when µ ̸= 0. Expli-
citly, we write

Πµν
+ (ω,q)

= Tr

ˆ
d2k

(2π)2

∑
s=±

× Jµ(sω̃+ k− τz(k− sq) ·α)Jν(k− τzk ·α)

2k((sω̃+ k)2 − (k− sq)2)

×Θ(µ− k) (A15)

and

Πµν
− (ω,q)

=−iTr

ˆ
d2k
(2π)2

dE
2π

× Jµ((ω+ E)ei0 + τz(k+ q) ·α)Jν(Eei0 + τzk ·α)

(((ω+ E)ei0)2 − (k+ q)2)((Eei0)2 − k2)
.

(A16)

The polarization operator Π11 is the stand-
ard charge polarization operator for graphene
[60, 61, 99], which describes the screening of the
density–density interaction α0τ0 ⊗α0τ0. The func-
tion Π22 is the pseudospin polarization operator
which describes the screening behavior of the
pseudospin–pseudospin interaction αzτz ⊗αzτz
which was first calculated in [44] (denoted there
as Πzz;00 due to different notation and a differ-
ence choice of basis for the pseudospin states). The
remaining functions describe the screening of the
intra and intervalley chiral currents. The current-
current susceptibility for graphene has been dis-
cussed in [100–102], though to the best of our
knowledge the intervalley current-current suscept-
ibility has not been previously investigated. Below,
it will be convenient for us to derive expressions
for both functions, and present them in a form
somewhat more general than those already in the
literature.

All polarization operators may all be written in
terms of four basic functions, for which we will intro-
duce simple notation in what follows. Use the space-
time indices Jµ = (τ0α0, τ0αi) where i= x,y, and
denote Π22 as Πzz. Considering Jµ = αiτ0 and Jν =

αjτ0, i.e. the chiral current screeningΠ33,Π34,Π44, we
then write this function as Πij and decompose into
longitudinal and transverse parts:

Πij(ω,q) = Π⊥(ω,q)(q
2δij − qiqj)+Π∥(ω,q)q

iqj.
(A17)

The chiral current polarization operator obeys
an important identity due to electromagnetic gauge
invariance. In the Dirac theory, the electromagnetic
current operator J=α so that the vector potential
of electromagnetism A appears in the Hamiltonian
as the perturbation eJ ·A. Gauge invariance, or equi-
valently the conservation of charge, can be shown to
imply the Ward identity,

qνΠ
µν(q,ω) = 0. (A18)

From this we find

ωΠ0i(ω,q)− qjΠ
ji(ω,q) = 0

ωΠ00(ω,q)− qiΠ
0i(ω,q) = 0.

Combining these,

ω2 Π00(ω,q) = qiqjΠ
ij(ω,q) = q4 Π⊥(ω,q) (A19)

which gives us an expression for the longitudinal part
of the current-current susceptibility in terms of the
density-density response

Π∥(ω,q) =
ω2

q4
Π00(ω,q). (A20)

Comparing our below results with the expression for
Π00 cite [44] shows our expressions satisfy this rela-
tion. We shall also derive an expression for the trans-
verse part of the susceptibility in the dimensional reg-
ularization scheme,

q2Π⊥(ω,q) =
q2 −ω2

q2
Π00(ω,q)+Πzz(ω,q) (A21)

which therefore allows the current-current screening
operator to be written entirely in terms of the density
and pseudospin responses.

As is common quantum field theories, the polar-
ization operators are formally divergent quantities
and require regularization. However, the physical ori-
gins of the divergences and the effects of regulariz-
ation differ between the polarization operators. The
dimensional regularization scheme has the effect of
simply setting all UV contributions to zero, leaving
just the effects of those degrees of freedom in the
Dirac effective theory near the K-points. Since actual
materials are UV-completed by a lattice, placing the
theory on a lattice is a more physical regularization
scheme, and gives the physical relation between the
numerical values of the couplings computed by band
structure methods and the couplings in the effective
theory.
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Firstly, the charge susceptibility Π00(ω,q) obeys
the exact compressibility sum rule, Π00(ω = 0,q→
0) =−ν0 where ν0 is the density of states at the Fermi
level, which means that cutoff-dependent quantities
never appear in any sensible regularization scheme.
For small frequencies and momenta, the regularized
polarization operator must be the same as that calcu-
lated in dimensional regularization.

Second, the current susceptibilitiesΠij(ω,q) obey
the Ward identity discussed above, as a result of the
fact that α is the current operator in the Dirac the-
ory, which also excludes cutoff-dependent contribu-
tions. However, away from the K-points, the current
operator is no longer given by α, which will result in
UV-dependent contributions to Πij(ω,q). In the lat-
tice regularization scheme, this means that one can
make changes to the lattice—for instance by modi-
fying the dispersion near the Γ point—that will res-
ult in a different value for Πij(ω,q), but these UV-
contributions originate from physics away from the
Dirac point where the Ward identity applies. Similar
toΠ00(ω,q), for small frequencies and momenta, the
regularized Πij(ω,q) must be the same in lattice and
dimensional regularization.

The pseudospin susceptibility Πzz(ω,q), by con-
trast, obeys no such constraint and receives a con-
stant and negative cutoff dependent contribution in a
lattice regularization. We may distinguish between
two types of cutoff dependence—contributions
which originate from physics near the Dirac point,
and contributions which originate from physics
away from the Dirac point. While only the lat-
ter affects Πij(ω,q), as we explained above, both
types of UV-contributions appear in Πzz(ω,q); one
way to see this is to use a hard cutoff Λ in the
Dirac theory, where (restoring the Dirac velocity
v) one finds Π00(ω = 0,q→ 0) =−Λ/(2πv)+ ν0.
Thus by solely modifying physics near the Dirac
point—for instance by changing the velocity—
these UV contributions which originate from phys-
ics near the Dirac point are changed. As a result,
these contributions which appear in a lattice reg-
ularization are important even at small frequen-
cies and momenta, and are described in the main
text.

When working with an effective field theory,
one always performs calculations in terms of UV-
independent quantities. However, if one wishes to
perform a microscopic calculation of the couplings
g i in (equation 4)—by computing the wavefunctions
of a material for e.g. through band structure diag-
onalization and then taking matrix elements of the
Coulomb interaction—the couplingswhich appear in
the effective quantum field theory will be related to
those values through lattice regularization, in which
Πij(ω,q) and Πzz(ω,q) receive contributions from
physics away from the Dirac point, and Πzz(ω,q)
receives an additional constant contribution from
physics near the Dirac point.

Intravalley current-current polarization operator
Wenow turn to a calculation ofΠij(ω,q).We begin by
calculating the interband part through dimensional
regularization, using the formulae

ˆ
ddk

(2π)d
(k2)a

(k2 +∆)b
=

1

(4π)d/2

×
Γ( d2 + a)Γ(b− a− d

2 )

Γ( d2 )Γ(b)

×∆d/2+a−b (A22)

ˆ
ddk

(2π)d
(k2)a

(k2 −∆)b
= i

(−1)a−b

(4π)d/2

×
Γ( d2 + a)Γ(b− a− d

2 )

Γ( d2 )Γ(b)

×∆d/2+a−b. (A23)

Focus first on the denominator in equation (A16).
Using the Schwinger–Feynman parametrization,

1

AB
=

ˆ 1

0

dx

(xA+(1− x)B)2
(A24)

we write

1

((ω+ E)2 − (k+ q)2)(E2 − k2)

=

ˆ 1

0
dx

1

((k+ xq)2 − x(x− 1)q2)2
(A25)

where we now use relativistic notation lµ = (E,k),
pµ = (ω,q), and l2 = E2 − k2, p2 = ω2 − q2. Shifting
l→ l− xp (bear in mind that this will affect the
numerator as well), and Wick rotating E→ iE, the
expression becomes

ˆ 1

0
dx

1

(l2 + x(x− 1)p2)2
. (A26)

The corresponding numerator (beforeWick rotation)
is

Tr Jµ ((1− x)ω+ E+ [(1− x)q+ k] ·α)

× Jν (−xω+ E+ [−xq+ k] ·α) . (A27)

Now we substitute Jµ, Jν = αi,αj with i, j= x,y and
perform the pseudospin trace using the identity

Tr
[
αi(A+Bλαλ)αj(C+Dραρ)

]
= 2ACδij + 2

(
BiDj +BjDi −B ·Dδij

)
(A28)

where∆= x(x− 1)p2. Using rotational symmetry to
replace (li)2 → 1

3 l
2, we arrive at

Π
ij
− = 2N

ˆ 1

0
dx

ˆ
ddl

(2π)d

×
[x(x− 1)p2 − 1

3 l
2]δij − 2x(1− x)qiqj

(k2 +∆)2

(A29)
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where we account for the valley and spin trace
through a factor N = 4. Integrating using equation
(A23), we find the imaginary part

Im Π
ij
−

= 2N

ˆ 1

0

dx

8π

×

{{
x(x− 1)p2√
x(1− x)p2

−
√
x(1− x)p2

}
δij

+
2x(x− 1)pipj√

x(1− x)p2

}
Θ(p2). (A30)

Using
´ 1
0 dx

√
x(1− x) = π/8, we arrive at

Im Π
ij
− =− N

16
√
ω2 − q2

{
δij(ω2 − q2)+ qiqj

}
×Θ(ω− q). (A31)

Similarly using equation (A22), the real part is calcu-
lated from equation (A29) to be

Re Πij
− =− N

16
√
q2 −ω2

{
δij(ω2 − q2)+ qiqj

}
×Θ(q−ω). (A32)

The functions Π
ij
⊥(Ω,q) and Π

ij
∥(Ω,q) are

respectively the transverse and longitudinal
components of the polarization operator.
From above, we see the their interband parts
are

Π
ij
−,⊥ =− N

16q2
√
q2 −ω2 Θ(q−ω)

+ i
N

16q2
√
ω2 − q2Θ(ω− q) (A33)

and

Π
ij
−,∥ =− N

16q2
ω2√
q2 −ω2

Θ(q−ω)

− i
N

16q2
ω2√
ω2 − q2

Θ(ω− q). (A34)

Calculating the density response Jµ = Jν = α0

through the formalism above, one may see that the
above expression for Πij

∥ satisfies the Ward identity
(A20).

Let us now perform the intraband
calculation. The numerator in equation
(A15) is evaluated using equation (A28), so
that

Π
ij
+(ω,q) = 2N

ˆ
d2k

(2π)2

∑
s=±

{k(sω̃+ k)− k · (k− sq)}δij + 2kikj − s(kiqj + kjqi)

2k((sω̃+ k)2 − (k− sq)2)
Θ(µ− k). (A35)

The denominator equals ω̃2 + 2sω̃k− q2 + 2 sk · q.
Shifting the angle of integration θk → θk + θq where
θq is the angle of the vector q, and denoting the angle

of integration hereafter as simply θ, we have k · q→
kqcosθ. Using the evenness of the denominator in θ,
the numerator may be simplified to arrive at

Π
ij
+(ω,q) = 2N

ˆ
dkdθ

(2π)2

∑
s=±

{sω̃k+ skqcosθ}δij + 2k2 cosθδij + 2k2 cos2θq̂ iq̂ j − 2skqcosθq̂ iq̂ j

ω̃2 + 2sω̃k− q2 + 2 skqcosθ
Θ(µ− k)

(A36)

where q̂ i = qi/q. To proceed, we make use of the
integral

I(a+ ib0) =

ˆ 2π

0

1

a+ ib0+ cosθ

dθ

2π

=
sgn(a)√
a2 − 1

Θ(|a| − 1)− i
sgn(b)√
1− a2

×Θ(1− |a|) (A37)

and the identities

ˆ 2π

0

cosθ

a+ cosθ

dθ

2π
= 1− aI(a) (A38)

ˆ 2π

0

cos2θ

a+ cosθ

dθ

2π
=−2a+(2a2 − 1)I(a). (A39)

Evaluating (A36), we define α= ω̃2+2sω̃k−q2

2kq =
ω2+2sωk−q2

2kq + i0ω2+sωk
kq and denote Ĩ(α) = 2kqI(α).

Then
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Π
ij
+(ω,q) = 2N

ˆ
dk

2π

∑
s=±

((
1

2
+

kα

q
+ {sω̃k− kqα+ 2k2(1−α2)}̃I(α)

)
δij

+

(
− 1+

2kα

q
+ {2k2 + 2kqα− 4k2(1−α2)}̃I(α)

)
q̂ iq̂ j

)
Θ(µ− k). (A40)

Making the substitution 2p= 2k+ sω̃, we get

Π
ij
+(ω,q) =

ˆ
dk

2π

∑
s=±

((
ω̃2

2q2
+

1

q2
(q2 − ω̃2)̃I(α)

)[
δij − q̂ iq̂ j

]
−
(
ω̃2

2q2
− ω̃2

2q2
(4p2 − q2)̃I(α)

)
q̂ iq̂ j

)
Θ(µ− k).

(A41)

We arrive at

Π
ij
+(ω,q) = Π+,⊥(ω,q)(q

2δij − qiqj)

+Π+,∥(ω,q)q
iqj (A42)

with

Π+,⊥ = 2N

ˆ
dk

2π

∑
s=±

(
ω̃2

2q4
+

1

q4
(q2 − ω̃2)̃I(α)

)
×Θ(µ− k) (A43)

and

Π+,∥ = N
ω̃2

q4

ˆ
dk

2π

∑
s=±

(
−1+(4p2 − q2)̃I(α)

)
×Θ(µ− k). (A44)

As stated earlier, the latter function is related to the
density response through the Ward identity. Direct
comparison with the appendix of [44] shows that the
Ward identity is satisfied by the above expression.One
also sees that the inter and intraband polarization
operators separately satisfy equation (A21). In sum-
mary, one finds

Πij(ω,q) = Π⊥(ω,q)(q
2δij − qiqj)+Π∥(ω,q)q

iqj

with

q2Π⊥(ω,q) =
q2 −ω2

q2
Π00(ω,q)+Πzz(ω,q) (A45)

Π∥(ω,q) =
ω2

q4
Π00(ω,q) (A46)

as claimed in the previous section.

Intervalley polarization operator
Taking Jµ = τ±αi and Jν = τ∓αj with τ± = 1

2 (τx ±
iτy) and performing the trace changes the sign of the
terms containing factors of τ z. If we denote this inter-
valley polarization operator Π

ij
II then one finds the

simple result

Π
ij
II,⊥ =Π

ij
∥ (A47)

Π
ij
II,∥ =Π

ij
⊥. (A48)

In other words, the transverse and longitudinal
response are reversed between intra and interval-
ley. The same trace relations show that Π22 =Π55 =
Π66 =Πzz, i.e. the screening of the operators τ± is the
same as that of τzαz.

Solution to the RPA equations in the onsite limit
We have the interactions

g1α0 ⊗α0 + g2αzτz ⊗αzτz + g4(τ+ ⊗ τ− + τ− ⊗ τ+)

g3
(
αx ⊗αx +αy ⊗αy

)
+ g5

(
αx ⊗αx +αy ⊗αy

)
× (τ+ ⊗ τ− + τ− ⊗ τ+) . (A49)

We consider the simple case of only onsite inter-
actions, so only UAAAA ̸= 0; in this limit one finds
g3 = g4 = 0 for the honeycomb lattice and g2 = g5 = 0
for kagome lattices. In each case the RPA equations
decouple, so that each g i is screened separately. The
result is the screened interactions:
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g1
1− g1Π00

α0 ⊗α0 +
g2

1− g2Πzz
αzτz ⊗αzτz

+

(
g5 + g25q

2 Π∥

1− g5(Π∥ +Π⊥)q2 + g25Π∥Π⊥q4
(
αx ⊗αx +αy ⊗αy

)
−

g25(Π⊥ −Π∥)

1− g5(Π∥ +Π⊥)q2 + g25Π∥Π⊥q4
(q ·α)⊗ (q ·α)

)
(τ+ ⊗ τ− + τ− ⊗ τ+) (A50)

for the honeycomb lattice and

g1
1− g1Π00

α0 ⊗α0 ++
g4

1− g4Πzz
(τ+ ⊗ τ− + τ− ⊗ τ+)

+
g3 + g23q

2 Π∥

1− g3(Π∥ +Π⊥)q2 + g23Π∥Π⊥q4
(
αx ⊗αx +αy ⊗αy

)
+

g23(Π⊥ −Π∥)

1− g3(Π∥ +Π⊥)q2 + g23Π∥Π⊥q4
(q ·α)⊗ (q ·α)

+

(
g5 + g25q

2 Π∥

1− g5(Π∥ +Π⊥)q2 + g25Π∥Π⊥q4
(
αx ⊗αx +αy ⊗αy

)
−

g25(Π⊥ −Π∥)

1− g5(Π∥ +Π⊥)q2 + g25Π∥Π⊥q4
(q ·α)⊗ (q ·α)

)
(τ+ ⊗ τ− + τ− ⊗ τ+) (A51)

for the kagome lattice. Cooper channel scattering amplitudes
On-site limit for honeycomb systems
For honeycomb systems, the ℓ-wave scattering amp-
litude is

Γℓ
τ1τ2τ3τ4(ω,k,p) =

1

4

ˆ
dθ

2π
e−iℓθ

(
(1+ eiτ1θ)2

g0
1− g0Π00(ω,q)

+ (1− eiτ1θ)2
g2

1− g2Πzz(ω,q)

)
δτ1,τ2δτ3,τ4δτ1,τ3

+ 2e−iℓθ

(
(1+ cosθ)

g0
1− g0Π00(ω,q)

+ (1− cosθ)
g2

1− g2Πzz(ω,q)

)
δτ1,τ2δτ3,τ4δτ1,−τ3

+ 2e−iℓθ

(
g5 + g25q

2 Π∥

1− g5(Π∥ +Π⊥)q2 + g25Π∥Π⊥q4

)
δτ1,−τ2δτ3,−τ4δτ1,−τ3 (A52)

where q= k− p, θ = θk − θp.

On-site limit for kagome systems

For the kagome lattice we have
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Γℓ
τ1τ2τ3τ4(ω,k,p) =

1
4

ˆ
dθ
2π

e−iℓθ

(
(1+ eiτ1θ)2

g0
1− g0Π00(ω,q)

− 2eiτθ
g3 + g23q

2 Π∥

1− g3(Π∥ +Π⊥)q2 + g23Π∥Π⊥q4

+ (k− p)2(1+ eiτ1θ)2
g23(Π⊥ −Π∥)

1− g3(Π∥ +Π⊥)q2 + g23Π∥Π⊥q4

)
δτ1,τ2δτ3,τ4δτ1,τ3

+ e−iℓθ

(
(1+ cosθ)

2g0
1− g0Π00(ω,q)

+
2(g3 + g23q

2 Π∥)

1− g3(Π∥ +Π⊥)q2 + g23Π∥Π⊥q4

− (k− p)2(1+ cosθ)
2g23(Π⊥ −Π∥)

1− g3(Π∥ +Π⊥)q2 + g23Π∥Π⊥q4

)
δτ1,τ2δτ3,τ4δτ1,−τ3

+ e−iℓθ

(
(1− cosθ)

2g4
1− g4Πzz(ω,q)

+
2(g5 + g25q

2 Π∥)

1− g5(Π∥ +Π⊥)q2 + g25Π∥Π⊥q4

)
δτ1,−τ2δτ3,−τ4δτ1,−τ3 .

(A53)

Eliashberg equations
Neglecting self-energy corrections, the linear-
ized Gor’kov–Eliashberg frequency dependent gap
equation is given

∆ℓ(iωn,k) =−T
∑
m

∑
p

Kℓ(iωn,k; iωm,p)∆
ℓ(iωm,p)

(A54)

with the Eliashberg kernel,

Kℓ(iωn,k; iωm,p)

=
1

ω2
m + ε2p

ˆ
dθ

2π
eiℓθ λ(iωn − iωm,k,p,θ) (A55)

where ωn = π(2n+ 1)T are the fermionic Matsub-
ara frequencies [103–105]. The frequency dependent
coupling λ(ω,q) is defined analogously to the static
coupling in the main text: λ(ω,q) = Γττττ (ω,q)
for intravalley pairing or λ(ω,q) = Γ+−+−(ω,q)±
Γ+−−+(ω,q) for intervalley pairing. The functions
∆, K and Γ are tensors in spin and valley space—spin
and valley indices are left implicit. The critical tem-
perature can found by finding the value ofT forwhich
the above linear equation for ∆ has an eigenvalue of
−1/T. The zero temperature gap can also be found
from solving

∆ℓ(ω ′) =−ν0
ˆ

∆ℓ(ω)λℓ(ω−ω ′)√
ω2 − |∆ℓ(ω)|2

dω

4π
(A56)

where λℓ(ω−ω ′) is the ℓ-wave coupling evalu-
ated onshell, εk = ω,εp = ω ′. These equations can be
derived through general assumptions about the ana-
lytic behavior of the scattering amplitude Γ (see e.g.
[103]). The requirements of unitarity and causality
imply that as a function of frequency the amplitude
must be analytic in the upper half plane, and that

the amplitude has branch cuts corresponding to the
threshold of particle-hole production. While Γ pos-
sesses singularities as a function of ω ′, these occur
either for ω ′ ≫ vF|k− p|, which provides a negligible
contribution, or close to the edge of the particle hole
continuum ω ′ ≈ vF|k− p|, which is significant for
a range of scattering angles θk − θp ≈ 0 which only
becomes significant when p≈ kF.

As is shown by examination of the formu-
lae in the previous subsection, the scattering amp-
litudes have a roughly step-like behavior. Below,
we plot the p-wave inter and intra valley on-shell

couplings—λ
ℓ=1

intra = Γℓ=1
ττττ (|k| − |p|, |k− p|) as well

as λℓ=1
inter = Γ+−+−(|k| − |p|, |k− p|)−Γ+−−+(|k| −

|p|, |k− p|)—for the kagome and honeycomb lattices
to illustrate this phenomenon. Treating the scatter-
ing amplitude as a step function in frequency space,
the frequency dependent gap equation can therefore
be straightforwardly solved as in the Anderson-Morel
treatment of the electron-phonon problem [106], the
result being a renormalized coupling appearing in the
exponential form of Tc and an effective frequency
cutoff, c.f. the treatment in S3 of [44].

Real space form of the p+ iτp gap
function

In this appendix we derive the real space form of the
p+ iτp gap function used for exact diagonalization in
section 4. Starting with the momentum space mean
field Hamiltonian, we have

HBdG =
∑
k

εkf
†
k,τ,s fk,τ,s +

1
2

∑
k<kF,τ,s,s ′

×∆ke
iτϕe−iτθk(isyd

µsµ)ss ′ f
†
k,τ,s f

†
−k,τ,s ′ + h.c.

(A57)
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Figure A1. The p-wave intravalley coupling function λℓ=1
ττττ (p,k= kF), and s-wave intervalley coupling function λℓ=0

inter (k,p) for
honeycomb (left column) and kagome (right column) systems in the onsite limit. We use fine structure constant
2πν0e2/εr = 0.3, bare couplings g2 = 0.6,g3 = 1.4,g4 = 0.8,g5 = 1.4, and for the intrarvalley coupling functions use g1 = 0.4
and for the intervalley coupling functions g1 = 0.2. The scattering amplitudes have been regularized and smoothed to avoid
singularities which are inessential to the solution of the gap equation, as discussed in the Appendix section “Eliashberg equations”.

where f†k,τ,s creates an electron in the upper band,
∆k is an overall factor depending only on the mag-
nitude k, ϕ is the phase of the pair density wave,
and (dx,dy,d z) is a constant 3D vector with unit
length. The normal dispersioon εk is spin independ-
ent, which allows us to perform a spin rotation so
that (dx,dy,d z) =−i(0,1,0), and the Hamiltonian
decouples into two spin-diagonal terms,

HBdG =H↑ +H↓ =
∑
k,s

εkf
†
k,τ,sfk,τ,s +

1

2

∑
k<kF,τ,s,s ′

×∆ke
iτϕe−iτθk f†k,τ,sf

†
−k,τ,s + h.c.

(A58)

Since the Hamiltonian is a sum of independent spin
blocks, we discard the spin index henceforth. We now
convert this expression to real space, in which the
Hamiltonian becomes

H=
∑
r,r ′

H(r,r ′)c†r c
†
r ′ +

1

2
∆(r,r ′)c†r c

†
r ′ + h.c.

(A59)

where c†r,s is the full electron creation operator (as
compared to f†k which creates an electron with
momentum k in the upper band).We assume that the

only hopping term present connects nearest neigh-
bors, i.e. that H(r,r ′) =−t if r and r ′ are nearest
neighbors and zero else. It remains then to calculate
the function∆(r,r ′). In momentum space, the pair-
ing term for each spin block is given by

H∆ =
1

2

∑
k<kF,τ

∆ke
iτϕe−iτθk f†k,τ f

†
−k,τ . (A60)

We relate the creation operator for the upper band to
the full electron creation operator by

f†k,τ,s =
∑
r

uk,τ (r)c
†
r,s (A61)

where uk,τ (r) is the wavefunction for the upper Dirac
band. Substituting this relation into the pairing term,

H∆ =
1

2

∑
k,τ,r,r ′

∆ke
−iτϕe−iτθkuk,τ (r)u−k,τ (r

′)c†r,sc
†
r ′,s

(A62)

from which it follows immediately that

∆(r,r ′) =
∑
k,τ

∆ke
−iτϕe−iτθkuk,τ (r)u−k,τ (r

′).

(A63)
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The upper band eigenstates of the Dirac Hamiltonian
H= vτk ·α are given in the coordinate representa-
tion in terms of the wavefunctions eiτK1·rφτα(r) by

uk,+(r) =
1√
2

(
φ++(r)+ eiθkφ+−(r)

)
ei(k+K)·r,

uk,−(r) = u∗−k,+(r) =
1√
2

(
φ∗
++(r)− e−iθkφ∗

+−(r)
)

× ei(k−K)·r (A64)

where φτα(r) are periodic functions under lattice
translations. Thus

∆(r,r ′) =
∑
k

∆k

{
1

2
ei{K·(r+r ′)+k·(r−r ′)+ϕ−θk}

[
(φ++(r)+ eiθkφ+−(r))(φ++(r

′)− eiθkφ+−(r
′))
]

+
1

2
ei{−K·(r+r ′)+k·(r−r ′)−ϕ+θk}

[
(φ∗

++(r)− e−iθkφ∗
+−(r))(φ

∗
++(r

′)+ e−iθkφ∗
+−(r

′))
]}
.

(A65)

Performing the summation over k and introdu-
cing the functions

ˆ
∆ke

ik·r d2k

(2π)2
=

1

2π

ˆ
∆kJ0(kr)kdk=Φ0(r),

i∓
ˆ

∆ke
i[k·r±θ] d2k

(2π)2
=

1

2π

ˆ
∆kJ1(kr)kdk=Φ1(r)

(A66)

we find

∆(r,r ′) =
1

2
ei{K·(r+r ′)+ϕ} [(φ++(r)φ++(r

′)−φ+−(r)φ+−(r
′))iΦ1(r)+ (φ+−(r)φ++(r

′)

−φ++(r)φ+−(r
′))Φ0(r)]

+
1

2
e−i{K·(r+r ′)+ϕ} [−(φ++(r)φ

∗
++(r

′)−φ∗
+−(r)φ

∗
+−(r

′))iΦ1(r)+ (φ∗
++(r)φ

∗
+−(r

′)

−φ∗
+−(r)φ

∗
++(r

′))Φ0(r)
]

= Re{ei{K·(r+r ′)+ϕ+π
2 } [(φ++(r)φ+−(r

′)−φ+−(r)φ+−(r
′))

×|Φ1(r)|+(φ++(r)φ+−(r
′)−φ+−(r)φ++(r

′))|Φ0(r)|]}. (A67)

The function |Φ0(r)| is maximum for r= 0 and goes
to zero over length scales r∼ π/kF while |Φ1(r)| is
small for small r and increases to a maximum at r∼
π/kF. To simplify ∆(r,r ′) for the purposes of exact
diagonalization, we will neglect the pairing correla-
tions at large separations, discarding the term con-
tainingΦ1 and setΦ0 →∆ ′ with∆ ′ being some aver-
age value. With these simplifications we finally arrive
at the real space Hamiltonian

H=
∑
⟨r,r ′⟩

−tc†r cr ′ +
1

2
∆(r,r ′)c†r c

†
r ′ + h.c.,

∆(r,r ′) = ∆ ′Re{ei{K·(r+r ′)+ϕ+π
2 }

× [φ++(r)φ+−(r
′)−φ+−(r)φ++(r

′)]}.
(A68)

Note that∆(r,r ′) =−∆(r ′,r) = ∆∗(r,r ′), and with
t real, the Hamiltonian is invariant under complex
conjugation, conforming with our claim in the main
text that this superconducting phase lies in class BDI.

Below we present ∆(r,r ′) explicitly for the hon-
eycomb and Kagome lattices. The procedure is simply
to calculate the eigenfunctions φτα(r) of the normal
stateHamiltonians at theDirac points, and insert into
equation (A68).

Honeycomb lattice
For the honeycomb lattice, we have

φ++(r) =

{
1 r ∈ A

0 r ∈ B
φ+−(r) =

{
0 r ∈ A

1 r ∈ B.

(A69)
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For r ∈ A,r ′ ∈ B we therefore get

∆(r,r ′) = Re{ei{K·(r+r ′)+ϕ+π
2 }}

= sin(K · (r+ r ′)+ϕ) (A70)

and hence

H=
∑
⟨r,r ′⟩

−tc†r c
†
r ′ +∆ ′

×
[
sin(K · (r+ r ′)+ϕ)c†r c

†
r ′ +H.c.

]
(A71)

as per equation (19).

Kagome lattice
For the kagome lattice, we have

φτα(r) =


1 r ∈ A

−e−
2πiα

3 r ∈ B

−e
2πiα

3 r ∈ C

(A72)

so the real space gap function is

∆(r,r ′) =


cos(K · (r+ r ′)+ϕ), r ∈ A,r ′ ∈ B

cos(K · (r+ r ′)+ϕ+π), r ∈ B,r ′ ∈ C

cos(K · (r+ r ′)+ϕ), r ∈ C,r ′ ∈ A

(A73)

and hence

H=
∑
⟨r,r ′⟩

−tc†r cr ′ +∆ ′ cos(K · (r+ r ′)+ϕ)c†r c
†
r ′

+ h.c. (A74)

with the appropriate orderings of r and r ′ to take
account of the case with a relative π phase—as per
equation (18).
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